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Abstract—We show that the Waring rank (symmetric tensor
rank) of a certain family of polynomials has intimate con-
nections to the areas of parameterized and exact algorithms,
generalizing some well-known methods and providing a con-
crete approach to obtain faster approximate counting and
deterministic decision algorithms.

To illustrate the amenability and utility of this approach,
we give an algorithm for approximately counting subgraphs
of bounded treewidth, improving on earlier work of Alon,
Dao, Hajirasouliha, Hormozdiari, and Sahinalp. Along the way
we give an exact answer to an open problem of Koutis and
Williams and sharpen a lower bound on the size of perfectly
balanced hash families given by Alon and Gutner.

Keywords-Parameterized complexity; Algebraic computa-
tion; Approximation algorithms;

I. INTRODUCTION

The Waring rank of a homogeneous n-variate degree-d
polynomial f ∈ Sn

d := C[x1, . . . , xn]d, denoted R(f), is

the minimum r such that

f = �d1 + · · ·+ �dr , (1)

for some linear forms �1, . . . , �r ∈ Sn
1 . The study of

Waring rank is a classical problem in algebraic geometry and

invariant theory, with pioneering work done in the second

half of the 19th century by A. Clebsch, J.J. Sylvester, and T.

Reye, among others [1, Introduction]. It has enjoyed a recent

resurgence of popularity within algebraic geometry [1], [2]

and has connections in computer science to the limiting

exponent of matrix multiplication ω [3], the Mulmuley-

Sohoni Geometric Complexity Theory program [4], and

several other areas in algebraic complexity [5], [6]. This

paper adds parameterized algorithms to this list, showing

that several methods in this area (color-coding methods [7]–

[9], the group-algebra/determinant sum approach [10]–[12],

and inclusion-exclusion methods) fundamentally result from

rank upper bounds for a specific family of polynomials.

Better explicit upper bounds on the Waring rank of these

polynomials yield faster algorithms for certain problems in

a black-box manner, and lower bounds on the Waring rank

of these polynomials imply barriers such algorithms face.

This connection should not come as a surprise, as many

algorithms work by solving a question about the coefficients

of some efficiently-computable “generating polynomial” de-

termined by the input. The insight of this paper, which has

been largely unexploited, is that in general this is a question

about Waring rank.

Let en,d :=
∑

1≤i1<i2<···<id≤n xi1 · · ·xid denote the

elementary symmetric polynomial of degree d in n variables.

We will study the following questions:

Question 1. What is A(n, d), the minimum Waring rank

among all g ∈ Sn
d with the property that supp(g) =

supp(en,d)?
1

Question 2. What is A+(n, d), the the minimum Waring

rank among all g ∈ R≥0[x1, . . . , xn] with the property that

supp(g) = supp(en,d)?

Question 3. For 0 ≤ ε < 1, what is Aε(n, d), the minimum

Waring rank among all g ∈ R[x1, . . . , xn] with the property

that supp(g) = supp(en,d) and the nonzero coefficients of

g are in the range 1± ε?

We now illustrate the algorithmic relevance of these

questions with a new and very simple
(

n
�d/2�

)
poly(n)-time

and poly(n)-space algorithm for exactly counting simple

cycles (i.e., closed walks with no repeated vertices) of

length d in an n-vertex graph. This is the fastest poly-

nomial space algorithm for this problem, improving on

a 2d
(

n
�d/2�

)
poly(n)-time algorithm of Fomin, Lokshtanov,

Raman, Saurabh, and Rao [13] which in turn improved

on a 2d(d/2)!
(

n
�d/2�

)
poly(n)-time algorithm of Vassilevska

Williams and Williams [14].

Given a directed graph G, let AG be the symbolic matrix

with entry (i, j) equal to the variable xi if there is an edge

from vertex vi to vertex vj , and zero otherwise. By the trace

method,

fG := tr(Ad
G) =

∑
closed walks

(vi1 ,vi2 ,...,vid )∈G

xi1 · · ·xid ∈ Sn
d . (2)

Now we denote by g(∂x) the partial differential operator

g( ∂
∂x1

, . . . , ∂
∂xn

). Note that if f =
∑

α aαx
α1
1 · · ·xαn

n and

1Here supp(
∑

α∈Nn cαx
α1
1 · · ·xαn

n ) := {α ∈ Nn : cα �= 0}.
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g =
∑

α bαx
α1
1 · · ·xαn

n are both elements of Sn
d ,

g(∂x)f =
∑
α

bα

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn ∑
α

aαx
α1
1 · · ·xαn

n

=
∑
α

α1! · · ·αn!aαbα.

The algorithm is based on two easy observations:

Observation 4. The number of simple cycles of length d in
G equals en,d(∂x)fG.

Observation 5. If g = a1�
d
1+· · ·+ar�

d
r , where �i = ci,1x1+

· · ·+ ci,nxn for i = 1, . . . , r, then for all f ∈ Sn
d ,

g(∂x)f = d!
r∑

i=1

aif(ci,1, . . . , ci,n).

It is immediate that we can compute the number of

simple cycles in G of length d using R(en,d) = A0(n, d)
evaluations of fG. It was shown in [15] that

R(en,d) ≤
(

n

≤ �d/2�
)

:=

�d/2�∑
i=0

(
n

i

)
.

Explicitly, for S ⊆ [n] and i ∈ [n], define the indicator

function δS,i := −1 if i ∈ S, and δS,i := 1 otherwise. Then

for d odd,

2d−1d! · en,d =
∑
S⊂[n]

|S|≤�d/2�

(−1)|S|
(
n− �d/2� − |S| − 1

�d/2� − |S|
)
·

(δS,1x1 + δS,2x2 + · · ·+ δS,nxn)
d.

(A similar formula holds for d even.) It follows that the

number of length-d simple cycles in G equals

1

2d−1

∑
S⊂[n]

|S|≤�d/2�

(−1)|S|
(
n− �d/2� − |S| − 1

�d/2� − |S|
)
·

fG(δS,1, . . . , δS,n).

(3)

This gives a closed form for the number of length-d simple

cycles in G that is easily seen to be computable in the stated

time and space bounds. This algorithm is much simpler, both

computationally and conceptually, than those of previous

approaches.

The above argument shows something very general: given

f ∈ Sn
d as a black-box, we can compute en,d(∂x)f (that is,

the sum of the coefficients of the multilinear monomials in

f ) using
(

n
≤�d/2�

)
queries. This answers an open problem

asked by Koutis and Williams [16] in a completely black-box

way.2 Moreover, it follows from a special case of our Theo-

rem 6 that any algorithm must make R(en,d) ≥ Ω(
(

n
≤�d/2�

)
)

[15] queries to compute en,d(∂x)f in the black-box setting:

2An alternate solution to this problem was given contemporaneously in
[17].

Theorem 6. Fix g ∈ Sn
d and let f ∈ Sn

d be given as a black-
box. The minimum number of queries to f needed to compute
g(∂x)f is R(g), assuming unit-cost arithmetic operations.

In light of this lower bound, one might next ask for

a (1 ± ε) approximation of en,d(∂x)f . This prompts our

main algorithmic result, which is based on an answer to

Question 3:

Theorem 7. Let f ∈ R≥0[x1, . . . , xn]d be given as a black-
box. There is a randomized algorithm which given any 0 <
ε < 1 computes a number z such that with probability 2/3,

(1− ε) · en,d(∂x)f < z < (1 + ε) · en,d(∂x)f.
This algorithm runs in time 4.075d · ε−2 log(ε−1) ·
poly(n, sf ) and uses poly(n, sf , log(ε

−1)) space. Here sf
is the maximum bit complexity of f on the domain {±1}n.

The algorithm and the proof behind Theorem 7 are simple

and can be found in Section IV. Applying this theorem to

to the graph polynomial fG, an algorithm for approximately

counting simple cycles of length d is immediate. More

generally, we have the following:

Theorem 8. Let G and H be graphs where |G| = n,
|H| = d, and H has treewidth tw(H). There is a randomized
algorithm which given any 0 < ε < 1 computes a number
z such that with probability 2/3,

(1− ε) · Sub(H,G) < z < (1 + ε) · Sub(H,G).

This algorithm runs in time 4.075d · ntw(H)+O(1) ·
ε−2 log(ε−1). Here Sub(H,G) denotes the number of sub-
graphs of G isomorphic to H .

After the writing of this paper, a O(4dnO(1)) time

deterministic algorithm for this problem was given

in [18]. The previous fastest algorithm ran in time

5.44dntw(H)+O(1)ε−2-time algorithm of Alon, Dao, Haji-

rasouliha, Hormozdiari, and Sahinalp [19], improving on

a 5.44d log log dntw(H)+O(1)ε−2-time algorithm of Alon and

Gutner [8]. The first parameterized algorithm for a variant

of this problem was given by Arvind and Raman [20] and

had runtime dO(d)ntw(H)+O(1). In the special case that H
has pathwidth pw(H), an algorithm of Brand, Dell, and

Husfeldt [21] runs in time 4dnpw(H)+O(1)ε−2. We stress that

this application is only a motivating example – Theorem 7

is extremely general and can be applied to approximately

count set partitions and packings [22], dominating sets

[16], repetition-free longest common subsequences [23], and

functional motifs in biological networks [24].

In the rest of this section we outline our approach. This

will suggest a path to derandomize and improve the base

of the exponent in Theorem 7 (and hence Theorem 8) from

4.075 to 2. Specifically, we raise the following question:

Question 9. Is Aε(n, d) ≤ 2d · poly(n, ε−1)?
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Prior to this work it was believed [25] that a derandomiza-

tion of polynomial identity testing would be needed to ob-

tain, for instance, a deterministic 2dpoly(n)-time algorithm

just for detecting simple paths of length d in a graph. On the

contrary, an explicit affirmative answer to the above question

would give a 2dpoly(n, ε−1)-time deterministic algorithm

for approximately counting simple paths.

Remark 10. A focus on approximating g(∂x)f in the case

that f and g are real stable has recently led to several

advances in algorithms and combinatorics; see e.g. [26]. In

particular, a result of Anari, Oveis Gharan, Saberi, and Singh

[27] shows that in this case en,d(∂x)f can be approximated

(up to a factor of ed+ε) deterministically in polynomial time

given black-box access to f . This paper shows that the

general (i.e., unstable) case raises interesting questions as

well.

A. Our Approach and Connections to Previous Work

To continue with the previous example, note that the graph

polynomial fG is supported on a multilinear monomial if and

only if G contains a cycle of length d. This motivates the fol-

lowing problem of well-recognized algorithmic importance

[10], [11], [28]:

Problem 11. Given black-box access to f ∈ Sn
d over Cn,

decide if f is supported on a multilinear monomial.

It is not hard to see that any algorithm for computing

g(∂x)f , where g is supported on exactly the set of degree-d
multilinear monomials, can be used to solve Problem 11 with

one-sided error (Proposition 22 (a)). This suggests studying

upper bounds on A(n, d) (Question 1) as an approach to

solve Problem 11. Perhaps surprisingly though, it turns out

that several known methods in parameterized algorithms

can be understood as giving constructive upper bounds on

A(n, d), and better upper bounds to A(n, d) would improve

upon these methods. For example, the seminal color-coding

method of Alon, Yuster, and Zwick [7] can be recovered

from an upper bound on A(n, d) of O(5.44d log n), and an

improvement to color-coding given by Hüffner, Wernicke,

and Zichner [9] follows from an upper bound on A(n, d) of

O(4.32d log n) (Remark 60). The group-algebra/determinant

sum approach of [10]–[12] reduces to answering a general-

ization of Question 1 (see Definition 48) in the case that

the underlying field is not C but of characteristic 2. (In

Theorem 52 we give the essentially optimal upper bound

of 2d − 1 for this variant, which in turn can be used to

recover [10]–[12]). Prior to this work, no connection of this

precision between these methods was known.

Question 1 provides insight into lower bounds on previous

methods as well. For example, the bounds on R(en,d)
given in [15] directly yield asymptotically sharper lower

bounds than those given by Alon and Gutner [29, Theorem

1] on the size of perfectly balanced hash families used

by exact-counting color-coding algorithms (Theorem 74).

This improvement is ultimately a consequence of Bézout’s

theorem in algebraic geometry. Question 1 and a classical

lower bound on Waring rank (Theorem 16) explain why

disjointness matrices arose in the context of lower bounds

on color coding [29] and the group-algebra approach [16]:

they are the partial derivatives matrices of the elementary

symmetric polynomials.

Our main answers to Question 1 are the following. By

our Theorems 28, 41 and 59, it follows that

2d−1 ≤ A(n, d) ≤ min(6.75d, O(4.075d log n)).

Perhaps surprisingly, this gives an upper bound on A(n, d)
independent of n. On the negative side, our lower bound

on A(n, d) rules out Question 1 as an approach to obtain

algorithms faster than 2dpoly(n) for Problem 11; moreover,

we show in Theorem 24 that there is also a lower bound of

2d−1 on the number of queries needed to solve Problem 11

with one-sided error.

It is easily seen by Observation 5 that constructive upper

bounds on A+(n, d) yield deterministic algorithms for deter-

mining if f is supported on a multilinear monomial in the

case that f has nonnegative real coefficients (as, e.g., the

graph polynomial fG has), and constructive upper bounds

on Aε(n, d) yield deterministic algorithms for approximat-

ing en,d(∂x)f . This broadly generalizes the use of color-

coding in designing approximate counting and deterministic

decision algorithms.

Our bounds on A(n, d) also hold for A+(n, d). Remark-

ably, we show in Example 68 that if A+(33700, 4) ≤ 10
then A+(n, d) ≤ O(3.9999d log n). It follows from our

Theorem 28 and Theorem 59 that

2d−1 ≤ Aε(n, d) ≤ O(4.075dε−2 log n),

and from our Corollary 36 that limn→∞Aε(n, d) = ∞ for

all d > 1 and ε < 1/2 – unlike A+(n, d), Aε(n, d) depends

on n. As an aside, it is immediate that

R(en,d) ≤ lim
ε→0

Aε(n, d) ≤ R(en,d),

where R(g) denotes the Waring border rank of g, i.e., the

minimum r such that there exists a sequence of polynomials

of Waring rank at most r converging to g in the Euclidean

topology.

B. Paper Overview

For ease of exposition, we work over C unless specified

otherwise. Most of our theorems can be extended to infinite

(or sufficiently large) fields of arbitrary characteristic by

replacing the polynomial ring with the ring of divided power

polynomials (see [1, Appendix A]). Except for in Section IV,

we assume that arithmetic operations can be performed with

infinite precision and at unit cost.
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In Section II we introduce concepts related to Waring

rank (in particular the Apolarity Lemma) in order to better

understand the following problems:

Problem 12. Fix g ∈ Sn
d . Given black-box access to f ∈

Sn
d ,

a) Compute g(∂x)f .

b) Compute a (1±ε) approximation of g(∂x)f (assuming

f, g ∈ R≥0[x1, . . . , xn]).
c) Determine if supp(f) ∩ supp(g) = ∅.
The fundamental connection between Waring rank and

Problem 12 (a) is given by our Theorem 6. Using similar

ideas, we show that at least 2d−1 queries are required to

test if supp(f) ∩ supp(en,d) = ∅ with one-sided error in

Theorem 24. We then introduce the new concepts of support

rank, ε-support rank, and nonnegative support rank, which

give upper bounds on the complexity of randomized and

deterministic algorithms for Problems 12 (a) to 12 (c). A

related notion of support rank for tensors has previously

appeared in the context of ω and quantum communication

complexity [30]–[32], but we are unaware of previous work

on support rank in the symmetric (polynomial) case. In the

case when d = 2 these notions are related to the well-studied

concepts of sign rank, zero-nonzero rank, and approximate

rank of matrices [33], [34].

In Section III we study A(n, d) and its variants. We start

in Section III-A by proving negative results, showing that

A(n, d) ≥ 2d−1 (Theorem 28), and that for sufficiently large

n, A(n, 2) = 3 (Proposition 33) and A(n, 3) ≥ 5 (Corol-

lary 31). Using bounds on the ε-rank of the identity matrix

[35], we show in Corollary 36 that for 1/
√
n ≤ ε < 1/2,

Ω(logn · ε−2/ log(ε−1)) ≤ Aε(n, 2) ≤ O(log n · ε−2).

While it may at first seem like we are splitting hairs by

focusing on particular values of d, we will later show in

Example 68 that, for example, proving that A+(n, 4) ≤ 10
for sufficiently large n would yield improved upper bounds

on A+(n, d) for all n and d.

Our lower bound on A(n, 3) is a consequence of the

classical Cayley-Salmon theorem in algebraic geometry, and

our general lower bound on A(n, d) ultimately follows

from Bézout’s theorem via [36]. On this note, we show in

Proposition 30 that Question 1 is equivalent to a question

about the geometry of linear spaces contained in the Fermat
hypersurface {x ∈ Cn :

∑n
i=1 x

d
i = 0}.

The rest of Section III is focused on general upper bounds

on A(n, d) and its variants. Proposition 38 will give a simple

explanation as to why determinant sums (as in the title of

[12]) can be computed in a parameterized way: for all d×n
matrices A and B, the Waring rank of∑

α∈{0,1}n
|α|=d

det(AαBα)x
α1
1 · · ·xαn

n (4)

is at most R(detd). A special case of this example is used

in Theorem 41 to show that A+(n, d) < 6.75d. In order to

improve this, it would suffice to find a better upper bound on

the Waring rank of a single polynomial: the determinant of a

symbolic d×d Hankel matrix. We show in Theorem 43 that

the method of partial derivatives cannot give lower bounds

on the Waring rank of this polynomial better than 2.6d.

Next we define rank for polynomials over a field k of

arbitrary characteristic – as it is, our definition of rank is not

valid in positive characteristic (example: try to write xy as a

sum of squares of linear forms over a field of characteristic

two). Using this we define Ak(n, d), which equals A(n, d)
when char(k) = 0. We note in Theorem 49 that Ak(n, d) ≥
2d−1. Theorem 52 shows that this lower bound is essentially

optimal when char(k) = 2, as then Ak(n, d) ≤ 2d − 1;

specifically, this rank upper bound holds for Equation (4)

in the case that A = B. This is a simple consequence of

the fact that the permanent and the determinant agree in

characteristic 2. We explain in this section how the group-

algebra approach of [10], [11] and the basis of [12] reduce

to a slightly weaker fact than this upper bound. A precise

connection between support rank and a certain “product-

property” of abelian group algebras critical to [10], [11] is

given by Theorem 54.

In Section III-C we present a method for translating upper

bounds on A+(n0, d0) for some fixed n0 and d0 into upper

bounds on A+(n, d) for all n and d (Theorem 67). This

method also allows us to recursively bound Aε(n, d) for

fixed d (Theorem 57). This approach can be seen as a vast

generalization of color-coding methods, and is based on a

direct power sum operation on polynomials and a combina-

torial tool generalizing splitters that we call a perfect splitter.

We use this to show that Aε(n, d) ≤ O(4.075dε−2 log n) in

Theorem 59.

In Section IV we give applications of the previous section.

We start by giving the proof Theorem 7, which is then

used to prove Theorem 8. We end with an improved lower

bound on the size of perfectly-balanced hash families in

Theorem 74.

We conclude by giving several standalone problems.

II. PRELIMINARIES AND METHODS

We use multi-index notation: for f ∈ Sn
d , we write f =∑

α∈Nn cαx
α, where xα := xα1

1 · · ·xαn
n . For α ∈ Nn, we

let |α| := ∑n
i=1 αi and α! := α1!α2! · · ·αn!. We then define

Nn
d := {α ∈ Nn : |α| = d}, and similarly {0, 1}nd := {α ∈
{0, 1}n : |α| = d}. Given β ∈ Nn we say that α ≥ β
if αi ≥ βi for all i ∈ [n]. We denote by ∂i the differential

operator ∂
∂xi

, and we let ∂α := ∂α1
1 · · · ∂αn

n . We let V(f) :=
{p ∈ Cn : f(p) = 0} denote the hypersurface defined by f .

For � =
∑n

i=1 aixi ∈ Sn
1 , we let �∗ := (a1, . . . , an) ∈ Cn.

For X ⊆ Cn, the ideal of polynomials in Sn vanishing on X
is denoted by I(X). The ideal generated by f1, . . . , fk ∈ Sn
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is denoted by 〈f1, . . . , fk〉. Given an ideal I ⊆ Sn we let

Id denote the subspace of I of degree-d polynomials.

The set of n × m matrices with entries in a field k
is denoted by kn×m. For a matrix A ∈ kn×m and a

multi-index α ∈ Nn, we let Aα be the n × |α| matrix

whose first α1 columns are the first column of A, next

α2 columns are the second column of A, etc. We let detd,

perd ∈ k[xij : i, j ∈ [d]]d denote the degree-d determinant

and permanent polynomials, respectively. Recall that the

permanent is defined by

perd =
∑
σ∈Sd

d∏
i=1

xi,σ(i),

where Sd denotes the symmetric group on d letters.

The subsequent theorems are classical and easily verified.

The first is the crux of this paper. The second shows that

Waring rank is always defined (i.e., finite).

Theorem 13. Let f ∈ Sn
d and let j ≥ d.

a) [1, Lemma 1.15(i)] For all �1, . . . , �r ∈ Sn
1 ,

f(∂x)
r∑

i=1

�ji = d!
r∑

i=1

f(�∗i )�
j−d
i .

b) [37, Lemma 3.5] For all g ∈ Sn
d , f(∂x)g = g(∂x)f .

Theorem 14. [1, Corollary 1.16] R(f) ≤ dimSn
d =(

n+d−1
d

)
.

Importantly, Theorems 13 (a) and 13 (b) imply that

g(∂x)f can be computed with R(g) queries in Prob-

lem 12 (a), as noted in Observation 5. We will show in the

next subsection that this is optimal, even if we are allowed

to query f adaptively.

Example 15. The following Waring decomposition of en,d
is easily seen by inclusion-exclusion:

d! · en,d =
∑

α∈{0,1}n
|α|≤d

(−1)|α|+d

(
n− |α|
d− |α|

)(
n∑

i=1

αixi

)d

.

(5)

In fact, this decomposition is synonymous with inclusion-

exclusion in many exact algorithms, as we now illustrate.

For A ∈ Cn×n, let

PA := (A1,1x1+ · · ·+A1,nxn) · · · (An,1x1+ · · ·+An,nxn).

It is easily seen that the coefficient of x1 · · ·xn in PA equals

the permanent of A. In other words, per(A) = en,n(∂x)PA.

It follows directly from Theorem 13 and Equation (5) that

per(A) =
∑

α∈{0,1}n
(−1)|α|+nPA(α),

which is Ryser’s formula for computing the permanent [38].

As another example, applying Theorem 13 and Equation (5)

to the closed-walk generating polynomial Equation (2), one

finds that the number of Hamiltonian cycles in G equals∑
α∈{0,1}n

(−1)|α|+ntr(An
G)(α),

which was first given in [39] and rediscovered several times

thereafter [40], [41]. As a third example, let S1, . . . , Sm ⊆
[k · r], where |Si| = r for all i. Note that that the coefficient

of x1 · · ·xkr in PartS1,...,Sm
:=

(∑m
i=1

∏
j∈Si

xj

)k

equals

the number of ordered partitions of [kr] into k of the sets

Si. Therefore the number of such partitions equals∑
α∈{0,1}kr

(−1)|α|+krPartS1,...,Sm(α),

which was given in [22], [42]. The fastest known algorithms

for computing the permanent and counting Hamiltonian

cycles and set partitions follow from the straightforward

evaluation of the above formulas. A similar perspective on

these algorithms appeared earlier in [43].

Understanding these algorithms from the perspective of

Waring decompositions is extremely insightful, and was our

initial motivation. For example, it is clear from the above

argument that any Waring decomposition of x1 · · ·xn yields

an algorithm for the above problems – there is nothing

special about Equation (5). This immediately raises the ques-

tion: what is R(x1 · · ·xn)? This was only answered recently

in [36], where a lower bound on the degree of a form’s apo-
lar subscheme was used to show that R(x1 · · ·xn) = 2n−1.3

This lower bound shows that the above algorithms are, in

a restricted sense, optimal. Similar observations have been

made in [44], [45].

Although the Waring decomposition of Equation (5) is

essentially optimal in the case when n = d, it is far from

optimal in general. Indeed, Equation (5) only shows that

R(en,d) ≤
(

n
≤d

)
, whereas it was shown in [15] that for d

odd, R(en,d) =
(

n
≤�d/2�

)
, and for d even,(

n

≤ d/2

)
−

(
n− 1

d/2

)
≤ R(en,d) ≤

(
n

≤ d/2

)
.

A. Apolarity and the Method of Partial Derivatives

Fix g ∈ Sn
d . For integers u, v ≥ 0 such that u + v = d,

let Catg(u, v) : Sn
u → Sn

v be given by

Catg(u, v)(f) := f(∂x)g.

These maps, called catalecticants, were first introduced by

J.J. Sylvester in 1852 [46]. Their importance is due in large

part to the following method for obtaining Waring rank

lower bounds, known as the method of partial derivatives
in complexity theory [5, Section 6.2.2].

3A lower bound of
( n
�n/2�

)
can be shown easily using the method of

partial derivatives, presented in the next subsection.
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Theorem 16. [1, pg. 11] For all g ∈ Sn
d and integers

u, v ≥ 0 such that u+ v = d,

R(g) ≥ rank(Catg(u, v)).

Remark 17. As a matrix, Catg(u, v) has
(
n+u−1

u

)
columns,

indexed by the degree-u monomials in x1, . . . , xn, and(
n+v−1

v

)
rows, indexed by the degree-v monomials in

x1, . . . , xn. Therefore the best rank lower bound Theorem 16

can give is
(
n+�d/2�−1
�d/2�

)
, which is obtained when u =

�d/2�, v = �d/2�. In contrast, it is known [2, Section 3.2]

that the rank for almost all g ∈ Sn
d is at least �(n+d−1

d

)
/n�

(with respect to a natural distribution on forms), so the

method of partial derivatives is far from optimal. Finding

methods for proving better lower bounds is a significant

barrier and a topic of great interest from both an algebraic-

geometric and complexity-theoretic perspective; see [5, Sec-

tion 10.1] and [6].

Example 18. It is a classical fact from linear algebra that

for g ∈ Sn
2 , R(g) = rank(Catg(1, 1)). Explicitly, this says

that g =
∑

1≤i≤j≤n Aijxixj can be written as a sum of

at most r squares of linear forms if and only if the matrix

A = (Aij) has rank at most r. Hence Waring rank can be

viewed as a higher dimensional generalization of symmetric

matrix rank.

Let g⊥j := kerCatg(j, d − j) be the set of degree-j
forms annihilating g under the differentiation action. The

next fact is known as the Apolarity Lemma in the Waring

rank literature.

Lemma 19. [47, Theorem 4.2] Let �1, . . . , �r ∈ Sn
1 be

pairwise linearly independent. Then for all g ∈ Sn
d , g ∈

span{�d1, . . . , �dr} if and only if I({�∗1, . . . , �∗r})d ⊂ g⊥d .

A complete answer to the complexity of Problem 12 (a)

is now in hand.

Theorem 6. Fix g ∈ Sn
d and let f ∈ Sn

d be given as a black-
box. The minimum number of queries to f needed to compute
g(∂x)f is R(g), assuming unit-cost arithmetic operations.

Proof: The upper bound is immediate from Theo-

rem 13 (b). To prove the lower bound we first show

the following: for any pairwise linearly independent points

v1, . . . , vm ∈ Cn where m < R(g), there exists a p ∈ Sn
d

such that p ∈ I({v1, . . . , vm}) but g(∂x)p �= 0. If this

were not the case, there exist pairwise linearly independent

points v1, . . . , vm such that I({v1, . . . , vm})d ⊂ g⊥d . But

this implies that g has rank at most m by the Apolarity

Lemma, a contradiction.

So now given any f ∈ Sn
d , suppose that our algorithm

queries f at v1, . . . , vm, which can be assumed to be

pairwise linearly independent. By the above argument, there

exists some p ∈ Sn
d such that (p + f)(vi) = p(vi) +

f(vi) = f(vi) for all i ∈ [m], and hence the algorithm

cannot distinguish f from p + f , but at the same time

g(∂x)f �= g(∂x)(p+ f).

B. Support Rank, Nonnegative Support Rank, and ε-Support
Rank

We now introduce variants of Waring rank of algorithmic

relevance.

Definition 20. The support rank and nonnegative support

rank of f ∈ Sn
d are given by

Rsupp(f) := min(R(g) : g ∈ Sn
d , supp(g) = supp(f)),

R+
supp(f) := min(R(g) : g ∈ R≥0[x1, . . . , xn]d,

supp(g) = supp(f)).

Furthermore, if f ∈ R≥0[x1, . . . , xn]d, the ε-support rank

of f is given by

Rε
supp(f) := min(R(g) : g ∈ R[x1, . . . , xn]d,

∀α ∈ Nn
d , (1− ε) · ∂αf ≤ ∂αg ≤ (1 + ε) · ∂αf).

Note that condition in the definition of Rε
supp is simply

that the coefficient of xα in g is bounded by a factor of

(1± ε) times the coefficient of xα in f .

Roughly speaking, support rank corresponds to deci-

sion algorithms, nonnegative support rank to deterministic
decision algorithms, and ε-support rank to deterministic

approximate counting algorithms. This is now formalized.

Definition 21. For g ∈ Sn
d and 0 < δ < 1, a g-support

intersection certification algorithm with one-sided error δ
is an algorithm which, given any f ∈ Sn

d as a black-box,

outputs “supp(f) ∩ supp(g) = ∅′′ on all instances f where

supp(f) ∩ supp(g) = ∅, and correctly outputs “supp(f) ∩
supp(g) �= ∅′′ with probability at least 1−δ on all instances

where supp(f) ∩ supp(g) �= ∅.
Proposition 22. a) For all g ∈ Sn

d and δ > 0, there is a
g-support intersection certification algorithm with one-
sided error δ that makes Rsupp(g) queries.

b) For a fixed g ∈ Sn
d and all f ∈ R≥0[x1, . . . , xn]d given

as a black-box, there is a deterministic algorithm that
decides if supp(g) ∩ supp(f) using R+

supp(g) queries.
c) For a fixed g ∈ R≥0[x1, . . . , xn]d and all f ∈

R≥0[x1, . . . , xn]d given as a black-box, there is a
deterministic algorithm that computes a (1 ± ε)-
approximation to g(∂x)f using Rε

supp(g) queries.

Proof:
a. Let U ⊆ C, where |U | ≥ d/δ. Let a1, . . . , an

be indeterminates. Note that g(∂x)f(a1x1, . . . , anxn)
is not identically zero in C[a1, . . . , an] if and only

if supp(f) ∩ supp(g) �= ∅. Then by choosing

a1, . . . , an uniformly at random from U , g(∂x)
f(a1x1, . . . , anxn) will evaluate to zero whenever

supp(f) ∩ supp(g) = ∅, and whenever supp(f) ∩
supp(g) �= ∅ this does not evaluate to zero with
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probability at least 1−δ by the Schwartz-Zippel lemma.

By Theorem 13, g(∂x)f(a1x1, . . . , anxn) can be com-

puted using R(g) queries, and the conclusion follows.

b. If both f and g have nonnegative coefficients, then

g(∂x)f > 0 if and only if supp(f) ∩ supp(g) �= ∅.
The result follows from Theorem 13.

c. This is immediate from Theorem 13.

It follows from a variation of the proof of Theorem 6 that

Proposition 22 (a) is optimal for monomials:

Proposition 23. For all α ∈ Nn and all δ < 1, any
xα-support intersection certification algorithm with one-
sided error δ makes at least Rsupp(x

α) =
∏n

i=1(1 +
αi)/mini∈[n](1 + αi) queries.

Proof: The upper bound follows from Theorem 13 (b);

in fact, this shows that we can compute ∂αf exactly using

R(xα) queries.

For the lower bound, given any f ∈ Sn
d where α ∈

supp(f), suppose a support intersection certification al-

gorithm queries f at pairwise linearly independent points

v1, . . . , vm, where m < R(xα). Then by the Apolarity

Lemma, there exists a p ∈ Sn
d such that p ∈ I({v1, . . . , vm})

but ∂αp �= 0 (see the proof of Theorem 6). Note that

the condition that ∂αp �= 0 is equivalent to saying that

α ∈ supp(p). Therefore there exists some λ ∈ C such

that α /∈ supp(f + λp). But note that (f + λp)(vi) =
f(vi) + λp(vi) = f(vi) for all i ∈ [m], and hence the

algorithm cannot distinguish between f and f + λp. Since

the algorithm has no false negatives, it must always give the

incorrect answer on f . We conclude by the matching upper

and lower bounds on R(xα) given in [48].

Theorem 24. Any en,d-support intersection certification al-
gorithm with one-sided error δ makes at least 2d−1 queries.

Proof: Suppose for contradiction that such an algorithm

made fewer queries. Then given f as a black-box, we run

this algorithm with access to f(x1, . . . , xd, 0, . . . , 0). By

definition, this algorithm always answers correctly if the

coefficient of x1 · · ·xd is zero, and answers correctly with

probability at least 1 − δ if this coefficient is nonzero.

But this gives an x1 · · ·xd-support intersection certification

algorithm with one-sided error δ making fewer than 2d−1

queries. Since R(x1 · · ·xd) = 2d−1 [36], this contradicts

Proposition 23.

III. SUPPORT RANKS OF ELEMENTARY SYMMETRIC

POLYNOMIALS

We are now ready to study A(n, d) and its variants, which

we now recall.

Problem 25. Determine A(n, d) := Rsupp(en,d),
A+(n, d) := R+

supp(en,d) and Aε(n, d) := Rε
supp(en,d).

Obviously A(n, d) ≤ A+(n, d) ≤ Aε(n, d), and for all

n, A(n, 1) = 1. It follows from [36] that Aε(n, n) = 2n−1

and from [15] that Aε(n, d) ≤ (
n

≤�d/2�
)
; the latter turns out

to be arbitrarily far from optimal, however.

We will be interested in Problem 25 as n goes

to infinity. To facilitate this, we adopt the notation

A(N, d) := limn→∞A(n, d), defining A+(N, d) and

Aε(N, d) analogously. We will show in Proposition 27 (a)

that A(n, d), A+(n, d), and Aε(n, d) are nondecreasing in

n, in Proposition 38 that A+(N, d) is finite for each d, and

in Corollary 36 that Aε(N, d) is infinite for ε < 1/2 and

d > 1.

For notational convenience, we define

E(n, d) := {f ∈ Sn
d : supp(f) = supp(en,d)},

E+(n, d) := {f ∈ E(n, d) : ∀α ∈ {0, 1}nd , ∂αf ∈ R+},
Eε(n, d) := {f ∈ E+(n, d) : ∀α ∈ {0, 1}nd , ∂αf ∈ (1± ε))}.
Remark 26. Our upper bounds to Problem 25 will be ob-

tained by the following general method. We start with some

f ∈ Sm
d whose rank is known. We then find L1, . . . , Lm ∈

Sn
1 , where n � m, so that f(L1, . . . , Lm) ∈ E(n, d). This

will show that

A(n, d) ≤ R(f(L1, . . . , Lm)) ≤ R(f).

For example, we first show that A+(N, d) < 6.75d by taking

f to be the determinant of a generic Hankel matrix, and

�1, . . . , �n to be given by rank-1 Hankel matrices (points

on the rational normal scroll). We later use this method to

show that Aε(n, d) ≤ O(4.075dε−2 log n) by taking f to

be a “direct sum” of e�1.55d�,d and L1, . . . , Ln to be given

by a (1 + ε)-balanced splitter. We note in Remark 60 that

color-coding can be viewed as taking f to be a direct sum

of x1x2 · · ·xd and L1, . . . , Lm to be a perfect hash family.

A simple geometric property that f and L1, . . . , Lm must

satisfy in this method is given by Proposition 29.

A. Lower Bounding A(n, d) and the d = 2 Case

We start with some simple relations between different

values of A(n, d) that will be used throughout this section.

Proposition 27. For all n ≥ d,
a) A(n, d) ≤ A(n+ 1, d),
b) A(n, d) ≤ A(n+ 1, d+ 1).

Moreover, these statements remain valid when “A” is re-
placed with A+ and Aε.

Proof:
a. Suppose f ∈ E(n+ 1, d), and let f ′ be obtained from

f by setting xn+1 = 0. Then clearly R(f ′) ≤ R(f)
and f ′ ∈ E(n, d). Therefore A(n, d) ≤ A(n+ 1, d).

b. If f ∈ E(n + 1, d + 1), then ∂n+1f ∈ E(n, d).
Hence A(n, d) ≤ R(∂n+1f) ≤ R(f), where the final

inequality follows from Theorem 13 (a).
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It is easy to see that the same arguments hold if we replace

A(n, d) with A+(n, d) or Aε(n, d).

Theorem 28. For all n ≥ d,

2d−1 ≤ A(n, d) ≤ A+(n, d) ≤ Aε(n, d).

Proof: It was shown in [36] that R(x1 · · ·xd) = 2d−1,

and therefore A(d, d) = 2d−1. The theorem is then imme-

diate from Proposition 27 (a).

We now give an insightful geometric characterization of

A(n, d).

Proposition 29. A(n, d) ≤ r if and only if for some m
there exists f ∈ Sm

d and points v1, . . . , vn in Cm such that
R(f) ≤ r and f vanishes on the span of any d − 1 of the
points v1, . . . , vn, but not on the span of any d of them.

Proof: Suppose that A(n, d) ≤ r. By definition, there

exists a f ∈ E(n, d) with R(f) ≤ r. It follows that f
vanishes on the span of the span of any d−1 of the standard

basis vectors in Cn, but not on the span of any d of them.

Conversely, suppose there exists such an f and points

v1, . . . , vn, and let

f ′ := f(x1v1 + · · ·+ xnvn).

It is immediate that R(f ′) ≤ R(f). Additionally, f ′ must

be multilinear as f vanishes on the span of any d− 1 of the

points v1, . . . , vn. But then for α ∈ {0, 1}nd , the coefficient

of xα in f ′ is given by f ′(α) = f(
∑n

i=1 αivi). If this was

zero f would vanish on the span of the d points {vi : i ∈
supp(α)}, a contradiction. This shows that f ′ ∈ E(n, d),
proving the claim.

Proposition 30. A(n, d) ≤ r if and only if there exist n
points in Cr such that the span of any d − 1 of them is
contained in V(

∑r
i=1 x

d
i ), but the span of any d of them is

not.

Proof: If A(n, d) ≤ r, then for some f ∈ E(n, d)
and linear forms �1, . . . , �r, f =

∑r
i=1 �

d
i . Let vj :=

((�1
∗)j , (�2∗)j , . . . , (�r∗)j) for all j ∈ [n]. Since f is

multilinear,
∑r

i=1 x
d
i must vanish on the span of any d−1 of

the points v1, . . . , vn, and since each multilinear monomial

has a nonzero coefficient,
∑r

i=1 x
d
i does not vanish on the

span of any d of v1, . . . , vn.

Conversely, suppose that there exists such a set of points.

Since
∑r

i=1 x
d
i has rank r, by Proposition 29 we conclude

that A(n, d) ≤ r.

Corollary 31. 5 ≤ A(8, 3) ≤ A(N, 3).

Proof: Suppose for contradiction that A(8, 3) = 4. By

Proposition 30, this implies that there are 8 points in C4 such

that the planes spanned by any two of them are contained

in V(x3
1 +x3

2 +x3
3 +x3

4), but the span of any three of them

is not. Note that this is only possible if no three points are

coplanar, and hence the
(
8
2

)
= 28 planes spanned by any

two points are distinct. But by the Cayley-Salmon theorem,

V(x3
1 +x3

2 +x3
3 +x3

4) contains exactly 27 < 28 lines in the

projective space CP3 [49, Lemma 11.1], a contradiction.

Remark 32. A similar proof fails to show that 6 ≤ A(N, 3),
as P(V(x3

1 + · · ·+ x3
5)) contains infinitely many lines (see

[49, Exercise 11.10.b]).

The d = 2 case of Problem 25 is solved using linear

algebra.

Proposition 33. A(N, 2) = 3.

Proof: It suffices by Example 18 to show that for n ≥ 3,

the minimum rank of a symmetric n× n matrix with zeros

on the diagonal and nonzero values elsewhere is 3. There is

a lower bound of 3 since the principal 3 × 3 minor of any

such matrix is easily seen to be nonzero. An upper bound

of 3 is given by the matrix ((i− j)2)i,j∈[n].
To understand Aε(n, 2) we will need the following fact:

Theorem 34. [35, Theorem 9.3] Let B be an n-by-n real
matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all i �= j.
Then if 1/

√
n ≤ ε < 1/2,

rank(B) ≥ Ω

(
log n · ε−2

log(ε−1)

)
.

Proposition 35. a) If 1/
√
n ≤ ε < 1/2,

Aε(n, 2) ≥ Ω

(
log n · ε−2

log(ε−1)

)
.

b) For all ε > 0,

Aε(n, 2) ≤ O
(
log n · ε−2

)
.

Proof: It follows from Example 18 that Aε(n, 2) is the

minimum rank among all real symmetric matrices A with

Ai,i = 0 and Ai,j ∈ [1 − ε, 1 + ε] for all i �= j. Note that

given any such A, the matrix J − A (where J denotes the

all-ones matrix) has diagonal entries equal to 1, off-diagonal

entries bounded in absolute value by ε, and rank at most

rank(A) + 1. Conversely, given any symmetric matrix B
with bi,i = 1 for all i and |bi,j | ≤ ε for all i �= j, the matrix

J −B has zeros on the diagonal, off-diagonal entries in the

range [1 − ε, 1 + ε], and rank at most rank(B) + 1. So it

suffices to determine the minimum rank of such a matrix B.

Given this observation, (a) is immediate from Theorem 34.

To show (b), let m := O(log n/ε2). By the Johnson-

Lindenstrauss Lemma, there exist unit vectors v1, . . . , vn ∈
Rm such that |vi · vj | ≤ ε for all i �= j. It follows that the

matrix (vTi · vj)i,j∈[n] has the desired properties and rank at

most m.

Corollary 36. For all 0 < ε < 1/2 and d ≥ 2, Aε(N, d) =
∞.
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Proof: Fix 0 < ε < 1/2. By Proposition 35 (a),

Aε(n, 2) ≥ Ω
(

logn·ε−2

log(ε−1)

)
for all n ≥ ε−2, and so

Aε(N, 2) = ∞. Now suppose that Aε(N, d) is bounded

above for some d > 2. Then by Proposition 27, for all n

Aε(n, 2) ≤ Aε(n+ d− 2, d) ≤ Aε(N, d),

a contradiction.

B. Upper Bounds via the Determinant

The relevance of the determinant to Problem 25 is imme-

diate from Proposition 29. The obvious but key observation

is that for all n, d with n ≥ d, a generic set of n rank-

1 d × d matrices has the property that the sum of any d
of them is invertible, and hence the span of any d − 1
of them is contained in V(detd) but the span of any d
of them is not. Applying Proposition 29, we conclude that

A(n, d) ≤ R(detd). We now make this more explicit.

Definition 37. Let d ≤ n. For A,B ∈ Cd×n, let

gA,B :=
∑

α∈{0,1}nd
detd(AαBα)x

α. (6)

Proposition 38. For all A,B ∈ Cd×n,

R(gA,B) ≤ R(detd) ≤ (5/6)�d/3�2d−1d!.

Furthermore, A+(N, d) ≤ R(detd) ≤ (5/6)�d/3�2d−1d!
and A+(N, d) exists.

Proof: Let X = diag(x1, . . . , xn). By the Cauchy-

Binet formula it follows that detd((A · X) ·BT ) = gA,B .

The first statement then follows from the fact that

R(detd) ≤ (5/6)�d/3�2d−1d! [47, Example 1.14].

Note that by taking A and B to have positive minors4,

gA,B ∈ E+(n, d). This shows that A+(N, d) ≤ R(detd).
Since Proposition 27 (a) shows that (A+(n, d))n is nonde-

creasing, it follows that the limit A+(N, d) exists.

Remark 39. The asymptotically best known lower bound

on R(detd) is
(

d
�d/2�

)2
, which follows from the method

of partial derivatives [44] [2, Theorem 9.3.2.1]. Therefore

one cannot hope to improve the upper bound given by

Proposition 38 exponentially beyond 4d by finding a better

upper bound on the Waring rank of the determinant.

Definition 40. Let hd ∈ S2d−1
d be the determinant of a

symbolic Hankel matrix (that is, the determinant of the d×d
matrix whose (i, j)th entry is the variable xi+j).

Theorem 41.

A+(N, d) ≤ R(hd) ≤
(
3d− 2

d

)
< 6.75d.

4For instance, by taking the columns of A and B to be given by real
Vandermonde vectors.

Proof: Let a1, a2, . . . , an be distinct elements of R,

let A = (aj−1
i )i∈[n],j∈[d] ∈ Cd×n, and let X =

diag(x1, . . . , xn). By the Cauchy-Binet formula,

detd((A ·X) ·AT ) = gA,A =
∑

α∈{0,1}nd
detd(AαAα)x

α

=
∑

α∈{0,1}nd
detd(Aα)

2xα.

Since A is a Vandermonde matrix, detd(Aα)
2 > 0 for

all α ∈ {0, 1}nd . Hence gA,A ∈ E+(n, d). Now observe that

(A ·X) ·AT is a Hankel matrix; explicitly, it equals

n∑
i=1

(1, a1i , . . . , a
d−1
i )T (1, a1i , . . . , a

d−1
i )xi.

Therefore detd(AXAT ) = hd(AXAT ), and so A+(N, d) ≤
R(hd). Since hd is a degree-d polynomial in 2d−1 variables,

by the dimension bound of Theorem 14 we have that

R(hd) ≤
(
3d−2

d

)
, and therefore A+(N, d) ≤ (

3d−2
d

)
. The

theorem follows from Stirling’s approximation.

Remark 42. The above theorem can be slightly improved

by using the state-of-the-art bound [50] on the maximum

Waring rank in Sn
d of(
n+ d− 2

d− 1

)
−

(
n+ d− 6

d− 3

)
,

valid when n, d ≥ 3, which shows that

A+(n, d) ≤ R(hd) ≤
(
3d− 3

d− 1

)
−

(
3d− 7

d− 3

)
.

It follows from Remark 17 that the lower bound on

R(hd) given by the method of partial derivatives is at most(�5d/2�−1
�d/2�

)
< 3.5d. The next theorem shows that the actual

lower bound obtained by the method of partial derivatives

is exponentially worse than this.

Theorem 43. For all integers d, u, v > 0 such that u+ v =
d,

rank(Cathd
(u, v)) ≤

(�3d/2�
�d/2�

)
< 2.6d.

Proof: First note that if A =
Vandermonde(a1, . . . , an; d) = (aj−1

i ) ∈ Cd×n

with a1, . . . , an distinct, gA,A equals hd up

to a change of variables. This implies that

rank(Cathd
(u, v)) = rank(CatgA,A

(u, v)). So we

will equivalently work with f := gA,A. Furthermore we

assume that u ≤ v; this is without loss of generality

as Catf (u, v) = Catf (v, u)
T . We will then show that

rank(Catf (u, v)) ≤ m :=
(
2v+u

u

)
. As this is maximized

when u = �d/2�, v = �d/2�, the theorem follows.

The matrix Catf (u, v) has rows indexed by monomials

xα, where α ∈ N2d−1
u , and columns indexed by monomials

xβ , where β ∈ N2d−1
v . Because f is multilinear, the entries

in a row indexed by a non-multilinear monomial xα will be
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zero, as xα annihilates f under differentiation. Similarly, any

column indexed by a non-multilinear monomial will have

all entries equal to zero. Therefore it suffices to consider

the submatrix M of Catf (u, v) indexed by multilinear

monomials. We identify the row/column corresponding to

xα with the set supp(α) ⊆ [2d− 1].
Note that MIJ (the entry of M at row I and column J)

equals 0 if I and J have a nonempty intersection, and equals∏
i �=j∈I∪J(ai−aj)

2 otherwise. Hence the row indexed by I
is a multiple of

∏
i �=j∈I(ai−aj)

2, and similarly the column

indexed by J is a multiple of
∏

i �=j∈J(ai − aj)
2. Therefore

M = D1QD2 for some invertible (diagonal) matrices D1

and D2, and so it suffices to upper bound the rank of Q.

Next, observe that QIJ =
∏

i∈I,j∈J(ai−aj)
2. Write I =

{i1, . . . , iu}, J = {j1, . . . , jv}. We now claim that there

exist g1, h1, . . . , gm, hm with gi ∈ Su, hi ∈ Sv, such that

QIJ =
m∑

k=1

gk(ai1 , . . . , aiu)hk(aj1 , . . . , ajv ). (7)

To see this, view QIJ as a polynomial in the variables

ai1 , . . . , aiu with coefficients in C[aj1 , . . . , ajv ]. This is a

symmetric polynomial in u variables, where the maximum

degree of any variable in any monomial is 2v. Therefore

QIJ can be written as in Equation (7) as a sum over

symmetrizations of monomials with total degree at most u
and maximum individual degree 2v, for some coefficients

hk in C[aj1 , . . . , ajv ]. The number of such symmetrizations

of monomials is the number of partitions having maximum

part size 2v and at most u parts, which is
(
2v+u

u

)
= m.

Having shown this, it follows that

Q =
m∑

k=1

(gk(ai1 , . . . , aiu))
T
I (hk(aj1 , . . . , ajv ))J ,

and so Q has rank at most m. We conclude by Stirling’s

approximation.

Remark 44. Numerical evidence suggests that equality

holds in Theorem 43 when u = �d/2�. This would imply

that R(hd) = Ω(2.59d).

C. A(n, d) in Positive Characteristic and Abelian Group
Algebras

We briefly introduce a generalization of Waring rank to

Sn
d (k) := k[x1, . . . , xn]d, where k is a field of arbitrary

characteristic. This notion has been studied extensively as

early as 1916 [51], and directly corresponds to Waring rank

in the case that char(k) = 0. For a thorough algebraic-

geometric treatment of this subject, see [1]. Assume k is

algebraically closed unless stated otherwise.

Definition 45. For � =
∑n

i=1 aixi ∈ Sn
1 (k), let

�[d] :=
∑
α∈Nn

d

aα1
1 · · · aαn

n xα ∈ Sn
d (k).

Note that �[d] is just �d without any multinomial co-

efficients. We remark that the projectivization of the set

{�[d] : � ∈ Sn
1 (k)} is the classical Veronese variety in

algebraic geometry [1, Corollary A.10].

Definition 46. For f ∈ Sn
d (k), let Rν(f) be the minimum

r such that there exist linear forms �1, . . . , �r with

f =

r∑
i=1

�
[d]
i ,

and let

Rν
supp(f) := min(Rν(g) : g ∈ Sn

d (k), supp(g) = supp(f)).

The next proposition shows that the d = j case of

Theorem 13 (a) holds (ignoring a factorial) with the above

definition of rank in the case that g is multilinear. Recall

that this fact is key for algorithmic upper bounds.

Proposition 47. Suppose that g =
∑r

i=1 �
[d]
i ∈ Sn

d is
multilinear. Then for all f ∈ Sn

d ,

g(∂x)f =
r∑

i=1

f(�∗i ).

Proof: Suppose that g =
∑

α bαx
α and �i =

(
∑n

j=1 ci,jxj)
[d]. Note that bα =

∑r
i=1 c

α1
i,1 · · · cαn

i,n. If f =∑
α aαx

α, then since g is multilinear, g(∂x)f =
∑

α aαbα.

On the other hand,

r∑
i=1

f(ci,1, . . . , ci,n) =
r∑

i=1

∑
α

aαc
α1
i,1 · · · cαn

i,n =
∑
α

aαbα.

Definition 48. Let Ak(n, d) := Rν
supp(en,d).

It is easy to see that if k = C and if g is multilinear,

R(g) = Rν(g). This implies that AC(n, d) = A(n, d), and

so the above definition really does generalize A(n, d).

Theorem 49. For all n ≥ d, Ak(n, d) ≥ 2d−1.

Proof: It follows from an argument identical to that of

Proposition 27 (a) that A(d, d) ≤ A(n, d) for all n ≥ d.

As it was shown in [36] that Rν(x1 · · ·xd) ≥ 2d−1, the

conclusion follows.

Definition 50. Given A ∈ kd×n, let

gA :=
∑
α∈Nn

d

perd(Aα)x
α. (8)

Lemma 51. Let k be arbitrary and let A ∈ kd×n. Then
Rν(gA) ≤ 2d − 1.

Proof: For 1 ≤ i ≤ d, let Li :=
∑n

j=1 Aijyj ∈
k[y1, . . . , yn]. Now consider∑

α∈Nn
d

Lα1
1 · · ·Lαn

n xα ∈ k[y1, . . . , yn][x1, . . . , xn].
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Note that the coefficient of y1 · · · yd in this polynomial is

equal to gA. It then follows from inclusion-exclusion (or

Equation (5)) that this coefficient equals

∑
α∈{0,1}d

(−1)|α|+d(
n∑

i=1

xi

d∑
j=1

αjAi,j)
[d]. (9)

Theorem 52. If k is infinite and char(k) = 2, Ak(n, d) ≤
2d − 1.

Proof: Let A ∈ kd×n be a matrix with non-vanishing

d× d minors. Since char(k) = 2,

gA =
∑
α∈Nn

d

detd(Aα)x
α.

If α /∈ {0, 1}n then Aα has a repeated column and so

det(Aα) = 0. Otherwise det(Aα) �= 0. Therefore gA has the

desired support. The conclusion follows from Lemma 51.

Remark 53. Theorem 52 gives the following 2dpoly(n)-
time algorithm for testing if a polynomial f ∈ Sn

d (k) over

a large enough field of characteristic 2 is supported on any

multilinear monomial. For U ⊆ k, where |U | ≥ 2d, choose

a = (a1, . . . , an) ∈ Un uniformly at random, and take A ∈
kd×n to have nonvanishing d× d minors. Then compute

∑
α∈{0,1}d

f(a1

d∑
j=1

αjA1,j , . . . , an

d∑
j=1

αjAn,j). (10)

It follows from Proposition 47, Theorem 52, and the

Schwartz-Zippel lemma that this quantity is nonzero with

probability at least 1/2 when f is supported on a multili-

nenar monomial, and zero otherwise. If f =
∑

α bαx
α, this

algorithm computes ∑
α∈{0,1}nd

bαa
α det(Aα).

The “option 2” implementation of “decide-multilinear” in

[10] is obtained exactly if instead we choose A ∈ Zd×n
2

uniformly at random and take a1, . . . , an = 1. Similarly, the

algorithm of [11] is obtained by choosing both A ∈ Zd×n
2

and a1, . . . , an ∈ k uniformly at random. Additionally, the

algorithm of [12] for detecting Hamiltonian cycles reduces to

computing Equation (10) where a1, . . . , an = 1, A ∈ kd×n

is chosen uniformly at random, and the generating polyno-

mial f has the property that deg f ≈ 3d/4. This explains

the relevance of “determinant sums” to [12] and shows that

[10], [11] were in fact also computing “determinant sums”.

This connection was made earlier in [21].

The algorithms of [10], [11] were presented in terms of a

property of abelian group algebras. The following theorem

elucidates the connection between support rank and this

property.

Theorem 54. Let G be an abelian group, and let
y1, . . . , yn ∈ k[G]. For α ∈ Nn, let fα :=

∏n
i=1 y

αi
i . Define

T := {α ∈ Nn
d : fα(IdG) �= 0}.

Then Rν
supp(

∑
α∈T xα) ≤ |G|.

Proof: Let ρ be the regular representation of G; this

extends linearly to a representation of k[G]. Consider the

|G|×|G| matrices ρ(y1), . . . , ρ(yn). Since G is abelian, there

exists an invertible matrix A so that ρ(yi) = AΛiA
−1 for

all i ∈ [n] and some diagonal matrices Λ1, . . . ,Λn.

By assumption, we have that for all α ∈ Nn
d , fα(IdG) �= 0

if and only if α ∈ T . Note that fα(IdG) �= 0 if and only

if for some λ �= 0 and all i ∈ |G|, ρ(fα)i,i = λ. Letting

D ∈ k|G|×|G| be a diagonal matrix with nonzero trace, it

follows that tr(D · ρ(fα)) �= 0 if and only if α ∈ T . Note

that

tr(D · ρ(fα)) = tr(D · ρ(
n∏

i=1

yαi
i )) = tr(D ·

n∏
i=1

ρ(yi)
αi),

= tr(D ·
n∏

i=1

(AΛiA
−1)αi),

= tr(D ·
n∏

i=1

Λαi
i ).

Let Mi := D1/nΛi. By the above discussion, for all α ∈ Nn
d ,

tr(
∏n

i=1 M
αi
i ) �= 0 if and only if α ∈ T .

Define the linear forms �i =
∑n

j=1(Mj)i,ixi for all i ∈
|G|. We now claim that P :=

∑n
i=1 �

[d]
i has the desired

support. To see this, consider the coefficient of xα in P ,

where |α| = d. By definition, this is equal to

|G|∑
i=1

(M1)
α1
i,i · · · (Mn)

αn
i,i = tr(

n∏
i=1

Mαi
i ),

and hence the claim holds.

Theorem 54 allows to to recover the approach of [10],

[11] from a support-rank perspective. Let G = Zd
2, and

let v1, . . . , vn ∈ G be chosen independently and random.

Then let yi := IdG + vi ∈ k[G] for all i in the statement

of Theorem 54. The key fact used in [10], [11] was that

when char(k) = 2, fα(IdG) = 0 whenever α /∈ {0, 1}nd ,

and for any α ∈ {0, 1}nd , fα(IdG) �= 0 with probability

at least 1/4. The algorithms of [10], [11] then follow by

using the decomposition given by Theorem 54. Note that

this algorithm does not use a decomposition of a multilinear

polynomial supported on all multilinear monomials, but

rather it samples a multilinear polynomial that is supported

on a given multilinear monomial with constant probability.

D. A Recursive Approach for Bounding A(n, d)

In this section we provide a recursive method for upper

bounding A+(n, d) and Aε(n, d). We will start with a

recursive bound on Aε(n, d) for varying n and fixed d, and
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later build upon this to give a recursive bound on A+(n, d)
for all n and d.

1) A Recursive Bound on Aε(n, d) for Fixed d: We will

first need the following tool introduced in [8].

Definition 55. For δ > 1, a δ-balanced (n, k, l)-splitter F
is a family of functions from [n] to [l] such that for some

real number c, for all S ⊆ [n] where |S| = k, the number

of functions in F that are injective on S is between c/δ and

cδ.

A δ-balanced (n, k, k)-splitter will be called a δ-balanced

(n, k)-perfect hash family. If F only satisfies the property

that for each S ⊆ [n], where |S| = k, there exists some
function in F that is injective on S, we call F an (n, k, l)-
splitter.

The next fact essentially appears in [8]; we reproduce the

proof for completeness. Here (n)k := n(n−1) · · · (n−k+1)
denotes the falling factorial.

Lemma 56. For 1 < δ ≤ 2, there exists a δ-balanced
(n, k, l)-splitter of size

O

(
lk · k log n
(l)k(δ − 1)2

)
.

Proof: Set p := (l)k
lk

and M := � 8(k logn+1)
p(δ−1)2 �. Choose

M independent random functions from [n] to [l]. For any

S ⊆ [n] of size k, the expected number of functions that are

injective on S is pM . By the Chernoff bound, the probability

that the number of functions that are injective on S is less

than pM/δ or greater than pMδ is at most 2e−(δ−1)2pM/8.

Then by a union bound the expected number of such sets

for which the number of 1-1 functions is not as desired is

at most(
n

k

)
2e−(δ−1)2pM/8 ≤

(
n

k

)
2e−(k logn+1) < 1.

Theorem 57. Suppose f ∈ Eε0(n0, d) where 0 < ε0 < 1.
Then for all ε0 < ε < 1 and all n ≥ d,

Aε(n, d) ≤ O

(
R(f) · nd

0 · d log n
(n0)d(δ − 1)2

)
,

where δ := min( 1+ε
1+ε0

, 1−ε0
1−ε ).

Proof: If n ≤ n0 the theorem follows from Proposi-

tion 27 (a). Hence we will assume that n > n0.

Let F = {πi : i ∈ [M ]} be a δ-balanced (n, d, n0)-splitter

of minimal size M . For all (i, j) ∈ [M ] × [n0], define the

linear forms Li,j =
∑

k∈π−1
i (j) xk. Now we claim that for

some constant c,

f ′ :=
1

c

M∑
i=1

f(Li,1, Li,2, . . . , Li,n0
) ∈ Aε(n, d).

First notice that since f is multilinear and Li,1, . . . , Li,n0

are linear forms with disjoint supports for all i, f ′ is

also multilinear. Next, by virtue of the fact that f ∈
Eε0(n0, d), the coefficient of any multilinear monomial xα

in f(Li,1, Li,2, . . . , Li,n0
) is in the range [1 − ε0, 1 + ε0]

if and only if πi is injective on supp(α). Then because F
is a δ-balanced splitter, there are between c/δ and cδ such

contributions to the coefficient of xα in the above sum, for

some fixed real number c. But this implies that the coefficient

of xα in f ′ is between (1− ε0)/δ and (1 + ε0)δ, which by

our choice of δ implies that f ∈ Eε(n, d). By subadditivity

of rank, R(f ′) ≤M ·R(f), and the theorem follows by the

bound on M given by Lemma 56.

Remark 58. As Waring rank can be strictly subadditive, it

is possible that the final step of the above lemma is far from

optimal; see also Remark 63.

Theorem 59. For all 0 < ε < 1, Aε(n, d) ≤
O(4.075dε−2 log n).

Proof: Let c ≥ 1 be a constant to be determined later.

Taking n0 = �cd�, f = en0,d, ε0 = ε/2 in Theorem 57,

Aε(n, d) ≤ O

(
R(en0,d) · nd

0 · d log n
(n0)d(δ − 1)2

)

where δ = min( 1+ε
1+ε/2 ,

1−ε/2
1−ε ) = 1+ε

1+ε/2 ≥ ε/3 + 1.

Combining this with the upper bound on R(en0,d) given

in [15],

Aε(n, d) ≤ O

((
n0

�d/2�
)

nd
0

(n0)d
ε−2d2 log n

)

= O

( �cd�d
�d/2�!

�d(c− 1)�!
�d(c− 1/2)�!ε

−2d2 log n

)
.

Applying Stirling’s inequality,

Aε(n, d) ≤ O

⎛
⎝(√

2e · c
(
c− 1

e

)c−1 (
e

c− 1/2

)c−1/2
)d

·ε−2d2 log n
)
.

Using a computer we found that this is minimized when

c ≈ 1.55, in which case we obtain an upper bound of

O(4.075dε−2 log n).

Remark 60. If we take f = x1x2 · · ·xd and use the upper

bound on R(x1 · · ·xd) given by Equation (5), it follows

from Theorem 57 that

Aε(n, d) ≤ (2d−1)d
d

d!
ε−2 = O((2e)dε−2) = O(5.44d·ε−2).

The decomposition implicit in the above bound is as

follows. Let F be an (1 + ε)-balanced (n, d)-perfect hash

family. For π ∈ F and i ∈ [d], let Lπ,i :=
∑

j∈π−1(i) xj .
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Then for some c > 0,

1

c

∑
π∈F

∑
α∈{0,1}d

(−1)|α|+d

(
d∑

i=1

αiLπ,i

)d

∈ Eε(n, d).

Applying this to the cycle-generating polynomial Equa-

tion (2), one finds that a (1±ε)-approximation of the number

of length-d cycles in the graph G is given by

1

c · d!
∑
π∈F

∑
α∈{0,1}d

(−1)|α|+dfG(απ(1), . . . , απ(n)).

This is equivalent to the color-coding algorithm for counting

cycles described in [29], except we use inclusion-exclusion

instead of dynamic programming to count the number of

colorful simple cycles for a given coloring. Similarly, by re-

placing F with an (n, d)-perfect hash family one obtains an

algorithm for detecting simple cycles that parallels the one

given in [7]. We note that using inclusion-exclusion rather

than dynamic programming reduces the space complexity of

the counting step from exponential to polynomial.

Furthermore, this bound is naturally derived by an appli-

cation of color-coding. Using each function in a (1 + ε)-
balanced (n, d)-perfect hash family we color the variables

x1, . . . , xn using d colors. To each color we associate the

linear form equal to the sum of the variables of that color.

Since these linear forms have disjoint support, their product

is multilinear. Summing the resulting products of linear

forms for each function in the family, any given multilinear

monomial appears with coefficient between c/(1 + ε) and

c(1 + ε). The resulting polynomial is a sum of products of

|F| linear forms, which can be written as a sum of powers

of O(|F|2d) linear forms using Equation (5).

An improvement to color-coding was made in [9] based

on the idea of using n0 := �1.3d� colors rather than d. We

recover this result as follows. By applying Theorem 57 with

f = en0,d and using the suboptimal bound on R(en0,d)
given by Equation (5),

A+(n, d) ≤ O

((
1.3d

d

)
(1.3d)d

(1.3d)d
d log n

)
= O(4.32d log n).

In fact, the choice of n0 = �1.3d� is optimal if we are using

the rank bound of Equation (5); this follows from the same

calculation done in [52, Section 8]. The algorithm resulting

from this bound was virtually described in [52], [53].

2) A Recursive Bound on A+(n, d) for all n and d:

Definition 61. For g ∈ Sn
d and s, t ∈ N, let

g�(s,t) :=

s∑
i=1

t∏
j=1

g(xi,j,1, xi,j,2, . . . , xi,j,n)

∈ C[xi,j,k : (i, j, k) ∈ [s]× [t]× [n]].

In other words, g�(s,t) is obtained from g by taking the

t-fold product of g with itself using disjoint sets of variables,

and then taking the s-fold sum of the resulting polynomial

using disjoint sets of variables.

Lemma 62. For all g ∈ Sn
d , R(g�(s,t)) ≤ s((d+1)R(g))t.

Proof: By subadditivity of Waring rank, R(g�(s,t)) ≤
sR(g�(1,t)). Now letting r = R(g), there exist linear forms

�i,j ∈ C[x1,i,1, . . . , x1,i,n] for (i, j) ∈ [t]× [r] so that

g�(1,t) =

t∏
i=1

r∑
j=1

�di,j =
∑
v∈[r]t

t∏
i=1

�di,vi .

Using the fact that R(
∏t

i=1 x
d
i ) ≤ (d + 1)t (which fol-

lows from e.g. Equation (5)), it follows that R(g�(s,t)) ≤
sR(g�(1,t)) ≤ s((d+ 1)R(g))t.

Remark 63. The first step of the above lemma is to apply

subadditivity of Waring rank to polynomials in disjoint sets

of variables. Strassen’s direct sum conjecture claims that

rank is actually additive in this case; see [54] for more. It

was recently shown in [55] that the tensor version of this

conjecture is false; if the polynomial version is also false,

the upper bound of Lemma 62 may not be optimal.

Definition 64. An (n, d, n0, d0)-perfect splitter, where n ≥
d, n0 ≥ d0, and d0 | d, is a family of functions F =
{π : [n] → [d/d0] × [n0]} such that for all S ⊆ [n] where

|S| = d, there exists a π ∈ F such that for all i ∈ [d/d0],
π(S) contains d0 elements whose first coordinate is i, and

any two elements in π(S) with the same first coordinate

have differing second coordinates.

In other words, we want the elements of π(S) to be

“split evenly” by their first coordinate, and those elements

with the same first coordinate should have different second

coordinates. As special cases, an (n, d, d, d)-perfect splitter

is a (n, d)-perfect hash family, and when n0 ≥ n, an

(n, d, n0, d0)-perfect splitter is a (n, d, d0)-splitter.

Definition 65. For n ≥ d, n0 ≥ d0, and d0 | d, let

σ(n, d, n0, d0) :=

⎡
⎢⎢⎢
(

nd0
0

(n0)d0

)d/d0

d0!
d/d0(d/d0)

d

d!
d log n

⎤
⎥⎥⎥ .

Proposition 66. There exists an (n, d, n0, d0)-perfect split-
ter of size σ(n, d, n0, d0).

Proof: We will consider the probability that a random

function π has the desired effect on a fixed subset S ⊆ [n],
where |S| = d. The conclusion will then follow from a union

bound.

Let π : [n] → [d/d0] × [n0] be chosen uniformly at

random. The probability that each integer in [d/d0] appears

equally often as the first coordinate in π(S) equals

p1 :=
d!

d0!d/d0(d/d0)d
.
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Assuming this happens, the probability that all elements in

π(S) with a given first coordinate are assigned different

second coordinates equals

p2 :=
(n0)d0

nd0
0

,

and so with probability p
d/d0

2 this happens for all d/d0
choices of the first coordinate. Hence if we generate c =

�(p1pd/d0

2 )−1� independent and uniformly random functions,

some function has the desired effect on S with probability

at least 1−e−1. Therefore if we generate �cd log n� random

functions, the expected number of subsets for which no

function has the desired effect on equals(
n

d

)
e−�d logn� < 1.

Theorem 67. Let f ∈ E+(n0, d0). Then for all integers n, d
where n ≥ d,

A+(n, d) ≤ s((d0 + 1)R(f))�d/d0�,

where

s = σ(n+ �d/d0�d0 − d, �d/d0�d0, n0, d0).

Proof: We start with the case that d = t · d0 for some

t ∈ N. Let F = {πi : i ∈ [s]} be an (n, d, n0, d0)-
perfect splitter of minimal size. For (i, j, k) ∈ [s] × [t] ×
[n0], let Li,j,k :=

∑
m∈π−1

i (j,k) xm. We now claim that

g�(s,t)(Li,j,k) ∈ E+(n, d). To see this, first note that for

any i, the linear forms {Li,j,k : (j, k) ∈ [t] × [n0]} have

disjoint support. Since f is multilinear, it follows that

fi := f(Li,1,1, . . . , Li,1,n0) · · · f(Li,t,1, . . . , Li,t,n0)

is multilinear for all i, and therefore so is f�(s,t)(Li,j,k).
Now consider the coefficient of some degree-d multilinear

monomial xα in fi. Since f has nonnegative coefficients, this

will be nonnegative. Furthermore, if πi splits the set supp(α)
evenly by first coordinate and all elements in πi(supp(α))
with the same first coordinates have different coordinates,

this coefficient will be strictly positive by definition of the

linear forms Li,j,k. Since F is a perfect splitter, each degree-

d multilinear monomial will then appear with a positive

coefficient. Therefore by Proposition 66,

A+(n, d) ≤ R(f�(s,t)) ≤ s((d0 + 1)R(f))d/d0 .

Now suppose that d0 � d. By Proposition 27 (b), we have

that

A+(n, d) ≤ A+(n+ �d/d0�d0 − d, �d/d0�d0),
which is at most s((d0 + 1)R(f))�d/d0� by a reduction to

the case when d0 | d.

Note that by taking d0 = d in the above theorem, we find

that

A+(n, d) ≤ O

(
A+(n0, d) · nd

0 · d log n
(n0)d

)
,

recovering Theorem 57 in the case of nonnegative support

rank.

Example 68. Theorem 67 suggests bounding A+(N, d)
for small values of d as an approach to improve the

upper bounds of this section. For example, suppose that

A+(N, 4) ≤ 10. Then we have that for all n0 ≥ 4 and

all n, d,

A(n, d) ≤ σ(n+ 4�d/4� − d, �d/4�4, n0, 4)5
�d/4�−110�d/4�

= O

((
n4
0

n0(4))

)d/4
4!d/4(d/4)d

d!
log

(
n

d

)
50d/4

)

= O

((
n4
0

n0(4))

)d/4

(e · 12001/4/4)dd log n
)

= O

((
n4
0

n0(4))

)d/4

3.9998dd log n

)
.

Taking n0 ≥ 33700, we conclude that A(n, d) ≤
O(3.9999d log n).

In contrast, the best upper bound we know on A+(N, 4)
is 79, which follows from Remark 42. When used in Theo-

rem 67 this only shows that A+(n, d) ≤ O(6.706d log n).

IV. APPLICATIONS

We now recall and prove Theorem 7.

Theorem 7. Let f ∈ R≥0[x1, . . . , xn]d be given as a black-
box. There is a randomized algorithm which given any 0 <
ε < 1 computes a number z such that with probability 2/3,

(1− ε) · en,d(∂x)f < z < (1 + ε) · en,d(∂x)f.
This algorithm runs in time 4.075d · ε−2 log(ε−1) ·
poly(n, sf ) and uses poly(n, sf , log(ε

−1)) space. Here sf
is the maximum bit complexity of f on the domain {±1}n.

Proof: Set n0 := �1.55d�, p := (n0)d/n
d
0, and

M := �3ε−2/p�. Let F be a family of M independent and

uniformly random functions from [n] to [n0]. For π ∈ F
and i ∈ [n0], define the linear form Lπ,i :=

∑
j∈π−1(i) xj .

The algorithm will compute and return

1

pM

∑
π∈F

en0,d(Lπ,1(∂x), . . . , Lπ,n0
(∂x))f.

By Theorem 13 (a) and the upper bound on en0,d given in

[15], for d odd this equals

1

pM · 2d−1

∑
π∈F

∑
S⊂[n0]
|S|≤�d/2�

(−1)|S|
(
n0 − �d/2� − |S| − 1

�d/2� − |S|
)
·

f(δS,π(1), . . . , δS,π(n)),
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and for d even equals

1

pM · 2d−1(n0 − d)

∑
π∈F

∑
S⊂[n0]
|S|≤d/2

(−1)|S|
(
n0 − d/2− |S| − 1

d/2− |S|
)

(n0 − 2|S|)f(δS,π(1), . . . , δS,π(n)),
where δS,i := −1 if i ∈ S and δS,i := 1 otherwise. Hence

this quantity can be computed using

M

�d/2�∑
i=0

(
n0

i

)
≤ O

(
d
�1.55d�d
(�1.55d�)d

(�1.55d�
�d/2�

)
ε−2

)

≤ O(4.075dε−2)

queries to f on {±1}n. The stated time and space bounds

then follow from the straightforward evaluation of the above

formulas.

We now prove that this quantity gives the

desired approximation of en,d(∂x)f . Write

f =
∑

α∈Nn aαx
α and fix some π ∈ F . Let

en0,d(Lπ,1, . . . , Lπ,n0
) =

∑
α∈{0,1}nd bαx

α and Yπ :=

en0,d(Lπ,1(∂x), . . . , Lπ,n0
(∂x))f =

∑
α∈{0,1}n aαbα.

First observe that for any fixed α ∈ {0, 1}nd , bα = 1
with probability p and bα = 0 with probability 1 − p. By

linearity of expectation, it follows that E[Yπ] = p·en,d(∂x)f .

Moreover,

Var[Yπ] =
∑
α

Var[aαbα] +
∑
β �=α

Cov[aαbα, aβbβ ]

=
∑
α

a2αVar[bα] +
∑
β �=α

aαaβCov[bα, bβ ].

As the probability that bα = bβ = 1 is at most p for all α, β,

we have that

Cov[bα, bβ ] = E[bαbβ ]− E[bα]E[bβ ] ≤ p,

and hence Var[Yπ] ≤ p(en,d(∂x)f)
2.

Now let Z := 1
M

∑
π∈F Yπ . Then E[Z] = p · en,d(∂x)f

and

V ar[Z] = V ar[Yπ]/M ≤ p · (en,d(∂x)f)2/M.

By Chebychev’s inequality, the probability that Z is smaller

or bigger than its expectation by ε · p · en,d(∂x)f is at most

ε−2/pM , which by our choice of M is at most 1/3. Dividing

by p we obtained the desired approximation.

Remark 69. In order to derandomize Theorem 7, it would

suffice to give a near-optimal construction of a (1 + ε)-
balanced (n, d, 1.55d)-splitter, as first defined in [8]. We

note that such a construction was given for (“unbalanced”)

(n, k, αk)-splitters for all α ≥ 1 in [52]. Furthermore, note

that for any fixed values of n and d, Theorem 7 can be

made deterministic by taking F to be a (1 + ε)-balanced

(n, d, 1.55d)-splitter of optimal size.

A. Approximately Counting Subgraphs of Bounded
Treewidth

We now give an application of Theorem 7. First, we recall

the notion of treewidth:

Definition 70. A tree decomposition of a graph G = (V,E)
is given by a tree T with nodes X1, . . . , Xn, where Xi ⊆ V ,

with the following properties:

1) Each vertex in G is contained in at least one node in

T .

2) If Xi and Xj both contain a vertex v, then all nodes

in T on the path from Xi and Xj contain v.

3) If (u, v) ∈ E, then there is a node in T containing both

u and v.

The width of a tree decomposition is the size of the largest

node in T minus one. The treewidth of g, denoted tw(G),
is the minimum width among all tree decompositions of G.

Definition 71. For graphs G,H , where |G| = n and |H| =
d, let

PH,G(x1, . . . , xn) :=
∑

Φ∈Hom(H,G)

∏
v∈V (H)

xΦ(v) ∈ Sn
d .

The key fact is that PH,G can be computed by a small

arithmetic circuit in the case when H has small treewidth.

For this we use the following lemma, proven in [13], [21].

Lemma 72. [21, Lemma 16] Let G and H be graphs where
|G| = n and |H| = d. Then there is an arithmetic formula
C of size O(d · ntw(H)+1) computing PH,G. Furthermore,
this formula can be constructed in time O(1.76d) + |C| ·
polylog(|C|).
Theorem 8. Let G and H be graphs where |G| = n,
|H| = d, and H has treewidth tw(H). There is a randomized
algorithm which given any 0 < ε < 1 computes a number
z such that with probability 2/3,

(1− ε) · Sub(H,G) < z < (1 + ε) · Sub(H,G).

This algorithm runs in time 4.075d · ntw(H)+O(1) ·
ε−2 log(ε−1). Here Sub(H,G) denotes the number of sub-
graphs of G isomorphic to H .

Proof: We first construct a formula C computing PH,G

using Lemma 72. Note that C can be evaluated on inputs

in {±1}n in time O(ntw(H)+1), and the maximum bit-

complexity of PH,G on {±1}n is log f(1, 1, . . . , 1) =
log(|Hom(H,G)|) ≤ d log n.

Next note that en,d(∂x)PH,G equals the number of injec-

tive homomorphisms from H to G. Using Theorem 7 and

the formula C we first compute a (1 ± ε) approximation

to this number in time 4.075dntw(H)+O(1)ε−2 log ε−1. In

order to obtain a (1 ± ε) approximation to Sub(H,G)
we divide this by |Aut(H,H)|, which can be computed

exactly in O(1.01d) time by using a poly(d)-time reduction
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to graph isomorphism [56] and the quasi-polynomial time

graph isomorphism algorithm of [57].

The total time taken is

O(1.76d) + 4.075d · ntw(H)+O(1)

+ |C| · polylog(|C|) · ε−2polylog(ε−1) +O(1.01d),

≤ 4.075d · ntw(H)+O(1) · ε−2polylog(ε−1).

B. Lower Bounds on Perfectly Balanced Hash Families

In this section we show how the bounds on R(en,d) given

in [15] imply lower bounds on the size of perfectly balanced

hash families.

Definition 73. [29, Definition 1] Let n > l ≥ k > 0. A

family of functions F = {π : [n] → [l]} is said to be a

perfectly-k balanced hash family if for some c ∈ N and

all S ⊆ [n] of size k, there are c functions in F that are

injective on S.

Theorem 74. Let F be a perfectly-k balanced hash family
from [n] to [l]. Then

a. If k is odd,

|F| ≥
∑�k/2�

i=0

(
n
i

)
∑�k/2�

i=0

(
l
i

) .
b. If k is even,

|F| ≥
(∑k/2

i=0

(
n
i

))− (
n−1
k/2

)
∑k/2

i=0

(
l
i

) .

Proof: Suppose that k is odd, and let F be a perfectly

k balanced hash family from [n] to [l]. For each π ∈ F
define the linear forms Lπ,i :=

∑
j∈π−1(i) xj . Consider the

polynomial

f :=
∑
π∈F

ek,l(Lπ,1, . . . , Lπ,l).

Since F is a perfectly balanced hash family it follows that,

up to scaling, f = en,k, and hence R(f) =
∑�k/2�

i=0

(
n
i

)
.

On the other hand, by subadditivity of rank, we have that

R(f) ≤ |F|R(ek,l) = |F|
∑�k/2�

i=0

(
l
i

)
. Hence

|F| ≥
∑�k/2�

i=0

(
n
i

)
∑�k/2�

i=0

(
l
i

) .
The case for k even is shown similarly.

V. OPEN PROBLEMS

Question 75. For all integers u, v such that u + v = d,

what is the minimum rank of a matrix with rows indexed

by subsets of [n] of size u and columns indexed by subsets

of [n] of size v, such that entry (I, J) is nonzero if and only

if I ∩J = ∅, and entry (I, J) equals entry (K,L) whenever

I ∪ J = K ∪ L? It follows from the method of partial

derivatives that this quantity is a lower bound on A(n, d).
Theorem 43 shows that this is at most 2.6d.

Question 76. How many points are there in Cn such that

the spaces spanned by any d − 1 of them are contained in

V(en,d), but the spaces spanned by any d of them are not?

It is easy to see that V(e3,2) contains infinitely many such

points; could it be that for all d and some fixed c ∈ N,

V(ed+c,d) contains infinitely many such points? This would

imply that A(N, d) ≤ 2dpoly(d).

Question 77. Similarly, how many matrices in Cn×n have

the property that the span of any d− 1 of them is contained

in V(perd), but not the span of any d of them? If there exist

infinitely many points then it follows from Proposition 29

and the fact that R(perd) ≤ 4d−1 [2] that A(N, d) ≤ 4d−1.

Question 78. Do all (g, ε)-support intersection certification

algorithms require Rsupp(g) queries? Proposition 23 shows

that this is the case for monomials. Similarly, are Rε
supp(g)

queries required to compute a (1 ± ε) approximation of

f(∂x)g in the general black-box setting? Theorem 6 shows

that this is true when ε = 0.

Remark 79. Theorem 67 can be made algorithmic by

using an explicit construction of a perfect splitter. The only

such constructions we know however are far from optimal;

that is, they give families of functions much larger than

σ(n, d, n0, d0) in general.
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