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Abstract—We show that the modified log-Sobolev con-
stant for a natural Markov chain which converges to an r-
homogeneous strongly log-concave distribution is at least 1/r.
Applications include an asymptotically optimal mixing time
bound for the bases-exchange walk for matroids, and a concen-
tration bound for Lipschitz functions over these distributions.
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I. INTRODUCTION

Let π : 2[n] → R≥0 be a discrete distribution, where

[n] = {1, . . . , n}. Consider the generating polynomial of π:

gπ(x) =
∑
S⊆[n]

π(S)
∏
i∈S

xi.

We call a polynomial log-concave if its logarithm is concave,

and strongly log-concave (SLC) if it is log-concave at

the all-ones vector 1 after taking any sequence of partial

derivatives. The distribution π is homogeneous and strongly

log-concave if gπ is.

An important example of homogeneous strongly log-

concave distributions is the uniform distribution over the

bases of a matroid [1], [2]. This discovery leads to the break-

through result that the exchange walk over the bases of a

matroid is rapidly mixing [1], which implies the existence of

a fully polynomial-time randomised approximation scheme

(FPRAS) for the number of bases of any matroid (given by

an independence oracle).

The bases-exchange walk, denoted by PBX, is defined as

follows. In each step, we remove an element from the current

basis uniformly at random to get a set S. Then, we move

to a basis containing S uniformly at random.1 This chain is

irreducible and it converges to the uniform distribution over

the bases of a matroid. As shown in [2], the support of an

r-homogeneous strongly log-concave distribution π must be

the set of bases of a matroid. Thus, to sample from π, we

may use a random walk PBX,π similar to the above. The

only change required is that in the second step we move to

a basis B ⊃ S with probability proportional to π(B).

1Notice that to implement this step it may require more than constant
time. The chain considered here is sometimes called the modified bases-
exchange walk. A common alternative in the literature is to randomly
propose an element and then apply a rejection filter.

Let P be a Markov chain over a state space Ω, and π be

its stationary distribution. To measure the convergence rate

of P , we use the total variation mixing time,

tmix(P, ε) := min
t

{
t | ‖P t(x0, ·)− π‖TV ≤ ε

}
,

where x0 ∈ Ω is the initial state and the subscript TV

denotes the total variation distance between two distribu-

tions. The main goal of this paper is to show that for any

r-homogeneous strongly log-concave distribution π,

tmix(PBX,π, ε) ≤ r

(
log log

1

πmin

+ log
1

2ε2

)
, (1)

where πmin = minx∈Ω π(x). This will improve the previous

bound tmix(PBX,π, ε) ≤ r
(
log 1

πmin
+ log 1

ε

)
due to [1].

Since πmin is most commonly exponentially small in the

input size (e.g. when π is the uniform distribution), the

improvement is usually a polynomial factor. Our bound is

asymptotically optimal without further assumptions, as the

upper bound is achieved when π is the uniform distribution

over the bases of some matroids [3].2

Our main improvement is a modified log-Sobolev inequal-

ity for π and PBX,π . To introduce this inequality, we define

the Dirichlet form of a reversible Markov chain P , over state

space Ω, as

EP (f, g) :=
∑

x,y∈Ω
π(x)f(x)

[
I− P

]
(x, y)g(y),

where f, g are two functions over Ω, and I denotes the iden-

tity matrix. Moreover, let the (normalised) relative entropy

of f : Ω→ R≥0 be

Entπ (f) := Eπ(f log f)− Eπ f logEπ f,

where we follow the convention that 0 log 0 = 0. If we

normalise Eπ f = 1, then Entπ (f) is the relative entropy (or

Kullback–Leibler divergence) between π(·)f(·) and π(·).
2One such example is the matroid defined by a graph which is similar to

a path but with two parallel edges connecting every two successive vertices
instead of a single edge. Equivalently, this can be viewed as the partition
matroid where each block has two elements and each basis is formed by
choosing exactly one element from every block. The Markov chain PBX,π

in this case is just the 1/2-lazy random walk on the Boolean hypercube.
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The modified log-Sobolev constant [4] is defined as

ρ(P )

:= inf

{EP (f, log f)

Entπ (f)
| f : Ω→ R≥0 , Entπ (f) �= 0

}
.

Our main theorem is the following, which is a special

case of Theorem 7.

Theorem 1. Let π be an r-homogeneous strongly log-
concave distribution, and PBX,π is the corresponding bases-
exchange walk. Then

ρ(PBX,π) ≥ 1

r
.

Since tmix(P, ε) ≤ 1
ρ(P )

(
log log 1

πmin
+ log 1

2ε2

)
(cf. [4]),

Theorem 1 directly implies the mixing time bound (1).

In fact, we show more than Theorem 1. Following [1]

and [5], we stratify independent sets of the matroid M by

their sizes, and define two random walks for each level,

depending on whether they add or delete an element first. For

instance, the bases-exchange walk PBX,π is the “delete-add”

or “down-up” walk for the top level. We give lower bounds

for the modified log-Sobolev constants of both random walks

for all levels. For the complete statement, see Section III and

Theorem 7.

The previous work in [1], building upon [5], focuses

on the spectral gap of PBX,π . It is well known that lower

bounds of the modified log-Sobolev constant are stronger

than those of the spectral gap. Thus, we need to seek a

different approach. Our key lemma, Lemma 11, shows that

the relative entropy decays by a factor of 1 − 1
k when we

go from level k to level k − 1. Theorem 1 is a simple

consequence of this lemma and Jensen’s inequality. In order

to prove this lemma, we used a decomposition idea to

inductively bound the relative entropy. Although similar

ideas have appeared before [6], [7], [8], [9], our approach

does not seem to fall into any existing framework.

Prior to our work, similar bounds have been obtained

mostly for strong Rayleigh distributions, which, introduced

in [10], are a proper subset of strongly log-concave distri-

butions. The authors of [11] showed a lower bound on the

modified log-Sobolev constant for strong Rayleigh distri-

butions,3 improving upon the spectral gap bound obtained

in [12]. The work of [11] builds upon the previous work

of [7] for balanced matroids [13]. All of these results

follow an inductive framework inspired by [6], which is

apparently difficult to carry out in the case of general

matroids or strongly log-concave distributions. Our analysis

of the relative entropy took a different path from this line

of work.

3The result of [11] in fact requires a weaker assumption, namely the
stochastic covering property (SCP). We construct examples in Section A
to show that SCP and SLC are in fact incomparable.

By the standard Herbst argument (see, e.g., [14], [15],

[16]), Theorem 1 also implies the following concentration

bound.

Corollary 2. Let π be an r-homogeneous strongly log-
concave distribution with support Ω ⊂ 2[n], and PBX,π be
the corresponding bases-exchange walk. For any observable
function f : Ω→ R and a ≥ 0,

Prx∼π(|f(x)− Eπ f | ≥ a) ≤ 2 exp

(
− a2

2rv(f)

)
,

where v(f) is the maximum of one-step variances,

v(f) := max
x∈Ω

⎧⎨
⎩

∑
y∈Ω

PBX,π(x, y)(f(x)− f(y))2

⎫⎬
⎭ .

There have been a number of results concerning con-

centration inequalities for Lipshitz functions of negatively

correlated variables. The authors of [17] showed concentra-

tion for variables satisfying the stochastic covering property
(SCP), which includes strong Rayleigh distributions as spe-

cial cases. (See also [11].) Correcting an earlier proof in

[18], the authors of [19] showed concentration for variables

with negative regression (NR), a property even weaker than

SCP.
For a c-Lipschitz function (under the graph distance in

the bases-exchange graph), v(f) ≤ c2. Thus, Corollary 2

generalises the concentration bound for Lipschitz functions

in strong Rayleigh distributions. However, SLC is not a

negative correlation property. We construct examples in Sec-

tion A to show that SCP and SLC are in fact incomparable.

Thus, Corollary 2 is incomparable to the results of [17],

[11], [19]. It is not clear whether there is a larger class of

distributions, generalising both NR and SLC, which retains

this concentration bound.
In Section II we introduce necessary notions and briefly

review relevant background. In Section III we formally state

our main results. In Section IV we prove modified log-

Sobolev constant lower bounds for the “down-up” walk. In

Section V we deal with the “up-down” walk. In Section VI

we show the concentration bound. In the Appendix we dis-

cuss stochastic covering property and strong log-concavity.

II. PRELIMINARIES

In this section we define and give some basic properties

of Markov chains, strongly log-concave distributions, and

matroids.

A. Markov chains
Let Ω be a discrete state space and π be a distribution

over Ω. Let P : Ω × Ω → R≥0 be the transition matrix

of a Markov chain whose stationary distribution is π. Then,∑
y∈Ω P (x, y) = 1 for any x ∈ Ω. We say P is reversible

with respect to π if

π(x)P (x, y) = π(y)P (y, x). (2)
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We adopt the standard notation of Eπ for a function f :
Ω→ R, namely

Eπ f =
∑
x∈Ω

π(x)f(x).

We also view the transition matrix P as an operator that

maps functions to functions. More precisely, let f be a

function f : Ω→ R and P acting on f is defined as

Pf(x) :=
∑
y∈Ω

P (x, y)f(y).

This is also called the Markov operator corresponding to P .

We will not distinguish the matrix P from the operator P
as it will be clear from the context. Note that Pf(x) is the

expectation of f with respect to the distribution P (x, ·). We

can regard a function f as a column vector in R
Ω, in which

case Pf is simply matrix multiplication.

The Hilbert space L2(π) is given by endowing R
Ω with

the inner product

〈f, g〉π :=
∑
x∈Ω

π(x)f(x)g(x),

where f, g ∈ R
Ω. In particular, the norm in L2(π) is given

by ‖f‖π :=
√〈f, f〉π .

The adjoint operator P ∗ of P is defined as P ∗(x, y) =
π(y)P (y,x)

π(x) . This is the (unique) operator which satisfies

〈f, Pg〉π = 〈P ∗f, g〉π . It is easy to verify that if P satisfies

the detailed balanced condition (2) (so P is reversible), then

P is self-adjoint, namely P = P ∗.
The Dirichlet form is defined as:

EP (f, g) := 〈(I− P )f, g〉π , (3)

where I stands for the identity matrix of the appropriate size.

Let the Laplacian L := I− P . Then,

EP (f, g) =
∑

x,y∈Ω
π(x)g(x)L(x, y)f(y)

= gT diag(π)Lf,
where in the last line we regard f , g, and π as (column)

vectors over Ω. In particular, if P is reversible, then L∗ = L
and

EP (f, g) = 〈Lf, g〉π = 〈f,L∗g〉π = 〈f,Lg〉π
= EP (g, f) = fT diag(π)Lg. (4)

In this paper all Markov chains are reversible and we

will most commonly use the form (4). Another common

expression of the Dirichlet form for reversible P is

EP (f, g)

=
1

2

∑
x∈Ω

∑
y∈Ω

π(x)P (x, y)(f(x)− f(y))(g(x)− g(y)),

(5)

but we will not need this expression until Section VI. It is

well known that the spectral gap of P , or equivalently the

smallest positive eigenvalue of L, controls the convergence

rate of P . It also has a variational characterisation. Let the

variance of f be

Varπ (f) := Eπ f
2 − (Eπ f)

2
.

Then

λ(P ) := inf

{EP (f, f)

Varπ (f)
| f : Ω→ R , Varπ (f) �= 0

}
.

The usefulness of λ(P ) is due to the fact that

tmix(P, ε) ≤ 1

λ(P )

(
1

2
log

1

πmin

+ log
1

2ε

)
, (6)

where πmin = minx∈Ω π(x). See, for example, ([20], Theo-

rem 12.4).

The (standard) log-Sobolev inequality relates

EP
(√

f,
√
f
)

with the following entropy-like quantity:

Entπ (f) := Eπ(f log f)− Eπ f logEπ f, (7)

for a non-negative function f , where we follow the conven-

tion that 0 log 0 = 0. Also, log always stands for the natural

logarithm in this paper. The log-Sobolev constant is defined

as

α(P )

:= inf

{
EP

(√
f,
√
f
)

Entπ (f)
| f : Ω→ R≥0 , Entπ (f) �= 0

}
.

The constant α(P ) gives a better control of the mixing time

of P , as shown in [21],

tmix(P, ε) ≤ 1

4α(P )

(
log log

1

πmin

+ log
1

2ε2

)
. (8)

The saving seems modest comparing to (6), but it is quite

common that πmin is exponentially small in the instance size,

in which case the saving is a polynomial factor.

What we are interested in, however, is the following

modified log-Sobolev constant introduced in [4]:

ρ(P )

:= inf

{EP (f, log f)

Entπ (f)
| f : Ω→ R≥0 , Entπ (f) �= 0

}
.

Similar to (8), we have that

tmix(P, ε) ≤ 1

ρ(P )

(
log log

1

πmin

+ log
1

2ε2

)
, (9)

as shown in ([4], Corollary 2.8).

For reversible P , the following relationships among these

constants are known,

2λ(P ) ≥ ρ(P ) ≥ 4α(P ).

See, for example, ([4], Proposition 3.6).
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Thus, lower bounds on these constants are increasingly

difficult to obtain. However, to get the best asymptotic

control of the mixing time, one only needs to lower bound

the modified log-Sobolev constant ρ(P ) instead of α(P ) by

comparing (8) and (9). Indeed, as observed in [11], by taking

the indicator function 1
π(x)1x for all x ∈ Ω,

α(P ) ≤ min
x∈Ω

{
1

− log π(x)

}
.

In our setting of r-homogeneous strongly log-concave dis-

tributions, we cannot hope for a uniform bound for α(P )
similar to Theorem 1, as the right hand side of the above

can be arbitrarily small for fixed r.

By (3) and (7), it is clear that if we replace f by cf for

some constant c > 0, then both EP (f, log f) and Entπ (f)
increase by the same factor c. Thus, in order to bound ρ,

we may further assume that Eπ f = 1. This assumption

allows the simplification Entπ (f) = Eπ(f log f). In this

case, π(·)f(·) is a distribution, and Entπ (f) is the relative

entropy (or Kullback–Leibler divergence) between π(·)f(·)
and π(·).
B. Strongly log-concave distributions

We write ∂i as shorthand for ∂
∂xi

, and ∂I for an index set

I = {i1, . . . , ik} as shorthand for ∂i1 . . . ∂ik .

Definition 3. A polynomial p ∈ R[x1, . . . , xn] with non-
negative coefficients is log-concave at x ∈ R≥0 if its Hessian
∇2 log p is negative semi-definite at x. We call p strongly

log-concave if for any index set I ⊆ [n], ∂Ip is log-concave
at the all-1 vector 1.

The notion of strong log-concavity was introduced in

[22], [23]. There are also notions of complete log-concavity
introduced in [24], and Lorentzian polynomials introduced

in [2]. It turns out that for homogeneous polynomials the

three notions are equivalent ([2], Theorem 5.3). (See also

[1].)

The following property of strongly log-concave polyno-

mials is particularly useful [24], [2].

Proposition 4. If p is strongly log-concave, then for any
I ⊆ [n], the Hessian matrix ∇2∂Ip(1) has at most one
positive eigenvalue.

In fact, when p is homogeneous, ∇2∂Ip(1) having at

most one positive eigenvalue is equivalent to ∇2 log ∂Ip(1)
being negative semi-definite [24], but we will only need the

proposition above.

A distribution π is called r-homogeneous (or strongly log-
concave) if gπ is.

C. Matroids

A matroid is a combinatorial structure that abstracts the

notion of linear independence. We shall define it in terms

of its independent sets, although many different equivalent

definitions exist. Formally, a matroid M = (E, I) consists

of a finite ground set E and a collection I of subsets of E
(independent sets) that satisfy the following:

• ∅ ∈ I;

• if S ∈ I, T ⊆ S, then T ∈ I;

• if S, T ∈ I and |S| > |T |, then there exists an element

i ∈ S \ T such that T ∪ {i} ∈ I .

The first condition guarantees that I is non-empty, the

second implies that I is downward closed, and the third

is usually called the augmentation axiom. We direct the

reader to [25] for a reference book on matroid theory.

In particular, the augmentation axiom implies that all the

maximal independent sets have the same cardinality, namely

the rank r of M. The set of bases B is the collection of

maximal independent sets of M. Furthermore, we denote

by M(k) the collection of independent sets of size k,

where 1 ≤ k ≤ r. If we dropped the augmentation axiom,

the resulting structure would be a non-empty collection of

subsets of E that is downward closed, known as an (abstract)

simplicial complex.

In ([2], Theorem 7.1) it was shown that the support of an

r-homogeneous strongly log-concave distribution π is the set

of bases of a matroid M = (E, I) of rank r. We equip I
with a weight function w(·) recursively defined as follows:4

w(I) :=

{
π(I)Zr if |I| = r,∑

I′⊃I, |I′|=|I|+1 w(I
′) if |I| < r,

for some normalisation constant Zr > 0. For example, we

may choose w(B) = 1 for all B ∈ B and Zr = |B|, which

corresponds to the uniform distribution over B. It follows

that

w(I) = (r − |I|)!
∑

B∈B, I⊆B

w(B).

Let πk be the distribution over M(k) such that πk(I) ∝
w(I) for I ∈ M(k). Thus π = πr. For any I ∈ M(k),
πk(I) is proportional to the probability of generating a

superset of I under π. Let Zk =
∑

I∈M(k) w(I) be the

normalisation constant of πk. In fact, for any 0 ≤ k ≤ r,

k!Zk = Z0 = w(∅).
It is straightforward to verify that for any I ∈ I,

∂Igπ(1) =
∑

B∈B,I⊂B

π(B) =
1

Zr

∑
B∈B,I⊂B

w(B). (10)

We also write w(v) as shorthand for w({v}) for any v ∈ E.

For an independent set I ∈ I, the contraction MI =
(E \ I, II) is also a matroid, where II = {J | J ⊆
E \ I, J ∪ I ∈ I}. We equip MI with a weight function

wI(·) such that wI(J) = w(I∪J). We may similarly define

4One may define w(I) to be a k!
r!

fraction of the current definition for
I ∈ M(k). This alternative definition will eliminate many factorial factors
in the rest of the paper. However, it is inconsistent with the literature [1],
[5], so we do not adopt it.
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distributions πI,k for k ≤ r−|I| such that πI,k(J) ∝ wI(J)
for J ∈ MI(k). For convenience, instead of defining πI,k

over MI(k), we define it over M(k+ |I|) such that for any

J ∈M(k + |I|),

πI,k(J) :=

{
k!w(J)
w(I) if I ⊂ J ;

0 otherwise.
(11)

Notice that the normalising constant ZI,k = w(I)
k! .

If |I| ≤ r − 2, let WI be the matrix such that Wuv =
wI({u, v}) for any u, v ∈ E \ I . Then, notice that

wI({u, v}) = w(I ∪ {u, v})
= (r − |I| − 2)!

∑
B∈B, I∪{u,v}⊆B

w(B)

= (r − |I| − 2)!Zr · ∂u∂v∂Igπ(1). (by (10))

In other words, WI is ∇2∂Igπ multiplied by the scalar (r−
|I| − 2)!Zr. Thus, Proposition 4 implies the following.

Proposition 5. Let π be an r-homogeneous strongly log-
concave distribution over M = (E, I). If I ∈ I and
|I| ≤ r − 2, then the matrix WI has at most one positive
eigenvalue.

Proposition 5 implies the following bound for a quadratic

form, which will be useful later.

Lemma 6. Let π be an r-homogeneous strongly log-concave
distribution over M = (E, I), and let I ∈ I such that
|I| ≤ r − 2. Let f : MI(1) → R be a function such that
EπI,1

f = 1. Then

fTWIf ≤ w(I).

Proof: Let wI = {wI(v)}v∈E\I . The constraint

EπI,1
f = 1 implies that

∑
v∈E\I wI(v)f(v) = w(I). Let

D = diag(wI) and A = D−1/2WID
−1/2. Then A is a

real symmetric matrix. By Proposition 5, WI has at most

one positive eigenvalue, and thus so does A (see, e.g., [1],

Lemma 2.4). We may decompose A as

A =

|E\I|∑
i=1

λigig
T
i , (12)

where {gi} is an orthonormal basis and λi ≤ 0 for all i ≥
2. Moreover, notice that

√
wI is an eigenvector of A with

eigenvalue 1. Thus, λ1 = 1 and g1 can be taken as
√
πI,1.

The decomposition (12) directly implies that

W =

|E\I|∑
i=1

λihih
T
i ,

where hi = D1/2gi. In particular, h1 = 1√
w(I)

wI . The

assumption
∑

v∈E\I wI(v)f(v) = w(I) can be rewritten as

〈h1, f〉 =
√
w(I). Thus,

fTWIf =

|E\I|∑
i=1

λi 〈hi, f〉2 ≤ 〈h1, f〉2 = w(I),

where the inequality is due to the fact that λ1 = 1 and

λi ≤ 0 for all i ≥ 2. The lemma follows.

III. MAIN RESULTS

There are two natural random walks P∧k and P∨k onM(k)
by starting with adding or deleting an element and coming

back to M(k). Given the current I ∈M(k), the “up-down”

random walk P∧k first chooses I ′ ∈M(k+1) such that I ′ ⊃
I with probability proportional to w(I ′), and then removes

one element from I ′ uniformly at random. More formally,

for 1 ≤ k ≤ r − 1 and I, J ∈M(k), we have that

P∧k (I, J) =

⎧⎪⎨
⎪⎩

1
k+1 if I = J ;
w(I∪J)

(k+1)w(I) if I ∪ J ∈M(k + 1);

0 otherwise.

(13)

The “down-up” random walk P∨k removes an element of

I uniformly at random to get I ′ ∈ M(k − 1), and then

moves to J such that J ∈ M(k), J ⊃ I ′ with probability

proportional to w(J). More formally, for 2 ≤ k ≤ r,

P∨k (I, J)

=

⎧⎪⎨
⎪⎩
∑

I′∈M(k−1),I′⊂I
w(I)

kw(I′) if I = J ;
w(J)

kw(I∩J) if |I ∩ J | = k − 1;

0 if |I ∩ J | < k − 1.

(14)

Thus, the bases-exchange walk PBX,π according to π is

just P∨r . The stationary distribution of both P∧k and P∨k
is πk(I) =

w(I)
Zk

= k!w(I)
r!Zr

.

Theorem 7. Let π be an r-homogeneous strongly log-
concave distribution, andM the associated matroid. Let P∨k
and P∧k be defined as above on M(k). Then the following
hold:
• for any 2 ≤ k ≤ r, ρ(P∨k ) ≥ 1

k ;
• for any 1 ≤ k ≤ r − 1, ρ(P∧k ) ≥ 1

k+1 .

The first part of Theorem 7 is shown by Corollary 12,

and the second part by Lemma 14. Interestingly, we do not

know how to directly relate ρ(P∧k ) with ρ(P∨k+1), although

it is straightforward to see that both walks have the same

spectral gap (see (17) and (18) below).

By (9), we have the following corollary.

Corollary 8. In the same setting as Theorem 7, we have
that
• for any 2 ≤ k ≤ r,

tmix(P
∨
k , ε) ≤ k

(
log log π−1

k,min + log 1
2ε2

)
;

• for any 1 ≤ k ≤ r − 1,
tmix(P

∧
k , ε) ≤ (k + 1)

(
log log π−1

k,min + log 1
2ε2

)
.
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In particular, for the bases-exchange walk PBX,π according
to π(·),

tmix(PBX,π, ε) ≤ r

(
log log π−1

min + log
1

2ε2

)

For example, for the uniform distribution over bases

of matroids, Corollary 8 implies that the mixing time of

the bases-exchange walk is O(r(log r + log logn)), which

improves upon the O(r2 log n) bound of [1]. The mixing

time bound in Corollary 8 is asymptotically optimal, as it

is achieved for the bases of some matroids ([3], Ex. 9.14).

As mentioned in the introduction, one such example is the

matroid defined by a graph which is similar to a path but

with two parallel edges connecting every two successive

vertices instead of a single edge. Equivalently, this can be

viewed as the partition matroid where each block has two

elements and each basis is formed by choosing exactly one

element from every block. The rank of this matroid is n,

and πmin = 1
2n . The Markov chain PBX,π in this case is

just the 1/2-lazy random walk on the n-dimensional Boolean

hypercube, which has mixing time Θ(n log n), matching the

upper bound in Corollary 8.

For more details on the concentration result, Corollary 2,

see Section VI.

IV. THE DOWN-UP WALK

In this section and what follows, we always assume that

the matroid M and the weight function w(·) correspond to

an r-homogeneous strongly log-concave distribution π = πr.

We first give some basic decompositions of P∨k and P∧k .

Let Ak be a matrix whose rows are indexed by M(k) and

columns by M(k + 1) such that

Ak(I, J) :=

{
1 if I ⊂ J ;

0 otherwise,

and wk be the vector of {w(I)}I∈M(k). Moreover, let

P ↑k := diag(wk)
−1Ak diag(wk+1), (15)

P ↓k+1 :=
1

k + 1
AT

k. (16)

Then

P∧k = P ↑kP
↓
k+1, (17)

P∨k+1 = P ↓k+1P
↑
k . (18)

Let Dk = diag(πk). Using (15) and (16), we get that

Dk+1P
↓
k+1 = (P ↑k )

TDk. (19)

By multiplying equation (19) by the all-ones vector, we also

get that

πk+1P
↓
k+1 = πk, (20)

πkP
↑
k = πk+1. (21)

For k ≥ 2 and a function f (k) : M(k) → R≥0, define

f (i) :M(i)→ R≥0 for 1 ≤ i ≤ k − 1 such that

f (i) :=
k−1∏
j=i

P ↑j f
(k). (22)

Intuitively, f (i) is the function f (k) “going down” to level

i. The key lemma, namely Lemma 11, is that this operation

contracts the relative entropy by a factor of 1− 1
i from level

i to level i− 1.

In fact, recall that if we normalise Eπk
f (k) = 1, then(

f (k)
)T

Dk is a distribution (viewed as a row vector). Then,

it is easy to verify that(
f (k−1)

)T
Dk−1 =

(
f (k)

)T
DkP

↓
k .

Namely, the corresponding distribution of f (k−1) is that of

f (k) after the random walk P ↓k .

We first establish some properties of f (i) for i < k.

Lemma 9. Let k ≥ 2 and f (k) : M(k) → R≥0 be a non-
negative function on M(k) such that Eπk

f (k) = 1. Then
we have the following:

1) for any 1 ≤ i < k, J ∈M(i), f (i)(J) = EπJ,k−i
f (k);

2) for any 1 ≤ i ≤ k, Eπi f
(i) = 1.

Proof: For (1), first notice that

δTJ

k−1∏
j=i

P ↑j = δTJ

k−1∏
j=i

[
diag(wj)

−1Aj diag(wj+1)
]

=
δTJ

w(J)

k−1∏
j=i

Aj diag(wk)

= πJ,k−i,

where δJ is the Dirac vector that equals 1 at J and 0
elsewhere. The last equality holds due to the fact that the

product of the adjacency matrices counts the paths from

independent sets at level i to independent sets at level k.

For every such pair of sets, the number of these paths is

(k − i)! if one is contained in the other, or 0 otherwise. It

follows that

EπJ,k−i
f (k) = πJ,k−if

(k)

= δTJ

k−1∏
j=i

P ↑j f
(k)

= δTJf
(i) = f (i)(J).

For (2), we have that

Eπi f
(i) = πi

k−1∏
j=i

P ↑j f
(k)

= πkf
(k) (by Equation (21))

= Eπk
f (k) = 1.
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Now we are ready to establish the base case of the

entropy’s contraction.

Lemma 10. Let f (2) : M(2) → R≥0 be a non-negative
function defined on M(2). Then

Entπ2

(
f (2)

)
≥ 2Entπ1

(
f (1)

)
.

Proof: Without loss of generality we may assume that

Eπ2
f (2) = 1 and therefore Eπ1

f (1) = 1 by (2) of Lemma 9.

Note that for v ∈ E,

f (1)(v) =
∑

S∈M(2):v∈S

w(S)

w(v)
f (2)(S).

We will use the following inequality, which is valid for any

a ≥ 0 and b > 0,

a log
a

b
≥ a− b. (23)

Noticing that Z1 = 2Z2, we have

Entπ2

(
f (2)

)
− 2Entπ1

(
f (1)

)
=

∑
S∈M(2)

π2(S)f
(2)(S) log f (2)(S)

−2
∑
v∈E

π1(v)

⎛
⎝ ∑

S∈M(2):v∈S

w(S)

w(v)
f (2)(S)

⎞
⎠ log f (1)(v)

=
∑

S∈M(2)

(
π2(S)f

(2)(S) log f (2)(S)

−2
∑
v∈S

π1(v)
w(S)

w(v)
f (2)(S) log f (1)(v)

)

=
∑

S∈M(2)

(w(S)
Z2

f (2)(S) log f (2)(S)

−2
∑
v∈S

w(v)

Z1
· w(S)
w(v)

f (2)(S) log f (1)(v)
)

=
∑

S={u,v}∈M(2)

w(S)

Z2
f (2)(S)

(
log f (2)(S)

− log f (1)(v)− log f (1)(u)
)

≥
∑

S={u,v}∈M(2)

w(S)

Z2

(
f (2)(S)− f (1)(v)f (1)(u)

)

=
∑

S∈M(2)

π2(S)f
(2)(S)

−
∑

S={u,v}∈M(2)

w(S)

Z2
· f (1)(v)f (1)(u)

= 1− 1

2Z2
·
(
f (1)

)T
W∅f (1),

where the inequality is by (23) with a = f (2)(S) and b =
f (1)(u)f (1)(v) when b > 0, and when b = 0 we have a = 0

as well. Thus, the lemma follows from Lemma 6 with I = ∅
and w(∅) = Z1 = 2Z2.

We generalise Lemma 10 as follows.

Lemma 11. Let k ≥ 2 and f (k) : M(k) → R≥0 be a
non-negative function defined on M(k). Then

Entπk

(
f (k)

)
≥ k

k − 1
Entπk−1

(
f (k−1)

)
.

Proof: We do an induction on k. The base case of k = 2
follows from Lemma 10.

For the induction step, assume the lemma holds for

all integers at most k for any matroid M. Let f (k+1) :
M(k + 1) → R≥0 be a non-negative function such that

Eπk+1
f (k+1) = 1.

Recall (11), where we define πv,k over M(k+1) instead

of over Mv(k). For I ∈M(k + 1), v ∈M(1) and v ∈ I ,

πk+1(I) =
w(I)

Zk+1
= (k + 1) · w(v)

(k + 1)!Zk+1
· k!w(I)

w(v)

= (k + 1)π1(v)πv,k(I),

as Z1 = (k + 1)!Zk+1. This implies that

πk+1(I) =
∑

v∈M(1),v∈I
π1(v)πv,k(I)

=
∑

v∈M(1)

π1(v)πv,k(I). (24)

Thus πk+1 is a mixture of πv,k.

We use the “chain rule” of entropy to decompose

Entπk+1

(
f (k+1)

)
with respect to the entropy of f (1) (“pro-

jection”) and the entropy conditioned on having each v
(“restriction”). To be more precise, we have

Eπk+1
f (k+1) log f (k+1)

=
∑

v∈M(1)

π1(v)Eπv,k
f (k+1) log f (k+1).

This implies that

Entπk+1

(
f (k+1)

)
=

∑
v∈M(1)

π1(v)Entπv,k

(
f (k+1)

)

+
∑

v∈M(1)

π1(v)
(
Eπv,k

f (k+1)
)
log

(
Eπv,k

f (k+1)
)

=
∑

v∈M(1)

π1(v)Entπv,k

(
f (k+1)

)
+ Entπ1

(
f (1)

)
, (25)

where we use (1) and (2) of Lemma 9. Similarly,

Entπk

(
f (k)

)
=

∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)

)

+Entπ1

(
f (1)

)
. (26)
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For any v ∈ M(1), the contracted matroid Mv with

weight function wv(I) = w(I ∪ v) for I ⊆ E \ {v}
corresponds to an (r−1)-homogeneous strongly log-concave

distribution. (Recall Definition 3.) Thus, we can apply the

induction hypothesis on Mv at level k and get

Entπv,k

(
f (k+1)

)
≥ k

k − 1
· Entπv,k−1

(
f (k)

)
. (27)

Strictly speaking, in (27) we should apply the induction

hypothesis to f
(k)
v which is the restriction of f (k+1) to

J ∈ M(k + 1) and J � v, and then “push it down” to

f
(k−1)
v defined over I ∈M(k) and I � v as

f (k−1)
v (I) :=

∑
J∈M(k+1):J⊃I

w(J)

w(I)
· f (k)

v (J)

=
∑

J∈M(k+1):J⊃I

w(J)

w(I)
· f (k+1)(J).

However, f
(k)
v agrees with f (k+1) on the support of πv,k,

and f
(k−1)
v agrees with f (k) on the support of πv,k−1. This

validates (27).

Furthermore, using the induction hypothesis on M from

level k to level 1, we have that

Entπk

(
f (k)

)
≥ k · Entπ1

(
f (1)

)
. (28)

Thus, (26) and (28) together imply that∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)

)
≥ (k − 1)Entπ1

(
f (1)

)
.

(29)

Putting everything together,

Entπk+1

(
f (k+1)

)
=

∑
v∈M(1)

π1(v)Entπv,k

(
f (k+1)

)
+ Entπ1

(
f (1)

)
,

(by (25))

≥ k

k − 1

∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)

)
+ Entπ1

(
f (1)

)
,

(by (27))

=

(
k + 1

k
+

1

k(k − 1)

) ∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)

)

+Entπ1

(
f (1)

)
≥ k + 1

k

∑
v∈M(1)

π1(v)Entπv,k−1

(
f (k)

)

+
k + 1

k
Entπ1

(
f (1)

)
(by (29))

=
k + 1

k
Entπk

(
f (k)

)
. (by (26))

This concludes the inductive step and thus the proof.

Remark. We remark that our decomposition of the relative
entropy (25) is “vertical” with respect to elements of M(1).
This decomposition is different from the decomposition of [5]
in a similar context, where they decompose “horizontally”
across all levels.

The decomposition (24) of πk appears to be the key

to Lemma 11. An alternative way to understand it is the

following. Consider the process which first draws a basis

B ∼ π, and then repeatedly removes an element from the

current set uniformly at random for at most r repetitions.

Let Xk be the outcome of this process after removing r−k
elements. Then |Xk| = k, and πk(I) = Pr(Xk = I) for

I ∈M(k). Moreover,

Pr(X1 = {v} | Xk = I) =

{
1
k if v ∈ I;

0 otherwise.

By Bayes’ rule,

Pr(Xk = I | X1 = {v}) Pr(X1 = {v})
= Pr(X1 = {v} | Xk = I) Pr(Xk = I).

Summing over v, since
∑

v∈M(1) Pr(X1 = {v} | Xk =
I) = 1, we have∑

v∈M(1)

Pr(Xk = I | X1 = {v}) Pr(X1 = {v})

= Pr(Xk = I)
∑

v∈M(1)

Pr(X1 = {v} | Xk = I)

= Pr(Xk = I). (30)

Noticing that Pr(Xk = I | X1 = {v}) = πv,k−1(I),
equation (30) recovers (24).

Lemma 11 implies that the relative entropy contracts by

1 − 1
k in the first half of the random walk P∨k . Since the

second half of the random walk will not increase the relative

entropy,5 we have the following corollary.

Corollary 12. For any 2 ≤ k ≤ r,

ρ(P∨k ) ≥ 1

k
.

Proof: Given any f (k) : M(k) → R≥0 such that

Eπk
f (k) = 1, let Dk = diag(πk). Then we have

Entπk−1

(
f (k−1)

)
=

(
f (k−1)

)T
Dk−1 log f

(k−1)

=
(
f (k)

)T (
P ↑k−1

)T
Dk−1 log f

(k−1)

=
(
f (k)

)T
DkP

↓
k logP ↑k−1f

(k)

(by (19))

≥
(
f (k)

)T
DkP

↓
kP

↑
k−1 log f

(k)

(by Jensen’s inequality)

= Entπk

(
f (k)

)
− EP∨k

(
f (k), log f (k)

)
.

5This fact is shown as (∗) in our direct proof of Corollary 8 below.
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Together with Lemma 11 we have that ρ(P∨k ) ≥ 1
k .

In fact, the contraction of relative entropy (Lemma 11)

directly implies the mixing time bound of Corollary 8, as

illustrated by the following.
A direct proof for Corollary 8: We will only prove

this for P∨k ; the case of P∧k is similar. For any intermediate

distribution τ on M(k), the relative entropy D(τ ‖ πk) =
Entπk

(
D−1

k τT
)

where Dk = diag(πk). Moreover, after one

step of the random walk, the distribution is τP∨k . Since P∨k
is reversible, D−1

k (P∨k )T = P∨k D−1
k . We claim that

D (τP∨k ‖ πk) = Entπk

(
D−1

k (P∨k )TτT
)

= Entπk

(
P∨k D−1

k τT
)

= Entπk

(
P ↓kP

↑
k−1D

−1
k τT

)
≤ Entπk−1

(
P ↑k−1D

−1
k τT

)
(∗)

≤
(
1− 1

k

)
Entπk

(
D−1

k τT
)

(by Lemma 11)

=

(
1− 1

k

)
D (τ ‖ πk) , (31)

where (∗) is saying that the entropy will not increase after

applying P ↓k . We defer our proof of (∗) to the end of this

proof. To continue, notice that (31) implies that

D
(
τ0 (P

∨
k )

t ∥∥ πk

)
≤

(
1− 1

k

)t

D (τ0 ‖ πk)

≤ e−t/kD (τ0 ‖ πk)

= e−t/k log πk(x0)
−1,

where τ0 is the initial distribution with τ0(x0) = 1 for

some x0 ∈ M(k). Finally, we use Pinsker’s inequality

(2 ‖τ − σ‖2TV ≤ D(τ ‖ σ) for any two distributions τ, σ
on the same state space), to show

2
∥∥∥τ0 (P∨k )

t − πk

∥∥∥2

TV
≤ D

(
τ0 (P

∨
k )

t ∥∥ πk

)
.

Setting e−t/k log πk(x0)
−1 ≤ 2ε2, we conclude that∥∥∥τ0 (P∨k )

t − πk

∥∥∥
TV
≤ ε,

whenever

t ≥ k

(
log log πk(x0)

−1 + log
1

2ε2

)
.

This gives us Corollary 8 for P∨k .
We still need to prove (∗). We claim that

Entπk

(
P ↓k f

)
≤ Entπk−1

(f) (32)

for any k ≥ 2 and f :M(k − 1)→ R≥0. Firstly, we verify

that

Eπk
P ↓k f = πkP

↓
k f

= πk−1f (by Equation (20))

= Eπk−1
f.

Thus, we can assume both are 1 without loss of generality.

Then,

Entπk

(
P ↓k f

)
= πk(P

↓
k f � logP ↓k f)

≤ πkP
↓
k (f � log f)
(by Jensen’s inequality on x log x)

= πk−1(f � log f) (by Equation (20))

= Entπk−1
(f) ,

where � stands for the Hadamard product.

V. THE UP-DOWN WALK

In this section we establish an analogous result of Corol-

lary 12, namely that for any 1 ≤ k ≤ r − 1, ρ(P∧k ) ≥ 1
k+1 .

Although ρ(P∧k ) with ρ(P∨k+1) share the same spectral

gap (recall (17) and (18)), it is not clear how to directly

relate ρ(P∧k ) with ρ(P∨k+1). In fact, even adapting the proof

of Corollary 12 seems difficult. We will use a different

decomposition approach.

Note that the mixing time bound can be shown di-

rectly from Lemma 11 without going through modified log-

Sobolev inequalities (mLSI), as is done in the last section.

However, concentration bounds like Corollary 2 apparently

still need mLSI.

Once again, we start with the base case.

Lemma 13. Let I be an independent set of M such that
|I| ≤ r − 2. Then ρ(P∧I,1) ≥ 1/2.

Proof: Recall that we may assume EπI,1
f = 1 and

thus Entπ1
(f) = EπI,1

(f log f). Also, recall (13), for any

u, v ∈ E \ I ,

P∧I,1(u, v) =

⎧⎪⎨
⎪⎩

1
2 if u = v;
w({u,v})
2w(u) if {u, v} ∈ M(2);

0 otherwise.

Rewriting the above,

P∧I,1 =
I

2
+

1

2
diag(w−1

I )WI ,

where wI = {wI(v)}v∈E\I . Thus, by (4),

EP∧I,1 (f, log f) = fT diag(πI,1)
(
I− P∧I,1

)
log f

=
1

2

(
EπI,1

(f log f)

−fT diag(πI,1) diag(w
−1
I )WI log f

)
=

1

2

(
EntπI,1

(f)− 1

w(I)
· fTWI log f

)
.

As log x ≤ x− 1,

fTWI log f ≤ fTWIf − fTWI1

≤ w(I)− w(I) = 0,
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where in the last line we used Lemma 6 and EπI,1
f = 1.

This finishes the proof.

Lemma 13 is a strengthening of the fact that the lazy

random walk on 1-skeletons of links of a matroid M
(namely P∧I,1) has spectral gap at least 1/2, (cf. [1]).

Lemma 14. For any 1 ≤ k ≤ r − 1,

ρ(P∧k ) ≥ 1

k + 1
.

Proof: Recall (13) that

P∧k (I, J) =

⎧⎪⎨
⎪⎩

1
k+1 if I = J ;
w(I∪J)

(k+1)w(I) if I ∪ J ∈M(k + 1);

0 otherwise.

For K ∈ M(k − 1), we extend P∧K,1 to a square matrix

indexed by M(k) as follows,

P∧K,1(I, J) =

⎧⎪⎨
⎪⎩
0 if K �⊂ I;
1
2 if K ⊂ I and I = J ;
w(I∪J)
2w(I) if K = I ∩ J.

Let SK = {K ∪{v} | v ∈MK(1)} be the support of πK,1.

Notice that for any I ∈M(k),

|{K | K ∈M(k − 1), K ⊂ I}| = k,

and if I ∪J ∈M(k+1), then I ∩J ∈M(k− 1). We have

P∧k −
1

k + 1
· I = 2

k + 1

∑
K∈M(k−1)

(
P∧K,1 −

1

2
· ISK

)
,

where ISK
is the diagonal matrix with 1 on Sk and 0

otherwise. Equivalently,

I− P∧k =
k

k + 1
· I+ 2

k + 1

∑
K∈M(k−1)

(
1

2
· ISK

− P∧K,1

)

=
2

k + 1

∑
K∈M(k−1)

(
ISK

− P∧K,1

)
. (33)

Furthermore, we have entropy decompositions similar to

(26). For any I ∈M(k), K ∈M(k − 1) and K ⊂ I ,

πk(I) =
w(I)

Zk
=

w(K)

Zk
· w(I)

w(K)
= kπk−1(K)πK,1(I),

as Zk−1 = kZk. This implies that

πk(I) =
∑

K∈M(k−1),K⊂I

πk−1(K)πK,1(I)

=
∑

K∈M(k−1)

πk−1(K)πK,1(I).

Then, for any f (k) :M(k)→ R≥0 such that Eπk
f (k) = 1,

we have

Entπk

(
f (k)

)
=

∑
K∈M(k−1)

πk−1(K)EntπK,1

(
f (k)

)

+
∑

K∈M(k−1)

πk−1(K)EπK,1
f (k) logEπK,1

f (k)

=
∑

K∈M(k−1)

πk−1(K)EntπK,1

(
f (k)

)

+Entπk−1

(
f (k−1)

)
, (34)

where f (k−1) is defined in (22). Then Lemma 11 implies

that ∑
K∈M(k−1)

πk−1(K)EntπK,1

(
f (k)

)
≥ 1

k
· Entπk

(
f (k)

)
.

(35)

On the other hand, it is straightforward from (33) that

EP∧k
(
f (k), log f (k)

)
=

∑
K∈M(k−1)

2

k + 1
Eπk

f
(
ISK

− P∧K,1

)
log f

=
2k

k + 1

∑
K∈M(k−1)

πk−1(K)EP∧K,1
(f, log f)

≥ k

k + 1

∑
K∈M(k−1)

πk−1(K)EntπK,1
(f) (by Lemma 13)

≥ 1

k + 1
· Entπk

(
f (k)

)
. (by (35))

This finishes the proof.

VI. CONCENTRATION

One application of the modified log-Sobolev inequalities

is to show concentration inequalities, via the Herbst argu-

ment (see, e.g., [4], [16]). In the discrete setting, concen-

tration inequalities have been obtained in ([14], Section 5)

and can also be obtained by combining various results in

[26], [15], [27]. The following lemma and its proof are a

small modification of ([11], Lemma 5). For completeness,

we include all details.

Lemma 15. Let P be the transition matrix of a reversible
Markov Chain with stationary distribution π on a finite set
Ω, and f : Ω→ R be some observable function. Then,

Prx∼π(f(x)− Eπ f ≥ a) ≤ exp

(
−ρ(P )a2

2v(f)

)
,

where a ≥ 0 and

v(f) := max
x∈Ω

⎧⎨
⎩

∑
y∈Ω

P (x, y)(f(x)− f(y))2

⎫⎬
⎭ .
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Proof: For any x ∈ Ω and t ∈ (0,+∞), let

Ft(x) := exp
(
tf(x)− ct2

)
,

where c := v(f)
2ρ(P ) . We will use the inequality

z(ez + 1) ≥ 2(ez − 1), (36)

which holds for z ≥ 0. To see this, notice that at z = 0 the

equality holds, and for z > 0 the derivative of the left is

larger than that of the right.
If f(x) ≥ f(y), we set z = t(f(x) − f(y)) in (36) and

obtain

t(f(x)− f(y))(Ft(x) + Ft(y)) ≥ 2(Ft(x)− Ft(y)),

which in turn implies that

(Ft(x)− Ft(y))(f(x)− f(y)) ≤
t

2
(Ft(x) + Ft(y))(f(x)− f(y))2. (37)

Notice that (37) also holds even if f(x) < f(y) by swapping

x and y. Thus, we have that

EP (Ft, logFt)

=
t

2

∑
x∈Ω

∑
y∈Ω

π(x)P (x, y)(Ft(x)− Ft(y))(f(x)− f(y))

(by (5))

≤ t2

4

∑
x∈Ω

∑
y∈Ω

π(x)P (x, y)(Ft(x) + Ft(y))(f(x)− f(y))2

(by (37))

=
t2

2

∑
x∈Ω

π(x)Ft(x)
∑
y∈Ω

P (x, y)(f(x)− f(y))2

(by the reversibility of P )

≤ t2

2
v(f)Eπ Ft.

This, together with EP (Ft, logFt) ≥ ρ(P )Entπ (Ft) (recall

the definition of ρ(P )), yields

Entπ (Ft) ≤ ct2 Eπ Ft.

By noticing that

d

dt

(
log Eπ Ft

t

)
=

Entπ (Ft)− ct2 Eπ Ft

t2 Eπ Ft
≤ 0,

we deduce that for any t > 0,

log Eπ Ft

t
≤ lim

h→0+

log Eπ Fh

h
= Eπ f,

or equivalently,

Eπ Ft ≤ exp (tEπ f) .

Finally, by Markov inequality, for any a ≥ 0,

Prx∼π(f(x)− Eπ f ≥ a)

= Prx∼π

(
Ft(x) ≥ exp(tEπ f − ct2 + at)

)
≤ exp

(
ct2 − at

)
,

where the right hand side is minimized for t = a
2c = aρ(P )

v(f) .

Corollary 2 follows from applying Lemma 15 to both

f and −f together with Theorem 1. We could also apply

Lemma 15 together with Theorem 7 to get concentration

inequalities for all πk.

For a Lipschitz function f : Ω → R with Lipschitz

constant c (under the graph distance in the bases-exchange

graph), we have that v(f) ≤ c2. Thus, by Corollary 2, such

a Lipschitz function satisfies the following concentration

inequality:

Prx∼π(|f(x)− Eπ f | ≥ a) ≤ 2 exp

(
− a2

2rc2

)
,

when π is an r-homogeneous strongly log-concave distribu-

tion.

For general matroids, an example is the function that

counts the number of elements belonging to a specified

subset of the ground set, which has Lipschitz constant c = 1.

More examples were given in [17] for graphic matroids, such

as functions that count the number of leaves in a spanning

tree (c = 2), or the number of vertices with odd degrees

(c = 4).
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APPENDIX

The results obtained in [17] and [11] only require a

property which is weaker than the strong Rayleigh property

(SRP), namely the stochastic covering property (SCP).

Since strong log-concavity (SLC) is also a generalisation of

SRP, it is natural to wonder about the relationship between

SLC and SCP. In this section we show that SLC is incompa-

rable to SCP. As a result, Theorem 1 and Corollary 2 do not

subsume the results of [11] and [17], respectively. Moreover,

Corollary 2 is also incomparable to the concentration bound

of [19], whose result requires only negative regression, a

property weaker than SCP.

First, let us define SCP. For S ⊆ [n] and x, y ∈ {0, 1}S ,

we say x covers y, denoted by x � y, if x = y or x =
y+ ei for some i, where ei is the unit vector of coordinate

i. In other words, x is obtained from y by increasing at

most one coordinate. For two distributions μ and ν, we say

μ stochastically covers ν, if there is a coupling such that

PrX∼μ,Y∼ν(X � Y ) = 1. With slight overload of notation,

we also write μ � ν. A distribution μ : {0, 1}[n] → R≥0
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satisfies the SCP if for any S ⊆ [n] and x, y ∈ {0, 1}S
such that x � y, μy � μx, where μx is the distribution of

μ conditioned on agreeing with x over the index set S.

Furthermore, μ is said to satisfy the negative cylinder
dependence (NCD), if for any S ⊆ [n],

E

∏
i∈S

Xi ≤
∏
i∈S

EXi,

E

∏
i∈S

(1−Xi) ≤
∏
i∈S

E(1−Xi),

where Xi is the indicator variable of coordinate i. It is

known that SCP implies NCD [17]. However, such negative

dependence even when |S| = 2 is known not to hold for the

uniform distribution over the bases of some matroids. See

[28] for the most comprehensive list of such examples that

we are aware of. As the uniform distribution over a matroid’s

bases is SLC, SLC does not imply SCP.

On the other hand, SCP does not imply SLC either. We

give a concrete example here. Let μ be supported on the

bases of the uniform matroid of rank 2 over 4 elements. We

choose μ such that

μ({1, 1, 0, 0}) ∝ θ, μ({1, 0, 1, 0}) ∝ 2,

μ({1, 0, 0, 1}) ∝ 1, μ({0, 1, 1, 0}) ∝ 1,

μ({0, 1, 0, 1}) ∝ 1, μ({0, 0, 1, 1}) ∝ 1.

It is straightforward to verify that if 0 ≤ θ < 3 − 2
√
2 ≈

0.17157 or θ > 3 + 2
√
2 ≈ 5.82843, then SLC fails.

However, SCP holds as long as 0 ≤ θ ≤ 6. To see the

latter claim, first verify that the distribution conditioned

on choosing any i ∈ [4] stochastically dominates the one

conditioned on not choosing i. Then notice that in a homo-

geneous distribution, such stochastic dominance is the same

as stochastic covering.

Here is some insight on how to find an example such as

the above. When the generating polynomial gμ is homoge-

neous and quadratic, it is SLC if and only if it has the SRP
[2], which in turn is equivalent to the following condition

as gμ ∈ R[x1, . . . , xn] is multiaffine:

∂

xi
gμ(x) · ∂

xj
gμ(x) ≥ gμ(x) · ∂2

∂xi∂xj
gμ(x), (38)

for any i, j ∈ [n] and x ∈ R
n. See [29]. If we plug in

x = 1, then (38) becomes negative dependence for a pair

of variables, which is a special case of NCD and thus a

necessary condition for SCP. In our example, we choose μ
so that (38) holds for x = 1 but not for an arbitrary x ∈ R

n.

It turns out that our choice is also sufficient for SCP in this

particular setting.
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