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Abstract—We study the power of interactivity in lo-
cal differential privacy. First, we focus on the differ-
ence between fully interactive and sequentially interactive
protocols. Sequentially interactive protocols may query
users adaptively in sequence, but they cannot return to
previously queried users. The vast majority of existing
lower bounds for local differential privacy apply only to
sequentially interactive protocols, and before this paper it
was not known whether fully interactive protocols were
more powerful.

We resolve this question. First, we classify locally private
protocols by their compositionality, the multiplicative factor
by which the sum of a protocol’s single-round privacy
parameters exceeds its overall privacy guarantee. We then
show how to efficiently transform any fully interactive
compositional protocol into an equivalent sequentially in-
teractive protocol with a blowup in sample complexity
linear in this compositionality. Next, we show that our
reduction is tight by exhibiting a family of problems
such that any sequentially interactive protocol requires
this blowup in sample complexity over a fully interactive
compositional protocol.

We then turn our attention to hypothesis testing prob-
lems. We show that for a large class of compound hypothe-
sis testing problems — which include all simple hypothesis
testing problems as a special case — a simple noninteractive
test is optimal among the class of all (possibly fully
interactive) tests.

Index Terms—differential privacy; local differential pri-
vacy; interaction

I. INTRODUCTION

In the last several years, differential privacy in the

local model has seen wide adoption in industry, includ-

ing at Google [6, 19], Apple [3], and Microsoft [14].

The choice of adopting the local model of differential

privacy — in which privacy protections are added at each

individual’s device, before data aggregation — instead of

the more powerful central model of differential privacy

— in which a trusted intermediary is allowed to first

aggregate data before adding privacy protections — is

driven by practical concerns. Local differential privacy

frees the data analyst from many of the responsibilities

that come with the stewardship of private data, including

liability for security breaches, and the legal responsibility

to respond to subpoenas for private data, amongst others.

However, the local model of differential privacy comes

with its own practical difficulties. The most well known

of these is the need to have access to a larger number

of users than would be necessary in the central model.

Another serious obstacle — the one we study in this

paper — is the need for interactivity.

There are two reasons why interactive protocols —

which query users adaptively, as a function of the an-

swers to previous queries — pose practical difficulties.

The first is that communication with user devices is

slow: the communication in noninteractive protocols can

be fully parallelized, but for interactive protocols, the

number of rounds of interactivity becomes a running-

time bottleneck. The second is that user devices can go

offline or otherwise become unreachable — and so it

may not be possible to return to a previously queried user

and pose a new query. The first difficulty motivates the

study of noninteractive protocols. The second difficulty

motives the study of sequentially interactive protocols

[16] — which may pose adaptively chosen queries — but

must not pose more than one query to any user (and so

in particular never need to return to a previously queried

user).

It has been known since [26] that there can be an

exponential gap in the sample complexity between non-

interactive and interactive protocols in the local model

of differential privacy, and that this gap can manifest

itself even in natural problems like convex optimization

[30, 31]. However, it was not known whether the full

power of the local model could be realized with only se-
quentially interactive protocols. Almost all known lower

bound techniques applied only to either noninteractive

or sequentially interactive protocols, but there were no
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known fully interactive protocols that could circumvent

lower bounds for sequential interactivity.

A. Our Results

We present two kinds of results, relating to the power

of sequentially adaptive protocols and non-adaptive pro-

tocols respectively. Throughout, we consider protocols

operating on datasets that are drawn i.i.d. from some

unknown distribution D, and focus on the sample com-
plexity of these protocols: how many users (each corre-

sponding to a sample from D) are needed in order to

solve some problem, defined in terms of D.

a) Sequential Interactivity: We classify locally pri-

vate protocols in terms of their compositionality. Infor-

mally, a protocol is k-compositional if the privacy costs

{εij}rj=1 of the local randomizers executed by any user i
over the course of the protocol sum to at most kε, where

ε is the overall privacy cost of the protocol:
∑

j ε
i
j ≤ kε.

When k = 1, we say that the protocol is compositional.

Compositional protocols capture most of the algorithms

studied in the published literature, and in particular, any

protocol whose privacy guarantee is proven using the

composition theorem for ε-differential privacy1.

1) Upper Bounds: For any (potentially fully in-

teractive) compositional protocol M , we give a

generic and efficient reduction that compiles it

into a sequentially interactive protocol M ′, with

only a constant factor blow-up in privacy guar-

antees and sample complexity, while preserving

(exactly) the distribution on transcripts generated.

This in particular implies that up to constant fac-

tors, sequentially adaptive compositional protocols

are as powerful as fully adaptive compositional

protocols. More generally, our reduction compiles

an arbitrary k-compositional protocol M into a

sequentially interactive protocol M ′ with the same

transcript distribution, and a blowup in sample

complexity of O(k).
2) Lower Bounds: We show that our upper bound is

tight by proving a separation between the power

of sequentially and fully interactive protocols in

the local model. In particular, we define a family

of problems (Multi-Party Pointer Jumping) such

that for any k, there is a fully interactive k-

compositional protocol which can solve the prob-

lem given sample complexity n = n(k), but such

that no sequentially interactive protocol with the

same privacy guarantees can solve the problem

1Not every protocol is 1-compositional: exceptions include RAP-
POR [19] and the evolving data protocol of Joseph et al. [24].

with sample complexity õ(k ·n). Thus, the sample

complexity blowup of our reduction cannot be

improved in general.

b) Noninteractivity: We then turn our attention to

the power of noninteractive protocols. We consider a

large class of compound hypothesis testing problems

— those such that both the null hypothesis H0 and

the alternative hypothesis H1 are closed under mixtures.

For every problem in this class, we show that the

optimal locally private hypothesis test is noninteractive.

We do this by demonstrating the existence of a simple

hypothesis test for such problems. We then prove that

this test’s sample complexity is optimal even among

the set of all fully interactive tests by extending in-

formation theoretical lower bound techniques developed

by Braverman et al. [8] and first applied to local privacy

by Joseph et al. [23] and Duchi and Rogers [15] to the

fully interactive setting.

B. Related Work

The local model of differential privacy was intro-

duced by Dwork et al. [18] and further formalized

by Kasiviswanathan et al. [26], who also gave the

first separation between noninteractive locally private

protocols and interactive locally private protocols. They

did so by constructing a problem, Masked Parity, that

requires exponentially larger sample complexity without

interaction than with interaction. Daniely and Feldman

[13] later expanded this result to a larger class of

problems. Smith et al. [30] proved a similar separation

(which applies generally to local oracle-based protocols)

between noninteractive and interactive locally private

convex optimization protocols.

Recent work by Acharya et al. [1, 2] gives a qualita-

tively different separation between the private-coin and

public-coin models of noninteractive local privacy. In-

formally, the public-coin model allows for an additional

“half step” of interaction over the private-coin model in

the form of coordinated local randomizer choices across

users. In this paper, we use the public-coin model of

noninteractivity.

Duchi et al. [16] introduced the notion of sequential

interactivity for local privacy. They also provided the first

general techniques for proving lower bounds for sequen-

tially interactive locally private protocols by bounding

the KL-divergence between the output distributions of ε-

locally private protocols with different input distributions

as a function of ε and the total variation distance between

these input distributions. Bassily and Smith [5] and Bun

et al. [7] later generalized this result to (ε, δ)-locally

private protocols, and Duchi et al. [17] obtained an
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analogue of Assouad’s method for proving lower bounds

for sequentially interactive locally private protocols.

More recently, Duchi and Rogers [15] showed how to

combine the above analogue of Assouad’s method with

techniques from information complexity [8, 21] to prove

lower bounds for estimation problems that apply to a

restricted class of fully interactive locally private proto-

cols. A corollary of their lower bounds is that several

known noninteractive algorithms are optimal minimax

estimators within the class they consider. However, the

class of protocols they study does not capture non-

compositional locally private algorithms (details appear

in the full version of this paper [25]). Our reduction

implies that every (arbitrarily interactive) compositional

locally private algorithm can be reduced to a sequentially

interactive protocol with only constant blowup in sample

complexity, and as a result all known lower bounds for

sequentially interactive protocols also hold for arbitrary

compositional protocols.

Canonne et al. [10] study simple hypothesis testing

under the centralized model of differential privacy, and

Theorem 1 of Duchi et al. [16] implies a tight lower

bound for sequentially interactive locally private simple

hypothesis testing. We extend this lower bound to the

fully interactive setting and match it with a noninterac-

tive upper bound for a more general class of compound

testing problems that includes simple hypothesis testing

as a special case.

II. PRELIMINARIES

We begin with the definition of approximate differ-

ential privacy. Given data domain X , two data sets

S, S′ ∈ Xn are neighbors (denoted S ∼ S′) if they

differ in at most one coordinate: i.e. if there exists an

index i such that for all j �= i, Sj = S′j . A differentially

private algorithm must have similar output distributions

on all pairs of neighboring datasets.

Definition II.1 ([18]). Let ε, δ ≥ 0. A randomized
algorithm M : Xn → O is (ε, δ)-differentially private

if for every pair of neighboring data sets S ∼ S′ ∈ Xn,
and every event Ω ⊆ O

PM [A(S) ∈ Ω] ≤ exp(ε)PM [A(S′) ∈ Ω] + δ.

When δ = 0, we say thatM satisfies (pure) ε-differential
privacy.

Differential privacy has two nice properties. First,

it composes neatly: the composition of algorithms

M1, . . . ,Mn that are respectively (ε1, δ1), . . . , (εn, δn)-
differentially private is (

∑
i εi,

∑
i δi)-differentially pri-

vate. For pure differential privacy, this is tight in gen-

eral. Second, differential privacy is resilient to post-

processing: given an (ε, δ)-differentially private M and

any function f , f ◦M is still (ε, δ)-differentially private.

For brevity, we often abbreviate “differential privacy” as

“privacy”.

As defined, the constraint of differential privacy is

on the output of an algorithm M, not on its internal

workings. Hence, it implicitly assumes a trusted data

curator, who has access to the entire raw dataset. This

is sometimes referred to as differential privacy in the

central model. In contrast, this paper focuses on the more

restrictive local model [18] of differential privacy. In the

local model, the private computation is an interaction

between n users, each of whom hold exactly one dataset

record, and is coordinated by a protocol A. We assume

throughout this paper that each user’s datum is drawn

i.i.d. from some unknown distribution: xi ∼iid D2.

Informally, at each round t of the interaction, a protocol

A observes the transcript of interactions so far, selects

a user, and assigns the user a randomizer. The user then

applies the randomizer to their datum, using fresh ran-

domness for each application, and publishes the output.

In turn, the protocol observes the updated transcript,

selects a new user-randomizer pair, and the process

continues. We define these terms precisely below.

Definition II.2. An (ε, δ)-randomizer R : X → Y is an
(ε, δ)-differentially private function taking a single data
point as input.

A simple, canonical, and useful randomizer is ran-
domized response [18, 32].

Example II.1 (Randomized Response). Given data uni-
verse X = [k] and datum xi ∈ X , ε-randomizer
RR (xi, ε) outputs xi with probability eε

eε+k−1 and oth-
erwise outputs a uniformly random element of X −{xi}.

Next, we formally define transcripts and protocols.

Definition II.3. A transcript π is a vector consisting of
5-tuples (it, Rt, εt, δt, yt) — encoding the user chosen,
randomizer assigned, randomizer privacy parameters,
and randomized output produced — for each round t.
π<t denotes the transcript prefix before round t. Letting
Sπ denote the collection of all transcripts and SR the
collection of all randomizers, a protocol is a function
A : Sπ → ([n]× SR × R≥0 × R≥0) ∪ {⊥} mapping
transcripts to users, randomizers, and randomizer pri-

2Roughly speaking, this corresponds to a setting in which users are
“symmetric” and in which nothing differentiates them a priori. All of
our results generalize to the setting in which there are different “types”
of users, known to the protocol up front.
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vacy parameters (⊥ is a special character indicating a
protocol halt).

The transcript that results from running a locally

private computation will often be post-processed to

compute some useful function of the data. However, the

privacy guarantee must hold even if the entire transcript

is observed. Hence, in this paper we abstract away the

task that the computation is intended to solve, and view

the output of a locally private computation as simply the

transcript it generates.

To clarify the role of interaction in these private

computations – especially when analyzing reductions be-

tween computations with different kinds of interactivity

– it is often useful to speak separately of protocols and

experiments. While the protocol A is a function mapping

transcripts to users and randomizers, the experiment

is the interactive process that maps a protocol and

collection of users drawn from a distribution D to a

finished transcript. In the simplest case, FollowExpt (Al-

gorithm 1), the experiment exactly follows the outputs

of its protocol.

Algorithm 1
1: procedure FollowExpt(A,D, n)

2: Draw n users {xi} ∼ Dn

3: Initialize transcript π0 ← ∅
4: for t = 1, 2, . . . do
5: if A(π<t) =⊥ then
6: Output transcript π<t

7: else
8: (it, Rt, εt, δt)← A(π<t)
9: User it publishes yt ∼ Rt(xit , εt, δt)

10: end if
11: end for
12: end procedure

However, experiments may in general heed, modify, or

ignore the outputs of their input protocol. We delineate

the privacy characteristics of experiment-protocol pairs

and protocols in isolation below. Here and throughout,

the dataset is not viewed as an input to an experiment,

but is drawn from D by the experiment-protocol pair.

Drawing a fresh user ∼ D corresponds to adding an

additional data point, and so the sample complexity of

an experiment-protocol pair is the number of draws from

D over the run of the algorithm. For the simple algorithm

FollowExpt(A) defined above, the sample complexity is

always n. Finally we remark that although the distri-

bution D and the sample complexity n are inputs to

the experiment, for brevity we typically omit them and

focus on the protocol A; e.g. writing Expt(A) rather than

Expt(A,D, n).
Definition II.4. Experiment-protocol pair Expt(A) sat-
isfies (ε, δ)-local differential privacy (LDP) if it is (ε, δ)-
differentially private in its transcript outputs. A proto-
col A satisfies (ε, δ)-local differential privacy (LDP) if
experiment-protocol pair FollowExpt(A) is (ε, δ)-locally
differentially private.

Experiment-protocol pairs can be, by increasing order

of generality, noninteractive, sequentially interactive,

and fully interactive.

Definition II.5. An experiment-protocol pair Expt(A) is
noninteractive if, at each round t, as random variables,
(it, Rt, εt, δt) ⊥⊥ Π<t | t.

In other words, noninteractivity forces nonadaptivity,

and all user-randomizer assignments are made before the

experiment begins. In contrast, in sequentially interactive

experiment-protocol pairs, users may be queried adap-

tively, but only once.

Definition II.6. An experiment-protocol pair Expt(A)
is sequentially interactive if, at each round t, it �=
it−1, . . . , i1.

Finally, in in fully interactive experiments, the

experiment-protocol may make user-randomizer assign-

ments adaptively, and each user may receive arbitrarily

many randomizer assignments. Along the same lines,

we say a protocol A is noninteractive (respectively

sequentially and fully interactive) if FollowExpt(A)
is a noninteractive (respectively sequentially and fully

interactive) experiment-protocol pair. This experiment-

protocol formalism will be useful in constructing the

full-to-sequential reduction in Section III; elsewhere, we

typically elide the distinction and simply reason about

FollowExpt(A) as “protocol A”. For any locally private

protocol, we refer to the number of users n that it queries

as its sample complexity. For fully interactive protocols,

the total number of rounds — which we denote by T
— may greatly exceed n. In contrast, for both non-

interactive and sequentially interactive protocols, the

number of rounds T = n.

At each round t of a fully interactive ε-locally private

protocol, we know that εt ≤ ε. For many protocols, we

can say more about how the εt parameters relate to ε:

Definition II.7. Consider an ε-locally private protocol
A. Let {εt}Tt=1 denote the minimal privacy parameters of
the local randomizers Rt selected at round t considered
as random variables. We say the protocol A is k-
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compositionally private if for all i ∈ [n], with probability
1 over the randomness of the transcript,

∑
t : it=i

εt ≤ kε.

If k = 1, a protocol is simply compositional private.

Remark. In fact, all of our results hold without modi-
fication even under the weaker condition of average k-
compositionality. For a protocol A with sample complex-
ity n, A is k-compositional on average if

∑
t

εt ≤ kεn.

For brevity, we often shorthand “k-compositionally pri-
vate” as simply “k-compositional”.

Informally, a compositionally private protocol is one

in which the privacy parameters for each user “just add

up.” Almost every locally private protocol studied in

the literature (and in particular, every protocol whose

privacy analysis follows from the composition theorem

for pure differential privacy) is compositionally private3.

They are so ubiquitous that it is tempting to guess

that all (ε, 0)-locally private protocols are compositional.

However, this is false: for every k and ε, there are ε-

locally private protocols that fail to be k-compositionally

private. The following example shows that by taking

advantage of special structure in the data domain and

choice of randomizers it is possible to achieve (ε, 0)-
local privacy, even as the sum of the round-by-round

privacy parameters greatly exceeds ε.

Example II.2 (Informal). Let the data universe X con-
sist of the canonical basis vectors e1, . . . , ed ∈ {0, 1}d,
and let each x1, . . . , xn be an arbitrary element of X .
Consider the d round protocol where, for each round
j ∈ [d], every user i with xi = ej outputs a sample from
RR (1, ε), and the remaining users output a sample from
Ber (0.5). As RR(·, ε) is an ε-local randomizer which
each user employs only once, and remaining outputs
are data-independent, this protocol is ε-locally private.
But the protocol fails to be k-compositionally private for
k < d/2.

The preceding example demonstrates that the careful

choice of local randomizers based on the data universe

structure can strongly violate compositional privacy.

Seen another way, when multiple queries are asked of the

same user, there are situations in which the correlation in

privatized responses induced by being run on the same

3This simple compositionality applies even if {εt}Tt=1 are chosen
adaptively in each round (see Theorem 3.6 in Rogers et al. [29]).

data element can lead to arbitrarily sub-compositional

privacy costs. The main result of our paper is that

the additional power of a fully interactive protocol, on

top of sequential interactivity, is characterized by its

compositionality.

III. FROM FULL TO SEQUENTIAL INTERACTIVITY

We show that any (ε, 0)-locally private compositional

protocol is “equivalent” to a sequentially interactive

protocol with sample complexity that is larger by only

a small constant factor. By equivalent, we mean that

for any (ε, 0)-locally private compositional protocol,

we can exhibit a sequentially interactive (3ε, 0)-locally

differentially private protocol with only a constant factor

larger sample complexity that induces exactly the same

distribution on transcripts. Thus for any task for which

the original protocol was useful, the sequentially inter-

active protocol is just as useful4.

More generally, we give a generic reduction under

which any (ε, 0)-private k-compositional protocol can

be compiled into a sequentially interactive protocol with

an eεk-factor increase in sample complexity.

Our proof is constructive; given an arbitrary k-

compositional (ε, 0)-locally differentially private proto-

col we show how to simulate it using a sequentially in-

teractive protocol that induces the same joint distribution

on transcripts. The “simulation” is driven by three main

ideas:

1) Bayesian Resampling: The dataset used in a

locally differentially private protocol is static once

the protocol begins. However, we consider the

following thought experiment: each user’s datum

is resampled from the posterior distribution on

their datum, conditioned on the transcript thus

far, before every round in which they are given a

local randomizer. We observe that the mechanism

from this thought experiment induces exactly the

same joint distribution on datasets and transcripts

4Formally, for any loss function defined over a data distribution D
and a transcript Π, when data points xi are drawn i.i.d. from D, the
two protocols induce exactly the same distribution over transcripts, and
hence the same distribution over losses. Once one restricts attention
to locally private protocols with privacy parameter ε ≤ 1 that take as
input points drawn i.i.d. from a distribution D, it is without loss of
generality to measure the success or failure of a protocol with respect
to the underlying distribution D, rather than with respect to the sample.
This is because such protocols are ≈ ε/

√
n differentially private when

viewed in the central model of differential privacy (in which the input
may be permuted before used in the protocol) [4, 20], and hence the
distribution on transcripts would be almost unchanged even if the entire
dataset was resampled i.i.d. from D. [12, 27]. Thus, for such protocols,
the transcript distribution is governed by the data distribution D, but
not (significantly) by the sample.
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upon completion of the mechanism. Thus, for

the remainder of the argument, we can seek to

simulate this “Bayesian Resampling” version of

the mechanism.

2) Private Rejection Sampling: Because of the local

differential privacy guarantee, at any step of the

algorithm, the posterior on a user’s datum condi-

tioned on the private transcript generated so far

must be close to their prior. Thus, it is possible

to sample from this posterior distribution by first

sampling from the prior, and then applying a

rejection sampling step that is both a) likely to

succeed, and b) differentially private. Sampling

from the prior simply corresponds to querying

a new user. At first glance, applying rejection

sampling as needed seems to require information

that the users will not have available, because they

do not know the underlying data distribution D.

But an application of Bayes rule, together with

a data independent rescaling can be used to re-

write the required rejection probability using only

quantities that each user can compute from her

own data point and the transcript. A similar use

of rejection sampling appears in the simulation

of locally private algorithms by statistical query

algorithms given by Kasiviswanathan et al. [26].

3) Data Independent Decomposition of Local Ran-
domizers: The two ideas above suffice to trans-

form a fully interactive mechanism into a se-

quentially interactive mechanism, with a blowup

in sample complexity from n to T (because in

the sequentially interactive protocol that results

from rejection sampling, each user applies only

one local randomizer instead of an average of

T/n). However, we generalize a recent result of

[4] to show that any εi-private local randomizer

can be described as a mixture between a data
independent distribution and an (ε, 0)-private local

randomizer for any ε > εi, where the weight

on the data independent distribution is roughly

(for small constant ε) 1 − εi/ε. Thus we can

simulate each local randomizer while only needing

to query a new user with probability εi/ε. As a

result, for any compositional mechanism, 1 user

in the sequential setting suffices (in expectation)

to simulate the entire transcript of a single user in

the fully interactive setting. More generally, if the

mechanism is k-compositional, then k users are

required in expectation to carry out the simula-

tion. The realized sample complexity concentrates

sharply around its expectation.

A. Step 1: A Bayesian Thought Experiment

The first step of our construction is to observe that

for any locally private protocol A, BayesExpt(A) in-

duces exactly the same distribution over transcripts as

FollowExpt(A). The difference is that in BayesExpt(A),
between each interaction with a given user i, their datum

xi is resampled from the posterior distribution on user

i’s data conditioned on the portion of the transcript

generated thus far. We prove in Lemma III.1 that the two

experiments produce exactly the same transcript distribu-

tion. Once we establish this, our goal will be to simulate

the transcript distribution induced by BayesExpt(A).

Algorithm 2
1: procedure BayesExpt(A,D, n )

2: Initialize transcript π0 = ∅
3: for t = 1, 2, . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t

6: else
7: (it, Rt, εt, δt)← A(π<t)
8: Redraw xit ∼ Qi,t

9: User it publishes yt ∼ Rt(xit)
10: end if
11: end for
12: end procedure

Note that when it is selected for the first time

Qi,t = D, and so the sample complexity (e.g. number

of draws from D) of BayesExpt(A) is bounded by n.

For Lemma III.1 and in general, we defer all proofs and

detailed pseudocode to the full version of this paper [25].

Lemma III.1. For any protocol A, Let Πf be the tran-
script random variable that is output by FollowExpt(A)
and let Πb be the transcript output by BayesExpt(A).
Then

Πf d
= Πb

where d
= denotes equality of distributions.

B. Step 2: Sequential Simulation of Algorithm 2 via
Rejection Sampling

We now show how to replace step 8 in Algorithm 2 by

selecting a new datapoint (drawn from D) at every round

and using rejection sampling to simulate a draw from

Qi,t. The result is a sequentially interactive mechanism

that preserves the transcript distribution of Algorithm 2

(and, by Lemma III.1, of Algorithm 1), albeit one with

a potentially very large increase in sample complexity

99



(from n to T ). The rejection sampling step increases the

privacy cost of the protocol by at most a factor of 2.
We first review why it is non-obvious that rejection

sampling can be performed in this setting. We want to

sample from the target distribution Qi,t, the posterior

xt
i|π<t, using samples from the proposal distribution D.

Let pπ denote the density function of Qi,t and let p
denote the density function of D. In rejection sampling,

we would typically sample u ∼ D, and with probability

∝ pπ(u)
p(u) we would accept u as a sample drawn from

Qi,t, or else redraw another u and continue.
This is not immediately possible in our setting, since

the individuals (who must perform the rejection sampling

computation) do not know the prior density p and hence

do not know the posterior pπ . As a result, they cannot

compute either the numerator or denominator of the

expression for the acceptance probability. We solve this

problem by using the fact that we are simulating a poste-

rior with a prior distribution, and formulate the rejection

sampling probability ratio as a quantity depending only

on a user’s private data point and the transcript. Users

may then compute this quantity themselves.
To define our transformed rejection sampler we set

up some new notation: given a user i and round t,
let π<t,i denote the subset of the realized transcript

up to time t that corresponds to user i’s data, i.e.

π<t,i = {(it′ , Rt′ , εt′ , δt′ , yt′) : t′ < t, it
′

= i}.
Let Pxi

[π<t,i] denote the conditional probability of the

messages corresponding to user i given the choices of

privacy parameters and randomizers up to time t:

P [π<t,i] =
∏

t′ : it′=i

PRt′ [Rt′(xi, εt′ , δt′) = yt′ ] .

Using this notation, we define our rejection sampling

procedure RejSamp in Algorithm 3.

Algorithm 3 Rejection Sampling

1: procedure RejSamp(i, π<t, ε, εt, Rt(·),D)

2: Initialize indicator accept← 0
3: while accept = 0 do
4: Draw a new user x ∼ D
5: User x computes px ← Px[π<t,i]

maxx∗ Px∗ [π<t,i]

6: User x publishes accept ∼ Ber (px/2)
7: if accept = 1 then
8: User x outputs Y ′t ∼ Rt(x, εt)
9: end if

10: end while
11: end procedure

We now show that RejSamp is private and does not

need to sample many users.

Lemma III.2. Let Yt
d
= Rt(x

′), where x′ ∼ Qi,t and
let Y ′t be defined by the rejection sampling algorithm
RejSamp above. Let the sample complexity N be the
total number of new users x drawn in step 4 of RejSamp.
Then RejSamp is (ε+εt, 0)-locally private, Yt

d
= Y ′t , and

E[N ] ≤ 2eε.

C. Step 3: Data Independent Decomposition of Local
Randomizers

The preceding sections enable us to simulate a fully

interactive k-compositional (ε, 0)-locally private proto-

col with a sequentially interactive (2ε, 0)-locally private

protocol. However, our solution so far may require

sampling a new user for each query in the original

protocol. Since a fully interactive protocol’s query com-

plexity may greatly exceed its sample complexity, this

is undesirable. To address this problem, we decompose
each local randomizer in a way that substantially reduces

the number of queries that actually require samples.

Let R : X → Y be an ε′ local randomizer, fix

an arbitrary element x0 ∈ X , and let x be a private

input to R. Then Lemma 5.2 in Balle et al. [4] shows

that we can write R(x) as a mixture γw + (1 − γ)dx,

where w is a data-independent distribution, dx is a data-

dependent distribution, and γ ≥ e−ε′ . This suggests that

decomposition — by answering a proportion of queries

from data-independent distributions — can reduce the

sample complexity of our solution. Unfortunately, the

data dependent distribution need not be differentially

private (in fact, it often corresponds to a point mass

on the private data point), so the privacy of the overall

mechanism crucially relies on not releasing which of the

two mixture distributions the output was sampled from.

We first generalize this result, showing that for any

ε ≥ ε′, we can write R(x) as (1 − γ)w + γR̃(x)
where R̃ is a 2ε-differentially private local randomizer,

and γ = e−ε′−1
e−ε−1 (Lemma III.3). The upshot of this

generalization is that even if we make public which

part of the mixture distribution was used, the resulting

privacy loss is still bounded by 2ε. Larger values of ε
increase our chance of sampling from a data-independent

distribution when simulating a local randomizer, while

increasing the privacy cost incurred by a user in the

event that we sample from the data-dependent mixture

component. This tradeoff will be crucial for us in the

proof of our main result.

Lemma III.3 (Data Independent Decomposition). Let
R : X → Y be an ε′-differentially private local
randomizer and let ε ≥ ε′. Then there exists a mapping
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R̃ and fixed data-independent distribution μ such that
R̃(·) is a 2ε−differentially private local randomizer and

R(x)
d
= γR̃(x) + (1− γ)μ,

where γ = e−ε′−1
e−ε−1 .

D. Putting it All Together: The Complete Simulation

Finally, we combine rejection sampling and decompo-

sition to give our complete reduction, Algorithm 4. We

use rejection sampling to convert from a fully interactive

mechanism to a sequentially interactive one and use our

data-independent decomposition of local randomizers to

reduce the sample complexity of the converted mecha-

nism.

Algorithm 4 Reduction

1: procedure Reduction(Fully interactive (ε, 0)−LDP

Protocol A,D, n)

2: Initialize s1, . . . , sn ← 0.

3: for t = 1 . . . do
4: if A(π<t) =⊥ then
5: Output transcript π<t

6: else
7: (it, Rt, εt)← A(π<t)
8: if sti = 1 then
9: Let γ ← e−εt−1

e−ε−1

10: Let Rt = γR̃t + (1− γ)Rt(x0)
11: Draw ρ ∼ Unif(0, 1)
12: if ρ ≤ γ then
13: Draw Yt ∼

RejSamp(it, π<t, ε, 2ε, R̃(·),D)
14: else
15: Draw Yt ∼ Rt(x0, εt)
16: end if
17: else
18: Draw xit ∼ Qi,t = D
19: Draw Yt ∼ Rt(xit , εt)
20: Let sit ← 1
21: end if
22: end if
23: end for
24: end procedure

We now show that Reduction has the desired interac-

tivity, privacy, transcript, and sample complexity guar-

antees. We again denote by N the sample complexity of

Reduction, i.e. the number of samples drawn from the

prior D over the run of the algorithm, either in Step 15
(which is bounded by n), or over the runs of RejSamp
in line 10. We observe that sampling from the prior D

simply corresponds to using a new datapoint drawn from

D. Fixing a protocol A, let Πr denote the transcript

random variable generated by Reduction(A), and let

Πb denote the transcript random variable generated by

BayesExpt(A).
Theorem III.4. Let A a fully-interactive k-
compositional (ε, 0)-locally private protocol. Then

1) Reduction(A) is sequentially interactive,
2) Reduction(A) is (3ε, 0)-locally private,
3) Πr d

= Πb,
4) E[N ] ≤ n( 2eε·ε

1−e−ε k+1), and with probability 1−δ,

N = O(nk +
√

nk log 1
δ ).

IV. SEPARATING FULL AND SEQUENTIAL

INTERACTIVITY

We now prove that our reduction in Section III is

tight in the sense that any generic reduction from a fully

interactive protocol to a sequentially interactive protocol

must have a sample complexity blowup of Ω̃(k) when

applied to a k-compositional protocol. Specifically, we

define a family of problems such that for every k, there

is a fully interactive k-compositional protocol that can

solve the problem with sample complexity n = n(k), but

such that any sequentially interactive protocol solving

the problem must have sample complexity Ω̃(k · n).
Informally, the family of problems (Multi-Party

Pointer Jumping, or MPJ (d)) we introduce is defined

as follows. An instance of MPJ (d) is given by a

complete tree of depth d. Every vertex of the tree is

labelled by one of its children. By following the labels

down the tree, starting at the root, an instance defines a

unique root-to-leaf path. Given an instance ofMPJ (d),
the data distribution is defined as follows: to sample a

new user, first select a level of the tree uniformly � ∈ [d]
at random, and provide that user with the vertex-labels

corresponding to level � (note that fixing an instance of

the problem, every user corresponding to the same level

of the tree has the same data). The problem we wish to

solve privately is to identify the unique root to leaf path

specified by the instance.

We first show that there is a fully interactive protocol

which can solve this problem with sample complexity

n = Õ(d2/ε2). The protocol is k-compositional for

k = Θ(d). Roughly speaking, the protocol works as

follows: it identifies the path one vertex at a time, starting

from the root, and proceeding to the leaf, in d rounds.

In each round, given the most recently identified vertex

vi in level �, it attempts to identify the child that vertex

vi is labelled with. It queries every user with the same
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local randomizer, which asks them to use randomized

response to identify the labelled child of vi if their data

corresponds to level �, and to respond with a uniformly

random child otherwise (recall that the level that a

user’s data corresponds to is itself private, and hence

is not known to the protocol). Since there are roughly

Θ̃(
√
n/ε2) users with relevant data, out of n users total,

it is possible to identitify the child in question subject

to local differential privacy. Although every user applies

an ε-local randomizer d times in sequence, because each

user’s data corresponds to only a single level in the tree,

the protocol is still (ε, 0)-locally private. Note that this

privacy analysis mirrors the “histogram” structure of the

non-compositional protocol in Example II.2.

Informally, the reason that any sequentially interactive

protocol must have sample complexity that is larger by

a factor of d, is that even to identify the child of a

single vertex in the local model, Ω(d2/ε2) datapoints

are required (this is exactly what our randomized re-

sponse protocol achieves). But a sequentially interactive

protocol cannot re-use these datapoints across levels of

the tree, and so must expend Ω(d2/ε2) samples for each
of the d levels of the tree. This intuition is formalized

in a delicate and technical induction on the depth of

the tree, using information theoretic tools to bound the

success probability of any protocol as a function of its

sample complexity. The precise definition of MPJ (d)
is somewhat more complicated, in which half of the

weight on the underlying distribution is assigned to

“level 0” dummy agents whose purpose is to break

correlations between levels of the tree in the argument.

A. The Multi-Party Pointer Jumping Problem

We now formally define the Multi-party Pointer Jump-
ing (MPJ ) problem.

Definition IV.1. Given integer parameter d > 1, an
instance of Multi-party Pointer Jumping MPJ (d) is
defined by a vector Z = Z1◦· · ·◦Zd, a concatenation of
d vectors of increasing length. Letting s = d4, for each
i ∈ [d] Zi is a vector of si−1 integers in {0, 1, . . . , s−1}.
For each Zi, Zi,j is its jth coordinate.

Viewed as a tree, Z is a complete s-ary tree of
depth d where each Zi,j marks a child of the j-th
vertex at depth i. P = P (Z) then denotes the vec-
tor of d integers representing the unique root to leaf
path down this tree through the children marked by
Z. Formally, P is defined in a recursive way: P1 =
Z1,1, ...,Pi = Zi,P1·si−1+P2·si−2+···+Pi−1+1,...,Pd =
Zd,P1·sd−1+P2·sd−2+···+Pd−1+1.

Finally, an instance MPJ (d) defines a data dis-
tribution D. For each x ∼ D, with probability 1/2,
x = (0, ∅) is a “dummy datapoint”, and with the
remaining probability x = (�, Z�) where � is a level
drawn uniformly at random from [d]. A protocol solves
MPJ (d) if it recovers P using samples from D.

Algorithm 5 A fully interactive (ε, 0)-locally private

protocol for MPJ (d)

1: Divide users into u = �log(s)/ log(2)� groups each

of m = 512d2 log(d) · (eε+1)2

(eε−1)2 users.

2: Initialize Q← 0
3: for r = 1, 2, . . . , d do
4: Qr ← 0
5: for each group g = 1, 2, . . . , u do
6: for each user i = 1, 2, . . . ,m do
7: �i ← level of user xi

8: if �i = r then
9: bi,r ← g-th bit of Zr,Q+1

10: Randomized response

yi ∼ RR (bi,r, ε)
11: else
12: User i publishes yi ∼ Ber (0.5)
13: end if
14: end for
15: g-th bit of Qr ← majority bit of {yi}mi=1

16: end for
17: Q← s ·Q+Qr

18: end for
19: Output Q1 ◦ · · · ◦Qd

B. An Upper Bound for Fully Interactive Mechanisms

Theorem IV.1. There exists a fully interactive (ε, 0)-
locally private protocol (Algorithm 5) with sample com-
plexity n = O(d2 log2(d)(eε + 1)2/(eε − 1)2) that, on
any instance Z of MPJ (d), correctly identifies P (Z)
with probability at least 1− 1/d.

Note that Algorithm 5 is k-compositional only for

k ≥ Ω(d). The lower bound that we prove next (Theorem

IV.2) shows that any sequentially interactive protocol for

the same problem must have a larger sample complexity

by a factor of Ω̃(d) = Ω̃(k), showing that in general,

the sample-complexity dependence that our reduction

(Theorem III.4) has on k cannot be improved.

C. A Lower Bound for Sequentially Interactive Mecha-
nisms

We prove our lower bound for sequentially interactive

(ε, 0)-locally private protocols. As previous work [9,
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11] has established that (ε, 0)- and (ε, δ)-local privacy

are approximately equivalent for reasonable parameter

ranges, our lower bound also holds for sequentially in-

teractive (ε, δ)-locally private protocols. For an extended

discussion of this equivalence, see Section V-A2.

Theorem IV.2. Let A be a sequentially interactive
(ε, 0)-locally private protocol that, for every instance
Z of MPJ (d), correctly identifies P (Z) with prob-
ability ≥ 2/3. Then A must have sample complexity
n ≥ d3/(216(eε − 1)2 log(d)).

V. HYPOTHESIS TESTING

We now turn our attention to the role of interactivity

in hypothesis testing. We first show that for the simple

hypothesis testing problem, there exists a non-interactive

(ε, 0)-LDP protocol that achieves optimal sample com-

plexity. This result extends to the compound hypothesis

testing case, when we make the additional assumption

that the sets of distributions are convex and compact.

A. Simple Hypothesis Testing

Let P0 and P1 be two known distributions such

that ‖P0 − P1‖TV ≥ α, and suppose one of P0 and

P1 generates n i.i.d. samples x1, . . . , xn. The goal in

simple hypothesis testing is to determine whether the

samples are generated by P0 or P1. The Neyman-

Pearson lemma [28] establishes that the likelihood ratio

test is optimal for this problem absent privacy, and

recent work [10] extends this idea to give an optimal

(up to constants) private simple hypothesis test in the

centralized model of differential privacy. We recall a

simple folklore non-interactive hypothesis test in the

local model, and then prove that it is optimal even among

the set of all fully interactive locally private tests.

1) (Folklore) Upper Bound: Consider the following

simple variant A of the likelihood ratio test: each user i
with input xi outputs RR (ε) argmaxj∈{0,1} Pj(xi). For

j ∈ {0, 1} let N̂j denote the resulting count of responses

and let N̂ ′
j =

eε+1
eε−1 ·

(
N̂j − n

eε−1

)
be the corresponding

de-biased count. The analyst computes both quantities

N̂ ′
j and outputs Pargmaxj N̂ ′j

.

It is immediate that A is noninteractive and, since

it relies on randomized response, satisfies (ε, 0)-local

differential privacy. We can bound its sample complexity

by simple concentration arguments.

Theorem V.1. With probability at least 2/3, A distin-
guishes between P0 and P1 given n = Ω

(
1

ε2α2

)
samples.

Algorithm 6 Locally Private Simple Hypothesis Tester

A
1: procedure NONINTERACTIVE PROTOCOL({xi}ni=1)

2: for i = 1 . . . n do
3: yi ← RR

(
argmaxj∈{0,1} Pj(xi), ε

)
4: end for
5: for j = 0, 1 do
6: Analyst computes N̂j ← |{yi | yi = j}|
7: Analyst computes N̂ ′

j ← eε+1
eε−1 ·

(
N̂j − n

eε−1

)

8: end for
9: Analyst outputs Pargmaxj N̂ ′j

10: end procedure

2) A Lower Bound for Arbitrarily Adaptive (ε, δ)-
Locally Private Tests: We now show that the folklore ε-

private non-interactive test is optimal amongst all (ε, δ)-
private fully interactive tests. First, combining (slightly

modified versions of) Theorem 6.1 from Bun et al.

[9] and Theorem A.1 in Cheu et al. [11], we get the

following result5

Lemma V.2. Given ε > 0, δ <

min
(

εβ
48n ln(2n/β) ,

β
64n ln(n/β)e7ε

)
and sequentially

interactive (ε, δ)-locally private protocol A, there
exists a sequentially interactive (10ε, 0)-locally
private protocol A′ such that for any dataset U ,
‖A(U)−A′(U)‖TV ≤ β.

Lemma V.2 enables us to apply existing lower bound

tools for ε-locally private protocols to (sequentially in-

teractive) (ε, δ)-locally private protocols. At a high level,

our proof relies on controlling the Hellinger distance be-

tween transcript distributions induced by an (ε, δ)-locally

private protocol when samples are generated by P0 and

P1. We borrow a simulation technique used by Braver-

man et al. [8] for a similar (non-private) problem and find

that we can control this Hellinger distance by bounding

the KL divergence between a simpler, noninteractive pair

of transcript distributions. We accomplish this last step

using existing tools from Duchi et al. [16].

Theorem V.3. Let ‖P0 − P1‖TV = α and let Π be an
arbitrary (possibly fully interactive) (ε, δ)-locally private
simple hypothesis testing protocol distinguishing be-

5 Bun et al. [9] and Cheu et al. [11] prove their results for
noninteractive protocols. However, their constructions both rely on
replacing a single (ε, δ)-local randomizer call for each user with an
(O(ε), 0)-local randomizer call and proving that these randomizers
induce similar output distributions. Since each user still makes a single
randomizer call in sequential interactive protocols, essentially the same
argument applies.
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tween P0 and P1 with probability ≥ 2/3 using n samples
where ε > 0 and δ < min

(
ε3α2

48n ln(2n/β) ,
ε2α2

64n ln(n/β)e7ε

)
.

Then n = Ω
(

1
ε2α2

)
.

B. Compound Hypothesis Testing

We now extend the reasoning of Section V to com-
pound hypothesis testing. Here P0 and P1 are replaced

by (disjoint) collections of discrete hypotheses H0 and

H1 such that

inf
(P,Q)∈H0×H1

‖P −Q‖TV ≥ α.

The goal is to determine whether samples are generated

by a distribution in H0 or one in H1.

Theorem V.4. Let H0 and H1 be convex and com-
pact sets of distributions over ground set X such that
inf(P,Q)∈H0×H1

‖P − Q‖TV ≥ α. Then there exists
noninteractive (ε, 0)-locally private protocol A that with
probability at least 2/3 distinguishes between H0 and
H1 given n = Ω

(
1

ε2α2

)
samples.

Since Theorem V.3 still applies, this establishes that

the above non-interactive protocol is also optimal.
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