
Residual Based Sampling for Online Low Rank Approximation

Aditya Bhaskara

School of Computing
University of Utah

Salt Lake City, UT, USA
bhaskaraaditya@gmail.com

Silvio Lattanzi

Google Research Zürich
Zürich, Switzerland
silviol@google.com

Sergei Vassilvitskii

Google Research NYC
New York, USA

sergeiv@google.com

Morteza Zadimoghaddam

Google Research Zürich
Zürich, Switzerland
zadim@google.com

Abstract—We propose online algorithms for Column Subset
Selection (CSS) and Principal Component Analysis (PCA),
two methods that are widely employed for data analysis,
summarization, and visualization. Given a data matrix A that
is revealed one column at a time, the online CSS problems asks
to keep a small set of columns, S, that best approximates the
space spanned by the columns of A. As each column arrives,
the algorithm must irrevocably decide whether to add it to S,
or to ignore it. In the online PCA problem, the goal is to output
a projection of each column to a low dimensional subspace. In
other words, the algorithm must provide an embedding for each
column as it arrives, which cannot be changed as new columns
arrive.

While both of these problems have been studied in the online
setting, only additive approximations were known prior to
our work. The core of our approach is an adaptive sampling
technique that gives a practical and efficient algorithm for
both of these problems. We prove that by sampling columns
using their “residual norm” (i.e. their norm orthogonal to
directions sampled so far), we end up with a significantly better
dependence between the number of columns sampled, and the
desired error in the approximation.

We further show how to combine our algorithm “in series”
with prior algorithms. In particular, using the results of
Boutsidis et al. [5] and Frieze et al. [15] that have additive
guarantees, we show how to improve the bounds on the error
of our algorithm.

Keywords-low rank approximation; online algorithms; col-
umn subset selection

I. INTRODUCTION

Principal Component Analysis (PCA) and Column Sub-

set Selection (CSS) are workhorses of modern machine

learning and data analysis methods, and have been widely

used widely for tasks as diverse as dimension reduction,

denoising, data summarization, and data visualization.

Given a dataset of n observations with d features each,

represented as a d×n data matrix A, and a parameter, k, the

goal of PCA is to find a k-dimensional subspace V of R
d,

so as to minimize the sum of squared distances between the

points and the corresponding projections to V . Formally, it

can also be stated as finding a k-dimensional embedding Yi

for each input point Ai along with a subspace V (defined

by a d × k matrix Φ whose columns form an orthonormal

basis for V) so as to minimize ‖A− ΦY ‖2F . (Here Y is the

matrix whose columns are Yi.)

When A is given, it is well known that the optimum Φ is

given by the top k left singular vectors of A. Moreover, given

Φ, the optimum Y is a column by column projection of the

corresponding data columns onto Φ. As the subspace and the

embedding are closely related, the PCA problem has been

studied either with an emphasis on the embedding Yi (as

in the case of applications involving denoising, dimension

reduction, spectral clustering, etc.), or with an emphasis on

the subspace (in applications that involve understanding the

structure of the data).
The other problem we consider is column subset selection

(CSS). While the goal of PCA is to find the k-dimensional

space that minimizes the projection error, the aim of CSS is

to find a small subset of the columns such that the projection

error of the matrix to the span of the chosen columns is

minimized. Formally, given A, the goal is to find a subset

S ∈ R
d×k of the columns of A that minimizes:

min
X∈Rk×n

‖A− SX‖2F .
The restriction of S to come from columns of A is im-

portant for many applications such as data summarization,

“interpretable” dimension reduction, and feature selection

(where we work with the transpose of the matrix). The

PCA and CSS problems turn out to be closely related. The

results of [4], [18] show that the objective values of the

two problems are related (for slightly differing values of k).

Further, it turns out that many of the algorithms for CSS

involve first computing the singular value decomposition.
Given the importance of the two problems and their nu-

merous applications, several fast approximation algorithms

have been proposed [4], [6], [7], [11], [13], [14], [15],

[16], [18], [22], [24], [29], [30], [31], [33]. One class of

works considers the offline case (where the full matrix

A is known) and nearly linear time algorithms have been

designed. Another class of results considers the case in

which A is distributed across machines, with the goal of

sub-linear total time. The problems have also been studied

in the streaming model of computation, as we discuss below.

As the literature here is so extensive, we will only survey

some of the most closely related works in Section I-B.
Online model.: Online algorithms are a powerful

paradigm in algorithm design. In the typical scenario, the

1584

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00096

input arrives in increments (depending on the problem), and

the goal is to make decisions on the input as it arrives. The

goal is to compete with the optimum offline solution that

has access to the entire input.

The online model is extensively studied for problems

arising in data structures, caching and paging, packing and

scheduling, secretary problems, and so on. More relevant to

our work, online algorithms have also been used in many

settings in learning and data analysis. A relevant work in

this are is that of Meyerson [25] on online facility location.

In this setting, points in a dataset arrive one after another,

and the goal is to either assign a point to an existing cluster

or form a new cluster of its own. The objectives here are

the cost (e.g. a k-means type objective) and the number

of clusters formed. Works on online clustering also provide

inspiration for our techniques, as we will describe.

Our focus in this work is to consider the PCA and CSS

problems in the online model. Let us define the problems

and provide some motivation.

Definition I.1 (Online PCA). We are given an integer k ≥ 1,
and a matrix A ∈ R

d×n whose columns {Ai} arrive one
after another. Once we receive an Ai, we are required to
output a “low dimensional embedding” of it, denoted Yi. At
the end, we want the guarantee that there exists a d × k
matrix Φ with orthogonal columns, such that ‖A− ΦY ‖2F
is minimized.

The idea behind the formulation is that the embedded vec-

tors should be interpretable “in hindsight” as the projections

of the original vectors onto a low-dimensional subspace. The

algorithm may or may not maintain such a Φ as it processes

the vectors. However the important restriction is that the

embedding produced for a point cannot be changed at a

later point of time.

The formulation captures the essence of many applica-

tions. For instance, in spectral clustering (for which theoret-

ical guarantees are also known [21]), we may have points

arriving one by one, and an algorithm for online PCA (if

it produces a near-optimal embedding) could be used to

perform dimension reduction “on the fly”, which could then

feed into other algorithms (e.g., a clustering algorithm [25]).

The formulation can also be used in related applications such

as denoising and dimension reduction. For example well-

known applications of PCA embedding in this context are

in visualization [32] or in biology [28].

Definition I.2 (Online CSS). We are given an integer k ≥ 1,
and a matrix A ∈ R

d×n whose columns {Ai} arrive one
after another. At each step, we need to decide whether to
keep the current Ai or not. Once kept, the column cannot be
discarded. The goal is to keep a subset S of columns of size
at most k, while minimizing

∥∥Π⊥SA∥∥2F . Here Π⊥S denotes
projection onto the space orthogonal to the span of S (see
Section II for details).

Note that this definition of online CSS is a natural “sec-

retary” style question, in which we are allowed to slightly

violate the cardinality constraint. In other words, if we view

Π⊥SA as a set function (of S), we wish to find a set S in an

online manner, in order to compete in objective value with

the best S in hindsight. (Indeed, we attempt to compete with∥∥A−A(k)
∥∥2
F

, which is only lower than min|S|=k

∥∥Π⊥SA∥∥2F ;

here A(k) is the best rank k approximation of A.) As

in the PCA case, this formulation has strong motivations.

For instance, in applications such as feature selection (or

even data summarization), once certain features have been

selected (i.e. identified as important), they may be used in

other downstream tasks. Thus removing a chosen column

later may not be realistic.
Flavor of our results.: For both of the problems, our

results are bi-criteria, i.e., they involve trade-offs between

the error in the approximation and the output dimensionality

(in the PCA case, the embedding dimension, and in the

CSS case, the number of selected columns). This type of

bi-criteria approximation is common in online algorithms

(e.g. facility location [25] and clustering [23]). For CSS, we

note that even in the offline case, the best known results

are bi-criteria: they use roughly k/ε columns in order to

compete with the best k-column solution (see [18]).
Online vs. streaming.: The online model is similar at

a high level to the streaming settings for PCA and CSS

that have been well-studied. In both models, the columns

arrive one after another, and we need to make some decisions

as they arrive. In the streaming setting, the parameter of

interest is typically the space and time complexity of each

iteration. For instance, in streaming PCA, the goal is usually

to maintain the subspace corresponding to the top-k SVD,

and not to produce an (unchangeable) embedding of each

column. Likewise in streaming CSS, the goal is to keep track

of a subset of columns (that can be added/removed), with an

approximation guarantee at the end. In this sense, the online

model is much more restrictive (although traditionally, space

and time bounds are not stringent). It is also interesting to

note that the online solution is particularly useful in practice

when one wants to keep a stable and consistent solution on

an evolving dataset. In fact, online algorithms automatically

achieve consistency during their execution.
Prior work.: Recently, Boutsidis et al. [5] gave the first

online algorithm for the problem of computing the PCA

embedding defined above. Their approach yields an additive
guarantee on the error, of ε‖A‖2F , and give an embedding

into R
k/poly(ε). Our focus is to obtain algorithms with a much

better trade-off between the target error and the embedding

dimension, as we will see.
The version of CSS defined above has not been explicitly

studied to the best of our knowledge. However, a closely

related work is that of Cohen et al. [10], who study the

question of approximating the entire column span (swap-

ping rows and columns from their work to fit ours) in

1585

an appropriate sense, while using only a small number of

columns. While our results are similar at a very high level,

the problem there is quite different from ours, and so are the

techniques. Another related work is that of sampling based

on ridge leverage scores, due to Cohen et al. [9]. However,

the paper [9] focuses on the offline and the streaming setting

for the problem, which is less restrictive than the online

version.

A. Our contributions

We present efficient algorithms for the online variants

of both PCA and CSS. Our algorithms rely on sampling

procedures that build up a low rank approximation, by

adding new directions based on “residual norms”. We give a

description of these techniques in Section I-C. But first, we

state our main results and compare them with prior work.

1) Online PCA:

Theorem I.3. Suppose the columns {Ai} of a matrix
A ∈ R

d×n arrive in an online manner. Suppose also that
we are given an integer k ≥ 1, a target error ξ, and an
upper bound L on the quantity log

‖A‖2F
ξ . Then for any

ε, δ > 0, there exists an efficient algorithm that upon seeing
each Ai, outputs an embedding Yi ∈ R

r, with the following
properties:

1) The dimension r satisfies r ≤ O
(

k
ε2

)·(L+log(1/δ))4.
2) In the end, with probability ≥ 1− δ,

minΦ∈Rd×dim(Y),ΦTΦ=I ‖A− ΦY ‖2F
≤ (1 + ε)

∥∥∥A−A(k)
∥∥∥2
F
+ εξ. (1)

First, let us compare the bound above with the prior

work of Boutsidis et al. [5]. For direct comparison, let us

think of the target error ξ as γ ‖A‖2F , and let the desired

success probability be a constant, say 9/10. Also suppose

that the optimal error
∥∥A−A(k)

∥∥2
F

is negligible compared

to ξ (for intuition, it also helps to think of ε = 1/2). Then,

to obtain a guarantee as in (1), the work of [5] uses an

embedding dimension of O
(

k
ε2γ2

)
. (Because the additive

error is εγ ‖A‖2F .) We also note that this is for the first
algorithm of [5], where ‖A‖2F is assumed to be known up

to a constant; for their main result, the dependence is at least

as bad as k/(γε)3. Now for this setting of ξ, our bound is

O(k/ε2) ·L4, where L is log(10/γ) (the factor 10 is due to

the choice of success probability). Thus the dependence on

(1/γ) improves exponentially.

Furthermore it is worth noticing that our algorithm

can achieve multiplicative approximation if ξ is ∈
O(
∥∥A−A(k)

∥∥2
F
).

Knowing L.: Although we have a much better de-

pendence on the error, note that our algorithm assumes a

known bound L on log
‖A‖2F

ξ (and the embedding dimension

depends on this bound). While this may seem like a strong

restriction, we note that it is an estimate of a logarithmic

term. Allowing the number to be known to a factor say

10 allows for a huge variation in the allowed range for

‖A‖2F . Thus in many applications, we do not expect this

restriction to be a bottleneck. Secondly, we note that this

restriction is an artifact of the problem statement (which

requires one to commit to the embedding dimension at the
start). If one is allowed to output embeddings of growing

length, with the understanding that 0s are appended in the

end, this assumption of a known L can be removed. Indeed,

we see this in the case of online CSS.
2) Online CSS:

Theorem I.4. Suppose the columns {Ai} of a matrix A ∈
R

d×n arrive in an online manner. Let k ≥ 1 be an integer,
and let ξ be a target value for the error. Then there exists
an algorithm, that after seeing each column Ai, decides to
either ignore it, or add it to a selection set S (which starts
off empty). In the end, the following properties hold with
probability ≥ 2/3:

1) |S| ≤ O(k/ε2) · log2 ‖A‖2Fξ .
2) The running time of each step is O(|S|d) (or O(|S|)

times the number of non-zeros in Ai).
3) The set S (at the end) satisfies:∥∥Π⊥SA∥∥2F ≤ (1 + ε)

∥∥∥A−A(k)
∥∥∥2
F
+ εξ.

Note that the theorem for CSS is stronger than the one for

PCA both qualitatively and quantitatively. First, we we do

not require the knowledge of L. Intuitively, this is because

we do not need to output an embedding of each point as

it arrives, and hence do not need to know the embedding

dimension. Second, the dependence on the logarithmic factor

is much weaker. This is an artifact of the fact that our

results proceed in two steps. First, we obtain a weaker

approximation, and then we improve it. The second step

for CSS turns out to be much more efficient.

Finally, note that we had a success probability in The-

orem I.3 while Theorem I.4 uses a constant. This can be

achieved for the CSS case also by simply running multiple

copies of the procedure above as we see the columns Ai,

and selecting the column iff at least one of the copies selects

it. This increases the bound on the size of S by a log(1/δ)
factor as before.

Necessity of the logarithmic factor: Note that both our

bounds, for PCA and CSS, have a dependence on the term

log
‖A‖2F

ξ . This turns out to be an essential consequence

of adaptive residual based sampling which is key to our

algorithm (see the section on our techniques). Lemma VI.1

shows that this is unavoidable in our current style of analysis.

B. Related work

The problem of efficiently computing PCA given a matrix

A has a rich and storied history. The closest works (be-

sides [5] which we described earlier) is the work in the

1586

streaming setting. Most of the work here, e.g., [13], [14],

[16], [22], [24], [30], has focused on efficiently computing

the top singular vectors of A in a single pass through the

data. If one needs to output the embedding, of each vector

we thus need a second pass.

In addition to these works, the stochastic version of PCA

received a lot of attention [1], [3], [26] in the machine

learning community. In this setting the columns of the matrix

A are drawn from an unknown distribution and are exposed

to the algorithm one by one. While this distributional as-

sumption is common in machine learning, removing it is

extremely challenging. Another interesting variation of the

problem is the “online learning” version analyzed by [27],

[34]. In this setting the algorithm has to commit to a rank

k subspace before observing the column to project. This

problem is related but incomparable to ours: the algorithm

has to commit to a subspace before observing a column but

at the same time it has the flexibility change the embedding

subspace in every step. This line of research it has also been

extended recently to the bandit setting [20]. Another related

result is that random projections [8], [30] can be used to

obtain a result similar to the one we would like to achieve

when solving online PCA objective. The main difference

between these two problems is that the embedding vectors

Yi can no longer be interpreted as projections onto a low

dimensional subspace. Informally, the projections obtained

via random projections capture “all” the singular directions

well. Thus (at least intuitively) the Yi cannot be used in ap-

plications such as denoising and spectral clustering. Finally,

Karnin and Liberty [19] studied the online-PCA version for

the spectral norm and provide an additive approximation for

this problem.

Similarly to PCA, the CSS problem has received a lot

of attention in recent years and several efficient algorithms

have been proposed for the offline problem [4], [6], [7],

[11], [18], [29], [31], [33]. Despite all this attention, to the

best of our knowledge, we give the first online algorithm

to the online CSS problem. In addition to the work on

streaming CSS, the closest work to ours is the work on

online row sampling [10] (discussed earlier). Although the

problem studied there is similar, the goal is fundamentally

different. In [10] the authors focus on preserving a spectral

approximation of the matrix A, i.e., they focus on preserving

the entire row span. In our setting, the goal is to find only

the best rank k approximation, and this makes the results

difficult to compare. Finally, our general approach is also

related to the classic adaptive sampling technique [11], [29]

but our focus is on single pass online algorithms.

C. Overview of techniques

Our key algorithmic contribution is to tackle the online

versions of PCA and CSS problems using ideas similar to

adaptive sampling. Our inspiration here are the beautiful

results (a) of Meyerson [25] for online facility location,

which achieves a constant competitive ratio by opening

facilities at a given point with the probability proportional

to the service cost of the point, and (b) of Deshpande and

Vempala for low rank approximation [13], which shows

that to obtain a fast algorithm for low rank approximation

it is sufficient to sample in multiple rounds columns with

probabilities proportional to their “residual norm”, i.e., the

distance from the span of the columns selected in previous

rounds. Note that sampling based on distances to the current
set is also the basis for the k-means++ algorithm, as well

as the D2 sampling paradigm for clustering [2]. Given

these results, it is natural to ask if one can design efficient

algorithms for online PCA and CSS using adaptive sampling

based on the residual vectors. We give an affirmative answer

to this question at a high level, though the implementation

and analysis turns out to be more subtle than algorithms for

clustering.

In what follows, let L denote log
‖A‖2F

ξ , where ξ is the

target error, as in the statements of the theorems. For ease of

exposition here, let us also suppose that ξ ≥ ∥∥A−A(k)
∥∥2
F

.

Indeed, we make this assumption in Sections III and IV and

remove it in Section V.

First result – logarithmic approximation: Our results

for both PCA and CSS rely on first designing a simpler

algorithm that achieves logarithmic approximation. I.e., the

error will be bounded by roughly O(L)ξ. The idea behind

this algorithm (say in the case of PCA) is to maintain a set

of directions V which have been deemed “significant”, and

when a new column arrives, make a decision based on its

residual norm (i.e., its norm orthogonal to the current V).

The decision involves either adding the new column to V
(which is done if the residual squared norm exceeds roughly

ξ/k), or it is added to an “not-so-important” set.

Let us first ask the simple question: can there be many

columns which get added directly? I.e., can there be many

columns whose projection onto the earlier columns is ≥
ξ/k? Intuitively, this cannot happen too many times if the

rank-k error is smaller than ξ. This is shown formally in our

“geometric lemma” (Lemma II.1).

Let us now come to how to treat the “not-so-important”

set. Clearly, an online algorithm with small memory cannot

keep track of all the unrepresented vectors so far. Instead,

the key idea is to create a “running sketch” of the not-so-

important vectors. This is done by keeping a single vector

w which keeps track of the sum of these vectors so far,

combined with random signs. Once the squared length of w
exceeds ξ/k, we add this vector to V , and reset w = 0. (In

other works, the sketch vector is viewed as a proxy for all

the not-so-important vectors in the current “phase”.)

Then, the same argument as before can be used to

conclude that there cannot be too many such w vectors

added to V as the entire algorithm proceeds. Thus the key

step is in defining the sense in which the “running sketch”

1587

approximates the vectors that are in the phase. We show that

the fact that random signs are used can be used to argue that

the squared norms of the vectors as well as projections to

certain crucial subspaces are maintained. Putting all of these

ideas together leads to an O(L)ξ error bound for online

PCA. (See Section III-A.)

In the case of CSS, the above procedure cannot be

followed, as w can be a combination of “too many” of

the original vectors. However, we show that a norm-based

sampling that chooses only O(1) of the vectors in each phase

can also act as a proxy for that phase. This key observation

leads to an O(L)ξ bound for online CSS. (See Section IV-A.)

Improving the error to
∥∥A−A(k)

∥∥2
F
+ εξ: The key

question we ask is: suppose we are fine with losing an

additional factor of L. Can we change the O(L) · ξ error to

something smaller? The key observation is that our earlier

algorithm, while producing an embedding into the space of

the matrix V that it maintains, also keeps track of the error in

the embedding. These new residuals, by the guarantee of the

algorithm, have a total Frobenius norm at most O(L)·ξ. The

main idea is to now use an additive approximation algorithm

(e.g., one from the work of [5]) in order to reduce the overall

error, by in some sense “recycling” the residuals.

It turns out that this can indeed be made formal. However,

due to technical reasons, we need an additive approximation

algorithm with a certain incremental property. We observe

that this holds for one of the algorithms of [5], and thus

complete our proof. (See Section III-B.)

Once again for the CSS case, it turns out that this idea

needs to be implemented in a slightly different way. But

owing to the difference in the nature of the question, we

can indeed use classical norm-sampling results of Frieze,

Kannan and Vempala [15] in order to obtain the desired

guarantees. (See Section IV-B.)

II. NOTATION AND PRELIMINARIES

We start with some basic matrix notation we use through-

out the paper. Let A be a d×n matrix. Throughout the paper,

we write A(k) to refer to the best rank-k approximation of

A (thus it is also a d × n matrix). For a subset T of the

column indices (T ⊆ [n]), we denote by A(T) the d × |T |
sub-matrix of A formed by the columns indexed by T . As

is standard, we let σi(·) denote the ith largest singular value

of matrix (which we define as the eigenvalues of the matrix

times its transpose; note that some works define the singular

values as the square roots of these quantities). We also use

σmax for the largest singular value, for clarity.

Next, for a set of vectors W , their linear span will be

denoted span(W). We use Π⊥W to denote the projection

matrix orthogonal to span(W). For a subspace W , we abuse

notation slightly and denote by Π⊥W the projection matrix to

the space orthogonal to W .

Finally, for consistency, we use S throughout the paper

to denote subsets of columns, and V to denote linear

combinations of subsets of columns.

Note on the logarithms.: Many of our bounds and

theorem statements involve logarithmic terms. We do not

explicitly make sure that the arguments are > 1 (for example

if we choose ξ too large in Theorem I.3, the error bound

becomes negative, which does not make sense). To be

formally correct for all values of parameters, we need to

ensure that we consider the maximum of the corresponding

argument and 1. For ease of notation, we will not explicitly

do this except in Section V, where it turns out to be

important.

A. Key geometric lemma

The following geometric lemma is used crucially in our

proof. Intuitively, it says that if we have an ordered set of

r vectors with the property that each vector has a large

component orthogonal to the previous ones, then either the

matrix does not have a good rank k approximation, or the

number of columns (r) is small.

Let v1, v2, . . . , vr ∈ R
d be a set of vectors. We denote by

Πi the projection matrix to span(v1, . . . , vi), and by Π⊥i the

projection matrix to the orthogonal space, i.e., Π⊥i = I−Πi.

Our setting implies that r ≤ d, as the vectors are all linearly

independent.

Lemma II.1. Let c > 0 be any constant, and let Γ be a
parameter satisfying Γ ≥ 1

c ·
∥∥V − V (k)

∥∥2
F

, and suppose that
vectors {vi} satisfy the property that for all i, ‖Π⊥i−1vi‖ ≥
γ. Suppose additionally that γ2 ≥ 2cΓ

k . Then the number of
columns r satisfies the bound

r ≤ 2k ·
log

(‖V ‖2F
2cΓ

)
log

(
γ2k
cΓ

) ≤ 2k · log
(
‖V ‖2F
2cΓ

)
. (2)

Remark.: We note that our requirement is similar in

spirit with the leave-one-out distance that has been consid-

ered in other works. The key difference is that we have an

ordered set of vectors, and we require the vectors to have

a non-trivial orthogonal component to all of the preceding
vectors, whereas in the standard notion, each vector need to

have a non-trivial orthogonal component to all of the other

vectors in the set. An analogous lemma for the standard

leave-one-out distance turns out to be easier to show and

has a better dependence on the parameters involved.

Proof: The second inequality in (2) follows from the

assumption on γ, and thus we focus on proving the first.

Let K be the parallelopiped formed by the columns of V
(with the origin). Our proof relies on the well-known fact

that:

vol(K) =
√
det(V TV).

The volume of the parallelopiped can also be com-

puted iteratively using the “base times height” formula.

If �i is the length of the projection of vi orthogonal to

1588

span{v1, . . . vi−1}, then the volume is precisely
∏r

i=1 �i. In

our case, this is at least γr, by hypothesis.
Let σ1 ≥ σ2 ≥ · · · ≥ σr be the singular values of the

matrix V . Now, if
∥∥V − V (k)

∥∥2
F
≤ cΓ, then σ22k+1 ≤ cΓ

k .

For suppose not, then:

σ2k+1 + σ2k+2 + · · ·+ σ22k+1 ≥ (k + 1)σ22k+1 > cΓ,

contradicting the bound on
∥∥V − V (k)

∥∥2
F

. Next, using the

formula for the volume (and the fact that the determinant is

the product of the eigenvalues), we have(
2k∏
i=1

σi

)(
cΓ

k

)(r−2k)/2
≥ γr.

Now, using standard convexity, we have

2k∏
i=1

σi ≤
(∑2k

i=1 σi

2k

)2k

≤
(∑2k

i=1 σ
2
i

2k

)k

≤
(
‖V ‖2F
2k

)k

.

Combining the two equations above, we have(
‖V ‖2F
2cΓ

)k

≥
(
γ2k

cΓ

)r/2

.

Taking logarithms gives the desired bound.

III. ONLINE PCA

As a warm-up and to introduce our high level technique,

we start with an algorithm that gives a weaker (logarithmic)

error guarantee. Later in Section III-B, we will see how

to improve the error bound, thereby proving Theorem I.3

(modulo the assumption ξ ≥ ∥∥A−A(k)
∥∥2
F

, which will be

removed in Section V).

A. Logarithmic approximation algorithm
In this section, we illustrate some of the main ideas used

in our algorithms. We will end up showing the following

result.

Theorem III.1. Suppose the columns of a matrix A arrive
in an online manner. Let k ≥ 1 be an integer, and let ξ

be a parameter that satisfies ξ ≥ ∥∥A−A(k)
∥∥2
F

. Also, let L
be an upper bound on the quantity log(‖A‖2F /ξ). Assume
that k, ξ, and L are given. Then for any δ > 0, there exists
an algorithm, that after seeing each column Ai ∈ R

d of A,
outputs a column Yi ∈ R

r, such that
1) r ≤ O(kL+ log(1/δ)).
2) The running time of a step is O(rd) (or better, O(r)

times the number of non-zeros in Ai).
3) In the end, with probability ≥ 1 − δ, there exists a

projection matrix V (which the algorithm maintains)
such that

‖A− V Y ‖2F ≤ O

(
ξL+

ξ log(1/δ)

k

)
.

1) Outline and description of the algorithm: The algo-

rithm maintains a matrix V of dimensions d× r′, for some

r′ ≤ r, whose columns are orthogonal. The space spanned

by V is the “current guess” for the PCA subspace. When

a new column u arrives, either the projection of u onto V
(i.e. the vector V Tu is returned), or depending on the error∥∥u− V Tu

∥∥ (as well as the status of the current “phase”,

as we will see), a new column is added to V , and V Tu is

returned, for the new V . Always, the algorithm pads 0s to the

r′ dimensional vector, so that a vector in R
r is returned. The

argument shows that with probability ≥ 1−δ, the inequality

r′ ≤ r holds until the end of the input (and thus we do not

“overflow” or need to truncate).

The algorithm (see 1 below) proceeds in phases. In each

phase, we construct a vector w which acts as a sketch of all

the vectors in that phase. We add a corresponding vector w′

to V at the end of that phase.

Algorithm 1 Sampling in phases: procedure Simple-Online-

PCA (k, ξ)

Input: Matrix A ∈ R
d×n whose columns arrive one by one,

guess ξ for the optimum error, parameter k, bound L.

Output: An embedding of columns as they arrive; basis V
at the end.

1: Initialize V = ∅, and set r = CkL (C = 200 suffices).

2: Initialize w = 0, and running sum σ = 0.

3: while columns u arrive do
4: Compute Π⊥V u = u − V u (as V has orthonormal

columns)

5: Let pu :=
k‖Π⊥

V u‖2
256ξ .

6: If pu < 1, do the following:

7: Increment σ ← σ+pu, set w← w+χu, where

χ is ±1 u.a.r.

8: If σ ≥ 1, add w′ := Π⊥V w/
∥∥Π⊥V w∥∥ to V and

reset w = 0 and σ = 0 (start new phase)

9: Else (pu ≥ 1), then declare phase as special, and

do:

10: Add Π⊥V u/
∥∥Π⊥V u∥∥ to V

11: Also add w′ = Π⊥V w/
∥∥Π⊥V w∥∥ to V (unless

w = 0, in which case we do not add it)

12: Reset w = 0 and σ = 0.

13: Return the embedding y = V u, resized to dimension

r by either adding zeroes or truncation.

14: end while
15: Output V

Description of the phases.: The columns u of the

matrix arrive one by one. To each u, we assign the number

pu, that is proportional to the error in approximating u using

the columns of the current V (i.e., the length of the residual).
A phase is a collection of vectors u in which these pu values

add up to ≥ 1. (We might encounter vectors for which the

expression for pu exceeds 1; in this case, we declare the

1589

phase as special, and treat it differently.) At the end of a

phase, we add one vector w′ that is a “sketch” of the vectors

in that phase to V . (In the case of special phases, we add

two vectors.) The high level idea is that by adding w′ to

V , the corresponding directions will incur a smaller error in

the future. Further, we do not add a column to V unless we

have built up a sufficient amount of “residual mass” (and

this is used to bound the number of columns). From the

definition of w′, we observe that V is always a matrix with

orthonormal columns.

2) Analysis: Let us now analyze the algorithm above, and

complete the proof of Theorem III.1.

The first lemma (proof deferred to Section VII-A) is

simple yet powerful. It summarizes the sense in which we

require w to be a “proxy” for the phase.

Lemma III.2. Let u1, u2, . . . , ut be the vectors in a phase,
and let w be the vector produced at the end of the phase.
Then with probability at least 1/4 (over the choice of the
random signs), we have:

1)
∥∥Π⊥V w∥∥2 ≥ 1

8

∑t
i=0

∥∥Π⊥V ui

∥∥2.
2) If Πk is the projection matrix orthogonal to the k-SVD

space of the entire matrix A, then

‖Πkw‖2 ≤ 16
t∑

i=1

‖Πkui‖2 .

3) ‖w‖2 ≤ 16
∑t

i=1 ‖ui‖2.

We point out that Πk is unknown to the algorithm.

However, the random choice of χ ensures that we can still

argue about Πkw (in the analysis).

Definition III.3 (Successful phases). We will say that a
phase is successful if all the inequalities in the statement of
Lemma III.2 hold. We call a phase unsuccessful otherwise.

The rest of the argument proceeds as follows. First, we

will bound the number of phases in the algorithm. This

determines the embedding dimension r (which is also the

number of columns of V). Interestingly, the same argument

then lets us bound the total error.

Lemma III.4. The number of special phases is at most
2k log

‖A‖2F
2ξ .

Proof: Let T be the matrix consisting of all the columns

that made the corresponding phases special. Note that any

column of T must have squared projection ≥ 4ξ/k orthogonal

to the span of all the previous columns of T . (This is because

every such column is added to the matrix V .)

We also clearly have ‖T‖2F ≤ ‖A‖2F , and
∥∥T − T (k)

∥∥2
F
≤∥∥A−A(k)

∥∥2
F
≤ ξ. Thus the hypotheses of Lemma II.1 all

hold. This implies that

#cols(T) ≤ 2k log
‖T‖2F
2ξ

≤ 2k log
‖A‖2F
2ξ

,

thus establishing the lemma.

Lemma III.5. The number of successful ordinary (i.e., non-
special) phases is ≤ 2k log

‖A‖2F
2ξ .

Proof: The proof is similar to that of previous lemma,

but we use the inequalities that characterize a successful

phase. Let T be the matrix whose columns are all the vectors

w at the end of successful ordinary phases. We note that

vectors of the form w′ = Π⊥V w/
∥∥Π⊥V w∥∥ are added to V ,

but at any point of time, the span of the columns of T (so

far) is a subspace of the span of the columns of V .

By the third inequality in the definition of a successful

phase, we have ‖T‖2F ≤ 16 ‖A‖2F . Also, by the second

inequality, we have
∥∥T − T (k)

∥∥2
F
≤ 16

∥∥A−A(k)
∥∥2
F

. Thus

ξ satisfies ξ ≥ (1/16)
∥∥T − T (k)

∥∥2
F

.

Next, by the definition of a phase (pu values add up to ≥
1), we have that if u1, u2, . . . , ut are vectors in an ordinary

phase and if V denotes the projection matrix maintained by

the algorithm at the beginning of the phase, then

t∑
i=1

∥∥Π⊥V ui

∥∥2 ≥ 256ξ

k
.

This means that if the phase is successful, we have∥∥Π⊥V w∥∥2 ≥ 32ξ
k . Thus the columns of T satisfy the

hypotheses of Lemma II.1 with c = 16. This implies that

#cols(T) ≤ 2k log
‖T‖2F
32ξ

≤ 2k log
‖A‖2F
2ξ

.

The next lemma (whose proof is postponed to Sec-

tion VII-B) shows that it is very unlikely that the number

of unsuccessful phases is much larger.

Lemma III.6. For any δ > 0, we have that with probability
≥ 1− δ, the total number of phases is at most

16

(
4k log

‖A‖2F
2ξ

+

⌈
32 ln

2

δ

⌉)
.

Proof: Lemmas III.4 and III.5 upper bound the number

of special and successful ordinary phases. So we only

need to upper bound the number of unsuccessful phases.

Lemma III.2 implies that every phase is successful with

probability at least 1/4. So we can think of each phase

as a coin toss that comes head with probability at least

1/4. Applying Lemma VII.1 with p = 1/4 proves that with

probability 1−δ, the total number of phases cannot be more

than 16(H+	32 ln(2/δ)
) where H is the number of heads,

i.e. the number of successful phases. Lemmas III.4 and III.5

imply that H ≤ 4k log
‖A‖2F
2ξ . Putting together these two

upper bounds yields the aggregate upper bound on the total

number of phases.

This proves the bound on the dimension of the embedding

produced. The next lemma bounds the total error.

1590

Lemma III.7. Recall that the algorithm receives the
columns {Ai}ni=1. Let V 〈i〉 denote the matrix V after the
vector Ai has been processed. For any δ > 0, with
probability ≥ 1− δ, we have

n∑
i=1

∥∥Π⊥V 〈i〉Ai

∥∥2 ≤ O

(
ξ log

‖A‖2F
ξ

+
ξ

k
log

1

δ

)
.

Remark.: Note that for any Ai that is not the last vector

in a phase, the V 〈i〉 is the same as the matrix V at the

beginning of the phase. The definition of V 〈i〉 ensures that

for any vector Ai for which the corresponding pu in the

algorithm is ≥ 1, we have Π⊥
V 〈i〉Ai = 0, i.e., we do not

have to pay for it in the end (as we would have marked the

phase as special and added Π⊥V Ai to V).

Proof: Let us consider any phase, and suppose it

consists of Ai, Ai+1, . . . , Ai+t, for some t ≥ 0. Let V be

the matrix that is maintained by the algorithm before the

start of the phase. I.e., V = V 〈i−1〉.
If the phase is special, then as we noted in the remark

above, the algorithm ensures that Π⊥
V 〈i+t〉Ai+t = 0. For the

previous vectors, we have

t−1∑
j=0

∥∥Π⊥V 〈i+j〉Ai+j

∥∥2 = t−1∑
j=0

∥∥Π⊥V Ai+j

∥∥2 ≤ 256ξ

k
,

where the last part follows because the sum of the pu values

is smaller than 1 (else the phase would have ended).

Next, if the phase is not special, then all the pu values

are smaller than 1, and the sum of the values is ≤ 2, and

thus

t∑
j=0

∥∥Π⊥V 〈i+j〉Ai+j

∥∥2 ≤ t−1∑
j=0

∥∥Π⊥V Ai+j

∥∥2 ≤ 512ξ

k
.

Thus, combining this with Lemma III.6 that bounds the

number of phases, the lemma follows.

Now we are ready to prove Theorem III.1.

Proof of Theorem III.1: Lemmas III.6 and III.7 together

show that the desired bounds on the embedding dimension

r and the error hold with probability 1− δ. For the running

time, note that in each iteration, we simply compute the

product V u, and thus the running time is O(dr). If the

matrix is sparse, we only need r · nnz(Ai) time to process

the vector Ai resulting in an O(r · nnz(A)) running time

overall.

B. Online PCA: a (1 + ε) approximation

We will now see how to combine the algorithm above

with the previous work of [5] in order to obtain a (1 + ε)
approximation algorithm.

The result of this section is the following. The differences

from Theorem III.1 above are the error bound, the value of r,

and the running time. (See the comment after Theorem III.9

for a note on the running time.)

Theorem III.8. Suppose the columns of a matrix A arrive
in an online manner. Let k ≥ 1 be an integer, and let ξ

be a parameter that satisfies ξ ≥ ∥∥A−A(k)
∥∥2
F

. Also, let L
be an upper bound on the quantity log(‖A‖2F /ξ). Assume
that k, ξ, and L are given. Then for any δ > 0, there exists
an algorithm, that after seeing each column Ai ∈ R

d of A,
outputs a column Yi ∈ R

r, such that
1) r ≤ O

(
k
ε2

) · (L+ log 1/δ)3.
2) In the end, with probability ≥ 1 − δ, there exists a

projection matrix V (which the algorithm maintains)
such that

‖A− V Y ‖2F ≤ (1 + ε)
∥∥∥A−A(k)

∥∥∥2
F
+ εξ.

Remark.: This is almost our main result (Theo-

rem III.8), except for the requirement of ξ ≥ ∥∥A−A(k)
∥∥2
F

.

We remove this assumption in Section V.

1) Main idea: Our key idea for improving the bound from

Section III-A is the following: suppose we run Algorithm 1

on the vectors Ai as they arrive; this outputs an embedding

that captures the projection of Ai onto the current subspace

spanned by V . Instead of ignoring the residual vector, we

pass the residual to an instance of the additive approximation

result of [5] (which we use as a blackbox). The algorithm

produces an embedding of the residual vectors, and our final

output is a joint embedding, as we will see.

Intuitively, because the total Frobenius norm of the resid-

uals is only O(L)ξ (as we proved earlier), an additive error

of ε′ times this value, for ε′ ≈ ε/L suffices to obtain the

desired bound.

2) Formal description of the algorithm.: In what follows,

we will use the result of Boutsidis et al. [5] as a black box.

Their paper presents two algorithms for online PCA. The

first is an algorithm that assumes a known upper bound

on the Frobenius norm of the entire matrix ‖A‖2F , and

achieves an additive error of ε ‖A‖2F . The next algorithm

is faster, does not require a bound on ‖A‖2F . However, a

key property of the first algorithm is that it is incremental
in the following sense: the algorithm maintains a subspace

U onto which it projects the vectors Ai that it sees, and

the space U only grows. In this sense, it is similar in spirit

to Algorithm 1. This property does not hold for the second

(and main) algorithm of [5]. The property is crucial for our

argument, so now we state the theorem corresponding to

their first algorithm.

Theorem III.9 (Theorem 1 in [5] restated). Given an input
matrix A ∈ R

d×n, a parameter ε > 0 and an upper bound Γ
on ‖A‖2F , there exists an algorithm for online PCA that upon
seeing a vector Ai, outputs an embedding yi ∈ R

�, where
� = O(k/ε2). In the end, one has the following guarantee
on the error:

min
Φ
‖A− ΦY ‖2F ≤

∥∥∥A−A(k)
∥∥∥2
F
+ εΓ.

1591

Furthermore, at every time i, the algorithm maintains a
matrix U 〈i〉 with d rows and orthonormal columns. U 〈i〉

is only incremented (by way of adding new columns) as the
algorithm proceeds. The embedding yi of the vector Ai is
precisely (U 〈i〉)TAi. Also, one has the stronger guarantee
that ∑

i

∥∥∥Ai − U 〈i〉yi
∥∥∥2 ≤ ∥∥∥A−A(k)

∥∥∥2
F
+ εΓ.

Remarks.: We note that the “furthermore” parts of the

statement follow immediately from the proofs in [5]. Also,

the statement of Theorem 1 in their paper has an additional

restriction of ‖Ai‖2 ≤ Γ/�. But by simply adding all such

columns to the U (as also noted in Section 4 of their paper),

this assumption can be removed. We also remark that one

can use any incremental algorithm for online-PCA that has

an additive guarantee in the place of the theorem above.

We now formally describe the algorithm. The procedure

OPCA-Add refers to the additive approximation of [5].

Algorithm 2 Online PCA: a (1 + ε) approximation

Input: Matrix A ∈ R
d×n whose columns arrive one by

one, parameters ξ and L as in the statement of the theorem,

parameters k and ε. Procedure OPCA-Add refers to the

algorithm from Theorem III.9.

Output: An online low-dimensional embedding.

1: Initialize matrices V ′, V ′′ = ∅ (i.e., d × 0 matrices, as

in Algorithm 1)

2: Set output dimension � = O(k′/ε′2) +O(kL+ log 1/δ),
where the first term is from Theorem III.9 and Eq (3),

and the second from Theorem III.1.

3: while columns Ai arrive do
4: Execute Algorithm 1 with input Ai; this updates V ′

and outputs y′i = (V ′)TAi

5: Now execute a step of OPCA-Add
(
Π⊥V ′Ai, k

′, ε′,Γ
)
,

where k′, ε′,Γ are defined in (3); this updates V ′′, and

outputs y′′i = (V ′′)T (Π⊥V ′Ai)
6: Let W be an orthonormal basis for span(V ′ ∪ V ′′)
7: Output the vector WTAi

8: end while

The values of k′ and ε′ we use are the following:

k′ = 20k(L+ log(1/δ)) ; ε′ =
ε

C(L+ log(1/δ))

Γ = Cξ(L+ log(1/δ)), (3)

where C is the constant in the O() term in the error bound

of Theorem III.1. We remark that it is important to pick k′

larger than k (we will see why in the proof).

3) Analysis: Proof of Theorem III.8: Let us start by

introducing some notation. Let r′〈i〉 denote the residual for

the vector Ai from Algorithm 1. Using the notation in the

algorithm, we have r′〈i〉 := Π⊥V ′Ai (where V ′ is the matrix

maintained after the ith call to Algorithm 1). Note that r′〈i〉
is precisely the input to OPCA-Add in the ith iteration. Let

R′ denote the matrix whose ith column is r′〈i〉. Likewise,

let r′′〈i〉 denote the residual we obtain after OPCA-Add. I.e.,

r′′〈i〉 = r′〈i〉 − V ′′y′′i .

A simple consequence of Theorem III.1 is that for our

choice of Γ,∑
i

∥∥∥r′〈i〉∥∥∥2 ≤ Γ, with probability ≥ 1− δ.

This means that we can (with probability 1−δ) apply the

error guarantee from Theorem III.9, and obtain:∑
i

∥∥∥r′′〈i〉∥∥∥2 ≤ ∥∥∥R′ − (R′)(k
′)
∥∥∥2
F
+ ε′Γ.

Next, we argue that
∥∥∥R′ − (R′)(k

′)
∥∥∥2
F
≤ ∥∥A−A(k)

∥∥2
F

.

This is simply because each column r′〈i〉 = Ai − V ′y′i,
and V ′ at any time contains at most 16k(L + log(1/δ))
columns, from the guarantee of Theorem III.1. Thus the

rank-k′ approximation to the matrix R′ has error at most

the rank-k approximation of Ai. (This is because we could

“cancel out” the contributions due to the columns of V ′, if

necessary.) This implies that∑
i

∥∥∥r′′〈i〉∥∥∥2 ≤ ∥∥∥A−A(k)
∥∥∥2
F
+ εξ.

We note that based on Equation 3, εξ is equal to ε′Γ
which justifies the replacement of the last term in the above

inequality. As the final step, we claim that
∥∥Ai −WTAi

∥∥ ≤∥∥∥r′′〈i〉∥∥∥. This is because by definition,

r′′〈i〉 = r′〈i〉 − V ′′y′′i = Ai − V ′y′i − V ′′y′′i .

This is simply the difference of Ai and a linear combination

of the vectors V ′ ∪ V ′′. Thus the length of r′′〈i〉 is upper

bounded by the distance of Ai to span(V ′ ∪ V ′′), which is

precisely Ai −WTAi.

This completes the proof of the error bound of Theo-

rem III.8. The bound on the number of columns follows be-

cause the dominating term is O(k′/ε′2) from Theorem III.9

(which is the number of columns of V ′′). Plugging in the

values from Eq (3) completes the proof of Theorem III.8.

Remark.: Given the above proof, it may be tempting to

ask if one can just apply Theorem III.9 repeatedly, chaining

it “in series” with itself to obtain our result. Unfortunately

there are few issues with this approach, first the algorithm

would be significant more complex, use a larger number of

columns and have worst running time. Second one would

need to prove that the rank-k approximation error of the

residual is not increasing and it is not clear if this is true in

our online setting.

1592

IV. ONLINE COLUMN SUBSET SELECTION

We next present our algorithms for the online column

subset selection problem. Similar to the case of PCA, we

first give an algorithm that achieves a poly-logarithmic error

bound, and then we use known additive approximation ideas

to improve the error bound to (1 + ε).
PCA vs CSS.: Before going into the details, note that

the first issue we face in adapting our earlier ideas is that

the matrix V that is maintained (e.g. in Algorithm 1) has

columns that are linear combinations of the columns of A.

This is not allowed in the CSS problem. However, unlike

online PCA, we do not need to commit to a low dimensional

embedding of each column as it arrives. We simply need to

make a decision of whether to keep or discard the column.

We only need to ensure that in the end, the selected columns

provide a good approximation to the entire matrix.

A. Logarithmic approximation for CSS

We show now how to adapt Algorithm 1 for the column

selection problem. The result we show here is the following.

Theorem IV.1. Suppose the columns of a matrix A arrive
in an online manner. Let k ≥ 1 be an integer, and let ξ be
a (given) parameter that satisfies ξ ≥ ∥∥A−A(k)

∥∥2
F

. Then
for any δ > 0 there exists an algorithm, that after seeing
each column Ai, decides to either ignore it, or add it to a
selection set S (which starts off empty), with the following
properties:

1) In the end, |S| ≤ O
(
k log

‖A‖2F
ξ + log(1/δ)

)
.

2) The running time of a step is O(|S|d) (or O(|S|) times
the number of non-zeros in Ai).

3) In the end, with probability ≥ 1− δ, we have

∥∥Π⊥SA∥∥2F ≤ ξ ·O
(
log

‖A‖2F
ξ

+
log(1/δ)

k

)
.

Remark.: As noted in the introduction, we do not need

to assume the knowledge of a bound on log ‖A‖2F/ξ. Indeed,

we can even remove the lower bound on ξ, as we will see

in Section V.

1) Outline and description of the algorithm: The algo-

rithm is similar in structure to Algorithm 1. It maintains

a subspace (with basis V) which now corresponds to the

span of the columns S selected so far. The algorithm again

proceeds in phases, where columns are collected until there

is sufficient “residual mass”. The problem now is that we

cannot add a random signed combination of the columns in

the phase to S (because S is supposed to be a subset). How-

ever, the key idea is to show that adding a random subset of

the vectors in the phase acts as a good enough proxy for the

vectors in the phase, with high probability! Furthermore, this

subset can be chosen as the phase proceeds (i.e., in an online

manner). The process turns out to be equivalent to sampling

based on the residual norm, specifically the norm orthogonal

to the span of the columns selected at the beginning of the

phase.

Algorithm 3 gives the formal description.

Algorithm 3 Sampling proportional to residual norm

Input: Matrix A ∈ R
d×n whose columns arrive one by one,

parameter ξ.

Output: A subset S of the columns.

1: Initialize Spre = ∅, Scurrent = ∅ and running sum σ =
0.

2: while columns u arrive do

3: Let pu :=
k
∥
∥
∥Π⊥

Spre
(u)

∥
∥
∥

2

160ξ .

4: With probability min(pu, 1), add u to Scurrent (i.e.,

decide to pick u).

5: If pu < 1, do the following:

6: Increment σ ← σ + pu.

7: If σ ≥ 1, set Spre := Spre ∪Scurrent and reset

σ = 0 and Scurrent = ∅ (start new phase)

8: Else (pu ≥ 1), then declare phase as special, and

do:

9: Set Spre := Spre ∪ Scurrent, and reset σ = 0
and Scurrent = ∅.

10: end while
11: Output Spre ∪ Scurrent.

Description.: The arriving sequence of columns is

partitioned into phases as in Algorithm 1 (based on the

total residual mass crossing a threshold). When a column

u arrives, we assign a sampling probability pu, that is

proportional to the error in approximating u using the span

of the selected columns in all previous phases and not the

current phase. The set Spre denotes the set of all selected

columns in previous phases, and the set Scurrent denotes

the set of selected columns in the current phase. At the end

of a phase, Scurrent is appended to Spre.
2) Analysis: Algorithm 3 differs from Algorithm 1 since

it selects columns instead of linear combinations of them.

However, the analysis shares the same structure: we define a

notion of success for phases. Then we show that every ordi-

nary phase is successful with at least a constant probability.

This lets us conclude that the number of ordinary phases

cannot be too large. A more direct argument shows that the

number of special phases cannot be too large, which then

completes the proof.

The key new notion here is the definition of a successful

phase. This is based on the following simple yet important

observation about the algorithm:

Observation 1. The definition of a phase (i.e., which vectors
constitute the phase) is independent of Scurrent. It only
depends on the set Spre at the end of the previous phase.

Definition IV.2. Fix a specific phase. Let u1, u2, . . . , ut be
the columns that arrived in that phase, and let Scurrent be

1593

the columns chosen in the phase. The phase is said to be
successful if there exists a w ∈ span(Scurrent) such that:

1) For the projection Π⊥Spre
,∥∥∥Π⊥Spre

w
∥∥∥2 ≥ 1

2

∑
i

∥∥∥Π⊥Spre
ui

∥∥∥2 .
2) For the projection Πk, the projection orthogonal to the

span of the top k singular vectors of the entire matrix
A,

‖Πkw‖2 ≤ 40
∑
i

‖Πkui‖2 .

3) For the vector itself,

‖w‖2 ≤ 40
∑
i

‖ui‖2 .

Remark.: Recall that in the analysis in Section III-A,

we defined w as a random linear combination of all the
vectors in the phase, and the combination was explicitly

maintained. Here, we only require the existence of such a

w. The lemma is as before.

Lemma IV.3. An ordinary (non-special) phase is successful
with probability ≥ 1/80 (over the choice of Scurrent).

Proof: Let u1, . . . , ut be the columns in the phase. Let

Yi be a random variable that indicates if ui ∈ Scurrent or

not. From the definition of the algorithm, the Yi are indepen-

dent Bernoulli random variables, and Pr[yi = 1] = pui
. Let

us abuse notation slightly and write pi = pui
for 1 ≤ i ≤ t.

Now, let χi be a uniformly random and independent ±1
sign for column ui. The idea is to consider the vector

w =

t∑
i=1

χiYiûi, (4)

where ûi is the “re-scaled” ui; i.e., ûi = ui/
√
pi.

Now, let us compute the probability that a phase is

successful. The second and third requirements are easy

applications of Markov’s inequality. Consider the second

one. We have Πkw =
∑

i χiYiΠkui/
√
pi. Thus

E

[
‖Πkw‖2

]
=
∑
i

E[Y 2
i]
‖Πkui‖2

pi
+

∑
i �=j

2E[χiχj]E[YiYj]
〈Πkui,Πkuj〉√

pipj

=
∑
i

‖Πkui‖2 .

This holds because E[χiχj] is zero for any i �= j, and

also E[Y 2
i] = E[Yi] = pi since Yi is an indicator vari-

able. Thus by Markov’s inequality, the second inequality in

Definition IV.2 holds with probability ≥ 39/40. The exact

same computation (without Πk) shows the same bound for

the third inequality. Thus parts (2) and (3) in Definition IV.2

hold together with probability ≥ 19/20.

Let us thus compute the probability of part (1). First, as

above, we have:

E

[∥∥∥Π⊥Spre
w
∥∥∥2] =∑

i

∥∥∥Π⊥Spre
ui

∥∥∥2 . (5)

The idea now is to apply the Paley-Zygmund inequality (that

Pr[Z > 1
2E[Z]] ≥ 1

4
E[Z]2

E[Z2]), for Z :=
∥∥∥Π⊥Spre

w
∥∥∥2. For this,

we need to compute E[Z2].
Note that any term with an χi with an odd power has

expected value zero. We also note that E[Y 2
i] = E[Yi] given

it is an indicator random variable. Using these, we have:

E[Z2] =∑
i

pi

∥∥∥Π⊥Spre
ûi

∥∥∥4 + (
4

2

)∑
i�=j

pipj〈Π⊥Spre
ûi,Π

⊥
Spre

ûj〉2

≤
∑
i

∥∥∥Π⊥Spre
ui

∥∥∥4
pi

+ 6
∑
i�=j

∥∥∥Π⊥Spre
ui

∥∥∥2 ∥∥∥Π⊥Spre
uj

∥∥∥2 . (6)

where the inequality is implied by Cauchy–Schwarz in-

equality.

We need to upper bound the right side of Equation 6 in

terms of square of right side of Equation 5. The second

term above is not more than three times larger than square

of right side of Equation 5. The first term is a bit harder

to upper bound. We recall that, since the phase is ordinary,

pi =
k
ξ

∥∥∥Π⊥Spre
ui

∥∥∥2. So we have:

∑
i

∥∥∥Π⊥Spre
ui

∥∥∥4
pi

=
ξ

k

∑
i

∥∥∥Π⊥Spre
ui

∥∥∥2
Since the summation is over the columns of a phase, we

have
∑

i pi ≥ 1 or equivalently
∑

i

∥∥∥Π⊥Spre
ui

∥∥∥2 ≥ ξ/k. This

means:

ξ

k

∑
i

∥∥∥Π⊥Spre
ui

∥∥∥2 ≤ (∑
i

∥∥∥Π⊥Spre
ui

∥∥∥2)2

So we have the desired upper bound on the first term

as well. We conclude that E[Z2] is at most 4 times larger

than E[Z]2. Plugging this into Paley-Zygmund inequality,

we have Pr[Z > (1/2)E[Z]] ≥ 1
4 × 1

4 =
1
16 which implies

the second claim of this lemma.

The rest of the argument is very similar to that in

Section III-A (with slightly differing constants). We defer

the lemmas and proofs to Section VII-C. The main steps are:

we first bound the number of special phases and the number

of successful ordinary phases using Lemma II.1; next, we

use the fact that an ordinary phase is successful w.p. Ω(1)
(from Lemma IV.3) to conclude that the total number of

phases cannot be too large. As before, this also implies a

bound on the total error, thus establishing Theorem IV.1.

1594

In the next section we show how to combine this result

with previous work to obtain a (1+ε) multiplicative approx-

imation to recover either the embedding or the subspace.

B. (1 + ε) approximation for CSS

As we did for online PCA, we improve the basic algorithm

from Section IV-A to obtain the following result.

Theorem IV.4. Suppose the columns of a matrix A arrive
in an online manner. Let k ≥ 1 be an integer, and let ξ be
a (given) parameter that satisfies ξ ≥ ∥∥A−A(k)

∥∥2
F

. Then
for any ε > 0 there exists an algorithm, that after seeing
each column Ai, decides to either ignore it, or add it to a
selection set S (which starts off empty), with the following
properties:

1) In the end, |S| ≤ O(k/ε2) ·
(
log

‖A‖2F
ξ

)
.

2) The running time of a step is O(|S|d) (or O(|S|) times
the number of non-zeros in Ai).

3) In the end, with probability ≥ 3/4, we have∥∥Π⊥SA∥∥2F ≤ (1 + ε)
∥∥∥A−A(k)

∥∥∥2
F
+ εξ.

Here again, the high level idea is taking the residual

vectors from Algorithm 3 and running an additive ap-

proximation algorithm. In this case, instead of using the

algorithm from [5] (which does not select columns), we

use the classic norm sampling result of Frieze, Kannan and

Vempala [15].1 The problem with carrying this out exactly

as in Section III-B is that we do not assume knowledge

of the value of L (which was used to define k′ and ε′,
the parameters for the second procedure). We thus need a

slightly more careful argument, which we now discuss.

Remark.: Since we are using norm sampling, we have

a running time that is much better than the one obtained in

Section III-B by using the algorithm of [5].

1) Description of the algorithm: In what follows let us

denote by FKV(k, ε,Γ) the norm-sampling procedure of [15]

that takes as input a matrix A, and samples each column

Ai independently with probability k
ε · ‖Ai‖2

Γ . The guarantee

of [15] (stated more generally below) is that if Γ = ‖A‖2F ,

then the chosen set of vectors can be used to approximate

A up to an error of ‖A−Ak‖2F + ε ‖A‖2F .

Our procedure is described formally in Algorithm 4.

2) Analysis: The main trick in the analysis is to move to

a slightly different algorithm (one that can be viewed as a

“two-pass” algorithm) and analyze that instead. Observe that

in line 3 of the algorithm, we do not use SFKV in any way,

and thus it proceeds precisely as in Algorithm 3. Let Sfirst

denote the final value (after we have seen all the columns)

1It is interesting to ask why this cannot be done in the case of PCA. The
reason is that norm sampling has a guarantee on the projection error that
only holds after all the columns are chosen. In online PCA, we need to
provide an embedding as the column arrives; this is not possible (at least
directly) using norm sampling.

Algorithm 4 Online CSS: a (1 + ε) approximation

Input: Matrix A ∈ R
d×n whose columns arrive one by one,

parameters k, ξ.

Output: An online decision keep or discard for each point.

1: Initialize sets Spre, Scurrent = ∅ as in Algorithm 3,

initialize SFKV = ∅
2: while columns Ai arrive do
3: Execute Algorithm 3 with input Ai; this updates

Spre and Scurrent

4: Let r〈i〉 be the residual r〈i〉 = Π⊥Spre
Ai

5: Now add Ai to SFKV with probability

min

(
1, 20kε · ‖r〈i〉‖

2

ξ

)
6: If Ai was added to any of the sets maintained, we

keep it otherwise, discard it.

7: end while

of Spre ∪ Scurrent. Now, consider replacing the probability

of adding Ai to SFKV (line 5) to min

(
1, 20kε · ‖Π

⊥
Sfirst

Ai‖2
ξ

)
.

This is no longer an online algorithm, but we will use it

only for the sake of analysis.

Now, there is a smaller probability of adding each Ai

to SFKV (and further, this choice is never again used in

the algorithm). Thus the error incurred in Algorithm 4 is

upper bounded by the error in this variant. We view the new

algorithm as one that has two “passes” over the data. The

first pass only executes step 3 and produces Sfirst. The second

one samples each i with probability as described above.

For convenience, let us define

s〈i〉 := Π⊥Sfirst
Ai,

By the discussion above,
∥∥s〈i〉∥∥ ≤ ∥∥r〈i〉∥∥. The advantage

with this change in algorithm is that we can now use the

following result of Frieze, Kannan and Vempala [15] (the

version below is a mild variant of Theorem 2.1 of [12].

Lemma IV.5. Let c > 1, k ≥ 1, and let A ∈ R
n×m be

a matrix. let S1 be a subset of columns of A. Suppose we
choose each column Ai independently with probability

pi ≥ c ·
∥∥Π⊥S1

Ai

∥∥2∑
j∈[m]

∥∥Π⊥S1
Aj

∥∥2 , (7)

and let S2 be the set of chosen columns.Then w.p. at least
9/10, we have∥∥Π⊥S1∪S2

A
∥∥2
F
≤
∥∥∥A−A(k)

∥∥∥2 + 20k

c

∥∥Π⊥S1
A
∥∥2
F
.

As the statement is a slight variant, we include the proof

in Appendix VII-D. We use the lemma to bound the error

after the second pass (which is an upper bound on the error

in Algorithm 4).

1595

In order to apply the lemma, we need to ensure that

the condition (7) is satisfied. Let Z denote the quantity∑
i

∥∥s〈i〉∥∥2. Then by definition,

pi =
20k

ε
·
∥∥s〈i〉∥∥2

ξ
=

(
20kZ

εξ

) ∥∥s〈i〉∥∥2
Z

,

which satisfies (7) for c = 20kZ
εξ .

Thus with probability at least 9/10 (over only the second

pass), denoting by S′ the set of vectors chosen in the second

pass, ∥∥Π⊥Sfirst∪S′A
∥∥2
F
≤
∥∥∥A−A(k)

∥∥∥2
F
+ εξ.

This completes the proof of the error guarantee in Theo-

rem IV.4. (Note that for this part, we have not used any

property of Z.)

Next, consider the expected size of the final set. This

time, we need to analyze Algorithm 4 and not the two-pass

algorithm above (because the original algorithm has more

columns!). We have that

E[|SFKV|] =
n∑

i=1

20k

ε

∥∥r〈i〉∥∥2
ξ

.

By the bound on the total error from Theorem IV.1, we have

that with probability ≥ 19/20,∑
i

∥∥r〈i〉∥∥2 ≤ O

(
ξ log

‖A‖2F
ξ

)
.

Thus the above together with Markov’s inequality, we

have that with probability ≥ 9/10,

|SFKV| ≤ O

(
k

ε2
log

‖A‖2F
ξ

)
.

As the bound on the running time of each step is trivial,

this completes the proof of Theorem IV.4.

V. REMOVING THE LOWER BOUND ON ξ

Our algorithms have all assumed that the target error ξ

satisfies the bound ξ ≥ ∥∥A−A(k)
∥∥2
F

. We now show a

general way to remove this assumption, at the expense of

an additional factor of log
‖A−A(k)‖2

F

ξ .

A. Online PCA

Let us first consider the online PCA problem, and show

Theorem I.3. We do this in two steps. In what follows, let us

denote Ψ = max{ξ, ∥∥A−A(k)
∥∥2
F
}, and Lδ = L+log(1/δ).

1) We show an analog of Theorem III.1 in which we have

no assumption on ξ (there is still the assumption of

a known L ≥ log
‖A‖2F

ξ), where the error is O(ΨLδ),

and the dimension of the embedding is O(kL2δ).
2) Next, we use the reasoning from Section III-B (in

which we run the residuals through an instantiation

of the algorithm from [5]) and output the overall

embedding.

The first step turns out to be the challenging one; the second

is almost identical to Section III-B.

1) Logarithmic approximation: The main idea for the first

step is as follows. We start with the given value of ξ, and

run Algorithm 1. If the number of phases exceeds kLδ , we

conclude that ξ is too small, and double ξ. The previous

analysis gives us that once ξ is above
∥∥A−A(k)

∥∥2
F

, we

will no longer exceed the bound on the number of phases,

with probability ≥ 1−δ. The number of doublings needed is

log
‖A−A(k)‖2

F

Ψ . This is trivially upper bounded by L (and so

we keep the output dimension O(kL2)). (See Algorithm 5

for the details.)

Algorithm 5 Online PCA without the assumption on ξ

Input: Matrix A ∈ R
d×n whose columns arrive one by

one, parameters k and ξ (arbitrary), and upper bound L on

log
‖A‖2F

ξ .

Output: A low dimensional embedding of each point as it

arrives

1: Initialize sets Vold = ∅, V = ∅
2: while columns Ai arrive do
3: Execute Algorithm 1 with input Π⊥Vold

Ai (and the

current ξ); this updates V
4: Output the embedding V T

oldAi concatenated with

V TAi.

5: if (number of phases (i.e., dimension of V) exceeds

12kLδ) then
6: set Vold ← Vold ∪ V ; set V = ∅, ξ ← 2ξ
7: end if
8: If the number of columns in Vold∪V exceeds 12kL2δ

output FAIL

9: end while

Observation 2. We have the following observations about
the procedure.

1) At any point in the execution, columns of V are all
orthogonal to columns of Vold.

2) Consider any suffix {Ai, Ai+1, . . . , An}. Let
{Bi, Bi+1, . . . , Bn} denote the projections
Bj = Π⊥T for any subspace T . Denote the
matrices with these columns as A′ and B′. Then∥∥A′ − (A′)(k)

∥∥2
F
≥ ∥∥B′ − (B′)(k)

∥∥2
F

.
3) Suppose the algorithm ends with a particular value ξ.

The total residual error so far is bounded by O(kLδξ).

Proof: Part 1 follows immediately because we only pass

the residual vectors to Algorithm 1.

Part 2 is also an easy consequence of the fact that the rank-

k error only reduces upon projection. The key requirement

though is that we have the same T for the entire suffix.

1596

To show part 3, suppose that the initial value of ξ is

ξ0, and suppose that ξ = 2jξ0 (i.e., the doubling, step 6,

occurred j times). Because of the way the residual error

relates to the phases, and since the number of phases is

capped at 12kLδ for each value of ξ, we conclude that the

total residual error is at most

12kLδ

(
2ξ0
k

+
22ξ0
k

+ · · ·+ 2j+1ξ0
k

)
≤ O (Lδξ) .

Finally, using part 2 of the observation, along with The-

orem III.1, we have that once ξ exceeds
∥∥A−A(k)

∥∥2
F

, the

algorithm does not increase ξ anymore, and it ends up with

the desired guarantees. This establishes the desired analog of

Theorem III.1 (with a bound of O(kLδ)
2 on the embedding

dimension).

2) Improving to (1 + ε): The main observation is that

Algorithm 5 is also incremental in the sense of Section III-B.

I.e., we maintain a subspace V (in this case Vold ∪ V), we

always output the projection onto this space, and in the end

have an O(Lδ) approximation to the error.

We can thus combine it with Algorithm 1 from [5], with

the following parameters (as Algorithm 2):

k′ = 12kL2δ ; ε′ =
ε

CLδ
; Γ = CξLδ.

Thus the number of columns used overall is O(k′/ε′2) =
O
(

kL4
δ

ε2

)
. This establishes Theorem I.3.

B. Online CSS

In the case of online PCA, the key reason the doubling

procedure worked is because we could determine when too
many columns were chosen. This allowed us to double the

value of ξ. The problem now is that we do not have an upper

bound L on log
‖A‖2F

ξ .

Idea, outline of argument.: The main idea is to replace

the upper bound on the number of phases in step 6 with

a quantity that only depends on the Frobenius norm of the

matrix until now. Let F = max{ξ, ∥∥A{1,2,...,i}∥∥2F }. Then

we decide to double ξ if the number of selected columns in

the current epoch exceeds

O(k log(
‖A‖2F
ξ

) + log(1/δ)), (8)

where the constant in O() comes from Corollary VII.5.

We define an epoch a period of time in the algorithm that

the value of ξ is fixed. So every time we double ξ a new

epoch starts. The logarithm term is always upper bounded

by log
‖A‖2F

ξ (assuming ξ ≤ ‖A‖2F).

Thus, we are now more aggressive about doubling ξ. This

is not a problem if ξ ≤ ∥∥A−A(k)
∥∥2
F

(in this case, we do not

care if we “incorrectly” decide to double ξ). Thus, consider

the first time we have ξ ≥ ∥∥A−A(k)
∥∥2
F

. In this case, we

wish to analyze the probability on an incorrect doubling of

ξ. Corollary VII.5 implies that probability of starting a new

epoch in this case is at most δ. So with probability 1−δ, we

do not start a new epoch in this regime. So the total number

of epochs is upper bounded by log
max{ξ,‖A−A(k)‖2

F
}

ξ . Given

the upper bound on the number of columns we pick in each

epoch in Equation 8, we can upper bound the total number

of phases and also selected columns.

The error can be bounded using the argument from

Observation 2 (part 3). The error bound we obtain now

is O

[
ξ
(
log

‖A‖2F
ξ + log(1/δ)

k

)
log

max{ξ,‖A−A(k)‖2
F
}

ξ

]
. We

bound this by O(ξL(L + log(1/δ))), where L = log
‖A‖2F

ξ
as before.

1) Improving to a (1 + ε) approximation: We can now

mimic the argument of Section IV-B. In fact, the parameters

to the procedure FKV do not even need to change (this is

because the parameters are not important for bounding the

error, as we saw). The bound on the number of columns now

becomes (since the success probability needed is a constant)

O

(
k

ε

)
· L2.

VI. TIGHTNESS OF OUR RESULTS

It is natural to ask if the bounds we obtain on the residual

based sampling performed in our algorithms are optimal. We

now give an example in which the term log
‖A‖2F

ξ is almost

unavoidable for the algorithms we propose.

Lemma VI.1. Let k = 1, and let t, z > 2 be parameters that
will be fixed shortly. There exists a matrix A of dimensions
t×t, such that ‖A‖2F = z2t, the rank-1 approximation error
≤ 2t2/z2, and further, such that every column of A has
a squared projection at least 1 orthogonal to the previous
columns.

Remark.: Let us set z = 2t, and ξ = 1. Now we

know that
∥∥A−A(1)

∥∥2
F
≤ ξ. If we run an algorithm

that samples the columns (as they arrive) with probability

min
(
1, ‖Π⊥Ai‖2/ξ

)
(as in our algorithms, Π⊥ is the projec-

tion orthogonal to the chosen columns), this algorithm will

indeed pick all the columns. Thus if L denotes log
‖A‖2F

ξ

as before, the algorithm is choosing Ω(kL/ logL) columns.

This matches the upper bound up to a logL factor.

Proof: The matrix we choose is the following (think of

z > 2):

M =

⎛⎜⎜⎝
1 z z2 · · · zt−1

0 1 z · · · zt−2

· · ·
0 0 · · · 0 1

⎞⎟⎟⎠
It is easy to see that each column has a length 1 orthogonal

to the previous columns. The bound on the Frobenius norm

is also easy to check (as z > 2).

1597

We claim that if σ1 ≥ σ2 ≥ · · · ≥ σt > 0 are the singular

values of M , then σ22 ≤ 2t
z2 . Note that this immediately

implies that
∥∥A−A(1)

∥∥2
F
< 2t2

z2 .

Bounding σ2.: We demonstrate an explicit subspace S
of dimension t− 1 such that

max
x∈S,‖x‖=1

‖Mx‖2 ≤ 2t

z2
.

By the min-max characterization of singular values, this

implies the desired claim. Now define

S = {x ∈ R
t :

x1
zt−1

+
x2
zt−2

+ · · ·+ xt = 0}.
Take any unit vector x ∈ S. Consider the ith coordinate of

Mx. This is precisely

(Mx)i = xi +
xi+1

z
+ · · ·+ xt

zt−i
−(xi−1

z
+

xi−2
z2

+ · · ·+ x1
zi−1

)
,

where we used the definition of x ∈ S. Thus by Cauchy-

Schwartz, we have that

(Mx)2i ≤ t

(
x2i−1
z2

+
x2i−2
z4

+ · · ·+ x21
z2i−2

)
.

Thus, since z > 2, the geometrically decreasing terms are

negligible, and thus we have
∑

i(Mx)2i ≤ 2t
z2

∑
i x

2
i , thus

proving the desired bound on σ22 .

VII. PROOFS OF TECHNICAL LEMMAS

A. Proof of Lemma III.2

In this section we present the proof of Lemma III.2.

Proof:
By definition, w is

∑t
i=1 χiui where χi is the uniformly

at random sign for vector ui. Consequently, we have Π⊥V w =∑t
i=1 χiΠ

⊥
V ui. Define random variable Z to be

∥∥Π⊥V w∥∥2.

By the linearity of expectation, we have:

E[Z] =
∑

1≤i,j≤t

E[χiχj]
∥∥Π⊥V ui

∥∥ · ∥∥Π⊥V uj

∥∥
=

t∑
i=1

∥∥Π⊥V ui

∥∥2 , (9)

where the second equality holds because E[χiχj] is zero for

any i �= j and, it is 1 for i = j. Therefore the first inequality

of the lemma statement compares random variable Z with

a fraction of its expected value. We can apply the Paley-

Zygmund inequality to lower bound the probability of this

event:

Pr

[
Z ≥ 2−√3

2
E[Z]

]
≥ 3E[Z]2

4E[Z2]
. (10)

Using Equation 9, we can expand E[Z]2 as:

E[Z]2 =
t∑

i=1

∥∥Π⊥V ui

∥∥4 +∑
i<j

2
∥∥Π⊥V ui

∥∥2 ∥∥Π⊥V uj

∥∥2
To write E[Z2] = E

[
(
∑

i

∥∥Π⊥V ui

∥∥2 + 2
∑

i<j χiχj〈Π⊥V ui,Π
⊥
V uj〉)2

]
in terms of

∥∥Π⊥V ui

∥∥2, we note that any term with an odd

power of χi (for any i) has expected value zero. So the

relevant terms have coefficients of the form χ4i or χ2iχ
2
j .

These coefficients have expected value 1. Therefore we

have:

E[Z2] =
t∑

i=1

∥∥Π⊥V ui

∥∥4 + 4
∑
i<j

〈Π⊥V ui,Π
⊥
V uj〉2

Thus by applying Cauchy-Schwartz to the inner products

above, we conclude that E[Z2] ≤ 2E[Z]2 in this setting.

Applying this into Equation 10 and observing that the

constant is at least 1/8, we have that with probability at

least 3/8,
∥∥Π⊥V w∥∥2 ≥ 1

8

∑
i

∥∥Π⊥V ui

∥∥2. In other words, with

probability at least 3/8, the first inequality of the lemma

statement holds.

Next, it suffices to show that the second and third inequal-

ities of lemma statement also holds with probability at least
15/16 to conclude that with probability at least 1/4, both of

the inequalities in the lemma statement hold together.

This follows from a simple application of Markov’s in-

equality. Let us take the second inequality. We note that the

left side is Z =
∥∥Π⊥k w∥∥2 and the right side is 16E[Z].

Therefore the second inequality of lemma holds with prob-

ability at least 15/16. The proof of the third inequality is

identical, and this concludes the proof of this lemma.

B. Chernoff Bound Lemma

Lemma VII.1. We toss a coin n times. The tosses are
independent of each other and in each toss, the probability
of seeing a head is at least p. Let Hm and Tm denote
the number of heads and tails we observe in the first
m ≤ n coin tosses. With probability 1 − δ, we have
Hm ≥ pm

4 − 	8 ln (2δ) /p
 for any 1 ≤ m ≤ n. We note
that although the cliam is about conjunction of all these n
events, the probability does not rely on n.

Proof: While the proof uses only simple concentration

bounds, the caveat is that we do not want to have an error

probability that depends on n.

We denote the expected number of heads in the first m
tosses with μ which is at least pm. Applying lower tail

inequality of Theorem 4 in [17] implies

Pr[Hm < (1− 1

2
)μ] ≤ e−μ/8 ≤ e−pm/8

The error probability e−pm/8 is at most δ/2 for m ≥
m′ = 	8 ln(2/δ)/p
. Instead of summing up the error bound

1598

for all values of m, we focus on the smaller geometrically

growing sequence M = {2�m′|� ∈ Z
≥0 AND 2�m′ ≤ n}.

Having the lower bound on Hm for every m ∈ M helps

us achieve a universal lower bound on any 1 ≤ m ≤ n as

follows. For any m ≤ m′, the bound Hm ≥ pm−m′ holds

trivially.

For any other m ≤ n, there exists an m′′ ∈ M such

that m′′ ≤ m ≤ 2m′′. By definition Hm is at least Hm′′ .

Assuming Hm′′ ≥ pm′′/2 implies Hm is at least pm/4
which proves the claim of the lemma. So we focus on

bounding the error probabilities only for values in set M .

For m′, the error probability is at most δ/2. The next value

in M is 2m′, so given the exponential form of the error, it

is at most (δ/2)2. Using union bound, the aggregate error

probability for set M does not exceed

δ

2
+

(
δ

2

)2
+

(
δ

2

)4
+ · · · ≤ δ/2

1− δ/2
≤ δ

Therefore with probability at least 1 − δ, we have for

every m ∈ M , Hm ≥ pm/2, and consequently for every

1 ≤ m ≤ n, Hm ≥ pm
4 −m′ which finishes the proof.

C. Proof of Theorem IV.1

We now complete the argument from Section IV-A, thus

proving Theorem IV.1.

Lemma VII.2. The number of special phases is
O
(
k log

‖A‖2F
ξ

)
.

Proof: Let T be the set of last columns of all special

phases. By algorithm’s definition we have that for any

column vi in T it holds that the projection of vi to the

orthogonal space of other columns of T that appeared earlier

is at least ξ
k . This is because for any u ∈ T , the projection

of u onto span(Spre) is at least ξ
k in squared length, and all

the previous columns in T must be in Spre.

Thus we can apply Lemma II.1 to obtain the desired

conclusion.

Lemma VII.3. The number of successful ordinary (i.e., non-
special) phases is ≤ 2k log(

‖A‖2F
ξ).

Also in this case the statement is deterministic. The proof

is similar to the proof of previous lemma but it uses the

inequalities that characterize a successful phase. The proof

also uses the following observation (which we will need to

analyze the error), so we state it first.

Observation 3. Let {ui}ri=1 be the vectors in any phase.
For a special phase, we consider all the vectors in the phase
except for the last one. Recall that Spre is the set of columns
selected in all previous phases. Then, we have

r∑
i=1

∥∥∥Π⊥Spre
ui

∥∥∥2 ≤ 320ξ

k
. (11)

Indeed, for non-special phases, we also have
r∑

i=1

∥∥∥Π⊥Spre
ui

∥∥∥2 ≥ 160ξ

k
. (12)

Proof: These follow by the way we defined the phases

(accumulating probabilities until they add up to 1). Unless

we are considering the last vector in a special phase, none

of the terms in the summation are ≥ ξ
k , by definition. This

completes the proof.

Now we are ready to prove Lemma VII.3.

Proof of Lemma VII.3: The main idea behind the

proof is to combine Observation 3, properties of a successful

phase (Definition IV.2) and Lemma II.1 to obtain a proof

by contradiction. Let W be the matrix that has columns

equal to the vectors w (defined in Equation 4) in successful

ordinary (i.e., non-special) phases. First, we note that the

second property of a successful phase allows us to relate

the best low rank approximation error of matrix A with the

best low rank approximation error of matrix W (the former

is at most 40 times smaller than the latter).

We know from the first property of a successful phase

and also Observation 3 that for every column w in W , the

projection orthogonal to the previous selected columns is at

least 80ξ
k . It is important to observe that each w is a linear

combination of selected columns of its phase. Therefore the

projection of each w to the orthogonal space of the other

vectors in W for previous phases is also at least 80ξ
k .

Therefore we can apply Lemma II.1 on vectors of W
by setting γ2 = 80ξ

k , c = 40 and Γ = ξ. So the number

of columns in W (number of ordinary successful phases)

cannot exceed

2k · log
(
‖W‖2F
2cΓ

)
≤ 2k · log

(
40 ‖A‖2F
80ξ

)
where the inequality holds because of the third property

of a successful phase.

The next lemma shows that it is very unlikely that the

number of unsuccessful phases is asymptotically larger.

Lemma VII.4. Let Nsuccess be the number of successful
phases in the algorithm. Then with probability at least 1−δ,
the total number of phases is O(Nsuccess + log(1δ)).

Proof: The proof of the lemma follows from

Lemma VII.1 where each phase is like a coin toss. A head in

the coin toss is associated with the phase being a successful

one. The only caveat is that we do not know the number of

phases a priori. In fact, the existence of a phase depends on

the vectors chosen in the earlier phases. However, we still

have a trivial upper bound of n on the number of phases.

Each toss has a probability ≥ 1/16 − 1/20 = 1/80 of

being heads. The outcome of each toss is independent of

the previous ones, and the number of tosses is m ≤ n.

Therefore the number of successful phases is at least m/80−

1599

O(log(1/δ)) which means the number of phases is O(Hm+
log(1/δ)) proving the claim of the lemma.

These lemmas together establish the following bound on

the number of phases. By definition of phases, the expected

number of selected columns in each phase is not more than

2, therefore there is a direct relation between the number of

phases and the number of selected columns |S|.
Corollary VII.5. The total number of phases, and conse-
quently the number selected of columns, |S|, at the end of
the algorithm is O(k log(

‖A‖2F
ξ) + log(1/δ)), w.p. at least

1− δ.

Given this, the bound on the error follows.

Lemma VII.6. Suppose the algorithm receives the vectors
{ui}ni=1. Let Si denote the output matrix S = Spre∪Scurrent

after we see the vector ui. Then, w.p. at least 1−δ, we have
n∑

i=1

∥∥Π⊥Si
ui

∥∥2 ≤ ξO

(
log

(
‖A‖2F
ξ

)
+
log(1/δ)

k

)
.

Remark. Note that for any ui, the set Si is a superset of

Spre. The definition of Si ensures that for any vector ui for

which the “pu” in the algorithm is ≥ 1, we have Π⊥Si
ui = 0

(as we would have marked the phase as special and selected

ui).
Proof: By Observation 1, the error accumulated in each

phase is at most 320ξk , so combining this with Corollary VII.5

implies the lemma.
Now we are ready to prove Theorem IV.1.

Proof of Theorem IV.1: Corollary VII.5 and

Lemma VII.6 prove the first and third points of the Theorem

about the number of selected columns and the error bound.

For the second point we note that the most expensive step

in the algorithm is to compute the projection Π⊥Spre
for

each column u which requires computing |Spre| ≤ |S|
projections. To compute this projection efficiently we can

keep an orthogonalized version of Spre and we then use it

to compute the projections. This can be done easily in time

O(|S|d) ∈ Õ(kd) per iteration.

D. Proof of Lemma IV.5
We follow the proof strategy of [12]. Recall that we are

given a matrix A ∈ R
n×m. Let A(k) = UΣV be the

rank-k SVD of A, where U ∈ R
n×k and V ∈ R

k×m

have orthogonal columns and rows respectively. Also, let

B ∈ R
n×m denote Π⊥S1

A.
Proof of Lemma IV.5: Let Yi be a 0/1 random variable

that indicates if the column Ai is chosen. By hypothesis, we

have pi := Pr[Yi = 1] ≥ c · ‖Bi‖2
‖B‖2F

, for all j ∈ [m].
Now, recall from our definition of B above, that Aj =

ΠS1
Aj +Bj . The main idea behind the proof is to consider

the vector valued random variables, for all i ∈ [k],
wi :=

∑
j∈[m]

Vi,jΠS1
Aj +

∑
j∈[m]

Yj

pj
Vi,jBj .

The first term is independent of the sampling, it simply

makes the expected value of wi something nice. To see this,

note that

E[wi] =
∑
j∈[m]

Vi,jΠS1Aj +
∑
j∈[m]

Vi,jBjV AT

= σiUi.

In other words, in expectation, wi is precisely a scaled

version of the ith singular vector. Define zi := wi/σi, for

i ∈ [k]. The key observation is that each zi is in the space

spanned by the chosen columns {Aj : Yj = 1}, together

with S1 (as ΠS1Aj ∈ S1 for all Aj).

Now, the approximation for A we consider is

(
∑k

i=1 ziU
T
i)A. Clearly, the column span of this matrix is

contained in span{zi : i ∈ [k]}. Now, suppose we extend

the basis V (1), . . . , V (k) (recall that these are the rows

of V) to a basis of R
m, using the full SVD of A, thus

obtaining V (k+1), . . . , V (m) (some of the corresponding

singular values could be zero). Then, we have∥∥∥∥∥∥A− (
∑
i∈[k]

ziU
T
i)A

∥∥∥∥∥∥
2

F

=
∑
j∈[m]

∥∥∥∥∥∥
⎛⎝A− (

∑
i∈[k]

ziU
T
i)A

⎞⎠V (j)

∥∥∥∥∥∥
2

=
∑
j∈[m]

∥∥∥∥∥∥σjUj − (
∑
i∈[k]

ziU
T
i)σjUj

∥∥∥∥∥∥
2

=
∑
j∈[k]

‖σjUj − wj‖2 +
∑
j>k

σ2j

(since Uj are orthonormal). (13)

The second term in (13) is simply
∥∥A−A(k)

∥∥2
F

. Thus,

we need to bound the first term. This can be bounded using

the variance of wj , summed over j ∈ [k]. Note that for any

j, we have the variance

E ‖wj − E[wj]‖2

= E

∥∥∥∥∥∥
∑
j∈[m]

(
Yj

pj
− 1

)
Vi,jBj

∥∥∥∥∥∥
2

=
∑
j∈[m]

V 2
i,j ‖Bj‖2 E

(
Yj

pj
− 1

)2

≤
∑
j∈[m]

2V 2
i,j

‖Bj‖2
pj

(14)

≤
∑
j∈[m]

2V 2
i,j

‖B‖2F
c

=
2 ‖B‖2F

c
. (15)

1600

In the last step, we used the lower bound on the proba-

bility pj . Thus, summing over j ∈ [k], we have that

E

⎡⎣∑
j∈[k]

‖wj − σjUj‖2
⎤⎦ ≤ 2k

c
‖B‖2F .

Thus, using Markov’s inequality here, and combining with

(13), we have that with probability ≥ 9/10,∥∥∥∥∥∥A−
∑
i∈[k]

ziU
T
i A

∥∥∥∥∥∥
2

≥ 20k

c
‖B‖2F +

∥∥∥A−A(k)
∥∥∥2
F
.

This completes the proof.

REFERENCES

[1] Raman Arora, Andrew Cotter, and Nati Srebro. Stochastic
optimization of PCA with capped MSG. In Advances in
Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 1815–1823, 2013.

[2] David Arthur and Sergei Vassilvitskii. K-means++: The
advantages of careful seeding. In Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA,
2007. Society for Industrial and Applied Mathematics.

[3] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund.
The fast convergence of incremental PCA. In Advances
in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 3174–3182, 2013.

[4] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail.
Near optimal column-based matrix reconstruction. In IEEE
52nd Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 305–314, 2011.

[5] Christos Boutsidis, Dan Garber, Zohar Shay Karnin, and Edo
Liberty. Online principal components analysis. In Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 887–901, 2015.

[6] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas.
An improved approximation algorithm for the column subset
selection problem. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,
New York, NY, USA, January 4-6, 2009, pages 968–977, 2009.

[7] Christos Boutsidis and David P. Woodruff. Optimal CUR
matrix decompositions. SIAM J. Comput., 46(2):543–589,
2017.

[8] Kenneth L. Clarkson and David P. Woodruff. Numerical linear
algebra in the streaming model. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
205–214, 2009.

[9] Michael B. Cohen, Cameron Musco, and Christopher Musco.
Input sparsity time low-rank approximation via ridge leverage
score sampling. In SODA, 2017.

[10] Michael B. Cohen, Cameron Musco, and Jakub W. Pachocki.
Online row sampling. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2016, September 7-9, 2016, Paris, France,
pages 7:1–7:18, 2016.

[11] Amit Deshpande and Luis Rademacher. Efficient volume
sampling for row/column subset selection. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
329–338, 2010.

[12] Amit Deshpande, L. Rademacher Santosh Vempala, and
G. Wang. Matrix approximation and projective clustering via
volume sampling. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006, pages 1117–
1126, 2006.

[13] Amit Deshpande and Santosh Vempala. Adaptive sampling
and fast low-rank matrix approximation. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 9th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems,
APPROX 2006 and 10th International Workshop on Random-
ization and Computation, RANDOM 2006, Barcelona, Spain,
August 28-30 2006, Proceedings, pages 292–303, 2006.

[14] Petros Drineas and Ravi Kannan. Pass efficient algorithms
for approximating large matrices. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, January 12-14, 2003, Baltimore, Maryland, USA.,
pages 223–232, 2003.

[15] Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast
monte-carlo algorithms for finding low-rank approximations.
In 39th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’98, November 8-11, 1998, Palo Alto, California,
USA, pages 370–378, 1998.

[16] Mina Ghashami and Jeff M. Phillips. Relative errors for deter-
ministic low-rank matrix approximations. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-
7, 2014, pages 707–717, 2014.

[17] Michel Goemans. Chernoff bounds, and
some applications, February 2015. URL:
//http://math.mit.edu/ goemans/18310S15/chernoff-notes.pdf.

[18] Venkatesan Guruswami and Ali Kemal Sinop. Optimal
column-based low-rank matrix reconstruction. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-
19, 2012, pages 1207–1214, 2012.

[19] Zohar Shay Karnin and Edo Liberty. Online with spectral
bounds. In Proceedings of The 28th Conference on Learning
Theory, COLT 2015, Paris, France, July 3-6, 2015, pages
1129–1140, 2015.

1601

[20] Wojciech Kotlowski and Gergely Neu. Bandit principal
component analysis. In Conference on Learning Theory,
COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, pages
1994–2024, 2019.

[21] Amit Kumar and Ravindran Kannan. Clustering with spectral
norm and the k-means algorithm. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations of Computer
Science, FOCS ’10, pages 299–308, Washington, DC, USA,
2010. IEEE Computer Society.

[22] Edo Liberty. Simple and deterministic matrix sketching.
In The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago,
IL, USA, August 11-14, 2013, pages 581–588, 2013.

[23] Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An
algorithm for online k-means clustering. In Proceedings of
the Eighteenth Workshop on Algorithm Engineering and Ex-
periments, ALENEX 2016, Arlington, Virginia, USA, January
10, 2016, pages 81–89, 2016.

[24] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson,
V. Rokhlin, and Mark Tygert. Randomized algorithms for
the low-rank approximation of matrices. Proceedings of
the National Academy of Sciences of the United States of
America, 104 51:20167–72, 2007.

[25] Adam Meyerson. Online facility location. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages
426–431, 2001.

[26] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain.
Memory limited, streaming PCA. In Advances in Neural
Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 2886–2894, 2013.

[27] Jiazhong Nie, Wojciech Kotlowski, and Manfred K. Warmuth.
Online PCA with optimal regret. Journal of Machine Learn-
ing Research, 17:173:1–173:49, 2016.

[28] John Novembre, Toby Johnson, Katarzyna Bryc, Zoltán Kuta-
lik, Adam R Boyko, Adam Auton, Amit Indap, Karen S King,
Sven Bergmann, Matthew R Nelson, Matthew Stephens, and
Carlos D Bustamante. Genes mirror geography within europe.
Nature, 456(7218):98, 2008.

[29] Saurabh Paul, Malik Magdon-Ismail, and Petros Drineas. Col-
umn selection via adaptive sampling. In Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 406–414, 2015.

[30] Tamás Sarlós. Improved approximation algorithms for large
matrices via random projections. In 47th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2006),
21-24 October 2006, Berkeley, California, USA, Proceedings,
pages 143–152, 2006.

[31] Joel A. Tropp. Column subset selection, matrix factorization,
and eigenvalue optimization. In Proceedings of the Twenti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages
978–986, 2009.

[32] Matthew A. Turk and Alex Pentland. Face recognition
using eigenfaces. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 1991, 3-6
June, 1991, Lahaina, Maui, Hawaii, USA, pages 586–591,
1991.

[33] Yining Wang and Aarti Singh. Provably correct algorithms
for matrix column subset selection with selectively sampled
data. Journal of Machine Learning Research, 18:156:1–
156:42, 2017.

[34] Manfred K. Warmuth and Dima Kuzmin. Randomized PCA
algorithms with regret bounds that are logarithmic in the
dimension. In Advances in Neural Information Processing
Systems 19, Proceedings of the Twentieth Annual Conference
on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, pages 1481–1488,
2006.

1602

