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Abstract—We introduce a protocol between a classical
polynomial-time verifier and a quantum polynomial-time
prover that allows the verifier to securely delegate to the
prover the preparation of certain single-qubit quantum
states. The prover is unaware of which state he received
and moreover, the verifier can check with high confidence
whether the preparation was successful. The delegated
preparation of single-qubit states is an elementary build-
ing block in many quantum cryptographic protocols.
We expect our implementation of “random remote state
preparation with verification”, a functionality first defined
in (Dunjko and Kashefi 2014), to be useful for removing
the need for quantum communication in such protocols
while keeping functionality. The main application that we
detail is to a protocol for blind and verifiable delegated
quantum computation (DQC) that builds on the work
of (Fitzsimons and Kashefi 2018), who provided such a
protocol with quantum communication. Recently, both
blind and verifiable DQC were shown to be possible, under
computational assumptions, with a classical polynomial-
time client (Mahadev 2017, Mahadev 2018). Compared
to the work of Mahadev, our protocol is more modular,
applies to the measurement-based model of computation
(instead of the Hamiltonian model) and is composable. Our
proof of security builds on ideas introduced in (Brakerski
et al. 2018).

Keywords-verifiable quantum computation; composable
security; learning with errors

For a full version of the paper, we refer to [GV19].

I. INTRODUCTION

In the problem of delegated computation a user (often

referred to as client or verifier) is provided as input a

pair (C, x) of a circuit C and an input x for the circuit.

The verifier’s task is to evaluate C(x) as efficiently as

possible. For this the verifier may delegate some or all

of the computation to a powerful but untrusted server

(often referred to as the prover). Let n be the length of

x and T the size of the circuit C. Ideally, the runtime of

the verifier is (quasi-)linear in n and poly-logarithmic

in T, while the runtime of the prover is quasi-linear in

T. (Reducing space usage, for both the verifier and the

prover, is also of interest, but for simplicity we focus

on time.)
A productive line of research in complexity and

cryptography has led to protocols for delegated compu-

tation with increasing efficiency and whose soundness

can be information-theoretic [GKR15] or based on

cryptographic assumptions [Kil92], [KRR14]. The latter

type include protocols utilizing public-key cryptography

and making standard cryptographic assumptions, such

as [HR18], as well as non-interactive protocols based

on more non-standard assumptions, such as [GGPR13].

In addition to the natural applications in cloud and

distributed computing, research in delegated computa-

tion is motivated by cryptographic applications (such as

short zero-knowledge proofs [Gro10], [BSCG+13]) and

connections to complexity theory (such as the theory

of multiprover interactive proof systems [KRR14] and

probabilistically checkable proofs [GKR15]).
In this paper we are concerned with the problem

of delegating quantum computations (DQC). Here the

verifier is provided as input the classical description

of a quantum circuit C, as well as a classical input

x for the circuit, and its goal is to obtain the result

of a measurement of the output qubit of C in the

computational basis, when it is executed on x.1 In

this context the main question is the following: What

security guarantees can DQC protocols achieve, and at

what cost?
To gain an understanding of the current landscape

around this question we briefly discuss the most rele-

vant known results, referring to [GKK17] for a more

extensive treatment. First we note that DQC protocols

come with two related but seemingly independent types

of security guarantee: blindness and verifiability. A

1For simplicity we restrict to circuits that take classical inputs
and return a single classical output bit obtained as the result of a
measurement that is promised to return a particular value, 0 or 1, with
probability at least 2

3 . This setting corresponds to delegating decision
problems, i.e. problems in which the output is a single bit. Our results
also apply to the setting of relational or sampling problems for which
the output consists of multiple bits.
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DQC protocol is said to be blind if throughout the

interaction the prover does not learn anything about the

delegated computation except for an upper bound on

its size. A DQC protocol is said to be verifiable if it

is unlikely for the prover to succeed in convincing the

verifier to accept a false statement. The question of blind

delegation of quantum computation was first considered

by Childs [Chi05], who gave such a protocol with quan-

tum communication. Verifiable delegation of quantum

computation was formalized in [ABE10], [BFK09] (see

also [ABOEM17], [FK17]); the authors gave protocols

for verifiable DQC, and just like Childs’ protocol, these

protocols also require quantum communication.

Next we consider the question of efficiency of DQC

protocols, focusing on the amount of quantum commu-

nication required as a measure of the verifier’s “quan-

tum effort”. A first class of protocols, such as those

from [ABE10], [BFK09], are known as prepare-and-
send protocols. This is because the verifier is required

to prepare a number of small quantum states and send

them to the prover. In [ABE10] the size of these

quantum states (i.e. the number of qubits) depends on

the protocol’s soundness (the probability that the verifier

accepts an incorrect outcome). In [FK17] the verifier is

only required to prepare a number of single-qubit states

that depends on the protocol’s soundness. A second

class of protocols is receive-and-measure protocols such

as [HM15], [FHM18], in which the verifier receives

single qubits from the prover and is required to measure

them in one of a small number of possible bases. The

protocol that requires the least quantum capability from

the verifier is the one from [FHM18]; in their protocol,

the verifier only needs to measure the single qubits

it receives one at a time in one of two bases, com-

putational and Hadamard. The most communication-

efficient protocols fall in the prepare-and-send category

and require a total amount of quantum communication

that scales as O(T log(1/δ)) where δ is the soundness

error [KW17]; the most efficient protocols in the second

category have a cubic dependence on T.

All the aforementioned protocols provide

information-theoretic security (for either blindness

or verifiability), and all require some limited but

nonzero quantum capability for the verifier. In a

recent breakthrough Mahadev introduced the first

entirely classical protocol for DQC [Mah18b]. The

protocol operates in the Hamiltonian model of quantum
computation, in which instead of directly performing

the computation C the prover encodes the outcome of

C in the smallest eigenvalue of a local Hamiltonian

HC.
2 The goal of the protocol is for the prover to

provide evidence that it has prepared an eigenstate |ψ〉
of HC with associated eigenvalue strictly smaller than

a. At the heart of Mahadev’s result is a commitment

procedure that allows the prover to commit to individual

qubits of |ψ〉, and subsequently reveal a measurement

outcome for a basis of the verifier’s choice, using

classical communication alone.

The fact that the verifier in Mahadev’s protocol is

entirely classical marks a major departure from previous

works, yet it comes at a cost in terms of security and

efficiency. The security of the protocol is computational

and rests on the post-quantum security of the learning

with errors problem (LWE); moreover, the protocol is

not blind, as the circuit has to be communicated to

the prover so that it can determine HC and prepare an

eigenstate.3 In terms of efficiency, the transformation

from circuit to Hamiltonian results in an eigenvalue es-

timation problem that needs to be solved with accuracy

at least b − a = O(1/T2) for the best constructions

known [BC18]. As a result the prover has to prepare

Ω(T2) copies of the ground state, which implies that

at least Ω(nT2) single qubits have to be sent by the

prover. Moreover, preparation of a smallest eigenvalue

eigenstate |ψ〉 of HC requires a circuit whose depth

scales linearly with T, rather than with the depth of C.

This induces a large overhead on the prover’s side when

the circuit C has low depth but high width4.

Finally, and arguably most importantly, the protocol

is monolithic and not obviously composable: while it

solves the desired task of verification of quantum com-

putation, it is not at first clear how or even if the protocol

can be simplified to solve more elementary problems

(e.g. verifying the preparation of a single qubit state

or verifying the application of an elementary quantum

operation) or combined with other cryptographic primi-

tives (e.g. to remove or reduce quantum communication

in a larger protocol).

Our work is motivated by the following question:

does there exist a delegation protocol for quantum

computation that combines the appealing feature of

having an entirely classical verifier while maintaining

2If the circuit returns 0 with probability at least 2
3 , the smallest

eigenvalue is smaller than a threshold a, and if it returns 0 with
probability less than 1

3 , the smallest eigenvalue is larger than a
threshold b > a (this is generally referred to as the “Kitaev circuit-
to-Hamiltonian construction” [KSV02]).

3The protocol can in principle be made blind by combining it with
a scheme for quantum homomorphic encryption [Mah18a] but this
introduces yet another layer of complexity.

4Such circuits are highly parallelizable and one might hope for the
complexity of delegating one to scale with depth rather than with total
circuit size.
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the relative efficiency (small polynomial overhead), sim-

plicity (prover’s computation is as close as possible to

direct computation of delegated circuit), and security

guarantees (verifiability, blindness, composability) of

protocols with quantum communication?

II. OVERVIEW OF RESULTS AND PROOF TECHNIQUES

We answer the question in the affirmative by provid-

ing an efficient, composable classical protocol for blind

and verifiable DQC. The honest prover in our proto-

col only needs to implement the desired computation,

expressed as a computation in the measurement-based

model of computation, together with a sequential pre-

processing phase consisting of a number of rounds that

depends on the circuit size but such that the complex-

ity of implementing each round scales only with the

security parameter. The protocol combines the benefits

of the best prepare-and-send quantum-verifier protocols

for DQC but requires only classical communication; the

downside is that our protocol is computationally sound.

Our DQC protocol is based on a basic quantum

functionality that we develop and that we believe has

wider applicability than the specific application to DQC.

More precisely, we provide a computationally sound

and composable protocol for the following two-party

task, termed random remote state preparation (RSP):

Alice (whom we will later identify with the verifier)

receives either a uniformly random bit b ∈ {0, 1} or

a uniformly random value θ ∈ Θ = {0, π
4 , . . . , 7π

4 }
and Bob (whom we will later identify with the prover)

receives the single-qubit state |b〉, in the case when

Alice gets b, or the state |+θ〉 = 1√
2
(|0〉 + eiθ |1〉),

in the case when Alice gets θ. Informally, this amounts

to Alice having the ability to “steer” a random state

|+θ〉 (or |b〉) within Bob’s workspace, using classical

communication only, and such that Bob does not learn

the value of θ (or b, respectively).
The idea for RSP was introduced by Dunjko and

Kashefi [DK16]. The main functionality they consider

is a weaker variant of RSP termed random remote state
preparation with blindness, or RSPB. Intuitively, the

latter functionality ensures that Bob learns no informa-

tion about θ, but it allows him to receive a state that

is different from |+θ〉. The authors show that RSPB
(and variants of it) can be composed with a prepare-

and-send protocol due to [BFK09] to achieve blind (but

not verifiable) delegated computation. In [CCKW18]

a candidate implementation of RSPB is given and

shown secure against a limited class of adversaries

referred to as “honest-but-curious” adversaries. The

authors of [DK16] also discuss a stronger form of

their primitive, called RSPS (for strong), and observe

that it can be used to achieve blind and verifiable

DQC by composing it with the protocol of [FK17].

The authors do not, however, provide any instantiation

of RSPS (other than the direct one, using quantum

communication).

Our main contribution is to define an ideal function-

ality, denoted RSPV (random remote state preparation

with verification),5 and show that it can be implemented

using a protocol having computational security and

classical communication:

Theorem II.1 (Informal). Assuming the learning with
errors problem is computationally intractable for effi-
cient quantum algorithms, for each ε > 0 there exists a
protocol with classical communication that implements
the functionality RSPV within distance ε and which has
O(1/ε3) communication complexity.

Here, by “implements within distance ε”, we mean that

any efficient quantum procedure has advantage at most

ε in distinguishing the real remote state preparation

protocol from the ideal functionality RSPV .

To show this result we introduce a protocol for

remote state preparation and show that it is secure based

on the learning with errors problem. This is achieved

by building on ideas from [BCM+18], [Mah18b] as

well as from the literature on rigidity, self-testing, and

quantum random access codes. The protocol consists of

a sequence of simple tests that play a similar role to the

Bell test in multi-prover entanglement-based protocols

for DQC [RUV13]. For completeness it is sufficient to

succeed in a constant (depending on the desired distance

ε) fraction of rounds, so that a partially faulty device

may in principle be used to implement the protocol

successfully.

We view RSPV as a fundamental resource for the

construction of interactive protocols that involve clas-

sical communication between classical and quantum

parties. For our result to be as widely applicable as

possible, we establish security of our protocol in the

abstract cryptography (AC) framework [MR11]. This

allows one to use the primitive as a building block in

other protocols.

As a specific example of the versatility of RSP we

obtain a new protocol for DQC that only requires

classical communication. The most natural protocol to

which our construction applies is the delegated com-

putation protocol from [FK17]. As already observed

5It is not hard to verify that RSPV is functionally equivalent
to RSPS, in the sense that either functionality can be used to
implement the other using a simple protocol. Since the definitions are
syntactically different, we use a different name to avoid confusion.
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in [DK16], having a remote state preparation functional-

ity immediately yields a blind and verifiable protocol for

DQC with classical communication and computational

soundness. The resulting protocol is more “direct” than

the Mahadev protocol, in the sense that in our con-

struction the operations that the prover has to perform

are closer to the quantum computation that the verifier

is delegating. (The protocol from [FK17] operates in

the measurement-based quantum computing model,6 but

we expect that protocols in the circuit model such

as [Bro18] can also be implemented from RSPV .)

If one assumes that RSPV can be implemented at

unit cost then the protocol we obtain is also more

efficient than Mahadev’s: for fixed soundness error,

δ, the number of operations performed by the prover

scales linearly in the size of the delegated circuit and

polynomially in the security parameter of the protocol.

Unfortunately, our current version of RSP does not

have unit cost. Furthemore, the number of uses of RSP

required is linear in the circuit size, T. This implies

that each use must be implemented with error O(δ/T).
With our current analysis, assuming we take δ to be

a constant, this results in a total communication that

scales as O(T4). This is not as good as the quasi-linear

complexity of prepare-and-measure protocols that use

quantum communication. It is important to note, how-

ever, that the added overhead of the protocol stems from

RSPV . Thus, any improvement in the complexity of

doing the state preparation will lead to an improvement

in the complexity of the resulting DQC protocol. We

believe reducing the overhead of RSPV is possible and

mention a potential way of achieving this in Section V

below.

Before proceeding with more details of our approach

it may be useful to briefly address the following ques-

tion: can one use the protocol from [Mah18b] directly

to implement RSP? Specifically, couldn’t one enforce

that the prover prepares a small-eigenvalue eigenstate

of the Hamiltonian Hθ = − |+θ〉〈+θ |? In fact it is

not at all straightforward to do this. The reasons are

related to aspects of the Mahadev protocol discussed

earlier. First, the committment procedure results in a

state that can be measured in one of two possible bases,

but it is not clear if any other form of computation

besides a direct measurement can be performed on the

committed qubit. Second, the guarantee provided is only

that the state “exists” (i.e. the Hamiltonian has a small-

eigenvalue eigenstate), but not that the state has actually

6It should be noted that the translation from the circuit model to
MBQC incurs only a linear increase in overhead and this is also true
for the protocol from [FK17], as explained in [KW17].

been prepared by the prover. Finally, the information

that the prover may have about the state it prepared is

not explicitly limited (in the protocol from [Mah18b] the

prover learns a classical description of the Hamiltonian,

hence, in this case, the value of θ); forcing the prover

to prepare an unknown state may require adding an

additional layer of (quantum) homomorphic encryption

to the protocol.

III. REMOTE STATE PREPARATION: IDEAL RESOURCE

We formulate our variant of RSP as a resource in

the abstract cryptography framework [MR11]. Abstract

cryptography (AC), similar to universal composability

(UC) [Can01], is a framework for proving the security

of cryptographic protocols in a way that ensures that

the protocols can be securely composed in arbitrary

ways. Informally, the idea is to argue that a given

protocol, which we refer to as the real protocol, is in-

distinguishable from an ideal functionality (or resource)
that captures precisely what honest or dishonest parties

should be able to achieve in the protocol. This involves

proving two things: correctness, meaning that any ef-

ficient family of circuits (known as a distinguisher)
that interacts either with an honest run of the real

protocol or with the ideal functionality has a negligible

advantage in deciding which it is interacting with;

security, meaning that any attack that a malicious party

could perform in the real protocol can be mapped to an

attack on the ideal functionality. This latter property is

formalized by saying that there exists an efficient family

of (quantum) circuits, known as a simulator, such that

any distinguisher interacting with the ideal functionality

and the simulator, or with the real protocol involving

only the honest parties, has negligible advantage in

deciding which it is interacting with. Showing that

such a simulator exists is usually the main difficulty

in proving security in AC. Since the existing results on

the composability of DQC protocols are expressed in

the AC framework, we also present our results in AC.

For more details on the framework we refer to [MR11],

[DFPR14]. For the purposes of this introduction we

assume basic familiarity with the framework.

We denote our variant of the ideal RSP by RSPV , for

random Remote State Preparation with Verification. The
name is chosen in direct analogy to the resource RSPB
of random Remote State Preparation with Blindness in-

troduced in [DK16]. The resource RSPV is represented

schematically in Figure 1. In the resource, Alice inputs

a bit W ∈ {X, Z} that denotes a measurement basis,

computational (W = Z) or Hadamard (W = X). Bob

inputs a bit c ∈ {0, 1} that denotes honest (c = 0) or

malicious (c = 1) behavior. If c = 0 then in the case
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Alice Bob

b ←U {0, 1}, θ ←U Θ

(s, ρ) =

⎧⎪⎨
⎪⎩
(b, |b〉) if c = 0 & W = Z,

(θ, |+θ〉) if c = 0 & W = X,

(ERR, |ERR〉) if c = 1.

W

s

c

ρ

Figure 1: The resource RSPV . It chooses b uniformly at random from {0, 1} and θ uniformly at random from

Θ = {0, π
4 , . . . , 7π

4 }. It takes W ∈ {X, Z} as input from Alice and c ∈ {0, 1} as input from Bob. When c = 0 it

outputs either b to Alice and |b〉 to Bob, if W = Z; or θ to Alice and |+θ〉 to Bob, if W = X. When c = 1 it

outputs ERR to Alice and |ERR〉 to Bob.

when W = Z Alice receives a uniformly random bit

b ∈ {0, 1} and Bob receives the state |b〉; in the case

when W = X Alice receives a uniformly random value

θ ∈ Θ = {0, π
4 , . . . , 7π

4 } and Bob receives the state

|+θ〉. If c = 1 both Alice and Bob receive an ERR
message, indicating abort.

Note that the resource RSPV can almost be under-

stood as a communication channel from Alice to Bob

that would allow Alice to select one of 10 possible

single-qubit states |0〉 , |1〉, or |+θ〉 for θ ∈ Θ and

send it to Bob. There are two differences: first, Alice

does not choose the state, but instead the functionality

chooses it uniformly at random and tells Alice what

it is. Second, Bob may decide to block the channel,

in which case both parties receive an error message.

This in contrast with the weaker resource of RSPB, also

introduced in [DK16] and for which [CCKW18] give a

real protocol with security against “honest-but-curious”

adversaries, in which Bob is allowed to select the family

of states {ρθ} that it receives (by explicitly specifying

them to the resource).7 The resource RSPV allows less

flexibility to a dishonest user, making it more useful as a

building block. In particular, the rigidity of Bob’s output

state is essential to obtain a protocol that is verifiable.

IV. REMOTE STATE PREPARATION: REAL PROTOCOL

In the previous section we defined the ideal func-

tionality for remote state preparation with verifiability,

7The ρθ should satisfy the consistency condition ρθ + ρπ+θ = Id,
which says that it is possible to generate the state ρθ by performing a
θ-dependent measurement on a fixed state ρ; we refer to [DK16] for
details.

RSPV . In this section we describe a protocol that

we prove is computationally indistinguishable from

the ideal functionality. The protocol builds on ideas

from [BCM+18] and [Mah18b]. The main difficulty in

the implementation of RSPV is to obtain verifiability,
i.e. the guarantee that an arbitrary (computationally

bounded) prover successfully interacting with the veri-

fier must have prepared locally the correct state, and yet

have obtained no more information (computationally)

about the state itself than could be gained had the state

been sent directly by the verifier (or the ideal resource).

To achieve this we significantly strengthen the rigidity

argument from [BCM+18] by giving more control, and

freedom, to the verifier in the kinds of states that are

prepared.

In the real protocol, that we call the buffered remote
state preparation protocol (BRSP), Alice and Bob in-

teract through two communication resources: a classical

channel as well as a measurement buffer. The mea-

surement buffer takes as input a classical message M
from Alice, and from Bob a specification (as a quantum

circuit) of a measurement for each of the possible

messages of Alice, as well as a state on which the

measurement is to be performed (as a quantum state).

The buffer then performs the measurement associated

with Alice’s message, forwards the outcome to Alice,

and returns the post-measurement state to Bob.

The necessity of relying on a measurement buffer

to obtain a secure protocol is a consequence of the

use of rigidity to obtain verifiability. Rigidity arguments

require the assumption that, in an execution of the real
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Alice Bobr ← F (M)(ρ)

M

r

F
ρ

r, [F (M)(ρ)]r

Figure 2: The measurement buffer. Alice inputs a message M. Bob inputs a specification F which takes as input

Alice’s message and returns a measurement F (M). Bob also inputs a state ρ. The buffer measures ρ with F (M)
producing classical outcome r and the post-measurement state denoted [F (M)(ρ)]r. Both Alice and Bob receive

r and Bob also receives [F (M)(ρ)]r.

protocol, the measurements implemented by Bob are

“local”; in other words, that the simulator constructed

in the security proof can interact directly with those

measurements. In the AC framework, in general, a

malicious Bob may “delegate” any measurements that

it wishes to make to the environment8, which would

render them inaccessible to the simulator. By construct-

ing the protocol from a measurement buffer resource

we explicitly prevent such behavior from Bob. (Note

that the use of the buffer does not prevent Bob from

sharing entanglement with the environmnent, or from

exchanging quantum states with it in-between any two

uses of the measurement buffer.) While the measure-

ment buffer is necessary to obtain composable security,

the use of this resource can be omitted when considering

stand-alone security only (since in that case, there is

no environment). Finally, note that the measurement

buffer is not a “physical” resource of the protocol; in an

actual run of the protocol Alice and Bob interact only

classically.

We proceed with an informal description of the

protocol and its analysis. Our starting point is the

work [BCM+18], in which the authors give a classi-

cal protocol between a verifier and prover such that

provided the prover is accepted with non-negligible

probability in the protocol, it is guaranteed that a subset

of the values returned by the prover contain information-

theoretic randomness. This guarantee holds as long

as the prover is computationally bounded, and more

specifically that it does not have the ability to break the

learning with errors (LWE) problem while the protocol

is being executed.

We observe that the proof of [BCM+18] explicitly

establishes a stronger rigidity statement whereby the

prover is guaranteed, up to a local rotation on its

workspace, to have prepared a |+〉 state and measured

8In AC and UC, the environment represents anything that is external
to the protocols under consideration [Can01], [MR11]. This can
include other protocols, other parties etc.

it in the computational basis (hence the randomness).

Formulated differently, the protocol from [BCM+18]

implements a weak variant of RSPV in which only the

option W = Z is available to Alice. This is not sufficient

for delegated computation, but it is a starting point.

To generate the other states needed for RSPV we

need to go deeper in the protocol from [BCM+18]. At

a high level, the idea is to engineer the preparation of

a state of the form

1√
2

( |0〉 |x0〉+ |1〉 |x1〉
)

, (1)

where x0, x1 ∈ {0, 1}w are bitstrings defined as the

unique preimages of an element y, provided by the

prover to the verifier, under a claw-free pair of functions

f0, f1 : {0, 1}w → Y , where Y is some finite range set.

For the purposes of this discussion it is not important

how the state (1) is obtained, as long as we can

guarantee that the prover prepares such a state.

In [BCM+18] the next step is to ask the prover to

measure the second register in the Hadamard basis (i.e.

implement the Fourier transform over Zw
2 and then mea-

sure in the computational basis). Labeling the outcome

as d ∈ {0, 1}w, the first qubit is projected to the state
1√
2
(−1)d·x0(|0〉+ (−1)d·(x0⊕x1) |1〉) that provides the

basis for the randomness generation described earlier.

Consider the following simple modification: by think-

ing of x0, x1 as elements of Zw/3
8 (assuming w is a

multiple of 3) instead of {0, 1}w, we can ask the prover

to implement the Fourier transform over Z8, yielding

an outcome d ∈ Zw/3
8 and a post-measurement state

|ψθ〉 =
1√
2

ωd·x0(|0〉+ ωd·(x0+x1) |1〉) , (2)

where ω = e
2iπ

8 and the addition and inner product are

taken modulo 8. Up to a global phase this is precisely

the state |+θ〉, for θ = π
4 d · (x0 + x1).

So far the argument establishes completeness: if Alice

and Bob follow the protocol, Alice obtains an angle
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θ and Bob obtains the state |+θ〉. Moreover, using a

slight extension of the adaptive hardcore bit statement

from [BCM+18] it is not hard to show that the value

of θ is computationally indistinguishable from uniform

from Bob’s perspective. The main difficulty is to argue

that the prover must have created precisely the state |ψθ〉
in (2), and not for instance a related state such as |ψ3θ〉.
Note that this would be allowed in RSPB, but it is not

in RSPV .

In order to show that the prover must have a state

that is equal, up to an isometry, to a state of the form

|ψθ〉 we combine rigidity arguments similar to those

employed in [BCM+18] with a new idea: we introduce

a test that asks the prover to demonstrate that the state it

has prepared implements a near-optimal 2 	→ 1 quantum

random access code (QRAC). A 2 	→ 1 QRAC is a

procedure that encodes two classical bits into a single

qubit, in a way that maximizes the success probability of

the following task: given a request for either the first or

the second bit (chosen with equal probability), perform

a measurement on the single qubit that returns the value

of that bit with the highest possible probability. As

shown in [ALMO08] the optimum success probability

of this task is 1
2 + 1

2
√

2
, and is achieved by encoding

the two bits in one of the four single-qubit states

|+0〉 , |+ π
2
〉 , |+π〉 and |+ 3π

2
〉. More specifically, if the

input bits are denoted b1, b2, then the QRAC state

is |+b1π+b2
π
2
〉. Moreover, the optimal measurement

for predicting one bit or the other is a measurement

in the basis {|+ π
4
〉 , |+ 5π

4
〉}, if b1 is requested, or

{|+ 3π
4
〉 , |+ 7π

4
〉}, if b2 is requested.

We extend the optimality proof from [ALMO08] to

show that even a near-optimal family of states and mea-

surements must be close, up to a global rotation, to the

ones described above (see also [TKV+18], [FK19] for

similar results). Next we enforce that the prover’s states

and measurements implement a near-optimal 2 	→ 1
QRAC by asking that the prover successfully predict

certain bits of θ, given partial information about it. For

example, the verifier can reveal to the prover that θ ∈
{π

2 , 3π
2 } and ask which is the case; the prover should

be able to answer with probability 1 by performing the

appropriate measurement. Or the verifier can reveal that

θ ∈ {|+0〉 , |+ π
2
〉 , |+π〉 , |+ 3π

2
〉} and ask the prover to

guess one additional bit of θ; the prover should be able

to succeed with probability 1
2 + 1

2
√

2
.

Making use of the rigidity argument to establish

composable security requires the simulator to have

access to Bob’s measurement operators. For this reason,

while most communication steps of the protocol can be

implemented using a classical communication channel,

in the last step of the protocol, described in the previous

paragraph, the communication takes place through a

measurement buffer: Alice inputs partial information

about θ, and Bob inputs a description of the measure-

ment that he would have performed on each of Alice’s

possible questions, together with the quantum state on

which the measurement is to be performed.

We introduce a sequential protocol that consists of

a number N of tests, followed by a random stopping

time. We show that any behavior of the prover that has

non-negligible probability of passing a fraction of tests

that is within a small enough constant of the optimal

fraction is such that the following property holds: at

the end of the protocol, the state of the prover is

unitarily equivalent to a state that is computationally

indistinguishable (up to a small computational error that

depends on N and other parameters of the protocol)

from a state of the form |ψθ〉 together with some θ-
independent side information.

V. DELEGATED QUANTUM COMPUTATION

Having defined the ideal RSPV functionality as well

as the real protocol that implements this functionality

from classical channels, we now discuss applications.

As mentioned, the most natural application of RSP is

to verifiable delegated quantum computation. Intuitively,

the idea is the following: suppose Alice wishes to

delegate C(x) to Bob, for some quantum circuit C
having T gates. Using the measurement-based protocol

from [FK17], if Alice were to send Bob O(T log(1/δ))
randomly chosen states, from the ten possible choices

mentioned earlier (the |+θ〉 states, with θ ∈ Θ, and

the |0〉, |1〉 states), she would be able to delegate C(x)
to Bob and the protocol would have soundness error

at most δ. The RSPV functionality allows her to do

exactly this, using classical communication alone. Of

course, unlike the protocol of [FK17], the security of

this construction would be computational, rather than

information-theoretic. To summarize, in the delegation

protocol Alice first executes RSPV a certain number of

times with Bob in order to prepare the required resource

states in Bob’s quantum memory. She then engages in

the protocol of [FK17] as if she had sent the random

states to Bob.

How many times does Alice need to execute RSPV?

To delegate the circuit of size T and achieve soundness

error δ, the number of executions must clearly be

at least Ω(T log(1/δ)). If the real protocol used to

implement RSPV prepared the intended states exactly,
then we would have exactly that many runs. Of course,

this is not the case, and we need to account for the
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failure probability of the real protocol, which we de-

note as ε. It was shown in [DFPR14], [GKW15] that

the protocol of [FK17] is robust to deviations in the

collective state of the resource qubits. If there are M
such qubits, and the error per state is ε then by the

triangle inequality it follows that the deviation of the

whole state is at most Mε. We therefore need to choose

ε = O(δ/M) and since M = Ω(T log(1/δ)), this

means that ε = O
(

δ
T log(1/δ)

)
. To achieve error at most

ε, the real protocol associated to RSPV must have a

running time9 of O(1/ε3). Putting everything together,

this leads to a total number of operations that scales as

O((T4/δ3) log4(1/δ)).
Ideally, one may hope for an implementation whose

communication is linear in T. Some potential avenues

for achieving this are as follows. First, it may be

possible to have a single-use parallel version of our

protocol, whereby all states would be generated in a

single iteration. The verifier would send all challenges

for multiple remote state preparations to the prover at

once, rather than sequentially. Of course, while this

would reduce the number of rounds of interaction it

would not reduce the total amount of communication.

An alternative is to modify the QRAC procedure. In-

stead of using a 2 	→ 1 QRAC to verify the preparation

of single-qubit states, one could use an m 	→ 1 QRAC,

for some sufficiently large m, to verify the preparation

of multiple qubits at the same time. A second avenue

for reducing communication is to develop a protocol for

verifiable delegated quantum computation in which the

verifier sends single-qubit states to the prover and such

that the protocol is robust to constant deviations in the

fidelity of these qubits. If such a protocol, with linear

communication complexity, were to exist, it would be

possible to use RSPV with a constant ε and hence

achieve linear classical communication. A version of

such a protocol was proposed in [GKW15], though that

protocol only works for specific deviations (depolarizing

noise). All of these approaches seem to be technically

challenging, and we leave the possibility of a more

communication efficient protocol open for future work.

In the language of AC, the ideal functionality for

verifiable DQC has already been defined in [DK16].

What we show is that this functionality is computation-

ally indistinguishable from the real protocol described

earlier. To do this we first adapt the definitions of DQC

resources to the setting of computational security. We

then show that the results pertaining to those resources

9It should be noted that our analysis for the dependency on ε is not
optimal and could be improved, thereby reducing the running time of
O(1/ε3).

in the information-theoretic case also hold in the case

of computational security. Finally, we show that the

RSPV functionality can be used to implement the

computational DQC functionalities. It follows that the

real protocol we described is computationally indistin-

guishable from the ideal DQC resource.

As already mentioned one of the main advantages

to proving the security of RSPV in the AC

framework is that one can directly plug this primitive

into other existing protocols. Aside from DQC,

a related application is to multi-party quantum
computation (MPQC). In [KP17] the authors define AC

functionalities for multi-party quantum computation.

Their protocol consists of a number of clients,

each having its own input, that wish to delegate a

computation on their collective inputs to a quantum

server. Its security, as defined in [KP17], is guaranteed

in the settings where either the server is malicious (but

the clients are not), or a subset of clients is malicious

(but the server behaves honestly). The protocol works

by having the clients perform a remote state preparation

protocol, in which the clients send quantum states to

the server. It then proceeds in a manner similar to the

single-client DQC protocols. In principle, remote state

preparation could be replaced with our RSPV primitive,

leading to an MPQC protocol in which the clients and

the server use only classical communication. We leave

the formalization of this intuition to future work.
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