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Abstract—In this paper we consider the classic matroid
intersection problem: given two matroids M1 = (V, I1) and
M2 = (V, I2) defined over a common ground set V , compute
a set S ∈ I1 ∩ I2 of largest possible cardinality, denoted by
r. We consider this problem both in the setting where each
Mi is accessed through an independence oracle, i.e. a routine
which returns whether or not a set S ∈ Ii in Tind time, and
the setting where each Mi is accessed through a rank oracle,
i.e. a routine which returns the size of the largest independent
subset of S in Mi in Trank time.

In each setting we provide faster exact and approximate
algorithms. Given an independence oracle, we provide an exact
O(nr log r · Tind) time algorithm. This improves upon previous
best known running times of O(nr1.5 ·Tind) due to Cunningham
in 1986 and Õ(n2 · Tind + n3) due to Lee, Sidford, and Wong
in 2015. We also provide two algorithms which compute a
(1− ε)-approximate solution to matroid intersection running in
times Õ(n1.5/ε1.5 · Tind) and Õ((n2r−1ε−2 + r1.5ε−4.5) · Tind),
respectively. These results improve upon the O(nr/ε · Tind)-
time algorithm of Cunningham (noted recently by Chekuri
and Quanrud).

Given a rank oracle, we provide algorithms with even better
dependence on n and r. We provide an O(n

√
r log n · Trank)-

time exact algorithm and an O(nε−1 log n · Trank)-time algo-
rithm which obtains a (1 − ε)-approximation to the matroid
intersection problem. The former result improves over the
Õ(nr · Trank + n3)-time algorithm by Lee, Sidford, and Wong.
The rank oracle is of particular interest as the matroid
intersection problem with this oracle is a special case (via
Edmond’s minimax characterization of matroid intersection)
of the submodular function minimization (SFM) problem with
an evaluation oracle, and understanding SFM query complexity
is an outstanding open question.

Keywords-Matroids; Combinatorial Optimization; Submod-
ular Functions

I. INTRODUCTION

A matroid M = (V, I) is an abstract set system defined

over a finite ground set (universe) V of size n where the

collection I ⊆ 2V of independent sets satisfy two properties:

(a) A ∈ I implies every subset B ⊆ A is also independent,

i.e., B ∈ I, and (b) for any two sets A,B ∈ I with |A| <
|B|, there exists an element e ∈ B \ A such that A + e ∈

I. Matroids are fundamental objects in combinatorics, and

the abstract definition above generalizes a wide range of

concepts ranging from acyclic graphs to linearly independent

matrices.

Given two matroids M1 = (V, I1) and M2 = (V, I2)
over the same ground set, the matroid intersection problem is

to find a set I ∈ I1∩I2 with the largest cardinality |I|. This

problem generalizes many important combinatorial opti-

mization problems such as bipartite matching, arborescences

in digraphs, and packing spanning trees. Unsurprisingly,

this problem has applications in areas such as electrical

engineering [4], [5] and network coding [6], [7], [8].

To define the problem algorithmically, one needs to spec-

ify access to these matroids. In the literature it is common

to assume access to an independence oracle which takes as

input a subset S ⊆ V and returns whether S ∈ I or not.

We use Tind to denote the maximum time taken by such an

oracle to answer a single query. This raises an algorithmic

question: in how few queries can the matroid intersection

problem be solved?

Starting from the work of Edmonds [9], many polynomial

time algorithms [10], [11], [1], [12], [13], [2] have been

proposed for the matroid intersection problem. The previous

state-of-the-art captured by two works. One is a classic

O(nr1.5 · Tind) time combinatorial algorithm by Cunning-

ham [1] where r is the cardinality of the largest common

independent set of the two matroids. The second algorithm

is an Õ(n2 · Tind + n3)-time algorithm by Lee, Sidford,

and Wong [2] based on fast algorithms implementing the

ellipsoid method. Note that this pays a higher overhead

than Cunningham’s result and makes many more queries if

r � n2/3. This raises the important question, “Is there an
algorithm which obtains the best of both results?” Our first

result answers this affirmatively (restated as Theorem 18 in

the main body).

Theorem 1. There is an O(nr log r ·Tind)-time algorithm to
solve the matroid intersection problem exactly.

Our next result looks at approximate matroid intersection.
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Due to both theoretical and practical reasons, there has been

extensive recent work [14], [15], [16], [17], [18], [3], [19],

[20], [21] in trying to obtain faster (1 ± ε)-approximation

algorithms for problems which already have polynomial

time exact algorithms. A (1− ε)-approximate algorithm for

matroid intersection would return a set I ∈ I1 ∩ I2 with

|I| ≥ (1− ε)r for r being the cardinality of largest common

independent set.

For matroid intersection, in fact Cunningham’s [1] al-

gorithm already gives a (1 − ε)-approximate solution in

O(nr/ε · Tind) time. This observation was made explicit

in a recent paper by Chekuri and Quanrud [3]. Given our

exact algorithm result above, it is natural to wonder if one

can obtain faster approximation algorithms. In particular,

can there be subquadratic approximation algorithms for the
matroid intersection algorithm problem? Our second result

gives an affirmative answer (restated as Theorem 21 in the

main body).

Theorem 2. There is an O(n1.5
√
log r/ε1.5 · Tind)-time

algorithm to obtain a (1− ε)-approximation to the matroid
intersection problem.

The above theorem has no significant dependence on r,

and indeed when r � √
n, as it stands, it is better to use the

exact algorithm. However, we can get a better result (restated

as Theorem 55 in the main body) in the regime
√
n� r �

n ; concretely, assume r = Θ(nc) where 1
2 < c < 1.

Theorem 3. There is an Õ
((

n2

rε2 + r1.5

ε4.5

)
· Tind

)
-time al-

gorithm to obtain a (1 − ε)-approximation to the matroid
intersection problem.

The Rank Oracle.: Another common model for access-

ing matroids is a rank oracle. Given a subset S ⊆ V , the

rank oracle outputs rank(S), i.e., the size of the maximum

cardinality independent subset of S. We let Trank denote

the maximum time taken by the rank oracle to answer any

query. The rank oracle is clearly at least as powerful as the

independence oracle.

Similar to the independence oracle, Lee, Sidford, and

Wong [2] also gave an algorithm for the rank oracle with

a runtime of Õ(nr · Trank + n3). This suggests that perhaps

matroid intersection can be solved strictly faster in the rank

oracle model.

One reason to look at the rank oracle is Edmonds’

minimax theorem [9] which states that maxI∈I1∩I2 |I| =
minS⊆V (rank1(S) + rank2(V \ S)). Since the rank func-

tion is submodular, (the dual of) matroid intersection is a

special case of submodular function minimization (SFM)

where the function evaluation oracle corresponds to (two

calls of) the rank oracle. SFM is an extensively studied

problem whose query complexity is still an open question.

In this light, understanding it for the special case of matroid

intersection becomes an important problem.

Another reason is that our main ideas with independence

oracle arose out of understanding the question with rank

oracle, and so rank oracle forms a good warm-up. In this

paper we provide the following results on solving matroid

intersection (both approximately and exactly with a rank

oracle), improving over the Õ(nr ·Trank+n3)-time algorithm

by Lee, Sidford, and Wong [2]. Later in the paper these are

restated as Theorem 16 and Theorem 17.

Theorem 4. There is an O(n
√
r log n·Trank)-time algorithm

to exactly solve the matroid intersection problem. There is
an O(nε−1 log n · Trank)-time algorithm to obtain a (1− ε)-
approximation to the matroid intersection problem.

A. Our Techniques

At a high level our algorithms build upon existing combi-

natorial algorithms, a la Edmonds [9] and Cunningham [1].

We extend these algorithms leveraging the following key

ideas: the binary search idea which allows fast explo-

ration through the exchange graph, the augmenting sets
methodology which allows multiple parallel augmentations

in the exchange graph, and first-order methods which allow

efficient sparsification of the ground set. In this section we

explain each idea in greater depth, leaving the full details to

subsequent sections. We begin with a refresher and a high-

level overview of existing combinatorial algorithms.

The Exchange Graph and Algorithms of Edmonds and
Cunningham.: The key object behind almost all combina-

torial algorithms for matroid intersection is the exchange
graph. Given a current solution S ∈ I1 ∩ I2, the exchange

graph G(S) is a directed bipartite graph where the endpoints

of arcs correspond to valid exchanges in respective matroids

depending on the direction. There is a source s and sink t.
The source is connected to all vertices in V \S which can be

freely added in one matroid, and the sink is connected from

all vertices in V \ S which can be freely added to the other

matroid. Much as in network flow theory, an improvement in

the size of S arises on finding shortest augmenting source-

sink paths in this exchange graph. At a very high level,

there are O(nr) possible edges in the graph (since |S| ≤ r),

each edge can be constructed with O(1) independence oracle

queries, and in at most r-augmentations one obtains the

maximum sized common independent set. This gives an

O(nr2 · Tind)-time algorithm [9], [10], [11].

Cunningham’s [1] main idea was to implement the above

algorithm in phases. This idea is similar to the Hopcroft-

Karp [22] idea for bipartite matching but has many differ-

ences. Akin to [22], in each “early” phase the algorithm

tries to find many disjoint short augmenting paths; however,

not all of these can be augmented in parallel. Indeed,

one of the major divergences between bipartite matching

and matroid intersection is that even a single augmentation

can completely change the exchange graph. Although the

augmentations cannot be done in parallel, Cunningham [1]
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shows how to spend only O(nr) independence-oracle calls

(each edge is queried only once in a phase) to sequentially

run all the augmentations in a single phase; as in Hopcroft-

Karp [22], the early phases lead to big improvements and

the total number of phases is at most O(
√
r). This leads to

a total of O(nr1.5 · Tind)-time algorithm.

The binary search idea.: We start by describing the

idea when we have a rank oracle and then discuss the

independence oracle case. The first thing to note is that one

doesn’t need the whole exchange graph for an augmentation.

Instead, what we need is to perform a breadth first search

(BFS) on this “unknown” exchange graph. And the rank

oracle provides the following access to this graph: for every

vertex a and every subset B ⊆ V \v, in O(log n) rank-oracle

calls (by doing a binary-search style argument) we can detect

if a has an edge to some vertex in B or not. This suffices

for doing a BFS on the graph in O(n log n · Trank) time, and

we do it at the beginning of each phase of Cunningham’s

algorithm.

The second observation is that each phase in Cunning-

ham’s algorithm can be implemented using O(n log n)-many

rank-oracle calls again. Indeed, once the distances of vertices

are known, shortest paths can be computed using the afore-

mentioned graph access which the rank-oracle provides us. It

is true that after some augmentations, some vertices will be

misclassified (or will be useless, to borrow Cunningham’s [1]

terminology) but such vertices are never queried again.

The latter requires some distance-monotonicity properties

from [1]. Theorem 4 actually follows quite easily now: for an

exact algorithm, there are O(
√
r) such phases; for a (1−ε)-

approximate algorithm, we need only O( 1ε )-phases. Details

of this are given in Section IV.

Things are a bit trickier using only an independence

oracle, since we cannot detect, in O(log n) queries, whether

a vertex a has an edge to a subset B or not. Nevertheless,

the following is true: for a vertex a /∈ S (recall S is

the current solution) and a subset B ⊆ S, in O(log r)
independence queries we can figure out whether a has

an edge to/from a vertex in B. This is due to the way

the exchange graph is defined. Armed with this observa-

tion, after every augmentation, we can perform a BFS of

the new exchange graph (i.e., find the distance labels of

all vertices) in O(n log r) independence oracle calls plus
an Õ(1) “amortized” independence call per vertex whose

distance label changes in the current iteration. Since each

vertex changes its distance label at most r times, the total

amortized cost is O(nr · Tind). Since there are at most r
augmentations, the total time taken in the (non-amortized

part of the) BFS computations is O(nr log r · Tind). Details

of this are described in Section V.

Augmenting sets.: Our exact algorithm with indepen-

dence oracle queries has two kinds of cost, both of which

are Õ(nr ·Tind)-time. The “amortized” cost which is paid per

“distance increase” per vertex can be made Õ(n/ε) if we run

only 1/ε phases. However, the “non-amortized” cost is paid

per augmentation, and this can still be Õ(nr) even with 1/ε
phases. Indeed, the phases don’t seem to add any advantage.

It seems unlikely that the binary search idea alone can be

salvaged to break the “quadratic barrier” (when r ≈ n).

To overcome this and prove Theorem 2, we propose

the idea of augmenting sets. Recall the idea presented in

Cunningham’s algorithm: the algorithm is akin to Hopcroft-

Karp [22] in that it runs in phases, and in each phase it

augments along multiple augmenting paths. However, the

big difference is that the augmentations need to be performed

sequentially rather than in parallel as in Hopcroft-Karp, and

this takes time. On the other hand, if we could find all the

augmentations that can occur up front, then we will save on

the time taken to find them sequentially. This is what our

notion of augmenting sets achieves.

An augmenting set is a sequence of disjoint subsets
B1, A1, B2, . . . , A�, B�+1 where alternate subsets are not in,

and respectively in, the current solution S. More precisely,

the set Ai is a subset of vertices at distance exactly 2i from

the source of the exchange graph, and vertices Bi is at

distance 2i − 1 from the source. Each subset has the same

cardinality and finally, deleting all the Ai’s and adding all

the Bi’s preserves independence in both matroids. If the

size of each set is 1, an augmenting set is the same as an

augmenting path.

We prove an equivalence between augmenting sets and

a collection of augmenting paths which can be augmented

sequentially in the exchange graph. We introduce the concept

of maximal augmenting sets, and show (a) as long as the

shortest path is small, say � (early phases of the algorithm),

the maximal and maximum augmenting sets are within a

multiplicative O(�)-factor, and (b) we show an algorithm to

find a “near maximal” augmenting set, which allows us to

guarantee that in any phase, and for any p, after spending

O(n2/p · Tind) time the maximum number of remaining �-
length augmentations is O(p�). These final augmentations

can be done in Õ(np� · Tind) time using the previous binary

search ideas. Setting p ≈ √
n gives the desired result

(Theorem 2). The precise definition of augmenting sets, its

properties, and the details of above ideas are in Section VI.

We are hopeful that this new class of algorithms, which may

be of independent interest, find further applications in related

problems.

Frank-Wolfe sparsification and sampling.: To obtain

Theorem 3, we need one additional idea. Since we are

being approximate, we can further improve the running

time of our algorithm by sparsifying the ground set from

n to Õ(r/ε2). We first look at the fractional solution to

the matroid intersection problem as a convex optimization

problem. Next, we observe that if we apply a constrained

first-order method (aka the Frank-Wolfe algorithm), each

step of the algorithm corresponds to solving the single

matroid optimization problem which can be done by the
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greedy algorithm in O(n log n+n · Tind) time. Furthermore,

to get an ε-optimal fractional solution, one needs only

Õ(n/rε2) iterations which takes Õ( n2

rε2 · Tind) time.

Next, we apply a sparsification procedure due to

Karger [23] that leads us to a ground set with only Õ(r/ε2)
elements (instead of n elements), and which has a (1−O(ε))-
approximate common independent set. Once the ground set

shrinks, we can apply the algorithm from the previous sec-

tion (using augmenting sets) to get a (1−ε)-approximate so-

lution in Õ(r1.5/ε4.5 · Tind) time. Taking everything together

gives us Theorem 3. The details are given in Section VIII.

B. Related Works

Polynomial time algorithms for matroid intersection are

more than forty years old, with the first algorithms present

in the works of [9], [10], [11]. The running time of

these algorithms were O(nr2 · Tind). Indeed, many of these

papers [11], [24], [25], [12], [26], [13], [2], [19] looked at the

weighted matroid intersection problem, and gave polynomial

time algorithms.

For certain special matroids faster algorithms are known.

Indeed, when the matroid is given explicitly, one can talk

of pure running time instead of oracle queries. For instance,

for exact maximum cardinality bipartite matching, the best

running time is the O(m
√
n)-time algorithm due to [22]

and Õ(m10/7)-time algorithm due to Madry [27]. Here m
is the number of edges in the graph (and so, the number

of elements in the matroid), while n is the number of

vertices which is the rank of the matroid. It is instructive to

compare what our results give: we give an Õ(m
√
n · Trank)

and Õ(mn · Tind) time algorithm. In dense graphs, the best

algorithm is an O(nω)-running time algorithm by [28],

[29], where ω is the exponent of matrix multiplication. For

linear matroids, the matroid intersection problem can be

solved in essentially O(nrω−1)-time [29], [30]. For graphic

matroids, the matroid intersection problem can be solved in

O(n
√
r log r) time [12], [26].

The study of approximate matroid intersection problems

is newer. As Chekuri and Quanrud [3] note, Cunning-

ham’s analysis implies a O(nr/ε · Tind)-time algorithm to

get an (1 − ε)-approximate matroid intersection. Huang et

al. [19] and Chekuri and Quanrud [3] study the approx-

imate weighted version. The former gives an Õ(nr1.5/ε ·
Tind)-time approximation algorithm [19], while the latter

gives an O(nr log2(1/ε)/ε2 · Tind)-time approximation al-

gorithm. Contrast this with our Õ(nr · Tind)-time exact

and Õ(n1.5/ε1.5)-time approximate algorithm, albeit for the

unweighted version. Finally, Guruganesh and Singla [31]

give an 1
2 + δ-approximation algorithm for a small but fixed

constant δ which runs in O(n · Tind)-time.

We end the introduction with, which to our knowledge,

is the only lower bound known for matroid intersection.

Since we are in the oracle (rank/independence) model, it

is perhaps foreseeable that some non-trivial information

theoretic lower bound can be attained for the number of

queries required for matroid intersection. Unfortunately, the

only lower bound we are aware of is due to Harvey [32],

[33]. For matroids with r = n/2, Harvey [32] shows a lower

bound of (log2 3)n−o(n) queries. Obtaining an ω(n) lower

bound is a challenging open problem.

II. PRELIMINARIES

Here we provide the notation (Section II-A) and previous

known results about the matroid intersection (Section II-B)

that we use throughout the paper.

A. Notation

Here we provide the notational conventions we use

throughout the paper.

Set Notation: We often work with subsets of a finite set

V which we call the universe or ground set. For I ⊆ V
and a ∈ V we let I + a

def
= I ∪ {a} and I − a

def
= I \ {a}.

When the universe V is clear from the context, we let

I
def
= V \ I . We often abuse notation A + B := A ∪ B for

better readability.

Matroid: A tuple M = (V, I) for finite set V and I ⊆ 2S

is called a matroid if (i) for every A ∈ I and B ∈ I where

|A| < |B|, there exists an element a ∈ B \ A such that

A ∪ a ∈ I, (ii) ∅ ∈ I, and (iii) for every A′ ⊆ A where

A ∈ I, we have A′ ∈ I.

Independent Sets: We call S ⊆ V independent if S ∈ I
and dependent otherwise. Further, for any S ∈ I we let

freeM(S)
def
= {a ∈ S |S + a ∈ I}.

Matroid Polytope: The matroid polytope PM is the convex

hull of the indicator vectors of the independent sets of M.

Matroid Intersection Polytope: The matroid intersection

polytope is the convex hull of the indicator vectors of the

common independent sets of M1,M2. It is well known

that this polytope is given by PM1 ∩ PM2.

Rank: For a matroid M = (V, I) we define the rank of

M as rank(M) = maxS∈I |S|. Further, for any S ⊆ V we

define rankM(S)
def
= maxT⊆S|T∈I |T |, i.e., the size of the

largest independent set contained in S.

Circuits: For matroid M = (V, I) we call S ⊆ V a circuit
if it is a minimal dependent set, i.e., S /∈ I but S − a ∈ I
for any a ∈ S. For S ∈ I and a ∈ S such that S + a /∈ I
we let circuitM(S + a) denote a minimal dependent

subset of S + a. Standard results in matroid theory

show that circuitM(S + a) is uniquely defined as the set

of elements b ∈ S+a such that S+a−b ∈ I (see Lemma 5).

Exchangeable Pairs: For a matroid M = (V, I)
and S ∈ I we call a ∈ S and b /∈ S exchangeable
if S − a + b ∈ I. For a set S ∈ I we let
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exchangeM(S)
def
= {(a, b) ∈ S×S |S− a+ b ∈ I} denote

all exchangeable pairs in S.

Exchange Graph: For matroids M1 = (V, I1) and

M2 = (V, I2) and S ∈ I1 ∩ I2 we define the exchange

graph G(S) = (V ∪ {s, t}, ES) as the directed graph with

vertices V ∪ {s, t} where s and t are known as the source
and sink vertices respectively. There are the following

4 types of arcs in ES : (1) (s, a) for all a ∈ free1(S),
(2) (a, t) for all a ∈ free2(S), (3) (a, b) for all a ∈ S
and (a, b) ∈ exchange1(S), (4) (b, a) for all a ∈ S and

(a, b) ∈ exchange2(S), where for i ∈ {1, 2} we use freei

and exchangei as shorthand for freeMi
and exchangeMi

respectively.

Distances: For any directed graph G = (V,E) and a, b ∈ V
we let dG(a, b) denote the shortest path distance from a to b
using the edges of E. We define dG(a, a) = 0 for all a ∈ V
and if there is no a to b path then we let dG(a, b) =∞.

Distance sets: For the exchange graph G(S) we denote the

set of vertices at distance i from source s by Di or Li.

Packing number: For a matroid M we let PackNum(M)
denote the maximum number of disjoint bases in M.

Oracles: Throughout this paper we assume that given

a matroid M = (V, I) we can only access it through

an oracle. We consider two such oracle models. First,

an independence oracle, which when queried with any

S ⊆ V , determines whether or not S ∈ I in time Tind(M).
Second, a rank oracle, which when queried with an S ⊆ V ,

returns rankM(S) in time Trank(M). Note that for S ⊆ V
we have that S ∈ I if and only if rankM(S) = |S|
and consequently Tind(M) = O(Trank(M)). In the

typical setting where we have two matroids M1 and

M2 we let Trank
def
= O(Trank(M1) + Trank(M2)) and

Tind
def
= O(Tind(M1) + Tind(M2)).

B. Matroid Theory

Here we provide various standard results about the the

structure of matroids and matroid intersection used through-

out the paper. The first two lemmas are folklore.

Lemma 5. For matroid M = (V, I) and any S ∈ I and
a ∈ V with S + a /∈ I, we have

circuitM(S + a) = {b ∈ S + a |S + a− b ∈ I} .

Lemma 6 (Shortest augmenting paths). Let s, v1, ...va, t be
a shortest path from s to t in the exchange graph G(S). Then
S+ v1− v2+ ...− va−1+ va+ t ∈ I1 ∩I2, i.e., augmenting
along a shortest augmenting path preserves independence.
Sometimes we call this an augmentation for brevity.

The next three lemmas will be used extensively in our

algorithms. The first two show that to solve matroid inter-

section approximately, it suffices to stop when the length of

the shortest augmenting path is 1/ε. The last lemma imposes

control over the structure of the exchange graph as we carry

out augmentations.

Lemma 7 (Cunningham [1]). For any two matroids M1 =
(V, I1) and M2 = (V, I2) with the largest common inde-
pendent set of size r, given an a set S ∈ I1 ∩ I2 of size
|S| < r, there exists an augmenting path in G(S) of size at
most 1 + 2|S|/(r − |S|).
Corollary 8 ([1], [3], [19]). For any two matroids M1 =
(V, I1) and M2 = (V, I2) with the largest common inde-
pendent set of size r, if the length of the shortest augmenting
path in exchange graph G(S) for some S ∈ I1 ∩ I2 is at
least 1/ε, then |S| ≥ (1−O(ε)) · r.

Our algorithms will rely on the following monotonicity

lemma of Cunningham, which says augmenting along the

shortest path in an exchange graph can only increase the

distance of every element from the source and sink vertices.

Lemma 9 (Monotonicity Lemma, Cunningham [1]). For
any two matroids M1 = (V, I1) and M2 = (V, I2) if we
augment along the shortest path in G(S) obtaining G(S′)
for a new set S′ ∈ I1∩I2 with |S′| > |S| then for all a ∈ V
we have

dG(S′)(s, a) ≥ dG(s, a) and dG(S′)(a, t
′) ≥ dG(S)(a, t) .

III. EXCHANGE GRAPH EXPLORATION VIA BINARY

SEARCH

In this section we show how to use rank and independence

oracles to efficiently query the exchange graph for a pair

of matroids, M1 = (V, I1) and M2 = (V, I2). These

graph exploration primitives form the basis of our exact

and approximate matroid intersection algorithms with a rank

oracle as well as our exact matroid intersection algorithm

with an independence oracle.

In Section III-A we show how to efficiently find free

vertices using a rank oracle and in Section III-B we show

how to efficiently find exchangeable pairs using an indepen-

dence oracle. Each routine works by a careful binary search

with the appropriate oracle and serves an important role in

efficiently finding edges in the exchange graph.

A. Finding Free Vertices using Rank Oracle

We show that given a matroid M = (V, I), an indepen-

dent set S ∈ I, and a set B ⊆ V , we can efficiently find

a free element e ∈ B with respect to S (i.e., S + e ∈ I)
or conclude that there is none. The procedure FindFree
given in Algorithm 1 finds this element by binary search

with the rank oracle. There is a free element of B if and

only if rankM(B ∪S) > rank(S) and consequently we can

simply repeatedly divide B in half, querying if this property

still holds. Formally, we analyze the performance of this

algorithm in Lemma 10.
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Algorithm 1: FindFree(M = (V, I), S ∈ I, B ⊆
V )

1 Input: matroid M = (V, I), independent set S ∈ I,

and subset B ⊆ V
2 Output: an element of B ∩ freeM(S) or ∅ if no

such element exists

3 if rankM(B ∪ S) = rank(S) then return ∅ ;

4 while |B| > 1 do
5 Let B1 and B2 be a partition of B with

|B1| ≤ |B|/2� and |B2| ≤ |B|/2�
6 if rankM(B1 ∪ S) > rankM(B1) then B := B1

;

7 else B := B2 ;

8 end
9 return: the single element in B

Lemma 10 (Finding Free Vertices). Given matroid M =
(V, I), independent set S ∈ I, and elements B ⊆ V , the
procedure FindFree(M, S,B) (Algorithm 1) outputs in
O(log(|B|) · Trank) time either an element of B∩ freeM(S),
or ∅ if no such element exists.

Proof: Note that freeM(S) ∩ B �= ∅ if and only

if rankM(S ∪ B) > rankM(S). Further, if B1 and B2

partition B and rankM(S ∪ B) > rankM(S) then either

rankM(S ∪ B1) > rankM(S) or rankM(S ∪ B2) >
rankM(S). Consequently, the output of the algorithm is

correct. Since the size of |B| halves in each iteration of

the while loop and the partitions can be done arbitrarily, the

running time is also as desired.

Given an independent set S ∈ I1 ∩ I2 for matroids

M1 = (V, I1) and M2 = (V, I2) and an element a ∈ S,

FindFree gives us an efficient way to find both incoming

and outgoing arcs of a in the exchange graph G(S). Further,

it gives an efficient way to find arcs incident to s and t in the

exchange graph. We leverage this procedure for this purpose

in Section IV.

B. Finding Exchange Vertices using Independence or Rank
Oracle

We show that given a matroid M = (V, I), an indepen-

dent set S ∈ I, an element b ∈ S, and A ⊆ S we can

efficiently find an element a ∈ A that is exchangeable with

b (i.e., S − a + b ∈ I) or conclude that there is none. The

procedure FindExchange, given in Algorithm 2, finds this

element by binary search using an independence oracle. We

repeatedly divide the remaining elements into two halves

and figure out adding which half preserves independence.

Formally, we analyze the performance of this algorithm in

Lemma 10.

Lemma 11 (Finding Exchange Vertices). Given a ma-
troid M = (V, I), independent set S ∈ I, element

Algorithm 2: FindExchange(M = (V, I), S ∈
I, b ∈ S,A ⊆ S)

1 Input: matroid M = (V, I), independent set S ∈ I,

element b ∈ S, and a non-empty subset A ⊆ S
2 Output: a ∈ A such that (a, b) ∈ exchangeM(S) or

∅ if no such element exists

3 if S −A+ b /∈ I then return: ∅ ;

4 while |A| > 1 do
5 Let A1 and A2 be a partition of A with

|A1| ≤ |A|/2� and |A2| ≤ |A|/2�
6 if S −A1 + b ∈ I then A := A1 ;

7 else A := A2 ;

8 end
9 return the unique element of A = {a}

b ∈ S, and a non-empty subset A ⊆ S, the proce-
dure FindExchange(M, S, b, A) (Algorithm 2) outputs in
O(log(|A|) · Tind) time either an element a ∈ A such that
(a, b) ∈ exchangeM(S), or ∅ if no such element exists

Proof: If S−A+b /∈ I then of course no such a exists.

Assume S −A+ b ∈ I.

By considering S ∈ I, we can add |A|−1 elements of A
to S − A + b while preserving independence. In particular,

for any partition of A into nonempty A1, A2, we must

have S − A1 + b ∈ I or S − A2 + b ∈ I. This proves

the correctness of FindExchange(M, S, b, A) which just

repeatedly performs this.

Since we halve the size of A in each iteration, there can

be at most O(log |A|) iterations and the runtime follows.

Given an independent set S ∈ I1 ∩ I2 for matroids

M1 = (V, I1) and M2 = (V, I2) and an element a ∈ S,
FindExchange gives us an efficient way to find both

incoming and outgoing arcs of a in the exchange graph. We

will leverage this procedure for this purpose in Section V

and Section VI, where we will exploit that this procedure

only requires an independence oracle.

In fact, the same procedure works for the rank oracle as

well since it easily implements the independence oracle:

Lemma 12 (Finding Exchange Vertices). Given ma-
troid M = (V, I), independent set S ∈ I, element
b ∈ S, and non-empty subset A ⊆ S, the proce-
dure FindExchange(M, S, b, A) (Algorithm 2) outputs in
O(log(|A|) · Trank) time either a ∈ A such that (a, b) ∈
exchangeM(S), or ∅ if no such element exists.

Proof: A set J is independent iff rank(J) = |J |,
so each independence oracle call can be implemented by

exactly one rank oracle call. Our result then follows directly

from Lemma 11.
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IV. EXACT AND APPROXIMATION ALGORITHMS USING

RANK ORACLE

In this section we consider the matroid intersection prob-

lem in the rank oracle model. We assume throughout this

section that M1 = (V, I1) and M2 = (V, I2) with

n
def
= |V | are given by rank oracles and our goal is to provide

both faster approximate and exact algorithms for finding a

maximum cardinality set in I1 ∩ I2. We split the derivation

of these algorithms into three parts.

In Section IV-A we provide basic primitives for exploring

the exchange graph with a rank oracle. Then, in Section IV-B

we provide the main subroutine for our intersection algo-

rithm which efficiently computes a type of blocking flow

in the exchange graph. Finally, in Section IV-C we show

how to use this blocking flow subroutine to obtain our

desired algorithms for solving matroid intersection with a

rank oracle.

A. Exploring the Exchange Graph with a Rank Oracle

Here we show how to use the algorithms FindFree
(Algorithm 1) and FindExchange (Algorithm 2) of Sec-

tion III to efficiently find edges and distances in the ex-

change graph. First, we provide the algorithm OutArc
(Algorithm 3) which, given any vertex a and set B of the

exchange graph, quickly finds an arc from a to B (if it

exists). This algorithm simply proceeds case by case finding

the possible arcs. If a = s then the arcs can be found simply

by looking for free vertices in B. If a ∈ S then the arcs

can be found simply by looking for vertices that are free

with with respect to S̄. Similarly, if a /∈ S and t ∈ B
then edges to t can be find just by checking if S + a is

independent. Finally, we can use FindExchange to find

arcs from a ∈ S̄ to b ∈ S.

Algorithm 3: OutArc(S ∈ I1 ∩ I2, a ∈ VS , B ⊆
VS − a)

1 Input: independent set S ∈ I1 ∩ I2, vertex a ∈ VS

of the exchange graph, and non-empty subset

B ⊆ VS − a of the exchange graph.

2 Output: b ∈ B such that (a, b) ∈ ES , or ∅ if no

such element exists

3 if a = s then return
FindFree(M1, S,B \ {s, t}) ;

4 if a ∈ S then return
FindFree(M1, S − a,B ∩ S̄) ;

5 if a ∈ S̄, t ∈ B, and S + a ∈ I2 then return t ;

6 if a ∈ S̄ then return
FindExchange(M2, S, a,B ∩ S) ;

7 return: ∅

Lemma 13 (Finding Out Arcs Vertices). Given independent
set S ∈ I1∩I2, a vertex a ∈ VS of the exchange graph, and

non-empty subset B ⊆ S or B ⊆ S̄ of the exchange graph,
the algorithm OutArc(S, a,B) (Algorithm 3) outputs in
O(log(|B|) · Trank) time either b ∈ B such that (a, b) ∈ ES ,
or ∅ if no such element exists.

Proof: The correctness and runtime follow almost im-

mediately from Lemma 10 which provides guarantees on

FindFree, and Lemma 12 which provides guarantees on

FindExchange. To see the correctness, simply consider

the definition of the exchange graph; this algorithm directly

checks for the existence of each type of edge one at a time.

Next, leveraging OutArc (Algorithm 3) and its analysis

in Lemma 13 we show that we can efficiently compute

all distances from s in the exchange graph. The following

algorithm GetDistancesRank (Algorithm 4) achieves

this goal by essentially performing breadth first search (BFS)

in the exchange graph. For the sake of completeness, we

include the details below.

Algorithm 4: GetDistancesRank(S ∈ I1 ∩ I2)

1 Input: independent set S ∈ I1 ∩ I2.

2 Output: d ∈ R
VS such that for a ∈ VS we have

da = d(s, a) the distance between s and a in G(S).
3 Let da =∞ for all a ∈ VS

4 Let Q1 := s,Q−1 := ∅, ds = 0, and

B1 := S\s,B−1 := S̄
5 while Q1 ∪Q2 �= ∅ do
6 Let a ∈ Q1 be the element added to Q1 ∪Q−1

earliest and remove a from Q1

7 while b = OutArc(S, a,B−1) satisfies b �= ∅ do
8 Set db = da + 1, Q−1 := Q−1 + b,

B−1 := B−1 − b
9 end

10 end
11 return: d

Lemma 14 (Finding Distances). Given independent set
S ∈ I1 ∩ I2 the algorithm GetDistancesRank(S)
(Algorithm 3) outputs in O(n log n · Trank) time d ∈ R

VS

such that for a ∈ VS we have da = d(s, a) is the distance
between s and a in the exchange graph G(S).

Proof: The procedure GetDistancesRank simply

computes distances from s using breadth first search. Note

that each vertex is added to Q1 or Q−1 at most once and

removed from B1 or B−1 at most once. Consequently, the

cost of the procedure is simply O(n) plus the cost of O(n)
calls to OutArc. So the correctness and runtime of the

procedure follow from the analysis of OutArc given by

Lemma 13.
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B. Blocking Flow with Rank Oracle

In this section we provide our main DFS-like subroutine

for improving an independent set S ∈ I1 ∩ I2. This

algorithm, BlockFlow (Algorithm 5), efficiently performs

an analog of blocking flow for the exchange graph. This is

essentially a fast rank-oracle implementation of each phase

in Cunningham’s algorithm [1].

Given a set S ∈ I1 ∩ I2 it first computes the dis-

tance from s to every vertex in the exchange graph using

GetDistancesRank. Using these distances, the algo-

rithm subdivides V into sets Li such that Li has all vertices

at distance i from s in the exchange graph of S. The algo-

rithm then uses OutArc to look for a s, a1, a2, ..., adt−1, t
path in G(S) where each ai ∈ Li. If found, the algorithm

augments along such a path removing those vertices and

updating S and looking for a new path. However, whenever

the algorithm concludes that some vertex in a Li is not on

such a path (i.e., a dead end), it removes it from the graph.

By carefully searching for these paths we show that ulti-

mately this algorithm is asymptotically no more expensive

then GetDistancesRank itself and will always find a

larger set in I1 ∩ I2 (if it exists) where the distance from s
to t in the exchange graph has increased.

Algorithm 5: BlockFlow(S ∈ I1 ∩ I2)

1 Input: independent set S ∈ I1 ∩ I2
2 Output: S′ ∈ I1 ∩ I2 such that |S′| > |S| and

dG(S′)(s, t) ≥ dG(S)(s, t) + 1, or S if no such S′

exists.

3 d := GetDistancesRank(S ∈ I1 ∩ I2)

4 if dt =∞ then return S ;

5 For all i ∈ [dt − 1] let Li := {a ∈ V | da = i}
6 Let Ldt

= {t}, � = 0, and a0 = s
7 while � ≥ 0 do
8 if � < dt then
9 if L� = ∅ then return S ;

10 a�+1 = OutArc(S, a�, L�+1)
11 if a�+1 = ∅ then L� := L� − a� and

� := �− 1 ;

12 else � := �+ 1 ;

13 end
14 if � = dt then
15 Augment along the path s, a1, ..., adt−1, t to

obtain S′ ∈ I1 ∩ I2 with |S′| > |S|
16 For all i ∈ [dt − 1] let Li := Li − ai
17 � := 0 and S := S′

18 end
19 end
20 return S

Lemma 15 (Blocking Flow). Given independent set S ∈
I1 ∩ I2 the algorithm BlockFlow (Algorithm 5) outputs

in O(n log n · Trank) time S′ ∈ I1 ∩ I2 such that |S′| > |S|
and dG(S′)(s, t) ≥ dG(S)(s, t)+ 1, or S if no such S′ exists
(i.e., S is the maximum cardinality set in I1 ∩ I2).

Proof: We first analyze the running time. By Lemma 14,

in O(n · Trank log n) the algorithm GetDistancesRank
will ensure that da = dG(S)(s, a) for all a ∈ V . Once these

distances are computed the algorithm spends O(n) time to

subdivide V into the Li.

Further, by Lemma 13 each invocation of OutArc takes

O(Trank log n) time and finds an edge from a� to L�+1 if one

exists. Now, in every iteration of the while loop � is either

increased or decreased. Every time it is decreased, either it

is by a value of 1, in which case a� is removed from L� and

there is no path of the form s, a1, ..., adt−1, t where each

ai ∈ Li and a� is included, or a path is found and all the

vertices on the path are removed. Consequently, there are

only O(n) iterations of the while loop and the total cost of

the algorithm is as desired.

Now we show S′ ∈ I1 ∩ I2. The reasoning in the

preceding paragraph shows that this algorithm simply finds

a s to t path through the Li if there is one, removing those

vertices, and repeating until there are no more paths. Such

augmenting paths are of length dt by design and hence

they are in fact shortest augmenting paths. This implies

S′ ∈ I1 ∩ I2 as augmenting along a shortest augmenting

path preserves independence (Lemma 6). Further there must

be at least one augmentation since GetDistancesRank
computed dt. So |S′| > |S|.

It remains to show dG(S′)(s, t) ≥ dG(S)(s, t) + 1. We

argue that there is no more augmenting path of length dt
and consequently the distance from s to t must increase. To

this end, we must prove that any elements removed from Li

can no longer be on any augmenting path of length dt.
By Lemma 9, distance of every vertex from s and to t

increases monotonically after each such augmentation. We

will heavily rely on this fact. There are two ways a vertex

is removed. In the former case a� has no outgoing arc into

L�+1 and hence is a dead end. In the latter case they are on

an augmenting path of length dt.
For the elements on such a path, since they enter or exit

S after an augmentation, their distances from s and to t
must strictly increase. Consequently they cannot be on such

a path anymore. Further, since monotonicity implies that to

stay on a s to t path of distance dG(S)(s, t) for the original

G their distance from s cannot increase this implies that

every vertex removed is not on a s to t path of length dt.

C. Matroid Intersection with a Rank Oracle

In this section we show how to use BlockFlow (Algo-

rithm 5) from the previous section to obtain our desired rank

oracle based algorithms for solving matroid intersection. All

our algorithms simply apply BlockFlow repeatedly to find
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the desired set. First, we provide our result about exactly

solving matroid intersection with a rank oracle and then we

provide our approximate result.

Both of our algorithms follow the structure of Cun-

ningham’s [1]. The key difference is our fast subroutine

BlockFlow for handling each phase.

Theorem 16 (Exact Rank Oracle Algorithm). Given ma-
troids M1 = (V, I1) and M2 = (V, I2) there is an
algorithm which finds the largest common independent set
of two matroids in O(n

√
r log n · Trank) time where r is the

size of the largest common independent set.

Proof: Our algorithm simply starts with S0 = ∅
and iterates Si+1 := BlockFlow(Si) until Sk+1 = Sk

for some k at which point the algorithm outputs k. By

Lemma 15 we have that Si ∈ I1 ∩ I2 for all I and that

Sk is the desired largest common independent set. Further,

Lemma 15 implies that the running time of this algorithm

is O(nkTrank log n). Consequently, it only remains to bound

k.

Now, Lemma 15 also implies that for all i < k we have

dG(Si+1)(s, t) ≥ dG(Si)(s, t) + 1. So dG(Si) ≥ i for all i ∈
[k]. Further, Corollary 8 implies that |Si| ≥ (1−O(1/i))r.

Consequently, i = Ω(
√
r) implies that |Si| ≥ r − O(

√
r).

Since every iteration of blocking flow increases the size

of |Si| this implies that increasing i by another O(
√
r) is

enough to get a set in I1 ∩ I2 of size r. Consequently,

k = O(
√
r) +O(

√
r) = O(

√
r).

Theorem 17 (Approximate Rank Oracle Algorithm). Given
matroids M1 = (V, I1) and M2 = (V, I2) there is
an algorithm which finds a (1 − ε) approximation to the
largest common independent set of the two matroids in time
O(nε−1 log n · Trank).

Proof: Similar to proof of Theorem 16 our algo-

rithm simply starts with S0 = ∅ and iterates Si+1 :=
BlockFlow(Si). However, here instead of repeating until

Sk+1 = Sk we simply output Sk for k = Θ(ε−1). Again,

by Lemma 15 we immediately have that the runtime is

as desired and we have that Si ∈ I1 ∩ I2 for all I
and dG(Si+1)(s, t) ≥ dG(Si)(s, t) + 1 for all i. Since this

implies dG(Sk) = Ω(ε−1), we have by Corollary 8 that

|Sk| ≥ (1 − ε)r where r is the size of the largest common

independent set of two matroids and we have the desired

result.

In fact, both of our exact and approximate results hold

even if we have access to a rank oracle for one matroid and

access to only an independence oracle for the second. This

is because FindExchange requires only an independence

oracle. We omit the detials.

V. EXACT ALGORITHM USING INDEPENDENCE ORACLE

In this section we show how to solve matroid intersection

exactly using independence oracles. We assume throughout

this section that we are given matroids M1 = (V, I1) and

M2 = (V, I2) with n
def
= |V | and they can only be accessed

via an independence oracle. The goal is to compute the

largest common independent set and the following is our

main result of this section.

Theorem 18. We can find the largest common independent
set of two matroids using O(nr log r · Tind) time.

The run time of this algorithm can be broken into two

components. First, we show in Section V-A that given

any common independent set S, we can find the distance

of every element from s in the exchange graph G(S)
in O(n log r · Tind) time plus an “amortized” cost. This

amortized cost will turn out to be O(log r ·Tind) per element

whenever its distance increases from the sources. In our

final AugmentingPaths algorithm in Section V-C we

will exploit the fact that this increase in distance can happen

at most O(r) times for an element, so the overall amortized

cost over all elements is O(nr log r · Tind).
Second, given the distances in the exchange graph G(S),

in Section V-B we spend O(n log r · Tind) time to find one

augmenting path. Since there can be at most r augmentations

during the entire execution of the algorithm, this second

component will also be at most O(nr log r · Tind).

A. Finding the Distances

We show how to compute all distances from s
in the exchange graph. The following algorithm

GetDistancesIndep (Algorithm 6) achieves this

goal simply by proceeding case by case. Starting with the

source s, it finds the distances by running a variant of

BFS. Going from an odd layer � = 2k + 1 to layer � + 1
is easy as we can just use the FindExchange algorithm.

To go from even layer � = 2k to � + 1, the idea is that

we know up till D� where D� = {a ∈ V |da = �}, and

that we maintain some candidates L�+1 for D�+1 (L�+1

are elements we know at distance at least � + 1 from the

source). Consider any such candidate element v ∈ L�+1. By

one call to FindExchange we can determine if v has a

neighbor in D�. If yes, then we know v ∈ D�+1, otherwise

it is at distance at least �+ 3 so we move it to L�+3.

Lemma 19 (Finding Distances). Given independent set S ∈
I1∩I2 and distance lower bounds d′ ∈ R

VS for G(S) , i.e.,
for a ∈ VS we know d′(s, a) ≤ dG(S)(s, a). The algorithm
GetDistancesIndep(S, d′) (Algorithm 6) outputs d ∈
R

VS in O(
∑

a∈V (1+da−d′a) log r · Tind) time such that for
a ∈ VS we have da = dG(S)(s, a).

Proof: To prove correctness of

GetDistancesIndep, we prove the following invariant

at the beginning of any iteration of the outer while loop.

1) Di ⊆
⋃

j≤i Lj for i > � and L� = D�.

2) d gives correct distances of elements at distance at

most � from the source s.
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Algorithm 6: GetDistancesIndep(S ∈ I1 ∩
I2,d′ ∈ R

VS )

1 Input: independent set S ∈ I1 ∩ I2, lower bounds

d′ ∈ R
VS on distances from s in G(S).

2 Output: d ∈ R
VS such that for a ∈ VS da = d(s, a)

is the distance between s and a in G(S).
3 For all i ∈ [d′t − 1] let Li := {a ∈ V | d′a = i}
4 Let da =∞ for all a ∈ VS

5 Let ds = 0, L0 = {s}, and � = 0
6 while � ≥ 0 do
7 if � is odd then
8 if L�+1 = ∅ then
9 if {a ∈ V with da ≤ �} = V then

dt = �+ 1 ;

10 return d
11 end
12 Let Q := L�+1

13 while L� contains some b do
14 while a = FindExchange(S, b,Q)

satisfies a �= ∅ do
15 Set da = �+ 1 and Q := Q− a
16 end
17 L� := L� − b
18 end
19 L�+1 := L�+1 −Q and L�+3 := L�+3 +Q
20 end
21 if � is even then
22 Let Q := L�+1

23 while Q contains some b do
24 if a = FindExchange(S, b, L�)

satisfies a �= ∅ then Set db = �+ 1 ;

25 else L�+1 := L�+1 − b and

L�+3 := L�+3 + b ;

26 Q := Q− b
27 end
28 end
29 � = �+ 1
30 end

Clearly the invariant implies correctness of the algorithm

when we take � = dG(S)(s, t). The invariant is true for � = 0
from the definition of d′ and as we set ds = 0. To prove the

invariant for � + 1, we separately consider � being even or

odd.

When � is odd the algorithm essentially performs BFS. It

considers vertices in L� one-by-one and check which of the

vertices in L�+1 are reachable. All vertices that we can reach

in L�+1 are definitely at distance � + 1 and the remaining

vertices are at distance at least �+ 3.

When � is even the algorithm considers every vertex in

L�+1 one-by-one and check if it is reachable from L�. All

vertices that we can reach from L� are definitely at distance

�+1, and the remaining vertices are at distance at least �+3
so we update L�+3 accordingly.

To analyze the running time of the algorithm, consider

any element a. Suppose it was initially in Li according to

d′ and is finally at distance j according to d. Observe that

we change the layers of this element at most (j − i)/2�
times. In each of these changes, we spend at most one call

to FindExchange. By Lemma 11 each such call takes

O(Tind log r) time, which means the overall time taken by

the algorithm is O(
∑

a∈V (1 + da − d′a) log r · Tind).

B. Finding One Augmenting Path
Next, given distances d from s to every vertex in the

exchange graph using GetDistancesRank, we show how

to find a single augmenting path in O(nTind) time. Let Di =
{a ∈ V |da = i}.

The idea is to start with � = dt at the sink t and perform

a depth-first search. To go from � to �−1, i.e, given a vertex

v ∈ D�, to find an adjacent vertex in D�−1, we try every

possible vertex in D�−1 and check if it has an edge to v.
Notice that we are guaranteed to find some vertex u ∈ D�−1

with edge (u, v) in G(S) because v ∈ D�. By continuing

this procedure, we are guaranteed to find an augmenting path

of length dt. Since we reach or check each vertex at most

once, the overall running time of finding this augmenting

path will be O(n).

Algorithm 7: OnePath(S ∈ I1 ∩ I2,d ∈ R
VS )

1 Input: independent set S ∈ I1 ∩ I2, d ∈ R
VS such

that for a ∈ VS da = d(s, a) is the distance

between s and a in G(S).
2 Output: S′ ∈ I1 ∩ I2 after performing one

augmentation along shortest path in G(S), or S if

no such augmentation exists.

3 For all i ∈ [dt − 1] let Li := {a ∈ V | da = i}
4 if dt =∞ then return S ;

5 Let � = dt and adt = t
6 while � ≥ 0 do
7 Let Q := L�−1

8 while Q �= ∅ do
9 Let b ∈ Q

10 if S − a� + b ∈ I2 then Set a�−1 = b and

break;

11 else Q := Q− b;
12 end
13 � = �− 1
14 end
15 Augment along the path s, a1, ..., adt−1, t to obtain

S′ ∈ I1 ∩ I2 with |S′| > |S|
16 return S′

Lemma 20 (One Augmentation). Given independent set S ∈
I1 ∩ I2 and distance d ∈ R

VS such that for a ∈ VS , da =
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d(s, a) is the distance between s and a in the exchange
graph G(S), the algorithm OnePath(S, d) (Algorithm 7)
outputs S′ ∈ I1 ∩ I2 with |S′| > |S| in O(n · Tind) time by
performing an augmentation along a shortest path in G(S),
or S if there is no such S′.

Proof: Starting with the sink vertex t, the algorithm

iteratively finds an element a�−1 at distance �−1 from s such

that there is an edge (a�−1, a�). It tries every vertex b ∈ L�−1

and check if there is an edge (b, a). We are guaranteed to

find some b because a� is at distance � from s. The time

taken by this step is O(|L�−1| · Tind). Since
∑

� |L�−1| ≤ n,

the overall time taken by the algorithm is O(n · Tind).

C. The Augmenting Paths Algorithm

Now we use the subroutines from the last section to

find the largest common independent set in any two given

matroids and prove Theorem 18. The AugmentingPaths
algorithms alternates between GetDistancesIndep and

OnePath algorithms to perform augmentations.

Algorithm 8: AugmentingPaths(M1,M2)

1 Input: Two matroids M1 = (V, I1) and

M2 = (V, I2).
2 Output: S ∈ I1 ∩ I2 of maximum size

3 Let S ∈ I1 ∩ I2 be a maximal solution greedily

found

4 Let d ∈ R
VS be defined by ds = 0, dt = 1, dv = 2

for v ∈ S, and dv = 1 for v ∈ S.

5 while 1 ≥ 0 do
6 d = GetDistancesIndep(S, d)
7 if dt �=∞ then S = OnePath(S, d) ;

8 else return S;

9 end

Proof of Theorem 18: Starting with a feasible solu-

tion S, since the AugmentingPaths algorithm finds all

shortest augmenting paths one-by-one, it clearly returns the

optimal solution.

Next we bound the running time. The maximal common

independent set S ∈ I1 ∩ I2 can be greedily computed

by adding an element e to S if S + e ∈ I1 ∩ I2. This

only takes O(n · Tind) time. To bound the overall time taken

by all calls to GetDistancesIndep we use Lemma 19.

Notice that an element a’s distance da only increases during

the execution of the algorithm. Since its final distance is at

most r, we get the overall time is O(nr log r · Tind). Finally,

each call to OnePath takes O(nTind) time by Lemma 20.

Since the total number of augmentations performed using

OnePath is O(r), these calls take O(nr · Tind) time.

Remark. In fact we can achieve a slightly better runtime of

O((nr+r2 log r) ·Tind) time. When computing the distances

from an even layer L2k to an odd layer L2k+1, for each b ∈

L2k+1 we check if b has an incoming edge from L2k using

FindExchange which takes O(log r·Tind) time. Instead of

explicitly finding such an edge, we can simply check if S−
L2k+ b is independent and determine if b has distance 2k+
1. This requires only one independence call. We presented

the slightly slower implementation because it is easier to

understand.

VI. APPROXIMATION ALGORITHM USING

INDEPENDENCE ORACLE

In this section we consider the problem of obtaining a

(1 − ε)-approximate common independent set in two ma-

troids M1 = (V, I1) and M2 = (V, I2) using independence

oracles. Our main result is the following theorem.

Theorem 21. There is an O(n
1.5√log r
ε1.5 ·Tind)-time algorithm

to obtain a (1−ε)-approximation to the matroid intersection
problem.

Overview.: Our algorithm uses Cunningham’s idea of

performing augmentations in phases. Let S denote the

solution of the algorithm at the start of a phase. Denote

the exchange graph of S by G(S). Let the length of the

shortest path in G(S) be 2(� + 1). Let Dk be the sets of

elements at distance k ≤ 2(� + 1) from the source s. Note

by Lemma 19, we can compute these sets in O(n log r ·Tind)
time. The rough idea of Cunningham’s algorithm in a phase

is to perform a maximal collection of augmentations as long

as the shortest path length remains the same. Once such a

maximal collection is augmented, the distance from source

to sink increase by at least 2 and we move on to the next

phase. Note that, by Corollary 8, one obtains a (1 − ε)-
approximate solution after O(1/ε) phases. Thus the total

running time of the algorithm is O(1/ε) times the time
(number of independence oracles) needed to process each

phase. The rest of this section therefore focuses on how to

process a phase fast.

In each phase, Cunningham’s algorithm takes one aug-

menting path at a time. This becomes necessary for any

“augmenting paths” style algorithm because each augmenta-

tion might add or delete several edges in the exchange graph.

For example, taking one augmenting path may destroy

another disjoint augmenting path1. Unfortunately, this means

we cannot beat O(nr) since we don’t know how to do an

augmentation in better than O(n) time. To overcome this

barrier, our main idea is to simultaneously find multiple aug-

menting paths. Of course this needs care as one augmenting

path might destroy another path. Our crucial observation

is that the union of a sequence of consecutive shortest

1As a concrete example, consider the maximum bipartite matching
problem (which is an intersection of two partition matroids) on the
graph being a path {e1, e2, . . . , e6} of length 6. Suppose the current
matching is {e2, e5}. The corresponding exchange graph has two disjoint
augmenting paths {e1, e2, e3} and {e4, e5, e6}. However, if we take both
the augmenting paths simultaneously then the obtained set {e1, e3, e4, e6}
is not a valid matching.
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augmenting paths can be interpreted as “augmentation sets”.

These augmentation sets satisfy many of the properties of an

augmenting path. Although finding a maximal collection of

augmenting sets still takes quadratic time, to obtain a sub-

quadratic algorithm we halt this Augmenting Sets algorithm

early in Section VI-D and combine it with our Augmenting

Path algorithm from Section V.

Before describing our Augmenting Sets algorithm in

Section VI-C, we start by proving some basic facts about

matroids and then studying the properties of augmenting
sets.

A. Facts about Matroids

Fact 22. Let S be a common independent set in two matroids
M1 = (V, I1) and M2 = (V, I2). Let G(S) be the
exchange graph w.r.t S. If there exists a set A ⊆ S and b /∈ S
such that there is no edge of the form (a, b) ∈ E(G(S)) for
any a ∈ A, then S − A + b /∈ I1. Similarly, if there is no
edge of the form (b, a) ∈ E(G(S)) for any a ∈ A, then
S −A+ b /∈ I2.

Proof: Direct from the defintion of matroids.

Fact 23. Let M = (V, I) be any matroid and let S ∈ I
be an independent set. Let X ⊆ S and Y, Z ⊆ S̄ with
Y ∩ Z = ∅ satisfy the following properties:(a)

1) S + Z ∈ I
2) S −X + Y ∈ I
3) Y ∈ span(S), that is, rank(S+Y ) = rank(S) = |S|.

Then, S + Z −X + Y ∈ I.

Proof: By submodularity of rank,

rank(S −X + Y + Z) + rank(S + Y )

≥ rank(S −X + Y ) + rank(S + Y + Z).

Now, rank(S+Y ) = |S| (given as (c)), rank(S−X+Y ) =
|S| − |X| + |Y | (given as (b)), and rank(S + Y + Z) ≥
rank(S + Z) = |S|+ |Z|. Thus, rank(S −X + Y + Z) =
|S| − |X|+ |Y |+ |Z|.

B. Augmenting Sets

Let S be a common independent set in I1 ∩ I2. Recall

the exchange graph G(S) with respect to this common set

S, whose vertex set V (G(S)) = V ∪{s, t}. Also recall that

Di is the set of elements of V which are at distance exactly
i from the source s ∈ G(S). Next, we define the notion

of augmenting sets in the graph G(S). Let 2(�+ 1) be the

length of the shortest path from s to t in the augmenting

graph. We define augmenting sets with respect to this graph

G(S).

Definition 24 (Augmenting Sets). Let S ∈ I1 ∩ I2
and G(S) be the corresponding exchange graph with

shortest path 2(� + 1). A collection of sets Π� :=

I2

I1

I2

I2

I1

A1 B1

A2 B2

A� B�

B�+1

Figure VI.1. Augmenting sets where each Ak ⊆ S and Bk ⊆ S. They
satisfy S −Ak +Bk+1 ∈ I1 and S −Ak +Bk ∈ I2.

(B1, A1, B2, A2, . . . , A�, B�+1) form an augmenting collec-

tion of sets, or simply augmenting sets, in G(S) if the

following conditions are satisfied: (a)

1) For 1 ≤ k ≤ � + 1, we have Ak ⊆ D2k and Bk ⊆
D2k−1.

2) |B1| = |A1| = |B2| = · · · = |B�+1| = w
3) S +B1 ∈ I1
4) S +B�+1 ∈ I2
5) For all 1 ≤ k ≤ �, we have S −Ak +Bk+1 ∈ I1
6) For all 1 ≤ k ≤ �, we have S −Ak +Bk ∈ I2

See Figure VI.1 for an illustration. We let w denote the width
of Π�.

There is some redundancy in the above definition. For

instance, S + B1 ∈ I1 does imply B1 ⊆ D1, the set of

free vertices for S in I1. Nevertheless, we include this in

the definition for better understanding. Observe that if each

|Ak| was of size 1, an augmenting set corresponds to an

augmenting path. Thus, the concept generalizes the concept

of augmenting paths in the exchange graph and in the next

subsection we prove many analogous properties.

1) Properties of augmenting sets: Our first goal is to

show that given an augmenting set Π�, we can do the natural

swap operation to obtain a larger common independent set.

Theorem 25. Let Π� :=
(B1, A1, B2, A2, · · · , B�, A�, B�+1) be the an
augmenting set in the exchange graph G(S) whose
shortest path length is 2(� + 1). Then the set
S′ := S⊕Π� := S+B1−A1+B2−· · ·+B�−A�+B�+1

is a common independent set.

Proof: Let us prove that S′ ∈ I1, and the proof of

S′ ∈ I2 is analogous and omitted.
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The first observation is that there is no edge from a vertex

a ∈ Ai to a vertex b ∈ Bj with j > i+1. The reason is that

Ai ⊆ D2i and Bj ⊆ D2j−1. If j > i+1, then 2j−1 > 2i+1,

and since the Di’s are vertices at distance exactly i, there

can’t be an edge from any vertex in D2i to any vertex in

D2j−1.

First, in the following lemma, we prove S′ − B1 is

independent in M1.

Lemma 26. The set S′−B1 := S−A1 +B2−A2 + · · ·+
B�+1 ∈ I1.

Proof:
For brevity, let us use Ak to denote the union of the sets

A1+A2+ · · ·+Ak and let Bk+1 = B2+B3+ · · ·+Bk+1.

Since all the sets are of equal size, we have |Ak| = |Bk+1|.
The lemma asks us to prove S − A� + B�+1 ∈ I1. The

proof is by induction on k. Note that S −A1 + B2 = S −
A1 +B2 ∈ I1 by the definition of augmenting sets.

Suppose we have already established X := S − Ak +
Bk+1 ∈ I1 and we wish to show S − Ak+1 + Bk+2 ∈ I1.

From definition we know that S −Ak+1 +Bk+2 ∈ I1. So,

Y := S − Ak+1 + Bk+2 − Ak is also in I1. Using this

definition, we want to show Y + Bk+1 ∈ I1.

Now, |X| = |S| while |Y | = |S| − |Ak|. Therefore, using

the exchange principle of matroids on X and Y , we assert

that there exists a set

R ⊆ Ak+1∪Bk+1, |R| = |Ak| = |Bk+1|, s.t. Z := Y+R ∈ I1

If R = Bk+1, we are done. Therefore suppose R �= Bk+1. In

particular, |R ∩ Bk+1| < |Bk+1|. Below we show this leads

to a contradiction, completing the proof of the lemma.

Since Z ∈ I1 with |Z| = |S| and S−Ak ∈ I1, we know

there exists a subset Q ⊆ Z \(S−Ak) such that |Q| = |Ak|
and S−Ak +Q ∈ I1. Staring at Z \ (S−Ak), we get that

Q ⊆ (R ∩ Bk+1) ∪Bk+2.

Now, we use the fact that there is no edge in G(S) from

a ∈ Ak to Bk+2. Using Fact 22, we get that S−Ak+b /∈ I1
for any b ∈ Bk+2. That is, the set Q defined above cannot

intersect Bk+1 and thus must be a subset of R∩Bk+1 itself.

Since |Q| = |Ak| = |Bk+1|, we get |R ∩ Bk+1| ≥ |Bk+1|
which leads to the promised contradiction.

The theorem now follows from the above lemma. Indeed,

the sets B2, B3, . . . , B�+1, and in particular, B2+· · ·+B�+1,

all lie in span(S) in M1. Otherwise, they would lie in the

set D1 (by definition of the exchange graph). Thus, S+B1 ∈
I1, and from the following lemma S′ − B1 = S − (A1 +
A2 + . . . + A�) + (B2 + · · · + B�+1) ∈ I1. The theorem

follows from Fact 23.

In the remainder of the section, we want to show an

equivalence between the family of augmentation sets in

G(S), and a collection of consecutive shortest augmenting

paths in G(S). At a high-level, this equivalence allows us

to run a single phase of Cunningham in “one-shot”. The

following lemma is the main structural fact.

Lemma 27. Let S be a common subset of I and let G(S)
be the corresponding exchange graph. Let X1, X2, . . . , Xk

be disjoint subsets of S, and let Y1, Y2, . . . , Yk be disjoint

subsets of S satisfying: (a)

1) |Xi| = |Yi| for all 1 ≤ i ≤ k.
2) There is no edge from a vertex in Xi to a vertex in Yj

with j > i.
3) S −X1 + Y1 −X2 + Y2 · · · −Xk + Yk ∈ I.

Then, each set S −Xi + Yi ∈ I.

Proof: We first prove it for k = 2.

Let S′ := S−X1+Y1−X2+Y2 ∈ I. Let T = S−X1 ∈ I.

Using the exchange property, we know there exists Q ⊆
Y1+Y2 of size |Q| = |X1| = |Y1|, such that S−X1+Q ∈ I.

Since there is no edge from any vertex in X1 to any vertex

in Y2, using Fact 22 we know that S −X1 + y /∈ I for any

y ∈ Y2. Thus, Q ⊆ Y1. Since |Q| = |Y1|, we get Q = Y1.

That is, S −X1 + Y1 ∈ I.

For the second set, we need to work a bit more. We know

that S−X1−X2 +Y2 ∈ I and S ∈ I. Thus, there exists a

set R ⊆ X1+X2 such that |R| = |X1| and S−X1−X2+
Y2+R ∈ I. If R = X1, we are done. If R �= X1, then since

|R| = |X1|, there must exist an x ∈ X2∩R. That is, the set

T := S−X1−X2+Y2+x ∈ I. Note |T | = |S|− |X1|+1.

Applying the exchange property with the independent set

S − X1, we get the existence of y ∈ T \ (S − X1) such

that S − X1 + y ∈ I. Since X2 ⊆ (S − X1), we get that

y �= x. In particular, y ∈ Y2. But, as established before,

S −X1 + y /∈ I for all y ∈ Y2 (since there is no edge from

X1 to Y2).

Now we handle the general case k > 2 by applying the

result for k = 2 twice. By considering X ′
1 = X1 + . . . +

Xi, X
′
2 = Xi+1 + ... + Xk (and set Y ′1 , Y

′
2 similarly) we

have S−X ′
1+Y ′1 ∈ I. Finally, by considering X ′′

1 = X ′
1−

Xi, X
′′
2 = Xi we have S −Xi + Yi ∈ I.

Next, we define the notion of consecutive shortest aug-

menting paths. Again, each phase of Cunningham’s algo-

rithm finds such an ordered collection.

Definition 28. Let S be a common independent set in I1 ∩
I2. Let G(S) be the exchange graph with shortest path 2(�+
1). Let P = (p1, p2, . . . , pk) be an ordered collection of

consective shortest augmenting paths if (a) each pi is of

length 2(� + 1), and (b) pi is a valid path in the exchange

graph G(Si) where Si is obtained after augmenting along

the paths p1, . . . , pi−1 in that order.

Theorem 29. Let S be a common independent set in I1 ∩
I2. Given an ordered collection P of consecutive shortest
augmenting paths in G(S), we can find an augmenting set
Π� of width |P|.

Proof: This follows almost immediately from

Lemma 27. Let |P| = w. Let the path

pi := (s, b
(i)
1 , a

(i)
1 , b

(i)
2 , · · · , b(i)� , a

(i)
� , b

(i)
�+1, t) where
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b
(i)
k ∈ D2k−1 and a

(i)
k ∈ D2k.

Define Xk := {a(1)k , a
(2)
k , · · · , a(w)

k } and Yk =

{b(1)k+1, b
(2)
k+1, · · · , b

(w)
k+1}. Since augmenting consecutive

shortest paths preserve independence, and since augmen-

tations don’t introduce new shortcuts by the monotonicity

lemma (Lemma 9), we see that the sets satisfy the conditions

of Lemma 27 with I = I1.

Similary, for I2 we consider Xk := {a(1)k , a
(2)
k , · · · , a(w)

k }
and Yk = {b(1)k , b

(2)
k , · · · , b(w)

k } instead.

Next, we show that any augmenting set of width w
can be peeled out into a sequence of consecutive shortest

augmenting paths. We start with a few definitions.

Definition 30. Let Π� := (B1, A1, B2, · · · , B�, A�, B�+1)
be an augmenting set in G(S). Let S′ = S ⊕ Π� be as

defined in Theorem 25. We denote the exchange graph of

G(S′) as G(S)|Π�.

Definition 31. Let S be a common independent set and

G(S) be the exchange graph with shortest path 2(� +
1). Let Π� = (B1, A1, B2, · · · , B�, A�, B�+1) and Π̃� =
(B̃1, Ã1, B̃2, · · · , B̃�, Ã�, B̃�+1) be two augmeting sets in

G(S). We say Π̃� contains Π� if Bk ⊆ B̃k and Ak ⊆ Ãk,

for all k. We use the notation Π� ⊆ Π̃� to denote this.

Definition 32. Let S be a common independent set and

G(S) be the exchange graph with shortest path 2(� + 1).
Let Π� ⊆ Π̃� be two augmenting sets, the former contained

in the latter. Then we use Π̃� \ Π� to denote the sequence

(B̃1 \B1, Ã1 \A1, · · · , B̃�+1 \B�+1).

Theorem 33. Let Π� ⊆ Π̃� be two augmenting sets in G(S).
Then, Π̃� \Π� is an augmenting set in G(S)|Π�.

Proof: Let Pk := Ãk \ Ak and let Qk = B̃k \ Bk. Let

S′ = S +B1 −A1 +B2 −A2 + · · ·+B�+1. Note that this

is S⊕Π�. For brevity, let G′ := G(S′) = G(S)|Π�. Let the

layers of G′ be denoted as D′1, D
′
2, . . .. Furthermore, since

Π̃� is an augmenting set, we get that

S′ +Q1 − P1 +Q2 + · · ·+Q�+1 ∈ I1 ∩ I2

as well.

Using the above, we can show that each Pk ⊆ D′2k and

Qk ⊆ D′2k−1. For instance, we can show S′ + Q1 ∈ I1
(which would put Q1 ⊆ D′2k−1). To see this, let P := P1+
· · ·+P�+1 and Q = Q2 + · · ·+Q�+1. Note, |P| = |Q| and

S′+Q1−P+Q ∈ I1. Now observe Q∩D′1 = ∅; this follows

from Cunningham’s monotonicity lemma (Lemma 9). Thus,

Q ∈ span1(S
′). Thus, the independence of S+Q1−P+Q

implies2 S + Q1 ∈ I1. For the general case one proceeds

inductively. This proves condition (a) of the augmenting set

definition.

2|S| + |Q1| = rank1(S + Q1 − P + Q) ≤ rank1(S + Q1 + Q) ≤
rank1(S +Q1)

Condition (b) holds since Π̃ and Π were valid augmenting

sets. Condition (c),(d) is proved as above (the base case was

(c)).

Finally, condition (e) and (f) follow from Lemma 27. To

see this, we need the observation that there is no edge from

Pi to Qj for j > i+ 1 and from Qj to Pi for i > j, in G′.
To see this, this was true in G(S) (shortest path property).

And since the levels do not change, and the monotonicity

lemma (Lemma 9) this continues to hold. Now Lemma 27

(with Xi’s and Yi’s properly defined) implies conditions (e)

and (f).

Thus, Π̃�\Π� is a valid augmenting set in G′ = G(S)|Π�.

Now we are armed to prove the following theorem.

Theorem 34. Let S ∈ I1 ∩ I2 and G(S) be the exchange
graph. Let Π� be an augmenting set of width w. Then there
exists an ordered collection P of w consecutive shortest
augmenting paths.

Proof: We first show there is one shortest augmenting

path hitting every set of Π� exactly once. We augment on it

and apply Theorem 33.

Let Π� = (B1, A1, B2, . . . , B�, A�, B�+1). We claim there

is a path p = (b1, a1, b2, . . . , b�, a�, b�+1) such that bk ∈ Ak

and ak ∈ Ak. Indeed, to prove this it suffice to show that

(i)

1) for k = 1, . . . , �, for any b ∈ Bk, there is an edge

(b, a) ∈ G(S) to some a ∈ Ak

2) for k = 1, . . . , �, for any a ∈ Ak, there is an edge

(a, b) ∈ G(S) to some b ∈ Bk+1.

For (i), notice that S − Ak + Bk ∈ I2 (condition (f) of

augmenting set), and so S−Ak+b ∈ I2. The contrapositive

of Fact 22 implies there must be an edge from b to some

vertex in Ak.

For (ii) notice that since S−Ak+Bk+1 ∈ I1 (condition (e)

of augmenting set), for any a ∈ Ak, we have rank1(S−a+
Bk+1) ≥ rank1(S−Ak+Bk+1) = |S| since |Ak| = |Bk+1|.
Since rank1(S − a) = |S| − 1, by exchange property of

matroids there must exist b ∈ Bk+1 such that S−a+b ∈ I1.

That is, (a, b) ∈ G(S).
To complete the proof of the theorem, we observe that

augmenting paths are width-1 augmenting sets. We apply

Theorem 33 to get w consecutive paths.

For our algorithms we will not be interested in finding ar-

bitrary augmenting sets, but in finding maximal augmenting

sets.

Definition 35 (Maximal Augmenting Sets). Let S ∈ I1 ∩
I2 and let G(S) be the corresponding exchange graph with

shortest augmenting path of length 2(�+1). An augmenting

set Π� is called maximal if there exists no other augmenting

set Π̃� containing Π�.

Theorem 36. Let S ∈ I1 ∩ I2 and let G(S) be the
corresponding exchange graph with shortest augmenting
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path of length 2(� + 1). Let Π� be a maximal augmenting
set. Then there is no augmenting path of length 2(�+ 1) in
G(S)|Π�.

Proof: This is a corollary of Theorem 29 and The-

orem 34. Let P be the collection of paths obtained by

invoking Theorem 34 on Π�. If there is another shortest

augmenting path p ∈ G(S)|Π�, then (P, p) is an ordered

collection of consecutive shortest augmenting paths in G(S).
Thus Theorem 29 invoked on this returns Π̃� which contains

Π�.

The above lemma shows that a single phase of Cunning-

ham’s algorithm corresponds to finding maximal augmenting

sets. This is what we do in Section VI-C, but we need one

more concept before: partial augmenting sets.

2) Partial Augmenting Sets: In order to find maximal

augmenting sets, our algorithm will go via objects which are

not augmenting sets at all. These are what we call partial

augmenting sets, and the final algorithm will work work by

incrementally finding better partial augmenting sets, from

which augmenting sets can be extracted.

Definition 37 (Partial Augmenting Sets). Let S ∈ I1 ∩
I2 and G(S) be the corresponding exchange graph with

shortest path 2(� + 1). A collection of sets Φ� :=
(B1, A1, B2, A2, . . . , A�, B�+1) form a partial augmenting
set if the following conditions are satisfied.

(a)

1) For 1 ≤ k ≤ � + 1, we have Ak ⊆ D2k and Bk ⊆
D2k−1.

2) |B1| ≥ |A1| ≥ |B2| ≥ · · · ≥ |B�+1|.
3) S +B1 ∈ I1
4) S +B�+1 ∈ I2
5) For all 1 ≤ k ≤ �, we have S −Ak +Bk+1 ∈ I1.

6) For all 1 ≤ k ≤ �, we have rank2(S − Ak + Bk) =
rank2(S).

As in Definition 31, we say Φ� ⊆ Π� if each “coordinate”

of Φ� is a subset of the corresponding “coordinate” of Π�.

The following lemma gives an efficient algorithm to convert

any partial augmenting set Φ� into a true augmenting set

Π�. For now, the reader should consider Π′� to be a string of

empty sets; we will invoke this lemma later with non-empty

Π′�.

Lemma 38. Given a partial augmenting set
Φ� = (B1, A1, B2, · · · , B�, A�, B�+1) that contains
an augmenting set Π′� = (B′1, A

′
1, . . . , B

′
�), in

O(n · Tind)-time we can find an augmenting set
Π̃� = (B̃1, Ã1, B̃2, · · · , B̃�, Ã�, B̃�+1) such that

(a)
1) Π′� ⊆ Π̃� ⊆ Φ�, and
2) B̃�+1 = B�+1.

Proof: We work backwards from B̃�+1 = B�+1.

Let w = |B�+1|. Suppose we have constructed sets

B̃�+1, Ã�, · · · , B̃k+1. Now, since S − Ak + B̃k+1 ⊆ S −
Ak + Bk+1, and since the latter lies in I1 (property (e) of

partial augmenting sets), we have S−Ak + B̃k+1 ∈ I1. We

also have S − A′k + B′k ∈ I1. Therefore, by the exchange

property, we can find a set Ãk of size |Ãk| = |B̃k+1| = w
such that A′k ⊆ Ãk ⊆ Ak and S − Ãk + B̃k+1 ∈ I1. The

time taken to do so is O(|Ak|) independence-query oracles.

Now, suppose we have constructed B̃�+1, Ã�, · · · , Ãk

with the desired property. Then since Ãk ⊆ Ak and

rank2(S −Ak +Bk) = rank2(S), we get rank2(S − Ãk +
Bk) ≥ rank2(S). Also, since S − A′k + B′k ∈ I2, we get

S− Ãk +B′k ∈ I2 as well. Thus, we can select a subset B̃k

such that B′k ⊆ B̃k ⊆ Bk and S − Ãk + B̃k ∈ I2 and has

size |S|. That is, |B̃k| = |Ãk| = w. The time taken to find

this is O(|Bk|) independence oracle queries.

The total running time is
∑

k O(|Ak| + |Bk|) many

independence oracle calls which is O(n · Tind)-time.

Now we are ready to prove a key property which relates

the width of any two maximal augmenting sets. This will be

crucial to give the subquadratic approximation algorithm in

Section VI-D.

Lemma 39. Let S ∈ I1∩I2 and G(S) be the corresponding
graph with shortest augmenting path of length 2(�+1). Let
Π� and Π̃� be two maximal augmenting sets of width w and
w̃. Then, w̃ ≤ (2�+ 4)w.

Proof: Let Π� = (B1, A1, B2, . . . , A�, B�+1). Let Π̃� =
(Q1, P1, Q2, . . . , P�, Q�+1). Note |Ak| = |Bj | = w and

|Pk| = |Qj | = w̃. For the sake of contradiction, assume

w̃ > (2�+ 4)w.

We construct partial augmenting sets Φ� =
(B′1, A

′
1, · · · , A′�, B′�+1) such that (i) Ak ⊆ A′k ⊆ Ak + Pk,

(ii) Bk ⊆ B′k ⊆ Bk +Qk, (iii) |A′k| > (2�+ 3− 2k) · |Ak|,
and (iv) |B′k| > (2�+4−2k)·|Bk|, and (v) |B′�+1| > |B�+1|.
Note that the last point would imply B�+1 is a strict subset

of B′�+1. From Lemma 38, we would get an augmenting set

Π′� which would contain Π�, contradicting the maximality

of the latter.

Now we describe the construction of Φ�.

To construct B′1, we start with B1 and keep adding elements

of Q1 to it maintaining S + B′1 ∈ I1. By the matroid

exchange property, we will add |Q1 \ B1| such elements

giving |B′1| = |Q1| = w̃ > (2� + 4)w. We satisfy (i), (iv),

and property (c) of the partial augmenting set.

Suppose we have constructed B′1, A
′
1, B

′
2, ..., B

′
k as de-

sired. We need to construct A′k. Since S−Ak+Bk ∈ I2, we

get S− (Pk +Ak)+Bk ∈ I2. We also have S−Pk+Qk ∈
I2. As B′k ⊆ Bk+Qk, we get that S−Pk+(B′k\Bk) ∈ I2.

By the exchange property, there must exist a Z ⊆ B′k \Bk

such that S − (Pk +Ak) +Bk + Z ∈ I2 and

|Bk + Z| = |B′k\Bk| ≥ |B′k| − |Bk|
> (2�+ 4− 2k)|Bk| − |Bk| = (2�+ 3− 2k)w
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where the inequality follows from (iv) above (which we

assume we have maintained so far). Now since S − Ak +
Bk ∈ I2, there is some A′k of size |Bk+Z| s.t. Ak ⊆ A′k ⊆
Ak+Pk+1 and rank2(S−A′k+Bk+Z) = rank2(S). Thus,

property (d) of the partial augmenting set is satisfied, and

so is property (iii).

Now, suppose we have constructed B′1, A
′
1, B

′
2, ..., A

′
k as

desired. We need to construct B′k+1. As S−Pk+Qk+1 ∈ I1,

there must exist some Z ⊆ Qk for which S −A′k +Z ∈ I1
and

|Z| = |A′k ∩ Pk| ≥ |A′k| − |Ak|
> (2�+ 3− 2k)|Ak| − |Ak| = (2�+ 2− 2k)w.

Now consider S−A′k+Bk+1 which is independent since

Ak ⊆ A′k. We can then find B′k+1 of size |Z| s.t. Bk+1 ⊆
B′k+1 ⊆ Bk+1 + Z and S − A′k + B′k+1 ∈ I1. Note that

property (iv) is satisfied for |B′k+1|. And the above satisfies

property (e) of the partial augmenting sets.

Finally, we need to satisfy condition (c), that is, S +
B′�+1 ∈ I2. After the above procedure, we do get B�+1 ⊆
B′�+1 ⊆ B�+1 + Q�+1 satisfying every property except

perhaps this one. Also, |B′�+1| > (2�+4−2(�+1))w = 2w.

Now, since S+Q�+1 ∈ I2, we know that B′�+1\B�+1 ∈ I2.

Thus, we keep deleting items from B′�+1 such that we get

S+B′�+1 ∈ I2. We will delete at most |B�+1| = w elements.

The final B′�+1 will satisfy condition (c) and |B′�+1| > w,

that is, property (v). This completes the proof.

C. The Augmenting Sets Algorithm

1) An Analogy and High level idea: Before presenting

our augmenting sets algorithm, we provide an analogy to

finding a maximal collection of disjoint shortest augmenting

paths. Recall that the Hopcroft-Karp idea is inapplicable

because augmenting such a collection do not necessarily

preserve independence. However, let us pretend for the

moment that this was indeed our task. Our algorithm in the

next section is in fact inspired by this.

Suppose that we have constructed internally disjoint par-

tial augmenting paths from the source. Our goal is to extend

them all the way to the sink. Let Ak ⊆ D2k be the sets of

vertices on the current augmenting sets in D2k. Define Bk

similarly. We then have |B1| ≥ |A1| ≥ ... ≥ |B�+1|.
Let us focus on Ak and Bk+1. Because they represent

the vertices on partial augmenting paths, currently we have

a matching between a subset of Ak and Bk+1. A natural idea

is then to match more vertices of D2k+1 with the unmatched

vertices of Ak. Let B ⊆ D2k+1 be such a maximal subset,

and A ⊆ Ak be the vertices that are still not matched. Such a

maximal set requires only O(|D2k+1|) independence oracle

calls.

The crucial observation is that all of A’s outgoing edges

go to Bk+B as B is maximal. However, Bk+B is already

fully matched; so A is essentially useless as its vertices

would never get matched and can be removed from future

consideration. It is easy to verify that a total of |Bk| − |Ak|
elements are matched or become useless.

A similar operation exists for extending the matching

between Bk and Ak+1. By repeating these operations we

will eventually find a maximal collection of disjoint shortest

augmenting paths. Our treatment of this similar scenario

forms the basis of the augmenting sets algorithm given

below.
2) The Detailed Algorithm: In this section we describe

a (slow) O(n2 · Tind)-time algorithm to find a maximal

augmenting set. It is an iterative algorithm which finds “bet-

ter” partial augmenting sets in each iteration. The algorithm

assumes access to the layers Dk’s of the current exchange

graph G(S) which has shortest path length 2(�+ 1).
We maintain three types of elements in each layer :

selected elements denoted as Ak, Bk, removed elements

denoted as Rk, and fresh Fk. The selected elements Ak ⊆
D2k, Bk ⊆ D2k−1 form a partial augmenting set, and

our algorithm incrementally finds better and better partial

augmenting sets with larger B�+1. The removed elements

Rk ⊆ Dk are deemed to be useless for finding better partial

augmenting sets. Finally, fresh elements Fk ⊆ Dk are those

that are neither selected nor removed. The type of an element

can change from fresh to selected and from selected to
removed but never the other way.

Initially, B1 is a maximal subset of S that can be added

to S while being independent in I1. Subsequently, F1 =
D1\B1 and R1 = ∅. For 2 ≤ k ≤ 2� + 1, we initialize

sets Ak, Bk, Rk = ∅ and Fk = Dk. For convenience we set

A0 = R0 = F0 = D0 = ∅ and Al+1 = R2l+2 = F2l+2 =
D2l+2 = ∅.

We maintain the following invariants. It is easy to verify

that the initial conditions satisfy them.
(a)

1) For 1 ≤ k ≤ �, we have S −Ak +Bk+1 ∈ I1.

2) rank2(S −Ak +Bk) = rank2(S).
Equivalently, ∃B ⊆ Bk of size |B| = |Ak| for which

S −Ak +B ∈ I2.

3) For 1 ≤ k ≤ �, for any X ⊆ Bk+1+F2k+1 = D2k+1−
R2k+1, if S−(Ak+R2k)+X ∈ I1 then S−Ak+X ∈
I1.

4) R2k−1 ∈ span2(S − (D2k −R2k) +Bk)

Invariants (a) and (b) ensure that the selected sets Φ� :=
(B1, A1, B2, · · · , A�, B�+1) form a partial augmenting set.

Invariant (c) essentially says that if R2k+1 is “useless” (note

X∩R2k+1 is empty), so is R2k. On the other hand, Invariant

(d) says that if R2k is “useless”, so is R2k−1. Invariants (c)

and (d) are important for certifying that removed elements

do not need be considered at all (see Lemma 44).
We are ready to present Refine, which consists of a

series of operations on the pairs (Ak, Bk+1) and (Bk, Ak)
inspired by the matching analogy given in Section VI-C1.

For (Ak, Bk+1), we extend Bk+1 as much as possible while

respecting Invariant (a) (Lines 1-2 of Refine1(k)). We
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then identify the “matched” vertices in Ak and remove the

ones still not matched (Lines 3-4 of Refine1(k)).
Similarly, for (Bk, Ak), we find a maximal subset of Bk

that can be “matched” and remove the rest (lines 1-2 of

Refine2(k)). We then find the “endpoints” in Ak that are

“matched” to Bk (lines 3-4 of Refine2(k)).

Algorithm 9: Refine1(k)
1 Find maximal B ⊆ F2k−1 s.t.

S −Ak +Bk+1 +B ∈ I1
2 Bk+1 ←− Bk+1 +B,F2k−1 ←− F2k−1 −B
3 Find maximal A ⊆ Ak s.t. S −Ak +Bk+1 +A ∈ I1
4 Ak ←− Ak −A,R2k ←− R2k +A

Algorithm 10: Refine2(k)
1 Find maximal B ⊆ Bk s.t.

S − (D2k −R2k) +B ∈ I2
2 R2k−1 ←− R2k−1 +Bk\B,Bk ←− B
3 Find maximal A ⊆ F2k s.t.

S − (D2k −R2k) +Bk +A ∈ I2
4 Ak ←− Ak + F2k\A,F2k ←− A

Algorithm 11: Refine
1 for k = 0, 1, · · · , l do
2 Refine1(k)

3 Refine2(k)

4 end
5 Refine1(0)

It is somewhat strange that Refine ends with

Refine1(0) which is indeed redundant. However it makes

the analysis of the combined algorithm in the next subsection

less cumbersome (specifically Lemma 47).

The next three lemmas study properties of Refine1
and Refine2 which will be crucial for analyzing the

performance of our main subroutine Refine.

Lemma 40. After Refine1(k) is run, we have |Ak| =
|Bk+1|. After Refine2(k) is run, we have |Bk| = |Ak|.

Proof: We prove the first statement; the second state-

ment’s proof is analogous. Let Aold
k and Bold

k+1 be the sets

before Refine1(k) is called. In Line 2, we set Bk+1. At

this point, let T := S − Aold
k + Bk+1; we know T ∈ I2.

We also know rank1(T + Aold
k ) = rank1(S + Bk+1) =

|S| since Bk+1 is in the span of S. This implies, the

maximal set A added in Line 4 leads to Ak such that

rank1(S − Ak + Bk+1) = |S|, implying |Ak| = |Bk+1|.

Lemma 41 (Properties of Refine1). Let Aold
k , Bold

k+1 be
the sets (Ak, Bk+1) before Refine1(k) is called. After the
call, all four invariants are preserved. Moreover, for k ≥ 1 a
total of |Aold

k | − |Bold
k+1| elements which were formerly fresh

are now selected, or formerly selected but now removed.

Proof: After running Refine1(k), we have |Ak| =
|Bk+1| by Lemma 40. Also note that |Bk+1| − |Bold

k+1|
elements are selected and |Aold

k | − |Ak| are removed. Thus

a total of |Aold
k | − |Bold

k | elements change status.

Invariant (a) is true by design.

Invariant (b) remains true because Bk is unchanged and

Ak only loses elements.

Invariant (d) remains true because R2k is only increased,

and thus its span can only become bigger.

For Invariant (c), first notice Ak + R2k = Aold
k + Rold

2k .

Since the invariant held before run, we know for any X ⊆
D2k+1 −R2k+1, if S − (Aold

k +Rold
2k ) +X ∈ I1, then S −

Aold
k +X ∈ I1. That is, S − (Ak +R2k) +Rold

2k +X ∈ I1.

Our goal is to show that S −Aold
k +A+X ∈ I1.

Since S − Aold
k + A + Bk+1 ∈ I1, we can find Ā ⊆ A

and B̄ ⊆ Bk+1\X s.t. S − Aold
k + Ā + X + B̄ ∈ I1 and

|Ā|+ |B̄| = |A|+ |Bk+1| − |X|. Now if Ā �= A then |B̄| >
|Bk+1| − |X| and hence X + B̄ ⊆ D2k+1−R2k+1 has size

bigger than |Bk+1|. But this contradicts the fact that Bk+1 ⊆
D2k+1−R2k+1 is maximally independent in S−Aold

k . Thus

we must have Ā = A and S −Aold
k +A+X ∈ I1.

Lemma 42 (Properties of Refine2). Let Aold
k , Bold

k be
the (Ak, Bk) before call to Refine2(k). After the call, all
four invariants are preserved. Moreover, for k ≤ � a total of
|Bold

k | − |Aold
k | elements which were formerly fresh but are

now selected, or were formerly selected but now removed.

Proof: After running Refine2(k), we have |Ak| =
|Bk| by Lemma 40. Also note that |Bold

k | − |Bk| elements

removed and |Ak| − |Aold
k | selected for a total of |Bold

k | −
|Aold

k | elements changing status.

Invariants (a) and (c) remain true because Ak−1 is un-

changed and Bk only loses elements. For Invariant (b), ob-

serve that Refine2 simply finds a maximally independent

subset of S−(D2k−R2k)+Bold
k +F old

2k = S−Aold
k +Bold

k

so rank2(S −Ak +Bk) remains unchanged.

Invariant (d) remains true essentially by design. Refine2
finds a base of S − (D2k −R2k) +Bold

k and moves any of

element not in the base into R2k−1. Those elements are in

the span by definition.

Now by summing over all k in the last two lemmas, we

get the following corollary.

Corollary 43. After applying Refine, at least a total of
|Bold

1 |−|Bold
�+1| elements are formerly fresh but now selected

or formerly selected but now removed.

Proof: This essentially follows from the last two lem-

mas. Readers may notice that the sum does not exactly
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telescope because at the time Refine2(k) is applied, Bk

has been modified by Refine1(k). However this is okay

as Refine1(k) only adds elements to the old Bk. Same for

Refine2(k) which only adds elements to Ak+1 and can

only help Refine1(k + 1).
Using the properties established above, we show how

Refine can be repeatedly used to find maximal augmenting

sets.

Lemma 44. Suppose we run Refine until no more ele-
ment changes its type. At this point, the collection Π� =
(B1, A1, B2, A2, · · · , A�, B�+1) is a maximal augmenting
set.

Proof: For the sake of contradiction, assume there exists

Π̃� containing Π�. Then by Theorem 33 and Theorem 34,

there is a sequence of shortest augmenting paths in G(S)|Π�.

Taking the first path in the sequence, we have a shortest

path (b1, a1, b2, a2, . . . , a�, b�+1) in G(S)|Π�. In particular,

ak /∈ Ak and bk /∈ Bk for any k.

We claim that all ak, bk must have been removed by

Refine. This would be a contradiction because an element

in D2�+1 is removed only if it is in span2(S +B�+1). But

in that case b�+1 would not be in D′2�+1 of G′ = G(S)|Π�.

We prove this claim by induction.

First, notice b1 cannot be fresh. Otherwise b1 would have

been selected by Refine since S + B1 + b ∈ I1. So b1
must have been removed by Refine. Now we have two

cases.

Suppose b1, a1, ..., bk have been removed. We need to

show ak is removed. Suppose not, and suppose ak ∈ F2k.

Since S − (Ak + ak) + Bk + bk ∈ I2, S − (D2k −
R2k) + Bk + bk ∈ I2. But this is a contradiction as

bk ∈ R2k−1 ⊆ span(S −D2k +R2k +Bk).
Now, suppose b1, a1, ..., ak have been removed. We need

to show bk+1 is removed. Suppose not, and suppose bk+1 ∈
F2k+1. Then X = Bk+1 + bk+1 ⊆ Bk+1 + F2k+1. Since

S−Ak−ak+X ∈ I1 and ak ∈ R2k, S−Ak−R2k+X ∈ I1.

Invariant (c) then implies S − Ak + X ∈ I1, which is a

contradiction since |X| = |Ak| + 1 and X ∈ span1(S)
(because k + 1 > 1).

Lemma 45. Refine1(k) makes O(|D2k| + |D2k+1|) in-
dependence oracle calls. Refine2(k) makes O(|D2k| +
|D2k−1|) independence oracle calls. Refine takes O(n ·
Tind)-time.

Proof: Adding maximal L ⊆ M to an independent

set N s.t. N + L is still independent requires only adding

elements of L one at a time. This establishes the run-

time of Refine1 and Refine2. Now Refine takes∑
k O(|D2k|+ |D2k+1|)+O(|D2k|+ |D2k−1|) = O(n) time

since n ≥∑
k |Dk|.

At this point, we can get an O(n2/ε·Tind)-time algorithm.

The algorithm runs in phases; in each phase the shortest

augmenting path length of the exchange graph goes up

by ≥ 2. In each phase, we use Refine till we find the

maximal augmenting set as given by Lemma VI-C. Since

each element can change its type at most twice, we know

that we need only O(n) runs of Refine in each phase.

By Lemma 45, Refine makes O(n) independence oracle

calls. Thus, each phase takes O(n2) independence oracles.

Finally, to get an (1 − ε)-approximation, we need only

O(1/ε) phases, and thus the total time of this algorithm

is a (not too impressive) O(n2/ε · Tind)-time. We improve

this with a hybrid approach in the next section.

D. Going Subquadratic by Combining Augmenting Sets and
Augmenting Paths

We obtain a faster algorithm by exploiting Lemma 39.

The algorithm is parametrized by an integer p which we set

in the end. The algorithm runs in phases. At the beginning

of a phase �, the algorithm first invokes Algorithm 4 to

get the layers D1, D2, ..., D2�+1 in O(n log r · Tind) time

(Lemma 19). Throughout a phase � if S is the current solu-

tion, then the exchange graph G(S) has shortest augmenting

path length 2(�+1). After a phase, the shortest augmenting

path length is ≥ 2(�+ 3). We run for O(1/ε) phases.

In phase �, for � ≤ O(1/ε), we run the following routine.

Algorithm 12: Hybrid(p)
1 Run Refine until |B1| − |B�+1| ≤ p. Initially, the

LHS can be as large as n.

2 Given the partial augmenting set Φ� at this point,

find an augmenting set

Π� = (B′1, A
′
1, · · · , B′�+1) ⊆ Φ� satisfying

B′�+1 = B�+1. This is done using the algorithm

described in Lemma 38.

3 Find augmenting paths in G(S)|Π� as in Section V

till the shortest path length changes.

To analyze the running time of the hybrid algorithm, we

go through the following steps. First, we show (Lemma 46)

Line 1 takes O(n2/p)-independence oracle calls. This is

similar to the argument in the last paragraph of the previous

section. Second, we show (Lemma 47) that Π� found in

Line 2 is contained in a maximal augmenting set Π̃� of width

≤ |B1|. Note that the width of Π� is |B�+1|. Thus, the width

of Π̃� \ Π� in G(S)|Π� is ≤ |B1| − |B�+1| ≤ p (because

of Line 1). Lemma 39 then implies any augmenting set in

G(S)|Π� is of size ≤ (2�+4)p. Which means, in Line 3 we

need to make at most these many augmentations. Since each

augmentation takes Õ(n) independence oracle calls, Line 3

will run in time Õ(np� · Tind). By selecting p ≈ √n, we get

the desired result.

Lemma 46. Line 1 of the Hybrid algorithm takes O(n2/p ·
Tind)-time.
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Proof: By Corollary 43, each call to Refine before

Line 1 terminates changes the type of at least |B1| −
|B�+1| > p elements. Since there are n elements and their

type can change only twice, Refine can only be run for

O(n/p) times. By Lemma 45, each run of Refine makes

O(n) independence oracle calls. The lemma follows.

Lemma 47. Let Φ� = (B1, A1, B2, . . . , B�+1) be the partial
augmenting sets obtained by running Refine for some
number of times. Let Π� ⊆ Φ� be an augmenting set. Then,
there is a maximal augmenting set Π̃� containing Π� and
the width of Π̃� is at most |B1|.

Proof: Given Π�, we show a way of applying Refine
to get a maximal augmenting set as in Lemma 44, such that

no element in Π� is removed. Since B1 was a maximal (this

is why we run Refine1(0) in the end) set of elements that

can be added while preserving independence, the maximal

augmenting set found can’t have width more than |B1|. This

will prove the lemma.

We now show how Refine1 and Refine2 can be

implemented without removing any elements from Π�. Let

Π� = (B′1, A
′
1, . . . , A

′
�, B

′
�+1).

Refine1(k) finds a maximal A ⊆ Ak s.t. S − Ak +
Bk+1 + A ∈ I1. Since S − A′k + B′k+1 ∈ I1, A can be

chosen so that A∩A′k = ∅ and consequently no element of

A′k is removed.

Refine2(k) finds a maximally independent subset of

S−D2k+R2k+Bk+F2k = S−Ak+Bk by adding elements

of Bk first. Since S −D2k +R2k ⊆ S −Ak ⊆ S −A′k and

S − A′k + B′k ∈ I2, B can be chosen so that B′k ⊆ B and

consequently no element of B′k is removed. This finishes the

proof of the lemma.

We now bound the running time of our algorithm.

Theorem 48. Phase � runs in O((n2/p+ np� log r) · Tind)
time plus the amortized cost O(

∑
a∈V (d

end
a − dstart

a ) log r ·
Tind), where dend

a and dstart
a are the distances of a at the end

and start of the phase respectively.

Proof: From Lemma 46, we get that Line 1 of the

hybrid algorithm takes O(n2/p · Tind) time. Let Π̃� be the

maximal augmenting set containing Π� as in Lemma 47.

Line 2, from Lemma 38 makes O(n) independence oracle

calls.

The width of Π̃� \ Π� is bounded by |B1| − |B�+1| ≤ p.

Now, consider G(S)|Π� and let P be the largest ordered

collection of consecutive shortest augmenting paths. To find

an augmenting path, we invoke Lemmas 19 and 20. Recall

that Lemma 19 updates distances in O(
∑

a∈V (1 + da −
d′a) log r·Tind) time and, given distances, Lemma 20 finds an

augmenting path in O(n·Tind) time. Since da−d′a telescopes,

in Line 3 computing P takes time

O(
∑
a∈V

(dend
a − dstart

a ) log r · Tind) +O(n|P| log r · Tind).

Now, from Theorem 29, we have a maximal augmenting

set Π∗� in G(S)|Π� with width(Π∗� ) = |P|. From Lemma 39,

we know width(Π∗� ) ≤ (2� + 4) · width(Π̃� \ Π�). Thus,

|P| ≤ (2� + 4) · (|B1| − |B�+1|) ≤ (2� + 4)p. This proves

the theorem.

We now have everything we need to prove our main

theorem.

Proof of Theorem 21: Set p = 
√

nε/ log r�, and

run the Hybrid algorithm until the shortest augmenting path

length in G(S) ≥ 1/ε. This requires at most O(1/ε) phases.

Moreover, when applying Lemma 19 we discard a vertex a
as soon as its distance (lower bound) is greater than 1/ε. This

is okay as distances are monotonic (Lemma 9) so any such

vertex will not belong to any (future) shortest augmenting

paths (or augmenting sets) which have length at most 1/ε.
First we account for the total amortized cost arising from

O(
∑

a∈V (d
end
a −dstart

a ) log r·Tind). By the above modification

dend
a ≤ 1/ε so they sum to at most O( 1εn log r · Tind) which

is dominated by our desired runtime.

At the beginning of each phase we take O(n log r · Tind)
time to construct the layers. Each phase, from the above

Theorem, takes O(n2/p + np� log r) independence oracle

calls. Thus the total time to run phase � is O((n log r +
n2/p + np� log r) · Tind) = O((n2/p + np� log r) · Tind)
time. After all the phases are done, we are left with

a set S ∈ I1 ∩ I2 such that the shortest augmenting

path length in G(S) ≥ 1/ε. This implies that S is an

(1 − ε)-approximate solution by Corollary 8. The total

running time is O
(

1
ε ·

(
n2

p + np log r 1
ε

)
· Tind

)
. Since p =


√
nε/ log r�, we prove the theorem.

VII. APPROXIMATELY OPTIMAL FRACTIONAL

SOLUTION VIA FRANK-WOLFE

Let PM1 ,PM2 be the matroid polytopes for matroids

M1 = (V, I1) and M2 = (V, I2) respectively. Let r be

the size of their largest common independent set. It is well-

known that the matroid intersection polytope is precisely

PM1
∩ PM2

, i.e., PM1
∩ PM2

is the convex hull of

(the indicator vectors of) the common independent sets.

Matroid intersection problem can therefore be solved via

the following convex program:

max
x∈PM1

∩PM2

1	x .

In this section, we apply (a variant of) Frank-Wolfe to

solve this problem faster: Theorem 50 obtain a (1 − ε)-
optimal fractional solution z (i.e.,

∑
i∈V zi ≥ (1 − ε) · r)

in O(n2/(rε2) · Tindep) time. To obtain an integral solution,

we show in the next section that upon sampling via x∗ the

size of the ground set can be reduced to Õ(r/ε2). With

this sparser new ground set we can speed up many matroid

intersection algorithms. For instance, combining this with

our previous Õ(n1.5/ε1.5) time algorithm would improve

the runtime in the regime r/ε2 ≤ n ≤ r2ε.
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To find an approximate fractional solution efficiently, we

relax the intersection constraint to

max
x∈PM1

,y∈PM2

1	x− η

2
‖x− y‖2 , (VII.1)

where η is some parameter to be chosen later. This transfor-

mation is useful as it allows us to solve two disjoint greedy

problems in an iteration of Frank-Wolfe. Our algorithm

relies on the following theorem for constrained convex

optimization.

Theorem 49 (Frank-Wolfe Algorithm [34, Theorem 1]).
Given a convex set K ⊂ R

n and a convex function f defined
on K, suppose that:
• For any vector c ∈ R

n, we can find zc ∈
argmaxz∈Kc	z in time TK .

• For any vector z ∈ R
n, we can compute ∇f(z) in time

Tf .
• There is a constant Cf such that for any u, v ∈ K and

any γ ∈ [0, 1], we have

f(u+γ(v−u)) ≤ f(u)+ 〈∇f(u), γ(v − u)〉+ γ2Cf

2
.

In k iterations, we can find a z ∈ K such that

f(z) ≤ min
z′∈K

f(z′) +
2Cf

k + 2
.

Each iteration takes O(n+ TK + Tf ).
For problem (VII.1), we note that to optimize linear

functions of x and y over {x ∈ PM1 , y ∈ PM2} we only

need the standard greedy method, which can be implemented

using n independence oracle calls. We use this fact to prove

the following main theorem of this section.

Theorem 50. Given two matroids M1,M2 via indepen-
dence oracles, we can find a z ∈ PM1 ∩ PM2 in O( n

rε2 )
iterations such that

∑
i∈V zi ≥ (1− ε)r, where r is the size

of the largest common independent set and each iteration
takes O(n · Tind) time.

Proof: Ideally, we want to apply Frank-Wolfe directly

on the problem

max
x∈PM1

,y∈PM2

1	x− η

2
‖x− y‖22

with large η. However, the runtime of Frank-Wolfe algorithm

depends implicitly on the diameter of the convex set via

the constant Cf . To obtain a better Cf , we truncate both

matroids by the size of largest common independent set r.

Suppose for now, we know r such that r ≤ r ≤ 2r. We

define the truncated set by

K = {(x, y) ∈ PM1
× PM2

:
∑
i

xi ≤ r,
∑
i

yi ≤ r}.

Now, we apply Frank-Wolfe on the function f(x, y) =
−1	x + η

2‖x − y‖22 over K. Theorem 49 shows that we

can find some x(k), y(k) such that

f(x(k), y(k)) ≤ min
(x,y)∈K

f(x, y) +
2Cf

k + 2
.

We bound Cf as follows:

Cf = sup
u,v∈K,γ∈[0,1]

2

γ2

(
f(u+ γ(v − u))

− f(u)− 〈∇f(u), γ(v − u)〉
)

= sup
u,v∈K,γ∈[0,1]

η

γ2
‖γ(v − u)‖22

≤ sup
u,v∈K

η‖v − u‖1

≤ 8ηr,

where we used K ⊂ [0, 1]n and
∑

i ui +
∑

i vi ≤ 2r ≤ 4r.

By considering the largest common independent set as a

solution, we know min(x,y)∈K f(x, y) ≤ −r. Hence, from

the guarantee of Frank-Wolfe, we get

−1	x(k) +
η

2
‖x(k) − y(k)‖22 ≤ −r +

16ηr

k + 2
.

To get a valid fractional solution, we define the vector z

by zi = min{x(k)
i , y

(k)
i }. Since x(k) ∈ PM1 , y(k) ∈ PM2 ,

we have that z ∈ PM1
∩ PM2

. Now, we bound the size of

z:

1	z ≥ 1	x(k) − ‖x(k) − y(k)‖1
≥ 1	x(k) −

√
n · ‖x(k) − y(k)‖2

≥ 1	x(k) − η

2
‖x(k) − y(k)‖22 −

n

2η

≥ r − 16ηr

k + 2
− n

2η
.

Picking η =
√

n(k+2)
32r , we have

1	z ≥ r −
√

32nr

k + 2
.

Therefore, to get a fractional solution with an additive error

of εr, we can set k = 32
ε2

n
r .

Finally, each iteration involves optimizing a linear func-

tion over K which can be done by the greedy method using

O(n) independence oracle calls. To find r, we can run the

greedy algorithm to find a maximal common independent

set in the two matroids using O(n) independence oracles.

Every maximal solution gives a 1/2-approximation to r by

Lemma 7 because it implies each augmenting path is of

length at least 3.

VIII. FASTER ALGORITHM VIA SAMPLING NEAR

OPTIMAL FRACTIONAL SOLUTION

From Section VII, we are given a point x ∈ PM1∩PM2 in

the matroid intersection polytope such that ‖x‖1 ≥ (1−ε)·r.

In this section, we show how x can be used to sparsify
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the matroids M1 and M2. In particular, we reduce the

matroid intersection problem to solving it on a universe

of size O( r
ε2 log n). We can then use algorithms developed

in the previous sections on this smaller universe to find an

approximate integral solution. We use the following lemma

of Karger (recall, PackNum(M) is the maximum number

of disjoint bases in M).

Theorem 51 ([23, Theorem 4.1]). Given a matroid M with
PackNum(M) = k, suppose we sample each element of
M with probability p ≥ 18 lnn · 1

kε2 , yielding a submatroid
M(p) of M. Then with high probability in n, we have
PackNum(M(p)) ∈ [(1− ε)pk, (1 + ε)pk].

Our strategy to sparsify the matroids is to show that after

appropriately sampling using x, the sampled elements V ′

will have |V ′| � n and will form a universe V ′ which is

almost “packed” for both the matroids, i.e., V ′ decomposes

into an “almost perfect” partition of independent sets of size

(1 − O(ε))r for both the matroids. Taking the average of

these independent sets shows that the vector r
|V ′| · 1V ′ is

almost independent for both the matroids. This means our

sampling procedure is valid because || r
|V ′| · 1V ′ ||1 = (1 −

O(ε)) · r.

We first demonstrate how to sample using x to obtain

a new universe V ′ with the desired properties in a single

matroid M. This can be seen as a non-uniform version of

Karger’s result. Note that any matroid M naturally induces

a new matroid if its elements are replaced by multiple

identical copies (a set with multiple copies of an element

is dependent).

Lemma 52. Suppose we are given a point x ∈ PM with
‖x‖1 ≥ (1 − ε) · r. Set λ = εr

4n3 . Suppose we replace each
element i ∈ V with x′

i

λ := �xi

λ � identical copies to form a
new matroidM′ with universe V ′. Let submatroidM′(p) on
universe V ′(p) be obtained by independently sampling each
element of V ′ with probability p = O

(
λ ln(n/ε)

ε2

)
. Then with

high probability in n,
1) V ′(p) has size at most (1−O(ε))·rp/λ = O

(
r
ε2 ln

n
ε

)
.

2) V ′(p) contains (1−O(ε)) · |V ′(p)|/r disjoint indepen-
dent sets of size (1−O(ε))r.

Proof: Note that x′ ∈ PM is a multiple of λ and

‖x′‖1 = (1 − O(ε)) · r as the total loss of rounding is at

most nλ.

For (1), the expected size of V ′(p) is∑
i

x′i
λ
· p = (1−O(ε)) · rp/λ = O

( r

ε2
ln

n

ε

)
,

which holds w.h.p. within a factor of 1 ± ε by standard

Chernoff bound.

For (2), we further slightly decrease x′ to obtain a

vector x̄ ∈ PM so that ‖x̄‖1 = �‖x′‖1� := r̄. Clearly

r̄ = (1 − O(ε)) · r. Now by the Caratheodory’s theorem

and the integrality of the matroid (base) polytope, x̄ can

be written as a convex combination of size-r̄ independent

sets,3i.e., x̄ =
∑n

i=1 tivi where vi are indicator vectors of

some size-r̄ independent sets and multipliers ti ≥ 0 satisfy∑
i ti = 1.

We round t down to t′ so that it is a multiple of λ. Now

by considering t′/λ copies of vi for all i, we see that V ′

contains at least

∑
i

t′i
λ

≥ 1

λ
− n =

(
1− rε

4n2

) 1

λ
= (1− o(ε))

1

λ

disjoint size-r̄ independent sets. Moreover, the size of set

is |V ′| = ∑
i
x′
i

λ = (1 − O(ε)) · r
λ , which means ln |V ′| =

O(ln(n/ε)). So by Theorem 51, w.h.p. M′(p) contains at

least

(1− ε)p · (1− o(ε))
1

λ
= (1−O(ε)) · |V

′(p)|
r

disjoint size-r̄ independent sets, as desired.

From (2) of Lemma 52, the universe V ′(p) almost can be

partitioned into disjoint independent sets of size (1−O(ε))·r.

We now show that V ′(p) has a common independent set of

size (1 − O(ε)) · r by putting equal mass on almost every

element.

Lemma 53. For a given point x ∈ PM1
∩PM2

with ‖x‖1 ≥
(1−ε)·r, let V ′(p) be sampled as in Lemma 52. Then V ′(p)
has a common independent set of size (1−O(ε)) · r.

Proof: Suppose V ′(p) contains disjoint I
(1)
1 , ..., I

(1)
k1
∈

I1 and disjoint I
(2)
1 , ..., I

(2)
k2
∈ I2 all of which are of size

(1 − O(ε)) · r. By Lemma 52, we may take k1, k2 = (1 −
O(ε)) · |V ′(p)|/r.

We begin with a few simplifications. Let k = min{k1, k2}
and WLOG assume that all I

(1)
α and I

(2)
β are of equal size

r′ = (1 − O(ε)) · r by dropping elements from the non-

smallest independent sets. For i = 1, 2, define y(i) ∈ R
V ′(p)

by

y(i)a =

{
1/k if a ∈ I

(i)
1 ∪ ... ∪ I

(i)
k

0 o.w.

Then y(i), which is the average of the indicator vectors for

I
(i)
1 , ..., I

(i)
k , belongs to the matroid polytope for M′

i(p).
Therefore y = min{y(1), y(2)} belongs to the matroid

intersection polytope for M′
1(p),M′

2(p). Since the matroid

intersection polytope is integral, it suffices to show that y
has size (1−O(ε)) · r.

3This can be seen as follows: truncate M to size r̄. Then any fractional
independent set of size r̄ is a convex combination of independent sets,
which are of size at most r̄ and hence exactly r̄.
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We bound the size of y as follows:

‖y‖1 ≥ ‖y(1)‖1 + ‖y(2)‖1 − |V ′(p)|/k
= 2r′ − r/(1−O(ε))

= 2(1−O(ε))r − (1 +O(ε))r

= (1−O(ε))r,

which completes the proof of this lemma.

Combining the last two lemmas shows that our sampling

scheme reduces the size of the universe to O
(

r
ε2 ln

n
ε

)
.

Theorem 54. Given a point x ∈ PM1
∩ PM2

such that
‖x‖1 ≥ (1 − ε) · r, we can find in O(n) time a set V ′ of
size O( r

ε2 log n) such that the largest common independent
subset of V ′ for M1 and M2 has at least (1 − O(ε)) · r
elements.

Proof: From Lemmas 52 and 53, V ′(p) satisfies all

the desired properties. It remains to analyze the runtime

of the sampling scheme. Recall that V ′(p) is obtained by

sampling V ′ which contains identical copies of the elements

of V . Instead of creating and sampling V ′ explicitly, we can

equivalently sample i ∈ V as a binomial random variable

with �xi

λ � trials and probability p.

Theorem 55. There is an Õ
((

n2

rε2 + r1.5

ε4.5

)
· Tind

)
-time

algorithm to obtain a (1− ε)-approximation to the matroid
intersection problem.

Proof: Using Theorem 50, in O((n2/rε2) · Tind) time

we can find a point z ∈ PM1
∩PM2

with ||z||1 ≥ (1− ε)r.

Applying Theorem 54 on z, in O(n) time we can reduce

the ground set to V ′ with |V ′| = O(r log n/ε2) =: n′ and

the maximum common independent set in V ′ has size ≥
(1 − O(ε))r. Note that any independence oracle query on

the matroid restricted to V ′ doesn’t change, and in particular

takes Tind time. Applying Theorem 21 on this universe of

size n′, we see that in O((n′1.5/ε1.5) · Tind) time we can

get a common independent set S with |S| ≥ (1 − ε)|S∗|
where S∗ is the largest common independent set in V ′.Thus,

|S| ≥ (1 − ε) · (1 − O(ε))r = (1 − O(ε))r. That is, S is

an (1 − O(ε))-approximate solution. The time complexity

follows by setting n′ = O(r log n/ε2) in the above.
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