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Abstract—The dynamic matrix inverse problem is to main-
tain the inverse of a matrix undergoing element and column
updates. It is the main subroutine behind the best algorithms
for many dynamic problems whose complexity is not yet well-
understood, such as maintaining the largest eigenvalue, rank
and determinant of a matrix and maintaining reachability, dis-
tances, maximum matching size, and k-paths/cycles in a graph.
Understanding the complexity of dynamic matrix inverse is a
key to understand these problems.

In this paper, we present (i) improved algorithms for
dynamic matrix inverse and their extensions to some
incremental/look-ahead variants, and (ii) variants of the Online
Matrix-Vector conjecture [Henzinger et al. STOC’15] that, if
true, imply that these algorithms are tight. Our algorithms
automatically lead to faster dynamic algorithms for the afore-
mentioned problems, some of which are also tight under
our conjectures, e.g. reachability and maximum matching
size (closing the gaps for these two problems was in fact
asked by Abboud and V. Williams [FOCS’14]). Prior best
bounds for most of these problems date back to more than
a decade ago [Sankowski FOCS’04, COCOON’05, SODA’07;
Kavitha FSTTCS’08; Mucha and Sankowski Algorithmica’10;
Bosek et al. FOCS’14].

Our improvements stem mostly from the ability to use
fast matrix multiplication “one more time”, to maintain a
certain transformation matrix which could be maintained only
combinatorially previously (i.e. without fast matrix multipli-
cation). Oddly, unlike other dynamic problems where this
approach, once successful, could be repeated several times
(“bootstrapping”), our conjectures imply that this is not the
case for dynamic matrix inverse and some related problems.
However, when a small additional “look-ahead” information is
provided we can perform such repetition to drive the bounds
down further.

Keywords-data structures, dynamic algorithms, dynamic ma-
trix inverse, determinant, adjoint, reachability, matching

I. INTRODUCTION

In the dynamic matrix inverse problem, we want to

maintain the inverse of an n × n matrix A over any field,

when A undergoes some updates. There were many variants

of this problem considered [2]–[6]: Updates can be element
updates, where we change the value of one element in A, or

column updates, where we change the values of all elements

The full version of this paper is available as [1] at https://arxiv.org/abs/
1905.05067.

in one column.1 The inverse of A might be maintained

explicitly or might be answered through an element query
or a row/column query; the former returns the value of a

specified element of the inverse, and the latter answers the

values of all elements in a specified row/column of the

inverse. The goal is to design algorithms with small update
time and query time, denoting the time needed to handle

each update and each query respectively. Time complexity is

measured by the number of field operations.2 Variants where

elements are polynomials (e.g. [7]–[9]) and where some

updates are known ahead of time (the look-ahead setting)

were also considered (e.g. [10]–[13]).
Dynamic matrix inverse algorithms played a central role

in designing algorithms for many dynamic problems such

as maintaining matrix and graph properties. Its study can

be traced back to the 1950 algorithm of Sherman and

Morrison [14] which can be used to maintain the inverse

explicitly in O(n2) time. The previous best bounds are

due to Sankowski’s FOCS’04 paper [2] and its follow-

ups [3], [7], [10] (improving on, e.g., [15]). Their time

guarantees depend on how fast we can multiply matrices.

For example, with the state-of-the-art matrix multiplication

algorithms [16], [17], Sankowski’s algorithm [2] can han-

dle an element update and answer an element query for

matrix inverse in O(n1.447) time. Consequently, the same

update time3 can be guaranteed for, e.g., maintaining largest

eigenvalues, ranks and determinants of matrices undergoing

entry updates and maintaining maximum matching sizes,

reachability between two nodes (st-reachability), existences

of a directed cycle, numbers of spanning trees, and numbers

of paths in directed acyclic graphs (DAGs) undergoing edge

insertions and deletions.4 (Unless specified otherwise, all

1There are other kinds of updates which we do not consider in this paper,
such as rank-1 updates in [4]–[6].

2Later when we consider other kinds of dynamic problems, such as
dynamic graphs, the time refer to the standard notion of time in the RAM
model.

3See Footnote 2.
4We note that while the update and query time for the matrix inverse

problem is defined to be the number of arithmetic operations, most of time
the guarantees translate into the same running time in the RAM model.
Exceptions are the numbers of spanning trees in a graph and numbers of
paths in a DAG, where the output might be a very big number. In this case
the running time is different from the number of arithmetic operations.
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mentioned update times are worst-case, as opposed to being

amortized5.) See Fig. 1 and 2 for lists of known results for

dynamic matrix inverse and Fig. 5 for lists of applications.

(There is a second figure with algebraic applications such

as determinant, adjoint etc. in the full version.)

Is the O(n1.447) bound the best possible for above
problems? This kind of question exhibits the current gap
between existing algorithmic and lower bound techniques

and our limited understanding of the power of algebraic
techniques in designing dynamic algorithms. First of all,

despite many successes in the last decade in proving tight

bounds for a host of dynamic problems (e.g. [18]–[20]),

conditional lower bounds for most of these problems got

stuck at Ω(n) in general. Even for a very special case

where the preprocessing time is limited to o(nω) (which

is too limited as discussed in Section I-C), the best known

conditional lower bound of Ω(nω−1) = Ω(n1.3728) [19] is

still not tight ([19] mentioned that “closing this gap is a

very interesting open question”). Note that while the upper

bounds might be improved in the future with improved

rectangular matrix multiplication algorithms, there will still

be big gaps even in the best-possible scenario: even if there

is a linear-time rectangular matrix multiplication algorithm,

the upper bounds will still be only O(n1+1/3), while the

lower bound will be Ω(n).
Secondly, it was shown that algebraic techniques –

techniques based on fast matrix multiplication algorithms

initiated by Strassen [21] – are inherent in any upper

bound improvements for some of these problems: Assuming

the Combinatorial Boolean Matrix Multiplication (BMM)
conjecture, without algebraic techniques we cannot main-

tain, e.g., maximum matching size and st-reachability faster

than O(n2) per edge insertion/deletion [19]6. Can algebraic
techniques lead to faster algorithms that may ideally have
update time linear in n? If not, how can we argue lower
bounds that are superlinear in n and, more importantly,
match upper bounds from algebraic algorithms?

In this paper, we show that it is possible to improve some

of the existing dynamic matrix inverse algorithms further

and at the same time present conjectures that, if true, imply

that they cannot be improved anymore.

A. Our Algorithmic Results (Details in Section IV and the
full version)

Note that all our algorithms are randomized (Monte

Carlo): Their update time guarantees hold with probability

5Amortized time is not the focus of this paper, and we are not aware of
any better amortized bounds for problems we consider in this paper

6More precisely, assuming BMM, no “combinatorial” algorithm can
maintain maximum matching size and st-reachability in O(n2−ε) time, for
any constant ε > 0. Note that “combinatorial” a vague term usually used to
refer as an algorithm that does not use subcubic-time matrix multiplication
algorithms as initiated by Strassen [21]. We note that this statement only
holds for algorithms with O(n3−ε) preprocessing time, which are the case
for Sankowski’s and our algorithms.

one, and their outputs are correct with high probability.

Note that unlike typical randomized dynamic algorithms, our

algorithms do not need the oblivious adversary assumption;

i.e. updates can depend on the algorithms’ prior outputs. All

update times are worst-case.

Algorithms in the Standard Setting (Details in Sec-
tion IV): We present two faster algorithms as summarized

in Fig. 1. With known fast matrix multiplication algorithms

[16], [17], our first algorithm requires O(n1.407) time to

handle each entry update and entry query, and the second

requires O(n1.529) time to handle each column update and

row query.

The first algorithm improves over Sankowski’s decade-

old O(n1.447) bound, and automatically implies improved

algorithms for over 10 problems, such as maximum match-

ing size, st-reachability and DAG path counting under edge

updates (see upper bounds in blue in Fig. 5 and the second

applications table in the full version).

The second bound leads to the first non-trivial upper

bounds for maintaining the largest eigenvalue, rank, determi-

nant under column updates, which consequently lead to new

algorithms for dynamic graph problems, such as maintaining

maximum matching size under insertions and deletions of

nodes on one side of a bipartite graph (see upper bounds in

red in Fig. 5 and the second applications table in the full

version).

Note that the update time can be traded with the query

time, but the trade-offs are slightly complicated. See Theo-

rems 4.1 and 4.2 for these trade-offs.

Incremental/Look-Ahead Algorithms and Online Bipar-
tite Matching (Details in the full version): We can speed

up our algorithms further in a fairly general look-ahead
setting, where we know ahead of time which columns will

be updated. Previous algorithms ([10]–[13]) can only handle

some special cases of this (e.g. when the update columns and

the new values are known ahead of time). Our update time

depends on how far ahead in the future we see. When we

see n columns to be updated in the future, the update time

is O(nω−1). (See the full version for detailed bounds.) As a

special case, we can handle the column-incremental setting,

where we start from an empty (or identity) n×n matrix and

insert the ith column at the ith update.

As an application, we can maintain the maximum match-

ing size of a bipartite graph under the arrival of nodes on

one side in O(nω) total time. This problem is known as the

online matching problem. Our bound improves the O(m
√
n)

bound in [22]7 (where m is the number of edges), when the

graph is dense, additionally our result matches the bound in

the static setting by [24] (see also [25]).

See Section I-C for further discussions on previous results.

Techniques (more in Section II): Our improvements are

mostly due to our ability to exploit fast matrix multipli-

7Also see [23].
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Variants Known upper
bound

Known lower
bound

New upper
bound

New lower bound Corresponding conjectures

Element update O(n1.447)
[O(n1+1/3)]

u + q = Ω(n)
via OMv [18]

O(n1.407)
[O(n1+1/4)]

u+q = Ω(n1.406)

[Ω(n1+1/4)]
Corollary 5.15

uMv-hinted uMv
(Conjecture 5.12)

Element query O(n1.447)
[O(n1+1/3)]

O(n1.407)
[O(n1+1/4)]

[2] Theorem 4.2

same as above O(n1.529)
[O(n1.5)]

u = Ω(n1.528)
[Ω(n1.5)] or

Mv-hinted Mv
(Conjecture 5.7)

O(n0.529)
[O(n0.5)]

q = Ω(n0.528)
[Ω(n0.5)]

[2] Corollary 5.9

Element update O(n1.529)
[O(n1.5)]

u + q = Ω(n)
via OMv [18]

- u+q = Ω(n1.528)
[Ω(n1.5)]

Corollary 5.5

Mv-hinted Mv
(Conjecture 5.7)

Row query O(n1.529)
[O(n1.5)]

[2]

Column update O(n2) u + q =

Ω(nω−1)
[Ω(n)] [trivial]

O(n1.529) u+q = Ω(n1.528)
[Ω(n1.5)]

Corollary 5.5

v-hinted Mv
(Conjecture 5.2)

Row query O(n) O(n1.529)
[O(n1.5)]

[trivial] Theorem 4.1

Column+Row update O(n2) - -
u + q = Ω(n2) [1]

OMv conjecture [18]Element query O(1)
[trivial]

Figure 1. Our new upper and conditional lower bounds (in colors) compared to the previous ones. All previous upper bounds were due to Sankowski
[2]. Bounds in brackets [ · ] are for the ideal scenario, where there exists a linear-time rectangular matrix multiplication algorithm. Colors in the bounds
are used to connect to applications in Fig. 5. The exponents in the upper and corresponding lower bounds are different because of the rounding. They are
actually the same numbers.

cation more often than previous algorithms. In particular,

Sankowski [2] shows that in order to maintain the ma-

trix inverse, it suffices to maintain the inverse of another

matrix that we call transformation matrix, which has a

nicer structure than the input matrix. To keep this nice

structure, we have to “reset” the transformation matrix to the

identity from time to time; the reset process is where fast

matrix multiplication algorithms are used. In more details,

Sankowski writes the maintained matrix A as A = A′T ,

where A′ is an older version of the matrix and T is a

“transformation matrix”. He then shows some methods to

quickly maintain T−1 by exploiting its nice structures. The

query about A−1 is then answered by computing necessary

parts in A−1 = T−1(A′)−1. From time to time, he “re-

sets” the transformation matrix by assigning A′ ← A′T ,

A′−1 ← T−1A′−1 and T ← I (the identity matrix).

A natural idea to speedup the above algorithm is to

repeat the same idea again and again (“bootstrapping”), i.e.

to write T = T1T2 (thus A−1 = (A′T1T2)
−1) and try

to maintain T−1
2 quickly. Indeed, finding a clever way to

repeat the same ideas several times is a key approach to

significantly speed up many dynamic algorithms. (For a

recent example, consider the spanning tree problem where

[26] sped up the n1/2−ε update time of [27], [28] to no(1) by

appropriately repeating the approach of [27], [28] for about√
log(n) times. See, e.g., [29]–[31] for other examples.)

The challenge is how to do it right. Arguably, this approach

has already been taken in [2] where T−1 is maintained in

the form T−1 = (T1T2T3T4 . . .)
−1.8 However, we observe

that this and other methods previously used to maintain

T−1 do not exploit fast matrix multiplication, and in fact

the same result can be obtained without writing T−1 in

this long form. (See the discussion of Equation (5) in

Section II.) An important question here is: Can we use
fast matrix multiplication to maintain T−1? An attempt to

answer the above questions runs immediately to a barrier:

while it is simple to maintain T explicitly after every update,

maintaining T2 explicitly already takes too much time!
In this paper, we show that one can get around the above

barrier and repeat the approach one more time. To do this, we

develop a dynamic matrix inverse algorithm that can handle

updates that are implicit in a certain way. This algorithm

allows us to maintain T2 implicitly, thus avoid introducing a

large running time needed to maintain T2 explicitly. It also

generalizes and simplifies one of Sankowski’s algorithm,

giving additional benefits in speeding up algorithms in the

look-ahead setting and algorithms for some graph problems.
Further bootstrapping?: Typically once the approach

can be repeated to speed up a dynamic algorithm, it can

be repeated several times (e.g. [26], [29], [31]). Given this,

it might be tempting to get further speed-ups by writing

A = A′T1T2T3T4 . . . instead of just A = A′T1T2. Interest-

ingly, it does not seem to help even to write A = A′T1T2T3.

Why are we stuck at A = A′T1T2? On a technical level,

since we have to develop a new, implicit, algorithm to

maintain T2 quickly, it is very unclear how to develop yet

another algorithm to maintain T3 quickly. On a conceptual

8[2] presents several dynamic matrix inverse algorithms. Algorithm
“Dynamic Matrix Inverse: Simple Updates II” is the one with the T−1 =
(T1T2T3 . . .)−1 structure.
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level, this difficulty is captured by our conjectures below,

which do not only explain the difficulties for the dynamic

matrix inverse problem, but also for many other problems.

Thus, these conjectures capture a phenomenon that we have

not observed in other problems before. Interestingly, with a

small “look-ahead” information, namely the columns to be

updated, this approach can be taken further to reduce the

update time to match existing conditional lower bounds.

B. Our Conditional Lower Bounds (Details in Section V)

We present conjectures that imply tight conditional lower

bounds for many problems. We first present our conjectures

and their implications here, and discuss existing conjectures

and lower bounds in Section I-C. We emphasize that our

goal is not to invent new lower bound techniques, but rather

to find a simple, believable, explanation that our bounds are

tight. Since the conjectures below are the only explanation

we know of, they might be useful to understand other

dynamic algebraic algorithms in the future.

Our Conjectures: We present variants of the OMv

conjecture. To explain our conjectures, recall a special case

of the OMv conjecture called Matrix-Vector Multiplication
(Mv) [32]–[34]. The problem has two phases. In Phase 1, we

are given a boolean matrix M , and in Phase 2 we are given a

boolean vector v. Then, we have to output the product Mv.

Another closely related problem is the Vector-Matrix-Vector
(uMv) product problem where in the second phase we are

given two vectors u and v and have to output the product

u�Mv. A naive algorithm for these problems is to spend

O(|M |) time in Phase 2 to compute Mv and uMv, where

|M | is the number of entries in M . The OMv conjecture

implies that we cannot beat this naive algorithm even when

we can spend polynomial time in the first phase; i.e. there

is no algorithm that spends polynomial time in Phase 1

and O(|M |1−ε) time in Phase 2 for any constant ε > 0.

(The OMv conjecture in fact implies that this holds even if

the second phase is repeated multiple times, but this is not

needed in our discussion here.)

In this paper, we consider “hinted” variants of Mv and

uMv, where matrices are given as “hints” of u, M and v,

and later their submatrices

1) The v-hinted Mv Problem (formally defined in Defini-

tion 5.1): We are given a boolean matrix M in Phase 1,

a boolean matrix V in Phase 2 (as a “hint” of v), and

an index i in Phase 3. Then, we have to output the

matrix-vector product Mv, where v is the ith column

of V .

2) The Mv-hinted Mv Problem (formally defined in Def-

inition 5.6): We are given boolean matrices N and V
in Phase 1 (as “hints” of M and v), a set of indices

K in Phase 2, and an index i in Phase 3. Then, we

have to output the matrix-vector product Mv, where

v is as above, and M is the submatrix of N obtained

by deleting the kth rows of N for all k /∈ K.

3) The uMv-hinted uMv Problem (formally defined in

Definition 5.11): We are given boolean matrices U , N ,

and V in Phase 1 (as “hints” of u, M and v), a set of

indices K in Phase 2, a set of indices L in Phase 3, and

indices i and j in Phase 4. Then, we have to output

the vector-matrix-vector product u�Mv, where u is

the jth column of U , v is as above, and M is the

submatrix of N obtained by deleting the kth rows and

�th columns of N for all k /∈ K and � /∈ L.

A naive algorithm for the first problem (v-hinted Mv) is

to either compute Mv naively in O(|M |) time in Phase 3

or precompute Mv for all possible v in Phase 2 by running

state-of-the-art matrix multiplication algorithms [16], [17]

to multiply MV . Our v-hinted Mv conjecture (formally

stated in Conjecture 5.2) says that we cannot beat the

running time of this naive algorithm in Phases 2 and 3

simultaneously even when we have polynomial time in

Phase 1; i.e. there is no algorithm that spends polynomial

time in Phase 1, time polynomially smaller than computing

MV with state-of-the-art matrix multiplication algorithms in

Phase 2, and O(|M |1−ε) time in Phase 3, for any constant

ε > 0. Similarly, the Mv-hinted Mv and uMv-hinted uMv
conjectures state that we cannot beat naive algorithms for

the Mv-hinted Mv and uMv-hinted uMv problems, which

either precompute everything using fast matrix multiplica-

tion algorithms in one of the phases or compute Mv and

uMv naively in the last phase; see Conjectures 5.7 and 5.12

for their formal statements.
Lower Bounds Based on Our Conjectures: The con-

jectures above allow us to argue tight conditional lower

bounds for the dynamic matrix inverse problem as well as

some of its applications. In particular, the uMv-hinted uMv

conjecture leads to tight conditional lower bounds for ele-

ment queries and updates, as well as, e.g., maintaining rank

and determinant of a matrix undergoing element updates,

and maintaining maximum matching size, st-reachability,

cycle detection and DAG path counting in graphs undergoing

edge insertions/deletions; see lower bounds in blue in Fig. 1

and 5 and the second applications table in the full version

for the full list. Our v-hinted Mv conjecture leads to tight

conditional lower bounds for column update and row query,

as well as, e.g., maintaining adjoint and matrix product under

the same type of updates and queries, maintaining bipartite

maximum matching under node updates on one side of the

graph; see lower bounds in red in Fig. 1 and 5 and the second

applications table in the full version. Finally, our Mv-hinted

Mv conjecture gives conditional lower bounds that match

two algorithms of Sankowski [2] that we could not improve,

as well as some of their applications; see lower bounds in

green in Fig. 1 and 5 and the second applications table

in the full version. All our tight conditional lower bounds

remain tight even if there are improved matrix multiplication

algorithms in the future; see, e.g., bounds inside brackets [ · ]
in Fig. 1 and 5, which are valid assuming that a linear-time
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matrix multiplication algorithm exists.

Remarks: Our conjectures only imply lower bounds for

worst-case update and query time, which are the focus of

this paper. To make the same bounds hold against amortized

time, one can consider the online versions of these conjec-

tures, where all phases except the first may be repeated; see

full version of the paper. However, we feel that the online

versions are too complicated to be the right conjectures, and

that it is a very interesting open problem to either come up

with clean conjectures that capture amortized update time,

or break our upper bounds using amortization.

The reductions from our conjectures are pretty much the

same as the existing ones. As discussed in Section I-C,

we consider this an advantage of our conjectures. Finally,

whether to believe our conjectures or not might depend

on the readers’ opinions. A more important point is that

these easy-to-state conjectures capture the hardness of a

number of important dynamic problems. On the way to make

further progress on any of these problems is to break naive

algorithms from our conjectures first.

C. Other Related Work

Look-Ahead Algorithms: The look-ahead setting refers

to when we know the future changes ahead of time and

was considered in, e.g., [10]–[13]. Look-ahead dynamic

algorithms did not receive as much attention as the non-look-

ahead setting due to limited applications, but it turns out that

our algorithms require a rather weak look-ahead assumption,

and become useful for the online bipartite matching problem

[22]. Our results compared with the previous ones are

summarized in Fig. 2.

Previously, Sankowski and Mucha [10] showed that algo-

rithms that can look-ahead, i.e. they know which columns

will be updated with what values and which rows will be

queried, can maintain the inverse and determinant faster

than Sankowski’s none-look-ahead algorithms [2]. Kavitha

[11] extended this result to maintaining rank under element

updates, needing to only know which entries will be updated

in the future but not their new values. For the case where

the algorithm in [10] know n updates in the future, it is tight
as a better bound would imply a faster matrix multiplication

algorithm.

In this paper, we present faster look-ahead algorithms

when nk updates are known ahead of time, for any k < 1.

More importantly, our algorithms only need to know ahead

of time the columns that will be updated, but not the

values of their entries. Our algorithms are compared with

the previous ones by [10], [11] in Fig. 2. In Fig. 2 we do

not state the time explicitly for all possible k, but only state

which algorithms are faster and give explicit bounds only

for k = 0.25. For detailed bounds, see the full version.

9A rough estimate for the index is enough: When looking t rounds into
the future, we only need an index set of size O(t) as prediction for all the
future t update/query positions together.

One special case of our algorithms is maintaining a rank

when we start from an empty n × n matrix and insert the

ith column at the ith update. We can compute the rank after

each insertion in O(nω−1) time, or O(nω) in total over n
insertions. Since the maximum matching size in a bipartite

graph G corresponds to the rank of a certain matrix M , and

adding one node to, say, the right side of G corresponds

to adding a column to M , our results imply that we can

maintain the maximum matching size under the arrival of

nodes on one side in O(nω) total time. This problem is

known as the online matching problem. Our bound improves

the O(m
√
n) bound in [22]10 (where m is the number of

edges), when the graph is dense, additionally our result

matches the bound in the static setting by [24] (see also

[25]). We note that previous algorithms did not lead to this

result because [10] needs to know the new values ahead of

time while [11] only handles element updates.

Existing Lower Bounds and Conjectures: Two known

conjectures that capture the hardness for most dynamic prob-

lems are the Online Matrix-Vector Multiplication conjecture

(OMv) [18] and the Strong Exponential Time Hypothesis

(SETH) [19]. Since the OMv conjecture implies (roughly) an

Ω(n) lower bound for dynamic matching and st-reachability,

it automatically implies a lower bound for dynamic inverse,

rank and determinant. However, it is not clear how to

use these conjectures to capture the hardness of dynamic

problems whose upper bounds can still possibly be improved

with improved fast matrix multiplication algorithms.

More suitable conjectures should have dependencies on

ω, the matrix multiplication exponent. Based on this type of

conjectures, the best lower bound is Ω(nω−1) = Ω(n1.3729)
assuming an Ω(nω) lower bound for checking if an n-node

graph contains a triangle (the Strong Triangle conjecture)

[19]. This lower bound does not match our upper bounds of

O(n1.407) (and note that [19] mentioned that closing the gap

between their lower bound and Sankowski’s upper bound is a

very interesting open question). More importantly, this lower

bound applies only for a special case where algorithms’

preprocessing time is limited to o(nω) (in contrast to, e.g.,

SETH- and OMv-based lower bounds that hold against

algorithms with polynomial preprocessing time). Because of

this, it unfortunately does not rule out (i) the possibilities to

improve the update time of Sankowski’s or our algorithms

which have O(nω) preprocessing time and more generally

(ii) the existence of algorithms with lower update time but

high preprocessing time, which are typically desired. In

fact, with such limitation on the preprocessing time, it is

easy to argue that maintaining some properties requires nω

update time, which is higher than Sankowski’s and our upper

bounds. For example, assuming that any static algorithm

for computing the matrix determinant requires Θ(nω) time,

we can argue that an algorithm that uses o(nω) time to

10Also see [23].
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Problem Type of Type of Update time for nk look-ahead
look-ahead updates k = 1 k < 1 k = 0.25

[10] inverse (row query)
and determinant but not

rank

column index and values column O(nω−1)
(amortized)

3: slower than 2
for every k < 1

O(n1.75)

[11] rank column and row index element O(nω−1)
(amortized)

4: slowest for
every k < 1

O(n2.122)

Theorem 4.1 inverse (row query),
determinant and rank

column index9 column O(nω−1) 2: slower than 1
for every k < 1

O(n1.453)

Theorem 4.2 inverse (element query),
determinant and rank

column index9 element O(nω−1) 1: fastest for
every k < 1

O(n1.392)

Figure 2. Comparison of different look-ahead algorithms. ω is the exponent of matrix multiplication. All inverse algorithms need to know row indices
of the queries ahead of time. (Note that the algorithm with element query does not need to know the exact element to be queried.) The results by [12]
are not included, as they are subsumed by dynamic algorithms without look-ahead. The algorithms maintaining inverse and determinant can also maintain
adjoint, linear system and other algebraic problems via the reductions from the full version of the paper. The rank reduction is adaptive and does not work
with the type of look-ahead used in [10].

preprocess a matrix A requires nω time to maintain the

determinant of A even when an update does nothing to A.

(See the full version of this paper for more lower bounds of

this type.) Because of this, we aim to argue lower bounds

for algorithm with polynomial preprocessing time.

In light of the above discussions, the next appropriate

choice is to make new conjectures. While there are many

possible conjectures to make, we select the above because

they are simple and similar to the existing ones. We believe

that this provides some advantages: (i) It is easier to develop

an intuition whether the new conjectures are true or not,

based on the knowledge of the existing conjectures; for

example, we discuss what a previous attempt to refute the

OMv conjecture [33] means to our new conjectures in the

full version of the paper. (ii) There is a higher chance that

existing reductions (from known conjectures) can be applied

to the new ones. Indeed, this is why our conjectures imply

tight lower bounds for many problems beyond dynamic

matrix inverse.

We note that while the term “hinted” was not used before

in the literature, the concept itself is not that unfamiliar. For

example, Patrascu’s multiphase problem [20] is a hinted ver-

sion of the vector-vector product problem: given a boolean

matrix U in Phase 1, vector v in Phase 2, and an index i in

Phase 3, compute the inner product u�v where u is the ith

column of matrix U .

II. OVERVIEW OF OUR ALGORITHMS

Let A(0) be the initial matrix A before any updates and

denote with A(t) the matrix A after it received t updates. For

now we will focus only on the case where A(t) is always

invertible, as a reduction from [3] allows us to extend the

algorithm to the setting where A(t) may become singular.

We will also focus only on the case of element updates and

queries. The same ideas can be extended to other cases.

Reduction to Transformation Inverse Maintenance (De-
tails in Section IV-A): The core idea of the previously-best

dynamic inverse algorithms of Sankowski [2] is to express

the change of matrix A(0) to A(t) via some transformation

matrix T (0,t), i.e. we write

A(t) = A(0)T (0,t) (1)

This approach is beneficial since T (0,t) has more structure

than A(t): (i) obviously T (0,0) = I (the identity matrix),

and (ii) changing the (i, j)-entry of A(t) changes only the

jth column of T (0,t) (and such change can be computed in

O(n) time).11 Thus for small t, the matrix T (0,t) differs in

at most t columns from the identity matrix, which allows

us to maintain its inverse more efficiently than that of some

general matrix A(t), as will be explained in more detail later.

Moreover, to get the (i, j)-entry of (A(t))−1 notice that

(A(t))−1 = (T (0,t))−1(A(0))−1, (2)

and thus we just have to multiply the ith row of (T (0,t))−1

with the jth column of (A(0))−1. This motivates the follow-

ing problem.

Problem 2.1. (Maintaining the inverse of the transforma-

tion, (T (0,t))−1): We start with T (0,0) = I. Each update
is a change in one column. A query is made on a row of
(T (0,t))−1. It can be assumed that T (0,t) is invertible for
any t.

As we will see below, there are many fast algorithms for

Problem 2.1 when t is small. A standard “resetting tech-

nique” can then convert these algorithms into fast algorithms

for maintaining matrix inverse: An element update to A(t)

becomes a column update to T (0,t). When t gets large (thus

algorithms for Problem 2.1 become slow), we use fast matrix

multiplication to compute (A(t))−1 explicitly so that T (0,t)

is “reset” to I.

To summarize, it suffices to solve Problem 2.1. Our

improvements follow directly from improved algorithms for

this problem, which will be our focus in the rest of this

section.

11To see this, write T (0,t) = (A(0))−1A(t). The (i, j)-entry of A(t)

will multiply only with the ith column of (A(0))−1 and affects the jth

column of the product.
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[2] [2] Our

Column update O(nt) O(t2) O(nxt+ nω(1,x,logn t)−x) [O(
√
nt)]

Row query O(t) O(t2) O(nxt+ nω(1,x,logn t)−x) [O(
√
nt)]

Figure 3. Comparison of different transformation maintenance algorithms. The task is to support column updates to T (0,t) and row queries to (T (0,t))−1,
where t is the number of updates so far. Values in [·] correspond to the case of optimal matrix multiplication (ω = 2) and are given for easier comparison
of the complexities.

Previous maintenance of (T (0,t))−1: Sankowski [2]

presented two algorithms for maintaining (T (0,t))−1; see

Fig. 3. The first algorithm maintains (T (0,t))−1 explicitly by

observing if a matrix M differs from I in at most k columns,
so does its inverse.12 This immediately implies that querying

a row of (T (0,t))−1 needs O(t) time, since (T (0,t))−1 differs

from I in at most t columns. Moreover, expressing an update

by a linear transformation, i.e.

T (0,t) = T (0,t−1)T (t−1,t) (3)

for some matrix T (t−1,t), and using the fact that T (t−1,t)

and (T (t−1,t))−1 differ from I in only one column, com-

puting (T (0,t))−1 boils down to multiplying a vector with

(T (0,t))−1, thus taking O(nt) update time, see for example

Fig. 4. The O(nt) update time of this algorithm is optimal

in the sense that one column update to T (0,t) may cause

Ω(nt) entries in (T (0,t))−1 to change; thus maintaining

(T (0,t))−1 explicitly requires Ω(nt) update time in the worst

case.13 Sankowski’s second algorithm breaks this bound

with the cost of higher query time. Such a decrease in

update time at the cost of increase query time is desired

when balancing update and query time, e.g. for applications

such as maintaining determinant, st-reachability, maximum

matching size.

Sankowski’s second algorithm expresses updates by a long

chain of linear transformations:

T (0,t) = T (0,1)T (1,2) . . . T (t−2,t−1)T (t−1,t), thus

(T (0,t))−1 = (T (t−1,t))−1(T (t−2,t−1))−1 . . . (T (0,1))−1.
(5)

Here each matrix (T (i,i+1))−1 is very sparse. The spar-

sity leads to the update time improvement over the first

algorithm, since computing some entries of (T (0,t))−1 does

not require all entries of each (T (i,i+1))−1 to be known

(intuitively because most entries will be multiplied with

zero).14The sparsity, however, also makes it hard to exploit

fast matrix multiplication. Exploiting fast matrix multiplica-

tion one more time is the new aspect of our algorithm.

12We will give a more formal argument for this later in (8).
13For an example of one changed column inducing Ω(nt) changes in

the inverse, we refer to the full version of the paper.
14Note that the update time of Sankowski’s second algorithm in Fig. 3

is presented in a slightly simplified form. In particular, this bound only
holds when t = Ω(

√
n) (which is the only case we need in this paper),

or otherwise it should be the bound of the number of arithmetic operations
only.

Our new maintenance of (T (0,t))−1 via fast matrix
multiplication: As discussed above and as can be checked

in [2], both algorithms of Sankowski do not use fast matrix

multiplication to maintain (T (0,t))−1; it is used only to

compute (A(t))−1 as in Equation (2) (to “reset”).15 Our

improvements are mostly because we can use fast matrix
multiplication to maintain (T (0,t))−1. To start with, we write

T (0,t) as

T (0,t) = T (0,t′)T (t′,t), (6)

thus (T (0,t))−1 = (T (t′,t))−1(T (0,t′))−1.

This looks very much like what Sankowski’s first algorithm

(see Equation (2)) except that we may have t′ � t; this

allows us to benefit from fast matrix multiplication when we

compute T (0,t′)T (t′,t), since both matrices are quite dense.

Like the discussion above Problem 2.1, a column update

of T (0,t) leads to a column update of T (t′,t), and a row

query to (T (0,t))−1 needs a row query to (T (t′,t))−1. This

seems to suggest that maintaining (T (0,t))−1 can be once

again reduced to solving the same problem for T (t′,t), and

by repeating Sankowski’s idea we should be able to exploit

fast matrix multiplication and maintain (T (0,t))−1 faster.

There is, however, an obstacle to execute this idea: even

just maintaining T (t′,t) explicitly (without its inverse) al-

ready takes too much time. To see this, suppose that at time

t we add a vector v to the jth column of T (0,t−1); with ej
being a unit vector which has value 1 at the jth coordinate

and 0 otherwise, this can be expressed as

T (0,t) = T (0,t−1) + e�j v, (7)

thus (by (6)) T (t′,t) = T (t′,t−1) + e�j [(T
(0,t′))−1v].

This means that for every column update to T (0,t), we

have to compute a matrix-vector product (T (0,t′))−1v just

to obtain T (t′,t−1). So for every update we have to read the

entire inverse (T (0,t′))−1, which has Ω(nt′) non-zero en-

tries. Given that we repeatedly reset the algorithm to exploit

fast matrix multiplication by setting t′ ← t, this yields a

Ω(nt) lower bound on our approach, i.e. no improvement

over Sankowski’s first algorithm (column 1 of Fig. 3).

So to summarize, just maintaining T (t′,t) is already too

slow.

15In particular, both of Sankowski’s algorithms maintain (T (0,t))−1 by
performing matrix-vector products.
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More details (may be skipped at first reading): We can write

T (0,t) = T (0,t−1)

⎛
⎝I+ (T (0,t−1))−1 [T (0,t) − T (0,t−1)]︸ ︷︷ ︸

C

⎞
⎠

︸ ︷︷ ︸
T (t−1,t)

, thus

(T (0,t))−1 =

⎛
⎝I+ (T (0,t−1))−1 [T (0,t) − T (0,t−1)]︸ ︷︷ ︸

C

⎞
⎠−1

︸ ︷︷ ︸
(T (t−1,t))−1

(T (0,t−1))−1. (4)

Since C = [T (0,t)−T (0,t−1)] contains only one non-zero column, T (t−1,t) differs from I only in one column. Consequently,

(T (t−1,t))−1 can be computed in O(n) time and differs from I only in one column. Thus T (t−1,t)(T (0,t−1))−1 takes O(nt)
time to compute.

Figure 4. Updating T (0,t) explicitly takes O(nt) time.

Implicit input, simplification and generalization of
Sankowski’s second algorithm (details in Section IV-C): To

get around the above obstacle, we consider when updates to

T (t′,t) are given implicitly:

Problem 2.2. (Maintaining inverse of the transformation

under implicit column updates) We start with T (t′,t′) = I

at time t′. Each update is an index j, indicating that some
change happens in the jth column. Whenever the algorithm
wants to know a particular entry in T (t′,t) (at time t ≥ t′),
it can make a query to an oracle. The algorithm also has to
answer a query made on a row of (T (t′,t))−1 at any time
t. The algorithm’s performance is measured by its running
time and the number of oracle queries. It can be assumed
that T (t′,t) is invertible for any t.

In Section IV-C, we develop an algorithm for the

above problem. It has the same update and query time

as Sankowski’s second algorithm, i.e. O((t − t′)2) and

additionally makes O(t − t′) oracle queries to perform

each operation. Moreover, our algorithm does not need to

maintain a chain of matrices as in Equation (5). Eliminating

this chain allows a further use of fast matrix multiplication,

which yields an additional runtime improvement for the

setting of batch-updates and batch-queries, i.e. when more

than one entry is changed/queried at a time. This leads to

improvements in the look-ahead setting and for some graph

problems such as online-matching.

The starting point of our algorithm for Problem 2.2 is

the fact that T (t′,t) and (T (t′,t))−1 differs in at most t− t′

columns from the identity. Thus, by appropriately permuting

rows and columns, we can write them as

T (t′,t) =

(
C1 0
C2 I

)

(T (t′,t))−1 =

(
C−1

1 0

−C2C
−1
1 I

)
(8)

Here, C1 and C2 are (t− t′)× (t− t′)- and (n− t+ t′)×
(t− t′)-matrices, respectively. This observation immediately

yields the following solution to our problem: (i) In order

to maintain (T (t′,t))−1 implicitly, we only need to know

the C1 block of T (t′,t). Since a column update to T (t′,t)

may change C1 in O(t − t′) entries (i.e. either a column

of C1 is modified or a new row and column is added to

C1), we only need O(t− t′) oracle queries to keep track of

C−1
1 after each update.16 (ii) To answer a query about some

row of (T (t′,t))−1 we may need a row of the C2 block

and compute the vector-matrix product of such row of C2

with C−1
1 . Getting such row of C2 requires O(t− t′) oracle

queries.

In summary, we do not require to fully know the matrix

T (t′,t) in order to maintain its inverse. This algorithm

for maintaining (T (t′,t))−1 is formalized in Lemma 4.7

(Section IV-C).

Back to maintaining (T (0,t))−1: Using implicit
(T (t′,t))−1 maintenance (Details in Section IV-D): We

now sketch how we use the algorithm that maintains

(T (t′,t))−1 with implicit updates (cf. Problem 2.2) to main-

tain (T (0,t))−1 (cf. Problem 2.1). The main idea is that

we will implicitly maintain T (t′,t) by explicitly maintaining

(T (0,t′))−1 and matrix

S(t′,t) := T (0,t) − T (0,t′). (9)

16To maintain C−1
1 we use an extended version of [2, Theorem 1].
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Like Equation (7), we can derive

T (0,t) = T (0,t′) + S(t′,t), (10)

thus (by (6)) T (t′,t) = I+ (T (0,t′))−1S(t′,t).

Thus, we can implement an oracle that provides an entry

of T (t′,t) by multiplying a row of (T (0,t′))−1 with a column

of S(t′,t). This can be done pretty fast by exploiting the fact

that these matrices are rather sparse, i.e. (T (0,t′))−1 differs

from the identity matrix in at most t′ columns and S(t′,t)

has only t′ − t non-zero columns.

Summary: In a nutshell, our algorithm maintains

A(t) = A(0)T (0,t′)T (t′,t),

thus (A(t))−1 = (T (t′,t))−1(T (0,t′))−1(A(0))−1.

We keep the explicit values of A(0) and T (0,t′) at any

time. Additionally, we maintain explicitly a matrix S(t′,t)

satisfying Equation (10) (i.e. it collects all updates to T (0,t)

since time t′). As a subroutine we run our algorithm for

Problem 2.2 to maintain (T (t′,t))−1 with implicit updates;

call this algorithm L(t′,t), and see its detailed description in

Section IV-C.

When, say, the entry (i, j) of A(t) is updated, we (i)

update matrix S(t′,t), and (ii) implicitly update T (t′,t) by

sending index j to L(t′,t) (the previously outlined algorithm

for Problem 2.2). The first task is done by computing

each update to T (0,t), which is not hard: since T (0,t) =
(A(0))−1A(t), we have to change the jth column of T (0,t)

to the product of the ith column of (A(0))−1 and the

changed entry (i, j) of A(t) (see footnote 11). For the

second task, L(t′,t) might make some oracle queries. By

Equation (10), each query can be answered by multiplying

a row of (T (0,t′))−1 with a column of S(t′,t).

When, say, the ith row of (A(t))−1 is queried, we need

to multiply a row of (T (t′,t))−1 with (T (0,t′))−1(A(0))−1.

Such row is obtained by making a query to algorithm L(t′,t);

again, we use (T (0,t′))−1 and S(t′,t) to answer oracle queries

made by L(t′,t). When multiplying the vector-matrix-matrix

product from left to right, each vector-matrix product takes

time linear to the product of the number of non-zero entries

in the vector and the number of non-identity columns in the

matrix.

Section IV-D describes in details how we implement the

two operations above.

The running time L(t′,t) depend on t−t′. When t−t′ gets

large, we “reset” T (t′,t) to I by setting t′ ← t and compute

T (0,t) = T (0,t′)T (t′,t) using fast matrix multiplication.

The latter is done in a similar way to Sankowski’s first

algorithm. In particular, we write down equations similar to

Equation (4), except that now we have C = [T (0,t)−T (0,t′)].
Given that C is quite dense (since t′ � t), we can exploit

fast matrix multiplication here while the original algorithm

that uses Equation (4) cannot. See details in Section IV-B.

Computing T (0,t) = T (0,t′)T (t′,t) also becomes slow

when t is large. In this case, we “reset” both T (0,t′) and

T (t′,t) to I by computing A(t) = A(0)T (0,t′)T (t′,t) and

pretend that A(t) is our new A(0). Once again we can exploit

fast matrix multiplication here. See details in Section IV-A.

Discussions: Now that we can exploit fast matrix mul-

tiplication one more time compared to previous algorithms,

it is natural to ask whether we can exploit it another time.

A technical obstacle is that to use fast matrix multiplication

twice we already have to solve a different problem (Prob-

lem 2.2 vs. Problem 2.1); thus it is unclear whether and

how we should define another problem to be able to use

fast matrix multiplication another time. A more fundamental

obstacle is our conjectures: to get any further improvement

we have to break these conjectures, as we will discuss in

Section V.

III. PRELIMINARIES

In this section we will define our notation and state some

simple results about matrix multiplication and inversion.

Notation: Identity and Submatrices: The identity ma-

trix is denoted by I.

Let I, J ⊂ [n] := {1, ..., n} and A be an n × n matrix,

then the term AI,J denotes the submatrix of A consisting of

the rows I and columns J . For some i ∈ [n] the term A[n],i

can thus be seen as the ith column of A.

Let I = (i1, ...ip) ∈ [n]p, J = (j1, ...jq) ∈ [n]q and A
be an n × n matrix, then the term AI,J denotes a matrix

such that (AI,J)s,t = Ais,jt . Specifically for i1 < ... < ip
and j1 < ... < jt the term AI,J is just the submatrix of

A when interpreting I and J as sets instead of vectors. We

may also mix the notation e.g. for I = (i1, ...ip) ∈ [n]p and

J ⊂ [n], we can consider J to be an ordered set such that

j1 < ... < jq , then the term AI,J is just the matrix where

(AI,J)s,t = Ais,jt .

Inner, Outer and Matrix Products: Given two vectors

u and v we will write u�v for the inner product and uv�

for the outer product. This way inner and outer product are

just special cases of matrix multiplication, i.e. inner product

is a 1× n matrix multiplied with an n× 1 matrix, while an

outer product is the product of an n× 1 matrix by a 1× n
matrix.

We will also often exploit the fact that each entry of a

matrix product is given by an inner product: (AB)i,j =∑n
k=1 Ai,kBk,j = Ai,[n]B[n],j = eiABej . In other words,

to compute entry (i, j) of AB we just multiply the ith row

of A with the jth column of B.

Fast Matrix Multiplication: We denote with O(nω) the

complexity of multiplying two n × n matrices. Note that

matrix multiplication, inversion, determinant and rank, all

have the same complexity [35, Chapter 16]. Currently the

best bound is ω < 2.3729 [17], [36].

For rectangular matrices we denote the complexity of

multiplying an na × nb matrix with an nb × nc matrix
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Problem Known upper bound New upper bound Known lower bound New lower bound

Bipartite maximum matching - -
(online, total time) O(m

√
n) [22] O(nω) - -

Bipartite maximum matching
(fully dynamic)

edge update O(n1.447) [O(n1+1/3)] [3] O(n1.407)
[O(n1+1/4)]

Ω(n) [18]
Ω(m0.814)‡ [19]

Ω(n1.406) [Ω(n1+1/4)]
Corollary 5.14

right side node update O(n2) [3] O(n1.529) [O(n1.5)] same as above

Maximum matching
(general graphs) Ω(n) [18]

edge update O(n1.447) [O(n1+1/3)] [3] O(n1.407)
[O(n1+1/4)]

Ω(m0.814)‡ [19] Ω(n1.406) [Ω(n1+1/4)]
Corollary 5.14

DAG path counting† and
Transitive Closure

edge update O(n1.447) [O(n1+1/3)] [2] O(n1.407)
[O(n1+1/4)]

u + q = Ω(n) [18] u + q = Ω(n1.406)
[Ω(n1+1/4)]

pair query O(n1.447) [O(n1+1/3)] [2] O(n1.407)
[O(n1+1/4)]

u + q =Ω(m0.814)‡ [19] Corollary 5.14

same as above O(n1.529) [O(n1.5)] [2] u = Ω(n1.528) [Ω(n1.5)] or

O(n0.529) [O(n0.5)] [2] q = Ω(n0.528) [Ω(n0.5)]
Corollary 5.10

node update
(incoming edges)

O(n2) [2] O(n1.529) [O(n1.5)] u + q = Ω(n) [18]
u + q =Ω(m0.814)‡

u + q = Ω(n1.528) [Ω(n1.5)]
Corollary 5.4

source query O(n) [2] O(n1.529) [O(n1.5)] [19]

edge update O(n1.529) [O(n1.5)] [2] - n · u + q = Ω(n2) u + q = Ω(n1.528) [Ω(n1.5)]
source query O(n1.529) [O(n1.5)] [2] [18] Corollary 5.10

All-pair-distances (unweighted)

edge update O(n1.897) [Õ(n2−1/8)] [7] O(n1.724)
[Õ(n1+2/3)]

same as edge update/pair query transitive closure

pair query O(n1.265) [Õ(n1+1/4)] [7] O(n1.724)
[Õ(n1+2/3)]

Strong connectivity

edge update O(n1.529)* [O(n1+1/2)]
[2]

O(n1.529) [O(n1.5)] Ω(n) [18]
Ω(m0.814)‡[19]

Ω(n1.406) [Ω(n1+1/4)]
Corollary 5.14

node update
(incoming edges)

O(n2)* [2] O(n1.529) [O(n1.5)] same as above

Counting node disjoint
ST -paths

edge update O(n1.447) [3] O(n1.407)
[O(n1+1/4)]

Ω(n) [18]
Ω(m0.814)‡[19]

Ω(n1.406) [Ω(n1+1/4)]
(via transitive closure)

Counting spanning trees†
edge update O(n1.447) [O(n1+1/3)] [2] O(n1.407)

[O(n1+1/4)]
- -

Triangle detection

node update O(n2) [trivial] - Ω(n2) [18] -

node update
(incoming edges)

O(n2) [trivial] O(n1.529) [O(n1.5)] Ω(n) [18] -

node update
(turn node on/off)

O(n2) [trivial] O(n1.407)
[O(n1+1/4)]

- -

Directed cycle detection and
directed k-cycle (constant k)

edge update O(n1.447)* [O(n1+1/3)]
[7]

O(n1.407)
[O(n1+1/4)]

Ω(n) (k ≥ 3) [18] Ω(n1.406) [Ω(n1+1/4)]
(k ≥ 6) Corollary 5.14

node update
(incoming edges)

O(n2)* [7] O(n1.529) [O(n1.5)] same as above

Directed k-path (constant k)

edge update O(n1.447)* [O(n1+1/3)]
[2]

O(n1.407)
[O(n1+1/4)]

same as transitive closure same as transitive closure

pair query O(n1.447)* [O(n1+1/3)]
[2]

O(n1.407)
[O(n1+1/4)]

for k ≥ 3 for k ≥ 5

node update
(incoming edges)

O(n2)* [2] O(n1.529) [O(n1.5)] same as transitive closure
for k ≥ 3

same as transitive closure
for k ≥ 3

source query O(n)* [2] O(n1.529) [O(n1.5)]

Figure 5. The table displays the previous best upper/lower bounds and our results for dynamic gaph problems. Bounds inside brackets [ · ] are valid
assuming that a linear-time matrix multiplication algorithm exists. Lower bounds marked with ‡ only hold for sparse graphs m = O(n1.67) and when
assuming O(m1.407) pre-processing time. The complexities for problems marked with † are measured in the number of arithmetic operations. All other
complexities measure the time. Bounds marked with * are new applications of dynamic matrix inverse that were not previously stated. Colors of upper
bounds indicate which bound in Fig. 1 each bound in this table follows from. Colors of lower bounds indicate which conjecture in Fig. 1 each bound in
this table follows from. For details, see the full version.
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Figure 6. Invert (Fact 3.1)

Input: n × n matrix A = I + C where J ⊂ [n] are the

indices of the nonzero columns of C.

Output: A−1 = I+ C̃
1: C̃J,J ← (AJ,J )

−1

2: C̃[n]\J,J ← −C[n]\J,J C̃J,J

3: return I+ C̃

with O(nω(a,b,c)) for any 0 ≤ a, b, c. Note that ω(·, ·, ·)
is a symmetric function so we are allowed to reorder the

arguments. The currently best bounds for ω(1, 1, c) can be

found in [16].

The complexity of the algorithms presented in this paper

depend on the complexity of multiplying and inverting

matrices. For a more in-depth analysis of how we balance

the terms that depend on ω (e.g. how we compute ω(a, b, c)
for a, b 	= 1), we refer to the full version of the paper.

Transformation Matrices: Throughout this paper, we

will often have matrices of the form T = I + C, where C
has few non-zero columns. We will often call these matrices

transformation matrices.

Note that any matrix T = I + C, where C has at most

m non-zero columns, can be brought in the following form

by permuting the rows and columns, which corresponds to

permuting the columns and rows of its inverse T−1 [2,

Section 5]:

T =

(
C1 0
C2 I

)
Here C1 is of size m×m and C2 of size (n−m)×m. The

inverse is given by

T−1 =

(
C−1

1 0

−C2C
−1
1 I

)
In general, without prior permutation of rows/columns, we

can state for T and its inverse the following facts:

Fact 3.1. Let T be an n× n matrix of the form I+C and
let J ⊂ [n] be the column indices of the non-zero columns
of C, and thus for K := [n]\J we have C[n],K = 0.

Then:
• (T−1)J,J = (TJ,J )

−1, (T−1)K,J = −TK,J(TJ,J )
−1,

(T−1)K,K = I and (T−1)J,K = 0.
• For |J | = nδ the inverse T−1 can be computed in

O(nω(1,δ,δ)) field operations (Fig. 6).
• If given some set I ⊂ [n] with J ⊂ I , |I| = nε, then

rows I of T−1 can be computed in O(nω(ε,δ,δ)) and
for this we only need to know the rows I of T . (Fig. 7)

We will often multiply matrices of the form I+C where

C has few non-zero columns. The complexity of such

multiplications is as follows:

Figure 7. PartialInvert (Fact 3.1)

Input: Rows I ⊂ [n] of a matrix A = I+C where J ⊂ [n]
are the indices of the nonzero columns of C and J ⊂ I .

Output: Rows I of A−1 = I+ C̃
1: C̃J,J ← (AJ,J )

−1

2: C̃I\J,J ← −CI\J,J C̃J,J

3: return I+ C̃

Fact 3.2. Let A,B be n×n matrices of the form A = I+C,
B = I+N , where C has na non-zero columns and N has
nb non-zero columns.

Then:
• The product AB can be computed in O(nω(1,a,b))

operations.
• If JC , JN ⊂ [n] are the sets of column indices where

C (or respectively N ) is non-zero, then AB is of the
form AB = I+M where M can only be non-zero on
columns with index in JC ∪ JN .

• If we want to compute only a subset of the rows, i.e.
for I ⊂ [n] we want to compute (AB)I,[n] = AI,[n]B,
then for |I| = nc this requires O(nω(c,a,b)) operations.
For this we only require the rows with index I ∪ JC
of the matrix N , so we do not have to know the other
entries of N to compute the product.

This fact is a direct implication of (I + C)(I + N) =
I + C +N + CN and CN[n],JN

= C[n],JC
NJC ,JN

.

IV. DYNAMIC MATRIX INVERSE

In this section we show the main algorithmic result, which

are two algorithms for dynamic matrix inverse. The first

one supports column updates and row queries, while the

second one supports element updates and element queries.

These two algorithms imply more than ten faster dynamic

algorithms, see Fig. 5 and the full version for applications.

Theorem 4.1. For every 0 ≤ ε ≤ 1 there exists a
dynamic algorithm for maintaining the inverse of an n× n
matrix A, requiring O(nω) field operations during the pre-
processing. The algorithm supports changing any column of
A in O(n1+ε + nω(1,1,ε)−ε) field operations and querying
any row of A−1 in O(n1+ε) field operations.

For current bounds on ω this implies a O(n1.529) upper
bound on the update and query cost (ε ≈ 0.529). For ω = 2
the update and query time become O(n1.5) (ε = 0.5).

Theorem 4.2. For every 0 ≤ ε1 ≤ ε2 ≤ 1 there exists
a dynamic algorithm for maintaining the inverse of an
n × n matrix A, requiring O(nω) field operations during
the pre-processing, The algorithm supports changing any
entry of A in O(nε2+ε1+nω(1,ε1,ε2)−ε1+nω(1,1,ε2)−ε2) field
operations and querying any entry of A−1 in O(nε2+ε1) field
operations.

When balancing the terms for current values of ω, the
update and query cost are O(n1.407) (for ε1 ≈ 0.551,
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ε2 ≈ 0.855). For ω = 2 the update and query time become
O(n1.25) (for ε1 = 0.5, ε2 = 0.75).

Throughout this section, we will write A(t) to denote

the matrix A after t updates. The algorithms from both

Theorem 4.1 and Theorem 4.2 are based on Sankowski’s

idea [2] of expressing the change of some matrix A(t−1)

to A(t) via a linear transformation T (0,t), such that A(t) =
A(0)T (0,t) and thus (A(t))−1 = (T (0,t))−1(A(0))−1. The

task of maintaining the inverse of A(t) thus becomes a task

about maintaining the inverse of T (0,t). We will call this

problem transformation maintenance and the properties for

this task will be properly defined in Section IV-A. We note

that proofs in Section IV-A essentially follow ideas from [2],

but Sankowski did not state his result in exactly the form

that we need.

In the following two subsections IV-B and IV-C, we

describe two algorithms for this transformation maintenance

problem. We are able to combine these two algorithms to

get an even faster transformation maintenance algorithm in

subsection IV-D, where we will also prove the main results

Theorem 4.1 and Theorem 4.2.

Throughout this section we will assume that A(t) is

invertible for every t. An extension to the case where A(t)

is allowed to become singular is given in the full version.

A. Transformation Maintenance implies Dynamic Matrix
Inverse

In the overview Section II we outlined that maintaining

the inverse for some transformation matrix T (0,t) implies an

algorithm for maintaining the inverse of matrix A(t). In this

section we will formalize and prove this claim in the setting

where A(t) receives entry updates. While the idea of using

a transformation matrix T (0,t) goes back to [2], there was

no general reduction given that reduces the dynamic matrix

inverse to the transformation maintenance problem. Here we

state and prove such a reduction:

Theorem 4.3. Assume there exists a dynamic algorithm T
that maintains the inverse of an n × n matrix M (t) where
M (0) = I, supporting the following operations:
• update(j1, ..., jk,c1, ..., ck) Set the jlth column of M (t)

to be the vector cl for l = 1...k in O(u(k,m)) field
operations, where m is the number of so far changed
columns.

• query(I) Output the rows of (M (t))−1 specified by the
set I ⊂ [n] in O(q(|I|,m)) field operations, where m
is the number of so far changed columns.

Also assume the pre-processing of this algorithm requires
O(p) field operations.

Let k ≤ nε for 0 ≤ ε ≤ 1, then there exists a dynamic
algorithm A that maintains the inverse of any (non-singular)
matrix A supporting the following operations:

• update((i1, j1)...(ik, jk), c1...ck) Set A(t)
il,jl

to be cl for

l = 1...k in O(u(k, nε)+ (kn−ε) · (p+nω(1,1,ε))) field
operations.

• query(I, J) Output the sub-matrix (A(t))−1
I,J specified

by the sets I, J ⊂ [n] with |I| = nδ1 , |J | = nδ2 in
O(q(nδ1 , nε) + nω(δ1,ε,δ2)) field operations.

The pre-processing requires O(p+ nω) field operations.

The high level idea of the algorithm A is to maintain

T (0,t) such that A(t) = A(0)T (0,t), which allows us to

express the inverse of A(t) via (T (0,t))−1(A(0))−1. Here

the matrix (A(0))−1 is computed during the pre-processing

and (T (0,t))−1 is maintained via the assumed algorithm T .

After changing nε entries of A, we reset the algorithm by

computing (A(t))−1 explicitly and resetting T (t,t) = I. We

will first prove that element updates to A correspond to

column updates to T .

Lemma 4.4. Let A(t1) and A(t2) be two non-singular
matrices, then there exists a matrix T (t1,t2) := I +
(A(t1))−1(A(t2) −A(t1)) such that A(t2) = A(t1)T (t1,t2).

Proof: We have T (t1,t2) = I+(A(t1))−1(A(t2)−A(t1)),
because:

A(t1)
[
I+ (A(t1))−1(A(t2) −A(t1))

]
=A(t1) + (A(t2) −A(t1)) = A(t2)

Corollary 4.5. Let 0 ≤ t′ ≤ t and A(t) = A(t′)T (t′,t),
where A(t′) and A(t) differ in at most k columns. Then
• An entry update to A(t) corresponds to a column update

to T (t′,t), where the column update is given by a column
of (A(t′))−1, multiplied by some scalar.

• The matrix T (t′,t) is of the form I + C, where C has
at most k non-zero columns.

Proof: The first property comes from the fact that

T (t′,t) = I+ (A(t′))−1(A(t) −A(t′))

= I+ (A(t′))−1(A(t) −A(t−1) +A(t−1) −A(t′))

= (A(t′))−1(A(t) −A(t−1)) + I

+ (A(t′))−1(A(t−1) −A(t′))

= (A(t′))−1(A(t) −A(t−1)) + T (t′,t−1)

and (A(t) − A(t−1)) is a zero matrix except for a single

entry. Thus (A(t′))−1(A(t) − A(t−1)) is just one column

of (A(t′))−1 multiplied by the non-zero entry of (A(t) −
A(t−1)).

The second property is a direct implication of T (t′,t) =
I+ (A(t′))−1(A(t) −A(t′)) as (A(t) −A(t′)) is non-zero in

at most k columns.

Proof of Theorem 4.3: We are given a dynamic

algorithm T that maintains the inverse of an n × n matrix

M (t) where M (0) = I, supporting column updates to M (t)
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and row queries to (M (t))−1. We now want to use this

algorithm to maintain (A(t))−1.
Pre-processing: During the pre-processing we compute

(A(0))−1 explicitly in O(nω) field operations and initialize

the algorithm T in O(p) operations.
Updates: We use algorithm T to maintain the inverse

of M (t) := T (0,t), where T (0,t) is the linear transformation

transforming A(0) to A(t). Via Corollary 4.5 we know the

updates to A(t) imply column updates to T (0,t), so we can

use algorithm T for this task. Corollary 4.5 also tells us that

the update performed to M (t) = T (0,t) is simply given by a

scaled column of (A(0))−1, so it is easy to obtain the change

we have to perform to M (t).
Reset and average update cost: For the first nε columns

that are changed in T (0,t), each update requires at most

O(u(k, nε)) field operations. After changing nε columns we

reset our algorithm, but instead of computing the inverse of

A(t) explicitly in O(nω) as in the pre-processing, we com-

pute it by first computing (T (0,t))−1 and then multiplying

(T (0,t))−1(A(0))−1. Note that T (0,t) is of the form I + C
where C has at most nε nonzero columns, so its inverse

(T (0,t))−1 can be computed explicitly in O(nω(1,ε,ε)) oper-

ations (see Fact 3.1). This inverse (T (0,t))−1 is of the same

form I+C ′, hence the multiplication of (T (0,t))−1(A(0))−1

costs only O(nω(1,ε,1)) field operations (via Fact 3.2) and

the average update time becomes O(u(k, nε) + kn−ε(p +
nω(1,1,ε))), which for a fixed batch-size k (i.e. all updates

are of the same size) can be made worst-case via standard

techniques.
Queries: When querying a submatrix (A(t))−1

I,J we

simply have to compute the product of the rows I of

(T (0,t))−1 and columns J of (A(0))−1. To get the required

rows of (T (0,t))−1 = (M (t))−1 we need O(q(nδ1 , nε)) time

via algorithm T . Because of the structure (T (0,t))−1 = I+C,

where C has only upto nε nonzero columns, the product of

the rows I of (T (0,t))−1 and the columns J of (A(0))−1

needs O(nω(δ1,ε,δ2)) field operations (Fact 3.2).

B. Explicit Transformation Maintenance
In the previous subsection we motivated that a dynamic

matrix inverse algorithm can be constructed from a trans-
formation maintenance algorithm.

The following algorithm allows us to quickly compute

the inverse of a transformation matrix, if only a few are

columns changed. The algorithm is identical to [2, Theorem

2] by Sankowski, for maintaining the inverse of any matrix.

Here we analyze the complexity of his algorithm for the

setting that the algorithm is applied to a transformation

matrix instead.

Lemma 4.6. Let 0 ≤ ε0 ≤ ε1 ≤ 1 and let T = I+N be an
n × n matrix where N has at most nε1 non-zero columns.
Let C be a matrix with at most nε0 non-zero columns. If
the inverse T−1 is already known, then we can compute the
inverse of T ′ = T + C in O(nω(1,ε1,ε0)) field operations.

Figure 8. UpdateColumnsInverse (Lemma 4.6)

Input: n× n matrices T−1 and C
Output: (T + C)−1

1: M ← I+ T−1C
2: M−1 ← INVERT(M) (Fig. 6)

3: return M−1T−1

For the special case ε1 = 1, ε0 = 0 this result is identical

to [2, Theorem 1], while for ε1 = 1 this result is identical to

[2, Theorem 2]. For ε0 = 0, ε1 < 1 this result is implicitly

proven inside the proof of [2, Theorem 3]. Thus Lemma 4.6

unifies half the results of [2].

Note that for ε0 = 0 the complexity simplifies to

O(n1+ε1) field operations.

Proof of Lemma 4.6: The change from T to T + C
can be expressed as some linear transformation M :

T + C = T (I+ T−1C︸ ︷︷ ︸
=:M

)

Here C has at most nε0 non-zero columns and T−1 is

of the form I + N , where N has at most nε1 non-zero

columns, so the matrix M = I+T−1C can be computed in

O(nω(1,ε1,ε0)) field operations, see Fact 3.2.

The new inverse (T + C)−1 is given by (TM)−1 =
M−1T−1. Note that M is of form I + N , where N
has nε0 non-zero columns, so using Fact 3.1 (Fig. 6) we

can compute M−1 in O(nω(1,ε1,ε0)) field operations. Via

Fact 3.1 we also know that M−1 is again of the form

I + N , where N has at most nε0 non-zero columns, thus

the product (T +C)−1 = M−1T−1 requires O(nω(1,ε1,ε0))
field operations (Fact 3.2). In total we require O(nω(1,ε1,ε0))
operations.

C. Implicit Transformation Maintenance

In this section we will describe an algorithm for main-

taining the inverse of a transformation matrix T (t1,t2) in

an implicit form, that is, the entries of (T (t1,t2))−1 are not

computed explicitly, but they can be queried.

We state this result in a more general way: Let B(t) be

a matrix that receives column updates and where initially

B(0) = I. Thus B(t) is a matrix that differs from I in only

a few columns. As seen in equation (8) and Fact 3.1 such

a matrix allows us to compute rows of its inverse (B(t))−1

without knowing the entire matrix B(t). Thus we do not

require the matrix B(t) to be given in an explicit way, instead

it is enough to give the matrix B(t) via some pointer to a

data-structure DB . Our algorithm will then query this data-

structure DB to obtain entries of B(t).

Lemma 4.7. Let B(t) be a matrix receiving column updates
where initially B(0) = I and let 0 ≤ ε0 ≤ ε1 ≤ 1. Here nε0

is an upper bound on the number of columns changed per
update and nε1 is an upper bound on the number of columns
where B(t) differs from the identity (e.g. via restricting
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Figure 9. UpdateInverse (Lemma 4.8)

Input: n× n matrices M,C,R.

Output: (M + C +R)−1

1: M−1 ← UPDATECOLUMNSINVERSE(M,M−1, C)
(Fig. 8)

2: M ←M + C
3: M−1 ← (UPDATECOLUMNSINVERSE(

M�,M�−1, R�))� (Fig. 8)

4: return M−1

t ≤ nε1−ε0 ). Assume matrix B(t) is given via some data-
structure D that supports the method D.QUERY(I, J) to
obtain any submatrix B

(t)
I,J .

Then there exists a transformation maintenance algorithm
which maintains (B(t))−1 supporting the following opera-
tions:
• update(J (t)): The set J (t) ⊂ [n] specifies the column

indices where B(t) and B(t−1) differ.
The algorithm updates its internal data-structure using
at most O(nω(ε1,ε1,ε0)) field operations. To perform this
update, the algorithm has to query D to obtain two
submatrices of B(t) of size nε0 × nε1 and nε1 × nε0 .

• query(I) The algorithm outputs the rows of (B(t))−1,
specified by I ⊂ [n], |I| = nδ in O(nω(δ,ε1,ε1)) field
operations. To perform the query, the algorithm has to
query D to obtain a submatrix of B(t) of size nδ×nε1 .

The algorithm requires no pre-processing.

While our algorithm of Lemma 4.7 is new, in a restricted

setting it has the same complexity as the transformation

maintenance algorithm used in [2, Theorem 4]. When re-

stricting to the setting where the matrix B(t) is given

explicitly and no batch updates/queries are performed (i.e.

ε0 = δ = 0), then the complexity of Lemma 4.7 is the

same as the transformation maintenance algorithm used in

[2, Theorem 4]. 17

Before we prove Lemma 4.7, we will prove the following

lemma, which is implied by Fact 3.1. This lemma allows us

to quickly invert matrices when the matrix is obtained from

changing few rows and columns.

Lemma 4.8. Let 0 ≤ ε0 ≤ ε1 ≤ 1 and let M,C,R be
square matrices of size at most nε1 × nε1 .

If C has at most nε0 non-zero columns, R has at most
nε0 non-zero rows and we already know the inverse M−1,
then we can compute the inverse (M + C + R)−1 in
O(nω(ε1,ε1,ε0)) field operations.

17Our algorithm is slightly faster for the setting of batch updates and
batch queries (i.e. more than one column is changed per update or more
than one row is queried at once). When considering batch updates and
batch queries, Sankowski’s variant of Lemma 4.7 can be extended to
have the complexity Ω(nω(ε1,ε0,ε0)+ε1−ε0 ) and Ω(nω(ε1,δ,ε0)+ε1−ε0 )
operations, because all internal computations are successive and can not be
properly combined/batched using fast-matrix-multiplication.

Proof: We want to compute (M + C + R)−1, where

R has at most nε0 non-zero rows and C has at most nε0

non-zero columns.

Let m = nε1 , δ1 = 1 and δ0 = ε0/ε1, then M,C,R are

m×m matrices.

We can compute (M + C)−1 via Lemma 4.6 (Fig. 8) in

O(mω(1,δ1,δ0)) = O(nω(ε1,ε1,ε0)) operations.

Let B = M+C, then (M+C+R)� = B�+R� so M�

is obtained from B� by changing at most nε0 columns and

we can use Lemma 4.6 (Fig. 8) again to obtain (M + C +
R)−1 = ((B�+R�)−1)� using O(nω(ε1,ε1,ε0)) operations.

With the help of Lemma 4.8 (Fig. 9), we can now prove

Lemma 4.7. The high level idea is to see the matrix B(t) to

be of the form I+C similar to equation (8) in the overview

(Section II), then we only maintain the C−1
1 block during

the updates. When performing queries, we then may have

to compute some rows of the product −C2C
−1
1 .

Proof of Lemma 4.7: Let J (i) be the set we received

at the ith update. At time t let I(t) =
⋃t

i=1 J
(i) be the

set of column indices of all so far changed columns, and

let M (t) be the matrix s.t. M
(t)

I(t),I(t) = (B(t))I(t),I(t) and

M
(t)
i,j = Ii,j otherwise. We will maintain I(t), M (t) and

(M (t))−1 explicitly throughout all updates.

For t = 0 we have B(0) = I and I(0) = ∅, M (0) = I =
(M (0))−1, so no pre-processing is required.

Updating I(t) and M (t): When B(t) is ”updated” (i.e.

we receive a new set J), we set I(t) = I(t−1) ∪ J . As

J specifies the columns in which B(t) differs to B(t−1),

we query D to obtain the entries B
(t)

I(t),J
and B

(t)

J,I(t) and

update these entries in M (t) accordingly. Thus we now have

M
(t)

I(t),I(t) = B
(t)

I(t),I(t) .

The size of the queried submatrices B(t) is at most

nε0 × nε1 and nε1 × nε0 , because by assumption at most

nε1 columns are changed in total (so |I(t)| ≤ nε1 ) and at

most nε0 columns are changed per update (so |J | ≤ nε0 ).

Updating (M (t))−1: Next, we have to compute

(M (t))−1 from (M (t−1))−1. Note that the matrix M (t) is

equal to the identity except for the submatrix M
(t)

I(t),I(t) , i.e.

without loss of generality (after reordering rows/columns)

M (t) and its inverse look like this:

M (t) =

(
I 0

0 M
(t)

I(t),I(t)

)

(M (t))−1 =

(
I 0

0 (M
(t)

I(t),I(t))
−1

)

So we have (M
(t)

I(t),I(t))
−1 = ((M (t))−1)I(t),I(t) , and most

importantly M
(t)

I(t),I(t) is obtained from M
(t−1)

I(t),I(t) by chang-

ing upto nε0 rows and columns. We already know the inverse

(M
(t−1)

I(t),I(t))
−1 = ((M (t−1))−1)I(t),I(t) , hence we can com-

pute (M (t))−1 via Lemma 4.8 (Fig. 9) using O(nω(ε1,ε1,ε0))
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Figure 10. MaintainTransform (Lemma 4.7)

Input: Data-structure D representing the matrix B(t)

throughout all updates. We can call some function

D.QUERY(I, J) to receive B
(t)
I,J . In each update we also

receive a set J ⊂ [n] specifying the column indices

where B(t) and B(t−1) differ.

Maintain: (B(t))−1 in an implicit form (rows can be

queried). Internally we maintain:

• I(t) =
⋃t

i=1 J
(i) ⊂ [n], where J (i) is the set we

received at the ith update.

• An n×n matrix M (t) s.t. M
(t)

I(t),I(t) = (B(t))I(t),I(t)

and M
(t)
i,j = Ii,j for all other entries (i, j)

• The inverse (M (t))−1.

initialization: (We receive the data-structure D )

INITIALIZE(D):

1: t← 0,M (0) ← I, J (0) ← ∅.
2: Remember D

update operation: (We receive J ⊂ [n] )

UPDATE(J ):

1: t← t+ 1
2: I(t) ← I(t−1) ∪ J
3: Update M (t) {This requires to query B

(t)

J,I(t) and B
(t)

I(t),J

by calling D.QUERY(J, I(t)) and D.QUERY(I(t), J)}
4: {We will now compute two matrices R,C s.t. M (t) =

M (t−1) +R+ C}
5: R,C ← 0-matrices

6: RJ,I(t) ←M
(t)

J,I(t) −M
(t−1)

J,I(t)

7: CI(t)\J,J ←M
(t)

I(t)\J,J −M
(t−1)

I(t)\J,J
8: (M (t))−1 ← I

9: ((M (t))−1)I(t),I(t) ← UPDATEINVERSE(

M
(t−1)

I(t),I(t) , ((M
(t−1))−1)I(t),I(t) ,

RI(t),I(t) , CI(t),I(t)) (Fig. 9)

{Note that ((M (t))−1)I(t),I(t) = (M
(t)

I(t),I(t))
−1 =

(B
(t)

I(t),I(t))
−1 = ((B(t))−1)I(t),I(t) , because the matri-

ces differ only in columns I(t) from the identity matrix,

see Fact 3.1.}
query operation: (Querying some rows with index J ⊂ [n]

of (B(t))−1)

QUERY(J ):

1: N ← I

2: Obtain B
(t)

J\I(t),I(t) by calling D.QUERY(J\I(t), I(t)).
3: NJ\I(t),I(t) ← −B(t)

J\I(t),I(t)(M
(t))−1

I(t),I(t)

4: NI(t),I(t) ← (M (t))−1
I(t),I(t)

5: return rows J of N .

operations.

This concludes all performed computations during an

update. The total cost is O(nω(ε1,ε1,ε0)) field operations.

Queries: Next we will explain the query routine, when

trying to query rows with index J ⊂ [n] of the inverse.

Remember that B(t) is of the form of Fact 3.1, i.e. B(t) =
I+C, where the non-zero columns of C have their indices

in I(t). Thus we have ((B(t))−1)I(t),I(t) = ((B
(t)

I(t),I(t))
−1)

and ((B(t))−1)[n]\I(t),I(t) = −B(t)

[n]\I(t),I(t)(B
(t)

I(t),I(t))
−1.

This means by setting some matrix N = I ex-

cept for the submatrix NJ,I(t) , where NJ\I(t),I(t) :=

−B(t)

J\I(t),I(t)(B
(t)

I(t),I(t))
−1 = −B(t)

J\I(t),I(t)(M
(t))−1

I(t),I(t)

and NJ∪I(t),I(t) := (M (t))−1
J∪I(t),I(t) , then rows J of N and

rows J of (B(t))−1 are identical, so we can simply return

these rows of N .

The query complexity is as follows:

The required submatrix B
(t)

I\I(t),I(t) is queried via

D
(t)

B(t) and is of size at most nδ × nε1 . The product

−B(t)

J,I(t)(M
(t))−1

I(t),I(t) requires O(nω(δ,ε1,ε2)) field opera-

tions via Fact 3.2.

D. Combining the Transformation Maintenance Algorithms

The task of maintaining the transformation matrix can

itself be interpreted as a dynamic matrix inverse algorithm,

where updates change columns of some matrix T (0,t) and

queries return rows of (T (0,t))−1. This means the trick of

maintaining (A(t))−1 = (T (t′,t))−1(A(t′))−1 for t ≥ t′ can

also be used to maintain (T (0,t))−1 in the form (T (0,t))−1 =
(T (t′,t))−1(T (0,t′))−1 instead.

This is the high-level idea of how we obtain the fol-

lowing Lemma 4.9 via Lemma 4.6 and Lemma 4.7. We

use Lemma 4.6 to maintain (T (0,t′))−1 and Lemma 4.7 to

maintain (T (t′,t))−1.

We will state the new algorithm as maintaining the inverse

of some matrix B(t) where B(t) receives column updates.

Note that the following result is slightly more general than

maintaining the inverse of some T (0,t) as we do not require

B(t) = I.

Lemma 4.9. Let 0 ≤ ε0 ≤ ε1 ≤ ε2 ≤ 1 and k = nε0 .
There exists a transformation maintenance algorithm that

maintains the inverse of B(t), supporting column updates to
B(t) and submatrix queries to the inverse (B(t))−1. Assume
that throughout the future updates the form of B(t) is I +
C(t), where C(t) has always at most nε2 nonzero columns
(e.g. by restricting the number of updates t ≤ nε2−ε0 ). The
complexities are:
• update(j1, ..., jk, c1, ..., ck): Set the columns jl of

B(t) to be cl for l = 1, ..., k in O(nω(ε2,ε1,ε0) +
nω(1,ε2,ε1)−ε1+ε0) field operations.

• query(I ,J): Output the submatrix (B(t))−1
I,J where

I, J ⊂ [n], |I| = nδ1 , |J | = nδ2 in O(nω(δ1,ε2,ε1) +
nω(δ1,min{ε2,δ2},ε1)) field operations.
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The pre-processing requires at most O(nω) operations,
though if B(0) = I the algorithm requires no pre-processing.

Before proving Lemma 4.9 we want to point out that both

Theorems 4.1 and 4.2 are direct implications of Lemma 4.9:

Proof of Theorem 4.2 and Theorem 4.1:
The column update algorithm from Theorem 4.1 is ob-

tained by letting ε0 = 0, ε1 = ε, ε2 = δ2 = 1 and δ1 = 0
in Lemma 4.9.

Theorem 4.2 is obtained by combining Theorem 4.3 and

Lemma 4.9: Theorem 4.3 explains how a transformation

maintenance algorithm can be used to obtain an element

update dynamic matrix inverse algorithm and we use the al-

gorithm from Lemma 4.9 as the transformation maintenance

algorithm.

To summarize Theorem 4.3, it says that: Assume there

exists an algorithm for maintaining T−1 where T = I

initially then T receives nε0 column changes per update

such that T stays of the form I + C where C has at most

nε2 columns. If the update time is u(nε0 , nε2) and the query

time (for querying nδ1 rows) is q(nδ1 , nε2), then there exists

an element update dynamic matrix inverse algorithm that

supports changing nε0 elements per update and update time

O(u(nε0 , nε2) + (n−ε2+ε0) · (p+ nω(1,1,ε2))).
For u(nε0 , nε2) = O(nω(ε2,ε1,ε0)+nω(1,ε2,ε1)−ε1+ε0) and

no pre-processing time p as in Lemma 4.9, we obtain with

ε0 = 0 the update complexity of Theorem 4.2 O(nε2+ε1 +
nω(1,ε1,ε2)−ε1 + nω(1,1,ε2)−ε2).

The query time of Theorem 4.3 for querying an element

of T−1 is with q(nδ1 , nε2) = O(nω(δ1,ε2,ε1)) given via

O(q(1, nε2) + nω(0,ε2,0)) = O(nε2+ε1).

Next, we will prove Lemma 4.9.

Proof of Lemma 4.9:
Let B(t) be the matrix at round t, i.e. B(0) is what

the matrix looks like at the time of the initialization/pre-

processing. As pre-processing we compute (B(0))−1, which

can be done in O(nω) operations, though for B(0) = I this

can be skipped since (B(0))−1 = I.

We implicitly maintain B(t) by maintaining another ma-

trix T (t′,t) such that B(t) = B(t′)T (t′,t) for some t′ ≤ t, so

(B(t))−1 = (T (t′,t))−1(B(t′))−1. The matrix (B(t′))−1 is

maintained via Lemma 4.6 while (T (t′,t))−1 is maintained

via Lemma 4.7. After a total of nε1 columns were changed

(e.g. when t is a multiple of nε1−ε0 ), we set t′ = t,
which means B(t′) receives an update that changes upto

nε1 columns. Additionally the matrix T (t′,t) is reset to be

the identity matrix and the algorithm from Lemma 4.7 is

reset as well.

Maintaining (B(t′))−1: The matrix (B(t′))−1 is main-

tained in an explicit form via Lemma 4.6, which requires

O(nω(1,ε2,ε1)) operations. As this happens every n−ε1+ε0

rounds, the cost for this is O(nω(1,ε2,ε1)−ε1+ε0) operations

on average per update. (This can be made worst case via

standard techniques, see for example the full version of this

paper.)

Maintaining (T (t′,t))−1: We now explain how

(T (t′,t))−1 is maintained via Lemma 4.7. We have B(t) =
B(t′)T (t′,t) which means the matrix T (t′,t) is of the follow-

ing form (this can be seen by multiplying both sides with

B(t′)):

T (t′,t) = I+ (B(t′))−1(B(t) −B(t′))

We do not want to compute this product explicitly, in-

stead we construct a simple data-structure D (Fig. 12)

to represent T (t′,t) = I + (B(t′))−1(B(t) − B(t′)). (Note

that in the algorithmic description Fig. 11 the matrix

S(t) = B(t) − B(t′).) This data-structure allows queries

to submatrices of T (t′,t), by computing a small matrix

product. More accurately, for any set I, J ⊂ [n] calling

D.QUERY(I, J) to obtain T
(t′,t)
I,J requires to compute the

product ((B(t′))−1)I,[n](B
(t)−B(t′))[n],J . Since B(t′) (and

thus also (B(t′))−1), see Fact 3.1) is promised to be of the

form I + C, where C has at most nε2 non-zero columns,

querying this new data-structure for |I| = na, |J | = nb

requires O(nω(a,ε2,b)) field operations for any 0 ≤ a, b ≤ 1.

When applying Lemma 4.7 to maintain (T (t′,t))−1,

the update complexity is bounded by O(nω(ε1,ε1,ε0) +
nω(ε0,ε2,ε1) + nω(ε1,ε2,ε0)) = O(nω(ε2,ε1,ε0)).

The average update complexity for updating both

(T (t′,t))−1 and (B(t′))−1 thus becomes O(nω(ε2,ε1,ε0) +
nω(1,ε2,ε1)−ε1+ε0).

Queries: Next, we will analyze the complexity of

querying a submatrix (B(t))−1
I,J . To query such a submatrix,

we need to multiply the rows I of (T (t′,t))−1 with the

columns J of (B(t′))−1. Querying the rows of (T (t′,t))−1

requires at most O(nω(δ,ε2,ε1)) operations according to

Lemma 4.7 (querying entries of T (t′,t) via data-structure

D is the bottleneck). Note that (B(t′))−1 is of the form

I + C where C has at most nε2 nonzero columns, so for

|J | = nδ2 multiplying the rows and columns requires at

most O(nω(δ1,ε1,min{δ2,ε2})) operations (see Fact 3.2).

E. Applications

There is a wide range of applications, which we summa-

rized in Fig. 5 and the second applications table in the full

version. The reductions can be found in the appendix of the

full version, because some have already been stated before

(e.g. [2], [3], [7], [37]) while many others are just known

reductions for static problems applied to the dynamic setting.

In this section we want to highlight the most interesting

applications, for an extensive list of all applications we refer

to the full version.

Algebraic black box reductions: The dynamic matrix

inverse algorithms from [2] can also be used to maintain the

determinant, adjoint or solution of a linear system. However,
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Figure 11. ColumnUpdateRowQuery (Lemma 4.9)

Input: An n × n matrix B(0) = I + C(0) and inputs of

the form B(t) = T (t−1) +C(t) where C(t) has nonzero

columns J (t).

Output: Maintain (B(t))−1 in an implicit form s.t. subma-

trices can be queried.

initialization:
INITIALIZE(B(0))

1: Compute (B(0))−1 (or just set (B(0))−1 ← I in case of

B(0) = I)

2: S(0) ← zero-matrix

3: t′ ← 0, t← 0
4: D.UPDATE((B(0))−1, S(0)) (Initialize data-structure D

Fig. 12)

5: MAINTAINTRANSFORM.INITIALIZE(D) (Initialize

Fig. 10 for T (t′,t) = I)

update operation:
UPDATE(C)

1: t← t+ 1,

2: S(t) ← S(t−1)+C, J (t) ← indices of non-zero columns

of C.

3: if |⋃t
i=1 J

(i)| ≥ nε then
4: (B(t))−1 ←

UPDATECOLUMNSINVERSE(B(t′), (B(t′))−1, S(t))
(Fig. 8)

5: t′ ← t
6: S(t) ← zero-matrix

7: D.UPDATE((B(t))−1, S(t)) (Fig. 12)

8: MAINTAINTRANSFORM.INITIALIZE(D) (Reinitial-

ize MAINTAINTRANSFORM Fig. 10 for T (t′,t) = I)

9: else
10: D.UPDATE((B(t′))−1, S(t)) (Fig. 12)

11: MAINTAINTRANSFORM.UPDATE(J (t)) (Fig. 10).

12: end if
query operation: (Querying some submatrix (B(t))−1)I,J )

QUERY(I, J )

1: Obtain rows I of (T (t′,t))−1 by calling

MAINTAINTRANSFORM.QUERY(I, [n]) (Fig. 10).

2: return ((T (t′,t))−1)I,[n]((B
(t′))−1)[n],J

these reductions are white box. In the static setting we

already know, that determinant, adjoint and matrix inverse

are equivalent and that we can solve a linear system via

matrix inversion.However, not all static reductions can be

translated to work in the dynamic setting. For example the

Baur-Strassen theorem [38], [39] used to show the hardness

of the determinant in the static setting can not be used

in the dynamic setting. Likewise the typical reduction of

linear system to matrix inversion does not work in the

dynamic setting either. Usually one would solve Ax = b
by inverting A and computing the product A−1b. However,

in the dynamic setting the matrix A−1 is not explicitly given,

Figure 12. ProductDataStructure (Lemma 4.9)

(Used inside Fig. 10 and

Fig. 11)

Input: Two n× n matrices A and B given via pointers.

Output: Maintain P := I + AB in an implicit form s.t.

submatrices can be queried.

Update operation: Called if matrix A or B change.

UPDATE(A,B):
1: Remember the pointers to matrices A and B.

Query operation: Returns the submatrix PI,J for I, J ⊂
[n].

QUERY(I, J):
1: N ← I

2: NI,J ← NI,J +AI,[n]B[n],J

3: return NI,J

Figure 13. ElementUpdate (Theorems 4.2 and 4.3)

Input: An n × n matrix A(0) and inputs of the form

A(t) = A(t−1)+C(t) where C(t) has nonzero entries at

(i
(t)
1 , j

(t)
1 )...(i

(t)
k , j

(t)
k ).

Output: Maintain (A(t))−1 in an implicit form s.t. subma-

trices can be queried.

initialization:
INITIALIZE(A(0))

1: Compute (A(0))−1

2: S(0) ← zero-matrix

3: COMBINEDTRANSFORMATION.INITIALIZE(I) (Initial-

ize Fig. 11 for B(0) = I)

4: t← 0

update operation:
UPDATE(C)

1: t← t+ 1
2: S(t) ← S(t−1) + C, J (t) ← indices of the non-zero

columns of C.

3: if |⋃t
i=1 J

(i)| ≥ nε then
4: (A(0))−1 ←

UPDATECOLUMNSINVERSE(A(0), (A(0))−1, S(t))
5: S(0) ← zero-matrix

6: t← 0
7: COLUMNUPDATEROWQUERY.INITIALIZE(I) (Reini-

tialize Fig. 11 where B(0) := T (0,0) = I)

8: else
9: C̃ ← (A(0))−1C (i.e. we select some columns of

(A(0))−1)

10: COLUMNUPDATEROWQUERY.UPDATE(C̃) (Update

Fig. 11 where B(t) := T (0,t))

11: end if
query operation: (Querying some submatrix (A(t))−1)I,J )

QUERY(I, J)
1: Query rows I of (T (0,t))−1 by calling

COLUMNUPDATEROWQUERY.QUERY(I, [n]) (Fig. 11)

2: return ((T (0,t))−1)I,[n]((A
(0))−1)[n],J
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one would first have to query all entries of the inverse. Thus

it is an interesting question, what the relationship of the

dynamic versions of matrix inverse, determinant, adjoint,

linear system is.

Can any dynamic matrix inverse algorithm be used to

maintain determinant, adjoint, solution to a linear system,

or was this a special property of the algorithms in [2]? Is

the dynamic determinant easier in the dynamic setting, or is

it as hard as the dynamic matrix inverse problem?

In the full version we are able to confirm the equivalence:

dynamic matrix inverse, adjoint, determinant and linear

system are all equivalent in the dynamic setting, i.e. there

exist black box reductions that result in the same update

time. This is also an interesting difference to the static

setting, where there is no reduction from matrix inverse,

determinant etc. to solving a linear system.

Results based on column updates: For many dynamic

graph problems (e.g. bipartite matching, triangle detection,

st-reachability) there exist Ω(n2) lower bounds for dense

graphs, when we allow node updates [18]. Thanks to the

new column update dynamic matrix inverse algorithm we

are able to achieve sub-O(n2) update times, even though

we allow (restricted) node updates. For example the size

of a maximum bipartite matching can be maintained in

O(n1.529), if we restrict the node updates to be only on

the left or only on the right side. Likewise triangle detection

and st-reachability can be maintained in O(n1.529), if we

restrict the node updates to change only outgoing edges.

Especially for the dynamic bipartite matching problem this

is a very interesting result, because often one side is fixed:

Consider for example the setting where users have to be

matched with servers, then the server infra-structure is rarely

updated, but there are constantly users that will login/logout.

Previously only for the incremental setting (i.e. no user will

logout) there existed (amortized) sub-O(n2) algorithms [22].

The total time of [22] for n node insertions is O(
√
nm),

so O(m/
√
n) = O(n1.5) amortized update time for dense

graphs. In the full version we improve this to O(nω−1).

V. CONDITIONAL LOWER BOUNDS

In this section we will formalize the current barrier for

dynamic matrix algorithms. We obtain conditional lower

bounds for the trade-off between update and query time for

column update/row query dynamic matrix inverse, which is

the main tool of all currently known element update/element

query algorithms by using them as transformation main-

tenance algorithms, see Theorem 4.3. The lower bounds

we obtain (Corollary 5.5) are tight with our upper bounds

when the query time is not larger than the update time. We

also obtain worst-case lower bounds for element update and

element query (Corollary 5.15 and Corollary 5.9), which are

tight with our result Theorem 4.2 and Sankowski’s result [2,

Theorem 3]. The lower bounds are formalized in terms of

dynamic matrix products over the boolean semi-ring and

thus they also give lower bounds for dynamic transitive

closure and related graph problems.

The conditional problems and conjectures defined in this

section should be understood as questions. The presented

problems are a formalization of the current barriers and the

trade-off between using fast-matrix multiplication to pre-

compute lots of information vs using slower matrix-vector

multiplication to compute only required information in an

online fashion. Our conjectures ask: Is there a better third

option?

We will start this lower bound section with a short discus-

sion of past lower bound results. Then we follow with three

subsections, each giving tight bounds for a different type

of dynamic matrix inverse algorithm. In last subsection V-D

we will discuss, why other popular conjectures for dynamic

algorithms are not able to capture the current barrier for

dynamic matrix inverse algorithms.

Previous lower bounds: In [40] an unconditional linear

lower bound is proven in the restricted computational model

of algebraic circuits (history dependent algebraic compu-
tation trees) for the task of dynamically maintaining the

product of two matrices supporting element updates and

element queries. Via some reduction the lower bound then

also holds for the dynamic matrix inverse. Using a reduction

from dynamic matrix product to dynamic matrix inverse

(presented in the full version) a similar conditional lower

bound Ω(n1−ε) in the RAM-model for all constants ε > 0
can be obtained from the OMv conjecture [18].

One can also obtain a Ω(n2−ε) lower bound via OMv for

dynamic matrix inverse with column updates and column

queries, and (when reducing from OuMv) for an algorithm

supporting both column and row updates and only element

queries.

A. Column Update, Row Query

In this subsection we will present a new conditional lower

bound for the dynamic matrix inverse with column updates

and row queries, based on the dynamic product of two

matrices. The new problem for the column update setting

can be seen as an extension of the OMv conjecture. Instead

of having online vectors, a set of possible vectors is given

first and then one vector is selected from this list. We call

this problem v-hinted Mv as it is similar to the OMv problem

when provided a hint for the vectors.

Definition 5.1 (v-hinted Mv). Let the computations be
performed over the boolean semi-ring and let t = nτ ,
0 < τ < 1. The v-hinted Mv problem consists of the
following phases:

1) Input an n× t matrix M
2) Input a t× n matrix V
3) For an input index i ∈ [n] output MV[n],i (i.e. multiply

M with the ith column of V ).
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Figure 14. Graphical representation of the matrices M and V .

The definition of the v-hinted Mv problem is based on

boolean matrix operations, so it can also be interpreted as a

graph problem, i.e. the transitive closure problem displayed

in Fig. 14. For this interpretation, the matrices M and V
can be seen as a tripartite graph, where M lists the directed

edges between the first layer of n nodes and the second layer

of nτ nodes. The matrix V specifies the edges between the

second layer and the third layer of n nodes. All edges are

oriented in the direction: first layer ← second layer ← third

layer. The last phase of the v-hinted Mv problem consists of

queries, where we have to answer which nodes of the first

layer can be reached by some node i in the third layer, i.e.

we perform a source query.

To motivate a lower bound, let us show two simple

algorithms for solving the v-hinted Mv problem:

• Precompute the product MV in phase 2 using

O(nω(1,1,τ)) operations, and output the ith column of

the product in phase 3.

• Do not compute anything in phase 2 and compute

MVi,[n] in phase 3 using a matrix-vector product in

O(n1+τ ) operations.

Currently no polynomially better way than these two

options are known.18 We ask if there is another third option

with a substantially different complexity and formalize this

via the following conjecture: We conjecture that the trivial

algorithm is essentially optimal, i.e. we cannot do better

than to decide between precomputing everything in phase

2 or to compute a matrix-vector product in phase 3. The

conjecture can be seen as formalizing the trade-off between

pre-computing everything via fast matrix multiplication vs

computing only required information online via vector-
matrix product.

Conjecture 5.2 (v-hinted Mv conjecture). Any algorithm
solving v-hinted Mv with high probability, while requir-
ing polynomial pre-processing time in phase 1, requires
Ω(nω(1,1,τ)−ε) operations for phases 2 or Ω(n1+τ−ε) op-
erations for phase 3 for all constant ε > 0.

Theorem 5.3. Assuming the v-hinted Mv Conjecture 5.2,
the dynamic matrix-product with row updates and column

18One can, however, improve the time requirement of phase 3 by a factor
of logn using the technique from [41], but no O(n1+τ−ε) algorithm is
known for some constant ε > 0. For further discussion what previous
results for the Mv- and OMv-problem imply for our conjectures/problems,
we refer to the full version.

queries requires Ω(nω(1,1,τ)−τ−ε) update time (worst-case),
if the query time (worst-case) is O(n1+τ−ε) for some
constant ε > 0.

The same lower bound holds for any column update, row
query algorithm, as we can just maintain the transposed
product.

For current ω when balancing update and query time, this
implies lower bound of Ω(n1.528).

The proof of Theorem 5.3 can be found in the full version.

Note that the lower bound from Theorem 5.3 allows for

a trade-off between query and update time. The bound is

tight with our upper bound from Theorem 4.1, if the query

time is not larger than the update time. We can also give a

more direct lower bound for the dynamic matrix inverse, that

captures the algebraic nature of the v-hinted Mv problem.

By expressing the boolean matrix products as a graph as

in Fig. 14, we obtain the following lower bound for transitive

closure.

Corollary 5.4. Assuming the v-hinted Mv Conjecture 5.2,
the dynamic transitive closure problem (and DAG-path
counting and k-path for k ≥ 3) with polynomial pre-
processing time and node updates (restricted to updating
only incoming edges) and query operations for obtaining the
reachability of any source node, requires Ω(nω(1,1,τ)−τ−ε)
update time (worst-case), if the query time (worst-case) is
bounded by O(n1+τ−ε) for some constant ε > 0.

For current ω when balancing update and query time, this
implies a lower bound of Ω(n1.528).

The proof of Corollary 5.4 can be found in the full

version.

Theorem 5.3 implies the same lower bound for column

update/row query dynamic matrix inverse and adjoint via

reductions from the full version.

Corollary 5.5. Assuming the v-hinted Mv Conjecture 5.2,
the dynamic matrix inverse (and dynamic adjoint) with
column updates and row queries requires Ω(nω(1,1,τ)−τ−ε)
update time (worst-case), if the query time (worst-case) is
O(n1+τ−ε) for some constant ε > 0.

For current ω when balancing update and query time, this
implies lower bound of Ω(n1.528).

B. Element Update, Row Query

Next, we want to define a problem which is very similar

to the v-hinted Mv problem, but allows for a lower bound

for the weaker setting of element updates and row query

dynamic matrix inverse.

First, remember the high-level idea of the v-hinted Mv

problem: We are given a matrix M and a set of possible

vectors (i.e. a matrix) V and have to output only one matrix

vector product Mv for some v in V , but since we don’t know

which vector is going to be chosen our only choices are pre-

computing everything or waiting for the choice of v. When
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Figure 15. Graphical representation of the Mv-hinted Mv problem
(Definition 5.6).

trying to extend this problem to element updates, then we

obviously can not insert the matrix V via element updates

one by one, as that would cause a too high overhead in the

reduction and thus a very low lower bound. So instead we

will give V already during the pre-processing, but the matrix

M is not fully known. Instead, the matrix M is created from

building blocks, which are selected by the element updates.

Formally the problem is defined as follows:

Definition 5.6 (Mv-hinted Mv). Let all operations be per-
formed over the boolean semi-ring and let t = nτ for
0 < τ < 1. The Mv-hinted Mv problem consists of the
following phases:

1) Input matrices N ∈ Rn×n, V ∈ Rt×n

2) Input I ∈ [n]t.
3) Input index j ∈ [n] and output N[n],IV[t],j .

This problem has three different interpretations. One is to

consider this a variant of the v-hinted Mv problem, but with

two hints: one for M and one for the vector v (hence the

name Mv-hinted Mv). First in phase 1, we are given a matrix

N and a matrix V (i.e. a set of vectors) as a hint for M and

v. In phase 2 the hint for M concretized by constructing M
from columns of N .

Another interpretation for this problem is as some dy-
namic 3-matrix product NRV , where R is an initially all-

zero rectangular n×t matrix. Here the phase 2 can be seen as

updates to the R matrix, where for I = (i1, ..., it) the entries

Rij ,j are set to 1 for j = 1, ..., t, and all other entries are

left unchanged.

The third interpretation for the problem is graph theoretic

and considers the problem to be a dynamic transitive closure

problem with edge updates and source query. This graphical

representation is displayed in Fig. 15. We are given 4 groups

of nodes, the first, second and fourth group are of size n
while the third group is only of size t. There exist directed

edges from the second to the first group given by the non-

zero entries of N and the edges from the fourth to the third

group are given by V . In phase 2, t edges are inserted from

the third to the second layer. In phase 3 we have to answer

which nodes in the first layer can be reached from source-

node j in the fourth group.

The Mv-hinted Mv problem can be solved by the following

trivial algorithm: Assuming polynomial pre-processing time,

we do not know how to exploit the given information N and

V . We have no idea which entries of N will be multiplied

with which entries of V and we can not try all exponentially

many possible combinations for the vector I , so we do not

know how to compute anything useful. For the next phases

we have the following options:

• In phase 2, compute the product N[n],IV using

O(nω(1,τ,1)) operations. In phase 3 we simply output

the jth column of that product.

• We do not compute anything in phase 2, but remember

the set I . In phase 3 we compute N[n],IV[t],j as a vector-

matrix-vector product in O(n1+τ ) time.

Again we ask, if there is a better third option than trade-off

between pre-computing everything vs waiting and computing
only required information. We formalize this question as

the following conjecture: The two options are essentially

optimal, meaning there is no better way than to pre-compute

everything in phase 2 or to wait and perform a matrix vector

product in phase 3.

Conjecture 5.7. Any algorithm solving Mv-hinted Mv with
high probability, while requiring polynomial pre-processing
time in Phase 1, satisfies one of the following:

• Phase 2 requires Ω(nω(1,τ,1)−ε).
• Phase 3 requires Ω(n1+τ−ε).

For every ε > 0.

Since the Mv-hinted Mv problem can be represented as

a product of three matrices NRV , we obtain the following

lower bound for dynamic 3-matrix product algorithms with

element updates and row queries.

Theorem 5.8. Assuming the Mv-hinted Mv Conjecture 5.7,
any dynamic matrix product algorithm with polynomial
pre-processing time, element updates and column queries
requires Ω(nω(1,1,τ)−τ−ε) worst-case update time, if the
worst-case query time is O(n1+τ−ε) for some constant
ε > 0.

The same lower bound holds for any element update, row
query algorithm, as we can just maintain the transposed
product.

For current ω when balancing update and query time, this
implies lower bound of Ω(n1.529).

The proof of Theorem 5.8 can be found in the full

version. Note that Theorem 5.8 also implies a lower bound

on element update and element query, as we could query

n elements to get an entire column of the product. The

same lower bounds hold for dynamic matrix inverse and

adjoint via the reduction in the full version. Hence we get

a lower bound of Ω(nω(1,τ,1)−τ−ε) per element update or

Ω(nτ−ε) per element query for every ε > 0, which is tight

via Sankowski’s result presented in [2, Theorem 3], when n
queries are not slower than one update.
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Corollary 5.9. Assuming the Mv-hinted Mv Conjecture 5.7,
any dynamic matrix inverse (or dynamic ajoint) algo-
rithm with element updates and row queries requires
Ω(nω(1,1,τ)−τ−ε) update time (worst-case), if the query time
(worst-case) is O(n1+τ−ε) for some constant ε > 0.

For current ω when balancing update and query time, this
implies lower bound of Ω(n1.528).

Additionally, any dynamic matrix inverse (or dynamic
adjoint) algorithm with element updates and element queries
requires Ω(nω(1,1,τ)−τ−ε) update time (worst-case), if the
query time (worst-case) is O(nτ−ε) for some constant ε > 0.

The graph theoretic representation of the problem, yield

the same lower bound for the dynamic transitive closure and

DAG path counting problem with edge updates and source

queries (and thus also edge updates and n pair queries).

Corollary 5.10. Assuming the Mv-hinted Mv Conjec-
ture 5.12, dynamic transitive-closure and DAG path counting
with polynomial pre-processing time, edge updates and
source queries, requires Ω(nω(1,1,τ)−τ−ε) worst-case update
time, if the worst-case query time is O(n1+τ−ε) for some
ε > 0.

For current ω, this implies a lower bound of Ω(n1.528).
Additionally, any dynamic transitive-closure or DAG path

counting algorithm with edge updates and pair queries
requires Ω(nω(1,1,τ)−τ−ε) update time (worst-case), if the
query time (worst-case) is O(nτ−ε) for some constant ε > 0.

Note that these lower bounds specify a trade-off between

update and query time, i.e. we can query faster, if we are

willing to pay a higher update time. This trade-off is tight

unless the query time for querying a row exceeds the update

time.

C. Element Update, Element Query

The Mv-hinted Mv problem allowed us to specify a lower

bound for dynamic matrix inverse algorithms with slow

update and fast query time (i.e. [2, Theorem 3]). We also

want to obtain a lower bound for the case that update and

query time are balanced. The Mv-hinted Mv problem does

not properly capture the hardness of single element queries,

because the problem asks for an entire column to be queried.

When querying a column via O(n) element queries, we

would have some kind of look-ahead information, because

after the first element query, the next O(n) positions for the

queries are known, since they are in the same column. The

next problem we define is a variation of the Mv-hinted Mv

problem, where we try to fix this issue by querying only a

single value. The new problem can be considered a hinted

variant of the OuMv problem [18], where we repeat the

idea of restricting some matrix N to obtain a matrix M and

giving hints for the vectors u and v.

Definition 5.11 (uMv-hinted uMv). Let all operations be
performed over the boolean semi-ring and let t1 = nτ1 , t2 =

U R1 or I N R2 or J V

First layer
n nodes

Second layer
t1 nodes

Third layer
n nodes

Fourth layer
n nodes

Fifth layer
t2 nodes

Sixth layer
n nodes

Figure 16. Graphical representation of the uMv-hinted uMv problem
(Definition 5.11).

nτ2 , 0 < τ1, τ2 < 1. The uMv-hinted uMv problem consists
of the following phases:

1) Input matrices U ∈ Rn×t1 , N ∈ Rn×n, V ∈ Rt2×n

2) Input I ∈ [n]t1 .
3) Input J ∈ [n]t2 .
4) Input indices i, j ∈ [n] and output (UNI,JV )i,j .

This problem can be considered a dynamic 5-matrix

product UR1NR2V , where R1 and R2 are initially all-

zero rectangular matrices. Phase 2 and 3 can be seen as

updates to the R1 and R2 matrices, where some entries

are set to 1. A more intuitive illustration for this problem

is to see the problem as a vector-matrix-vector product

u�Mv, where during the pre-processing we are given a

hint what the vectors u, v and the matrix M could be. This

interpretation of the problem is also the source for its name

uMv-hinted uMv. The two phases 2 and 3 concretize the

hint for M by constructing M from rows and columns of

N via M = NI,J . (Note that I and J are vectors, not sets,

so NI,J is not a typical submatrix, see submatrix notation

in the preliminaries Section III. Instead, rows and columns

can be repeated and re-ordered.) During the last phase one

row u of U and one column v of V are selected and the

product u�Mv has to be computed.

Similar to the Mv-hinted Mv problem (Definition 5.1),

we can specify the uMv-hinted uMv problem as a transitive

closure problem. This graphical representation is displayed

in Fig. 16. We are given 6 groups of nodes, the first group

is of size n and the second group is of size t1. There exist

directed edges from the second to the first group, specified

by U . The third and fourth group are of size n and have

directed edges from the fourth to third group, specified by

N . The fifth group is of size t2, while the 6th group is of

size n. There also exists directed edges from the sixth to

the fifth group, specified by V . In phase 2 each node in the

second group gets a directed edge from a node in the third

group. In phase 3 each node in the fifth group gets a directed

edge to a node in the fourth group. In phase 4 we have to

answer whether the jth node in the last group can reach the

ith node in the first group.

The uMv-hinted uMv problem can be solved by the

following trivial algorithm. Depending on the values for t1
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and t2 we have the following three options:

• Compute the product UNI,[n] in phase 2, using

O(nω(1,τ1,1)) operations. In phase 4 we compute the

product of the ith row of UNI,[n] and the jth column

of V .

• Compute the product NI,JV in phase 3, using

O(nω(τ1,τ2,1)) operations. In phase 4 we compute the

product of the ith row of U and the jth column of

MI,JV .

• Compute the product (UNI,JV )i,j as a vector-matrix-

vector product in O(nτ1τ2)

(Note that computing UNI,J needs as much time as comput-

ing NI,JV , so this would be the same as the second variant.)

Again we ask, if there is a better option than pre-computing

everything via fast-matrix multiplication or to wait which

information is going to be required, or maybe there exists

some clever pre-processing even though we do not know

which entries of N will be multiplied with which entries

of V or U . The question is formalized via the conjecture

that the three options of the trivial algorithm are essentially

optimal. So similar to the v-hinted Mv and Mv-hinted Mv

conjecture, the uMv-hinted uMv conjecture can be seen as a

trade-off between pre-computing everything vs waiting for

the next phase and computing only required information,

which forms the fundamental barrier for all currently known

techniques for the dynamic matrix inverse algorithms.

Conjecture 5.12. Any algorithm solving uMv-hinted uMv
with high probability, while requiring polynomial pre-
processing time in Phase 1, satisfies one of the following:
• Phase 2 requires Ω(nω(1,τ1,1)−ε).
• Phase 3 requires Ω(nω(τ2,τ1,1)−ε).
• Phase 4 requires Ω(nτ1+τ2−ε).

For every ε > 0.

Since the uMv-hinted uMv problem can be represented as

a 5-matrix product, we obtain the following lower bound for

dynamic 5-matrix product algorithms with element updates

and element queries.

Theorem 5.13. Assuming the uMv-hinted uMv Conjec-
ture 5.12, the dynamic 5-matrix-product with polyno-
mial time pre-processing, element updates and element
queries requires Ω(minτ1,τ2(n

τ1+τ2 + nω(1,τ1,τ2)−τ2 +
nω(1,1,τ1)−τ1)n−ε) worst-case time for all ε > 0 for updates
or queries.

For current ω, this implies a lower bound of Ω(n1.407).

The proof of Theorem 5.13 can be found in the full

version. From the graph theoretic representation of the uMv-

hinted uMv problem, we obtain the same lower bound for

the dynamic transitive closure problem (and dynamic DAG

path counting as well as dynamic k-path for k ≥ 5) with

edge updates and pair queries. The same lower bound can

also be obtained for cycle detection (and k-cycle detection

for k ≥ 6) by adding an edge from the first to the last layer

during the query phase. The reduction from transitive closure

to strong connectivity is done as in [19, Lemma 6.4].

Corollary 5.14. Assuming the uMv-hinted uMv Conjec-
ture 5.12, dynamic transitive-closure (and DAG path count-
ing, strong connectivity, k-path, cycle detection and k-cycle
detection) with polynomial pre-processing time, element
updates and element queries requires Ω(minτ1,τ2(n

τ1+τ2 +
nω(1,τ1,τ2)−τ2 + nω(1,1,τ1)−τ1)n−ε) worst-case time for all
ε > 0 for updates or queries.

For current ω, this implies a lower bound of Ω(n1.407).

Since dynamic matrix inverse (and adjoint) can be used

to maintain a 5-matrix product (see the full version), we

obtain the same lower bound for dynamic matrix inverse

with element updates and queries. The lower bound extends

even to determinant and rank. For determinant this is because

element update/query determinant is equivalent to element

update/query inverse (see the full version). For rank the

reduction is a bit longer using graph problems:

For element queries, transitive closure can be solved via

st-reachability. For the reduction we only have to prove that

even though s and t are fixed, the reachibility between any

pair (u, v) can be queried. For this we simply add edges

(s, u) and (v, t) and check if s can reach t. Afterward we

remove these two edges again. Thanks to [19], we know

bipartite perfect matching can solve st-reachability, which

in turn can be solved by rank via a reduction from the full

version. Thus we obtain the following corollaries:

Corollary 5.15. Assuming the uMv-hinted uMv Conjec-
ture 5.12, any dynamic matrix inverse (and dynamic adjoint,
determinant, rank) algorithm with polynomial time pre-
processing, element updates and element queries requires
Ω((nτ1+τ2 +nω(1,τ1,τ2)−τ2 +nω(1,1,τ1)−τ1)n−ε) worst-case
time for all ε > 0 for updates or queries.

For current ω, this implies a lower bound of Ω(n1.407).

Corollary 5.16. Assuming the uMv-hinted uMv Con-
jecture 5.12, dynamic bipartite perfect matching with
polynomial pre-processing time, element updates requires
Ω((nτ1+τ2 +nω(1,τ1,τ2)−τ2 +nω(1,1,τ1)−τ1)n−ε) worst-case
time for all ε > 0.

For current ω, this implies a lower bound of Ω(n1.407).

D. Discussion on Super-Linear Bounds for Dynamic Matrix
Inverse

The high-level idea of our lower bounds can be summa-

rized as precomputing everything vs waiting what informa-
tion is going to be required, i.e. if we do not know which

information is going to be required in the next phase, then we

can either do nothing and compute a vector-matrix product

or we can precompute all possibilities using fast-matrix

multiplication. Both of these option are a bit slow, one one

hand using many vector-matrix products is slower than using
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fast matrix-multiplication, on the other hand pre-computing

everything will compute never needed information. The

trade-off between these two options forms the barrier for all

currently known techniques for the dynamic matrix inverse.

Our conjectures ask, if there is some better third option

available.

This nature of precomputing everything vs waiting can

also be seen in Pǎtraşcu’s multiphase problem [20]. Unfor-

tunately the multiphase problem, like other popular problems

for lower bounds such as OMv, triangle detection, orthog-

onal vectors, SETH or 3-orthogonal vectors, are all unable

to give super-linear lower bounds for the dynamic matrix

inverse.

Online matrix-vector [18]: The OMv conjecture states,

that given a boolean matrix M and polynomial time pre-

processing of that matrix, computing n products Mvi, i =
1, ..., n, requires Ω(n3−ε) time, if the algorithm has to output

Mvi before receiving the next vector vi+1.

We now explain why this conjecture can not give super-

linear bounds for dynamic matrix inverse.

• Element updates: In worst-case the n vectors (vi)1≤i≤n

contains Θ(n2) bits of information. An element update

contains only O(polylog(n)) bits of information, unless

we use some really large field, which would result in

slow field operations. Thus for all n vectors, we have

to perform Ω(n2−ε) updates in total for every constant

ε > 0, which means no super-linear lower bound for

element updates is possible.

• Column updates: For the setting column update and

column query, the OMv conjecture is able to give a

Ω(n2−ε) lower bound for the dynamic matrix inverse

and the related OuMv conjecture can give the same

lower bound for column and row update, element query

dynamic inverse (both lower bounds are a result via

reductions from the full version). However, for column

update/row query we again have the problem that we

would have to perform n updates (or one update and

n queries), yielding no super-linear lower bound, when

using this reduction from the full version.

Multiphase problem [20]: In the multiphase problem

we have three phases: First, we are given a k × n matrix

M , then a vector v and lastly we have to answer whether

some (Mv)i is 0 or 1. From all other presented problems,

this problem captures best the issue of online computation
vs precomputation, however, the conjectured time (Ω(kn)
when given v or Ω(k) when given i) is not large enough

for a reduction, because we have to perform O(n1−ε)
element updates for every constant ε > 0, just to insert

the information of v, so we can not get super-linear lower

bounds.

Static problems conjectured to require Ω(nω) time (e.g.
triangle detection): An intuitive approach to obtain lower

bounds is to reduce some static problem19 to a dynamic

one. These type of lower bounds have the issue, that they

require a pre-processing time that is lower than the time

required to solve the problem in the static way. For example

one could get a super-linear nω−1 (amortized) lower bound

for dynamic matrix inverse via st-reachability by reducing

from triangle detection as in [19]. However, this lower bound

only holds, if one assumes o(nω) pre-processing time.

Assuming o(nω) pre-processing has two problems:

• It does not rule out algorithms with fast update time that

have Ω(nω) pre-processing. Our dynamic algorithms

and the ones from [2], [3] are of this type. We are

interested in understanding why these algorithm can

not achieve linear update time, even though their pre-

processing is larger than Ω(nω).
• For some problems the o(nω) pre-processing require-

ment will refute any non-trivial algorithms (see the full

version for a proof). For example any dynamic matrix

determinant algorithm with o(nω) pre-processing must

have Ω(nω) update time. This is why algorithm with

larger pre-processing are interesting.

Static problem conjectured to require Ω(nω+ε): In the

previous paragraph we highlighted the problems of using

static problems that are conjectured to take Ω(nω) time. Here

we want to discuss static problems that are conjectured to

have a higher complexity.

• APSP: Computing all-pairs-shortest-paths with polyno-

mialy bounded edge weights (i.e. nc) is conjectured to

require Ω(n3−ε) for every constant ε, c > 0. So far

APSP seems unsuited for algebraic algorithms since

these algorithms always incur a pseudo-polynomial

dependency on the edge weights.

• BMM: The Boolean-Matrix-Multiplication conjecture

forbids the use of fast matrix multiplication, so it

can not be used to bound the complexity of algebraic

algorithms.

• k-clique: It is conjectured that detecting a k-clique

in a graph requires Ω(nkω/3). For k = 3 the k-

clique problem is triangle detection, which was covered

in the previous paragraph. For k > 3 there is no

known reduction to matrix inverse without increasing

the dimension to nk/3 in which case we have the same

problem as in the previous paragraph.

• k-orthogonal: In the k-orthogonal vectors problem we

are given k sets S1, ..., Sk, each containing n vectors

of dimension d = no(1). The task is to find a k-tuple

(i1, ..., ik) such that
∑n

j=1 S
1
i1,j
· ... · Sk

ik,j
= 0. This is

conjectured to require Ω(nk−ε) time for every constant

ε > 0. For k > 2 no reduction to dynamic matrix

inverse is known, while for k = 2 we again have the

19Static problem refer to problems that do not have several phases. For
example triangle detection or APSP are typical static problems used for
dynamic lower bounds. [19]
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same issue as with multiphase and OMv: We require to

perform too many updates, just to insert the sets S1, S2.

VI. OPEN PROBLEMS

Amortization: All the results in this paper focus on

worst-case update time. A major open problem is whether

one can get faster update time via amortization or describe

reasonable conjectures that hold for amortized update time

as well. Curently there only exist amortized lower bounds for

sparse graphs and for algorithms with small pre-processing

time [19]. (We could extend our conjectures to imply lower

bounds for amortized update time by repeating some phases,

but we do not feel that they are reasonable enough. If

interested, the full version describes how to amortize the

lower bounds via repetition of some phases.) It will be

already groundbreaking if amortization can improve the

update time for some applications, such as st-reachability.

Refuting or supporting our conjectures: In this paper

we need to propose new conjectures to capture the power

of dynamic matrix multiplication. Since these conjectures

are new, they need to be scrutinized. Breaking one of these

conjectures would give a hope for improved algorithms for

many problems considered in this paper. It might also be

possible to support these conjectures with, e.g. via algebraic

circuit lower bounds.

Distances: Many of the upper and lower bounds in

Fig. 5 are tight. However, for the distance problems (st-
distance or all-pair-distances) there are no matching upper

and lower bounds. The best lower bound so far is obtained

via transitive closure/reachability, but the upper bound is far

above this lower bound. A major open problem is to close

or at least narrow this gap.

Another open problem related to distances would be to

extend our results to weighted graphs. The results can easily

be extended to support integer weights in [1,W ] at the cost

of an extra W factor. Thus these algebraic techniques are

only suited for small integer weights. We wonder if it is

possible to obtain an algorithm with logW dependency, e.g.

via approximation as in [42].

Maintaining the object: Algebraic techniques tend to

only return a quantitative answer: The size of the maximum

matching, the distance or reachability between two nodes

etc. Consider for instance our online bipartite matching

algorithm. We trivially know which nodes on the right are

part of the matching, as each newly added right node that

increases the matching size must be part of the matching.

Yet, we do not know which nodes on the left are matched or

which edges are used. Is it possible to obtain the maintained

object such as the matching or the path?

Sparse graphs: So far dynamic matrix inverse is the

only technique that returns a non-trivial upper bound for

st-reachability. However, for sparse graph even this upper

bound is slower than just trivially running breath/depth

first search in O(m) time. We wonder if it is possible to

obtain a O(m1−ε) upper bound or a Ω(m) conditional lower

bound. Currently the best lower bound for sparse graphs is

Ω(m0.814), if one assumes O(m1.407) pre-processing time

[19].

Derandomization: While the dynamic matrix inverse

for non-singular matrices is deterministic, we require ran-

domization to extend the result to the setting where the

matrix is allowed to temporarily become singular. Likewise

most graph application such as reachability are randomized.

Is it possible to derandomize some of these applications or

can we make them at least las-vegas instead of monte-carlo?
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