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Abstract—Let G = (V,E) be a finite graph. For v∈V we denote
by Gv the subgraph of G that is induced by v’s neighbor set. We
say that G is (a,b)-regular for a > b > 0 integers, if G is a-regular
and Gv is b-regular for every v ∈ V . Recent advances in PCP
theory call for the construction of infinitely many (a,b)-regular
expander graphs G that are expanders also locally. Namely, all
the graphs {Gv|v∈V} should be expanders as well. While random
regular graphs are expanders with high probability, they almost
surely fail to expand locally. Here we construct two families
of (a,b)-regular graphs that expand both locally and globally.
We also analyze the possible local and global spectral gaps of
(a,b)-regular graphs. In addition, we examine our constructions
vis-a-vis properties which are considered characteristic of high-
dimensional expanders.

Keywords-Expander-Graphs, High-dimensional combinatorics

I. INTRODUCTION

It is hard to overstate the significance of expander graphs

in theoretical computer science and the impact their study

has had on a number of mathematical areas. Dinur’s proof of

the PCP Theorem, (e.g., [RS07]) is a prime example of their

role in TCS. As the field develops, further refinements and

extensions of the theory of expanders are called for. Thus, the

recent breakthrough sampling algorithm of bases in a matroid

by Anari, Liu, Oveis-Gharan and Vinzant [ALOGV19] builds

on the newly emerging field of high-dimensional expanders.

The present paper is motivated by Dinur and Kaufman’s recent

work in PCP theory [DK17], which needs graphs that are

expanders both locally and globally. If v is a vertex in a graph

G, the link of v in G, denoted Gv, is the subgraph of G that is

induced by v’s neighbors. We seek large regular expanders G
such that Gv is an expander for every v ∈V (G).

As observed already at the very early days of this area (e.g.,

[Pin73]), for every d≥ 3 asymptotically almost every d-regular

graph is a very good expander. However, it is easy to verify

that almost every d-regular graph is very far from satisfying

the above requirement, as Gv is typically an anticlique. So,

we ask: Given positive integers a > b do there exist arbitrarily

large (a,b)-expanders? Namely, a-regular expander graphs G
such that every Gv is a b-regular expander. If so, how good can

the expansion properties (edge expansion, spectral gap) of G
and the graphs Gv be? This last question can be made concrete

in several ways, at an increasing order of difficulty, for given

a > b > 0:

1) Can you construct infinitely many connected (a,b)-
graphs?

2) Can you guarantee that all Gv be connected and that G
is an expander?

3) Can you supply a bound on the spectral gap of all Gv?

These estimates should be bounded away from zero and

expressed only in terms of a,b.

4) Can you, moreover, construct connected (a,b)-graphs

where the second largest eigenvalue of every Gv is

strictly smaller than b/2 ?

We have positive answers to the first three questions but

not to the fourth one (see the open problem section). This

is particularly intriguing because in case (4) Garland’s method
[Gar73] as elucidated by Oppenheim [Opp17] yields a spectral

gap for G.

Theorem I.1 ([Opp17]). Let G be a connected (a,b)-regular
graph in which the second eigenvalue of every link is at most
εb. Then G’s second eigenvalue is at most ε

1−ε a.

Here we provide a purely combinatorial construction of

graphs satisfying (3) that cannot satisfy (4). We also comple-

ment the Garland-type results, by proving (Theorem I.4) a tight

Alon-Boppana bound on the second eigenvalue of any (a,b)-
regular graph. Furthermore, we prove (Theorem I.5) bounds

on the possible relations between the local and global spectral

gaps.

Our investigations are closely related to the recently

emerging study of high-dimensional expansion. The

high-dimensional realm is not as well-behaved as the

one-dimensional situation, where vertex-expansion, edge-

expansion, spectral gaps and the convergence rate of the

random walk mutually control each other quite tightly.

Therefore, a number of inherently different ways to quantify

high-dimensional expansion were suggested. We explore our
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new (a,b)-expanders in light of these different measures of

high-dimensional expansion.

Preliminaries, main results and organization

Let G be a graph and v ∈ V (G). The link of v denoted Gv

is the subgraph of G that is induced by the vertex set {u ∈
V | uv ∈ E}.
Definition I.2. Let a > b ≥ 0 be integers. An (a,b)-regular

graph G is an a-regular graph, where for every vertex v∈V (G)

the link Gv is b-regular.

We recall some basic terminology of expander graphs. Let

G be a d-regular graph with adjacency matrix AG, and let d =

λ1 ≥ λ2 ≥ ... ≥ λn be its eigenvalues. We say that G is an

ε-spectral expander if its normalized spectral gap is at least

ε , i.e., 1− λ2
d ≥ ε . We say that G is a δ -edge expander if

|E(U,V \U)| ≥ δ ·min(|U |, |V \U |) for every U ⊆V (G), where

E(A,B) is the set of edges with one vertex in A and one in B.

The largest such δ is called the edge-expansion (or Cheeger

constant) of G. When we say below that G is an expander or

an (a,b)-expander, we mean that G has some non-trivial but

unspecified spectral gap resp. that G is (a,b)-regular and has

some non-trivial but unspecified local and global spectral gaps.

In the more technical parts of the paper we avoid such loose

language and specify the relevant parameters.

Examples I.3. Here are some known families of (a,b)-regular

graphs:

1) An n-clique is (n−1,n−2)-regular and has good expan-

sion properties, but a large (n−1,n−2)-regular graph is

the disjoint union of n-cliques, and clearly not a global

expander.

2) The 2-dimensional Ramanujan complexes coming from

PGL3(Qp) for prime p, are (2p2+2p+2, p+1)-regular

and are an example for a construction satisfying the Gar-

land’s method requirements (See [LSV05] and [GP19]).

These graphs have many high dimensional expansion

properties, see e.g., [DK17] and [EK16]. Note, however,

that this is the only family of Ramanujan complexes

whose 1-skeleton is (a,b)-regular for any a and b. Thus,

additional constructions must be sought elsewhere, e.g.,

using combinatorial arguments as we do here.

3) The 1-skeleton of a non-singular, a-regular triangulation

of a surface is (a,2)-regular. See Section V for more on

this.

4) A construction due to Kaufman and Oppenheim of

(a,b)-regular graphs that satisfy the Garland’s method

requirements can be found in [KO17].

5) Conlon’s hypergraph expanders [Con17] are also (a,b)-
expanders, but his a and b are unbounded.

In Section II we consider the largest possible spectral gap of

an (a,b)-regular graph. We prove the following Alon-Boppana

type bound. This bound is tight, but it makes no reference to

local expansion.

Theorem I.4. The second eigenvalue of an (a,b)-regular
graph satisfies

λ2 ≥ b+2
√

a−b−1−on(1).

The bound is tight.

The full proof is in Section VII. Graphs for which Theo-

rem I.4 holds with equality have disconnected links. Indeed,

the situation changes when the links are expanders, or at least

connected. As the next theorem shows, there is a tradeoff
between local and global expansion. Recall the definition of

the link Gv of v in G appearing in the first paragraph of the

paper.

Theorem I.5. Let G be an (a,b)-regular graph where every
link has edge expansion at least δ > 0. Then G’s second
eigenvalue satisfies:

λ2 ≥
(

b+2
√

a−b−1
)
(1+ ε)−on(1),

where ε = ε(a,b,δ )> 0 is given explicitly. For a≥ b2 +O(b),
ε strictly increases with δ . The same holds for all values of a
and b, provided that δ is small enough.

In Section III we introduce our Polygraph constructions,

which can be viewed as a new kind of graph products. These

constructions transform a high-girth regular expander into an

(a,b)-expander. For example, let q > p≥ 0 be integers, let G
be a graph with distance function ρ and girth(G) > 3p+ 3q.

The vertex set of the polygraph GS is V (G)3 and (x1,x2,x3)

is a neighbor of (y1,y2,y3) iff the multiset of three distances

[ρ(xi,yi)|i = 1,2,3] coincides with the multiset [p,q, p+q].
For illustration, here is what this Polygraph looks like when

p = 0 and q = 1. Take three copies of a d-regular triangle-free

graph G and have a token move on each of them. At every

step two of the tokens move to a neighboring vertex and the

third token stays put. Any configuration of tokens is a vertex

of the polygraph and the above process defines its adjacency

relation.

Theorem I.6. Let q > p≥ 0 be even integers. If G is a regular,
connected, non-bipartite graph of girth bigger than 3p+ 3q,
then GS is an (a,b)-regular local ε-spectral expander and
global ε ′-spectral expander. Here a and b depend on p,q and
G’s regularity, ε can be bounded from below in terms of only
p and q, and ε ′ has a closed formula that involves p,q and the
spectral gap of G.

In Section III-D we investigate in detail the regularity and

local spectral gaps of two specific Polygraph constructions.
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In Section IV we examine Polygraphs from the perspective

of high-dimensional expanders. We discuss properties such

as geometric overlap, discrepancy, coboundary expansion and

mixing of the edge-triangle-edge random walks. In Section

V we provide some additional constructions of (a,b)-regular

graphs, based on regular triangulations of surfaces and tensor

products of graphs. We conclude the paper with some open

questions related to this study.

II. THE SECOND EIGENVALUE OF (a,b)-REGULAR GRAPHS

- LOWER BOUNDS

Proof sketch for Theorem I.4 and Theorem I.5: The proof

relies on the moment method. An example of this approach is

the proof of the Alon-Boppana bound in [HLW06] Section

5.2, which we now recall. Let G be a d-regular graph with

adjacency matrix AG = A and eigenvalues d = λ1 ≥ λ2 ≥ . . .≥
λn. For t a positive integer we note that

trace(At) = ∑λ t
i ≤ dt +(n−1) ·Λt , (II.1)

where Λ = λ (G) := max{λ2,−λn}. On the other hand,

trace(At) is the number of closed walks of length t in G.

This number can be bounded from below by counting length-t
walks that start and end at some given origin vertex in G’s

universal cover Td , the (infinite) d-regular tree. Associated

with such a walk is a word in {F,B}t , where F (resp. B)

stands for a forward step away from the origin (backward step

toward it). This word satisfies the Catalan condition, i.e., it

has an equal number of B’s and F’s, and every initial segment

has at least as many F’s as B’s. Also, B-steps are uniquely

defined whereas every F-step can be realized in d− 1 ways.

By working out the number of such words, the Alon-Boppana

bound Λ≥ 2
√

d−1−on(1) is obtained.

We want to show that if G is (a,b)-regular, there are many

more closed paths. To this end we introduce a local system of
coordinates and keep track of a trail back to the origin (See

Figure 1, where (z,x) is the last edge in this trail) that mimics

the above association between words and closed paths. We

distinguish between ”sideways” steps to common neighbors of

x and z and other ”forward” steps, so our alphabet is {B,F,S}.
To every word with x occurrences of F and B, and t − 2x
occurrences of S, which satisfies the Catalan condition upon

omitting the S’s, we can associate (a− b− 1)xbt−2x distinct

closed paths of length t+2 in G. By optimizing over the choice

of t and x, we conclude that λ2 ≥ b+2
√

a−b−1−on(1).

If the graph is not only (a,b)-regular, but also locally

expanding, we can significantly increase the census of closed

paths by finding many more local backwards steps. Whereas

previously backward steps were uniquely defined, in the locally

expanding case there are more FB combinations than before,

which yield the required bound.

III. THE POLYGRAPH

In this section we construct infinite families of (a,b)-regular

graphs with good local and global expansion properties. This

construction is strictly combinatorial and is reminiscent of

certain graph product operations. Theorem I.6 is proved at the

end of this section.

Some terminology: If S is a multiset of k distinct non-

negative integers that appear with multiplicities m1, ...,mk

and thus has a total of m = ∑mi members, we denote

S = [l1, . . . , lm]. Let G be a d-regular graph with d ≥ 3 and

girth(G)> 3max(S), and let ρ be its graph metric.

Definition III.1. The Polygraph GS = (VS,ES) has ver-

tex set VS = V (G)m, and two vertices x̄ = (x1, . . . ,xm)

and ȳ = (y1, . . . ,ym) in VS are neighbors if and only if

[ρ(x1,y1), ...,ρ(xm,ym)] = S as multisets.

The distance profile of any two vertices x̄ and ȳ in VS is

ρ̄(x̄, ȳ) = (ρ(x1,y1), ...,ρ(xm,ym)).

Thus, x̄ȳ ∈ ES given ρ̄(x̄, ȳ) = S as multisets. Conversely, if

ρ̄(x̄, ȳ) = (d1, ...,dm), then x̄ȳ ∈ EZ , where Z = [d1, ...,dm].

Remark III.2. When S′ = [1,0, ...,0], the polygraph GS′ co-

incides with G�m, the m-th Cartesian power of G. If S =

[l1, . . . , lm] and N = ∑m
i=1 li, then GS embeds in G�m, where

every edge of GS can be mapped to a (non-unique) length

N non-backtracking path. Some of the proofs below involve

polygraphs with the same graph G and two distinct multisets

S1,S2. In such situations, it is useful to embed both GS1
and

GS2
into the same G�m.

Claim III.3. The polygraph GS is (aS,bS)-regular, where aS

and bS depend only on S.

A closed formula for bS appears in the appendix, and is

based on the arithmetic properties of S.

Claim III.4. With the above notation, bS > 0 iff there is a
3×m matrix, every row of which is comprised of the integers
l1, . . . , lm in some order, where every column has an even sum
and satisfies the triangle inequality.

Proof: Necessity: Assume x̄, ȳ, z̄ is a triangle in GS. Since

G’s girth is large, the three geodetic paths connecting xi,yi and

zi form a tree, whence the sum of their lengths is even and the

three lengths satisfy the triangle inequality. Hence, one can

construct a matrix whose rows are the distance profiles of the

edges of x̄ȳ, x̄z̄, ȳz̄, meaning ρ̄(x̄, ȳ), ρ̄(x̄, z̄) and ρ̄(ȳ, z̄).
Sufficiency is not hard either: given three integers smaller than

girth(G) with even sum that satisfy the triangle inequality, there

are three vertices in G the distances between which are these

three integers. This allows us to construct x̄, ȳ, z̄ one coordinate

at a time.
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Remark III.5. Since our main interest is in connected poly-

graphs GS with bS > 0, we mostly restrict ourselves to the case

where N = ∑m
i=1 li is even and G is not bipartite.

We do not know how to efficiently test the condition in

Claim III.4 for a given S, and suspect that it is hard in worst

case. This is clearly no problem for small m. Here is, e.g., the

solution for m = 3:

Claim III.6. Let S be the multiset of integers p,q,r≥ 0. Then
bS �= 0 if and only if (i) p,q,r are all even, or (ii) Their sum
is even and they satisfy the triangle inequality.

A. Non-backtracking paths

Let G be a graph with adjacency matrix AG and let A(t)
G

be the matrix whose (i, j)-th entry is the number of length-t
non-backtracking paths between vertices i and j in G. We also

view A(t)
G as the adjacency matrix of a multigraph G(t). When

G is d-regular, G(t) is d(d− 1)t−1-regular. In this case these

matrices satisfy the following recursion:

A(1)
G = AG ; A(2)

G = A2
G−dIn

A(t+1)
G = AGA(t)

G − (d−1)A(t−1)
G .

The polynomial p(t)(·) that satisfies p(t)(AG) = A(t)
G is some-

times called the t-th Geronimus polynomial. For more infor-

mation see [Sol92], [ABLS07] or [DSV03].

Lemma III.7. If G is a connected, non bipartite graph with
minimum vertex degree at least 3, then for every t, G(t) is a
connected non bipartite graph.

B. Connectivity and Spectral analysis of GS

Let Ω =
( [m]

m1,...,mk

)
be the set of rearrangements ω =

(ω1, . . . ,ωm) of S = [l1, . . . , lm]. Thus

AGS = ∑
ω∈Ω

m⊗
j=1

A
(ω j)
G

where ⊗ is the Kronecker tensor product.

If v is an eigenvector of A with eigenvalue λ , likewise for

v′,A′ and λ ′, then v⊗ v′ is an eigenvector of A⊗ A′ with

eigenvalue λλ ′. Also, A(t)
G and AG have the same eigenvec-

tors, since A(t)
G is a polynomial in AG. It follows that every

eigenvector of AGS has the form v1⊗ ...⊗ vm where each vi

is an eigenvector of AG. Moreover, by going through all such

choices of v1, . . . ,vm we obtain the full list of eigenvectors.

The eigenvalue of v1⊗ ...⊗ vm is

χ(λ1, ...,λm) = χS(λ1, ...,λm) = ∑
ω∈Ω

m

∏
j=1

p(ω j)(λ j)

where λi the eigenvalue of vi, and p(t)(x) is the t-th Geronimus

polynomial mentioned above. We obtain all the eigenvalues of

AGS by evaluating the symmetric polynomial χS on all m-tuples

of eigenvalues (λ1, ...,λm).

Claim III.8. Let G be a connected non bipartite d-regular
graph and S a multiset of non-negative integers, not all zero.
Then GS is connected and non bipartite.

We now provide stronger bounds on GS’s spectral gap under

appropriate assumptions on G:

Lemma III.9. Let α ∈ (−2
√

d−1,2
√

d−1) and |β | >
2
√

2
√

d−1. Then |p(t)(β )| > |p(t)(α)|, where p(t) is the t-th
Geronimus Polynomial. Also, if |x| ≥ 2

√
d−1, then |p(t)(x)|<

|x|t .
Therefore, if λ (G)≥ 2

√
2
√

d−1, then we have

λ (GS) = χ(λ (G),d, ...,d)

= ∑
ω∈Ω

p(ω1)(λ (G))
m

∏
j=2

p(ω j)(d)

=
m

∑
i=1

p(li)(λ (G)) · (m−1)! ·mi

m1! · · · · ·mk! ∏
j �=i

d(d−1)l j−1�.

This formula is nice, but we are interested in a more practical

bound on λ (G). Thus the following:

Proposition III.10. Let G be a d-regular graph and let S be
a multiset of non-negative integers, the smallest of which is s,
whose sum is N. Then, letting μ = max(λ (G),2

√
d−1), we

have

λ (GS)≤
(

m
m1, ...,mk

)
μsdk−1(d−1)N−k−s+1.

C. Local Connectivity of GS

We start with a necessary condition for L = (GS)v ∼=
((Td)S)(ξ ,...,ξ ) to be connected, where ξ is some fixed vertex

in the d-regular tree Td .

Lemma III.11. If L is connected then either (i) 0 ∈ S, or (ii)
there is a positive s ∈ S such that 2s ∈ S as well, or (iii) there
are three distinct s,s′,s′′ ∈ S satisfying s′′ = s+ s′.

The following two claims give a necessary and sufficient

condition for connectivity for m = 2,3.

Claim III.12. Let S = [p,q], where q≥ p and q > 0. Then, L
is connected if and only if p is even and q = 2p.

Claim III.13. Let S = [p,q,r], where p ≤ q ≤ r and 0 < r.
Then L is connected if and only if p+ q+ r is even and one
of the following holds:

1) r = p+q and either: p is even, or q is even and 2p≥ q,
or p = q;

2) q = 2p and r ≤ p+q, or r = 2p;
3) p,q and r are even, 4p ≥ 2q ≥ r and either r = 2p or

r = 2q or q = 2p.
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There is also a criterion for the connectivity of L when

all members of S are even. We omit the (very technical)

details. One can deduce Theorem I.6 from this entire section,

in particular Claim III.13 and Lemma III.10.

D. Some Concrete Explicit Constructions

1) The case S = [1,1,0]: Recall the concrete description of

GS from the introduction: Take three copies of a d-regular

non-bipartite triangle-free graph G and have a token move

on each of them. At every step two of the tokens move

to a neighboring vertex and the third token stays put. The

resulting graph GS is (3d2,2d)-regular, it is connected (Claim

III.8) and has connected links (Claim III.13). For v0 ∈ V (G),

we turn to study the spectrum of L – the link of (v0,v0,v0)

in GS. The graph L is tripartite with parts V1,V2,V3, where

V1 = {(v0,vi,v j) | 1≤ i, j ≤ d}, and likewise for V2,V3. Edges

between V2 and V3 are defined via (vi,v j,v0)∼ (vi′ ,v0,v j′) iff

i′= i. The two other adjacency conditions are similarly defined.

Lemma III.14. The eigenvalues of L are 2d,d,0,−d with
corresponding multiplicities 1,3(d−1), 3(d−1)2,3d−1.

2) The case S = [1,2,3]: Here GS is (6d3(d − 1)3,2(d −
1)2(4d−7))-regular. It is connected and so are its links. It also

has interesting spectral properties, since by Proposition III.10,

if G is Ramanujan, then λ (GS) ≤ 12d2(d−1)7/2. Actually, a

similar conclusion can be drawn whenever G has a substantial

spectral gap and S contains no zeros.

IV. THE PERSPECTIVE OF HIGH DIMENSIONAL EXPANSION

The study of (a,b)-regular graphs can be cast in the language

of simplicial complexes. Let us recall some basic facts from

that theory. Let X be a simplicial complex, i.e., a collection of

finite sets that is closed under inclusion. Namely if σ ∈ X and

τ ⊆ σ , then τ ∈ X . The singletons in X are called vertices. An

element σ ∈ X is called a k-dimensional face if |σ | = k+ 1.

The link of a face σ in X is the following simplicial complex:

Xσ = {τ ∈ X | σ ∩ τ = /0, σ ∪ τ ∈ X}.
The i-th skeleton X (i) of X is the simplicial complex that is

comprised of all faces of X of dimension less or equal to i.
Associated with a graph G = (V,E) is its clique complex CG,

whose vertex set is V and S ⊆V is a face of it if and only if

S spans a clique in G. Hence G is (a,b)-regular if and only

if the 1-skeleton C
(1)
G is a-regular and the link of every vertex

v ∈ C
(2)
G is a b-regular graph. If G is an (a,b)-regular graph,

then the number of 2-dimensional faces in C
(2)
G is abn

6 .

This section contains both negative and positive results. The

negative results are mainly about the [1,1,0]-polygraphs and

the positive ones are about [1,2,3]-polygraphs.

There is a considerable body of research, mostly quite

recent on expansion in high dimensional simplicial complexes.

Several different ways were proposed to quantify this notion.

For the definitions of cosystolic and coboundary expansion,

see e.g., [EK16].

A. Discrepancy

Every [1,1,0]-polygraph G[1,1,0] has poor discrepancy, since

it has two sets, each with 1
8 of its vertices and no edges between

them. Namely, if A ⊆ V (G) contains a half of G’s vertices,

then no edge connects A3 and (Ac)3. A similar construction

can be given whenever S contains a zero. In contrast, [1,2,3]-

polygraphs exhibit better discrepancy properties, and in partic-

ular have the geometric overlap property (see IV-C and IX-A

bellow).

B. Coboundary expansion

This part is inspired by ideas of Luria, Gundert and Rosen-

thal (e.g., Section 3 of [Cha]). As they show, Conlon’s hy-

pergraph [Con17] contains small non-trivial cocycles and thus

is not a cosystolic expanders and a fortiori not a coboundary

expander either.

Again let G be non-bipartite triangle-free and d-regular, and

Γ = G[1,1,0]. We exhibit a set A⊆ E(Γ) such that:

1) Every triangle in Γ has exactly two edges from A;

2) A is not a cut in Γ.

It follows that the 2-skeleton of Γ’s clique complex1 has a

non-trivial first F2-cohomology and is thus not a coboundary

expander.

The distance profile of every edge in Γ is one of three:

(0,1,1), (1,1,0) or (1,0,1), and every triangle has exactly one

edge of each kind. The set A of those edges with profile (1,1,0)

or (1,0,1) clearly satisfies condition (1). To show condition

(2) we find an odd cycle in the graph (V (Γ),A). Since G is

non-bipartite, it has an odd cycle, say v1, ...,v�,v1. But then

(v1,v1,v1),(v2,v2,v1), ...,(v�,v�,v1),(v1,v1,v1)

is an odd cycle in (V (Γ),A).
We note that this argument fails for S = [1,2,3]. On the other

hand, this argument does work for S = [1,1,2], showing that

even a zero-free S need not yield coboundary expansion.

C. Geometric overlap property

We say that a 2-dimensional simplicial complex X has the

α-geometric overlap property if the following holds: For every

embedding of V (X)→R2 with the induced affine extension to

X’s edges and faces there is a point in R2 that meets at least an

α-fraction of the images of X’s 2-faces. Work in this section

and the following parallels [Con17].

1The clique complex of a graph G = (V,E) has vertex set V and S ⊆V is

a face iff it spans a clique in G.
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Theorem IV.1. Let G be a d-regular graph with girth(G)> 9,
d > d0 and λ (G) < ε0d. Then G[1,2,3] has the α0-geometric
overlap property. Here d0,ε0,α0 > 0 are absolute constants.

D. Mixing of the edge-triangle-edge random walk

Random walks play a key role in the study of expander

graphs, and similar questions are being studied in the high-

dimensional realm as well, e.g., [KM16], [LLP17], [DK17]

and [Con17]. Consider the following random walk on the one-

dimensional faces (i.e., edges) of a 2-dimensional simplicial

complex X . We move from an edge e ∈ X (1) to an edge that is

chosen uniformly among all edges f ∈ X (1) with f ∪ e ∈ X (2)

(a triangle in X). We wish to decide for simplicial complexes

of interest if this walk mixes rapidly. Differently stated, this

is a walk on Aux(X), a graph with vertex set X (1), where e f
is an edge iff e∪ f ∈ X (2). Given a multiset S, we consider

Aux(X) for X = CGS , the clique complex of GS.

Theorem IV.2. The edge-triangle-edge random walk on
CG[1,1,0]

mixes rapidly, i.e. in O(log |V (G)|) time.

V. FOR WHICH (a,b) DO LARGE (a,b)-REGULAR GRAPHS

EXIST?

This section provides a partial answer to the question in

its title. If b = 2 and the links are connected, then every

link is a cycle. So, the graph in question is the 1-skeleton

of a triangulated 2-manifold. It is instructive to consider

the case a = 6. The Cayley graph of Z2 with generators

(±1,0),(0,±1),±(1,1) is the planar triangular grid. The quo-

tient of this graph mod mZ× nZ, is a (6,2)-regular finite

triangulation of the torus whose links are connected. We ask

for which values of a there exist infinitely many such graphs.

This discussion is closely related to the study of equivelar

polyhedral 2-manifolds and non-singular {p,q}-patterns on

surfaces, a subject on which there exists a considerable body

of literature. We only mention [MSW82] and [MSW83] where

infinitely many such graphs for a ≥ 7 are constructed. Some

of these constructions are inductive and start from the above

triangulations of the torus. Other constructions are iterative and

use snub polyhedra of prisms.

We recall that the tensor product G⊗H of two graphs G and

H, is a graph with vertex set V (G)×V (H) where (u,v) and

(u′,v′) are neighbors when both uu′ ∈ E(G) and vv′ ∈ E(H).

Therefore its adjacency matrix is the Kronecker tensor product

AG⊗AH . Note that G⊗G is isomorphic to G[1,1]. Also, if G is

(a,b)-regular and H is (a′,b′)-regular, then G⊗H is (aa′,bb′)-
regular.

Thus, if G is (k,2)-regular, then G⊗Km is (k(m−1),2(m−
2))-regular. This yields arbitrarily large (k(m− 1),2(m− 2))-

regular graphs with connected links. This means that the

question in the title is answered positively for many a > b
and for all asymptotic relations between a and b.

VI. OPEN QUESTIONS

Countless questions suggest themselves in this new domain

of research. We mention below three which we view as the

most attractive.

1) A randomized model: One of the earliest discoveries in

the study of expander graphs is that in essentially every

reasonable model of random graphs, and in particular

for random d-regular graphs, almost all graphs are ex-

panders. It would be very interesting to find a randomized

model of (a,b)-regular graphs and in particular one

where most members are expanders both locally and

globally.

2) Higher-dimensional constructions: We have touched

upon the connections of our subject with the study of

expansion in higher-dimensional simplicial complexes.

Clearly, (a,b)-regularity is a two-dimensional condition,

and we know essentially nothing for higher dimensions.

Concretely: do (a,b,c)-regular graphs exist? Namely for

fixed a> b> c> 1, we ask whether there exist arbitrarily

large a-regular graphs where the link of every vertex

is b-regular, and the link of every edge is c-regular.

We want, moreover, that the whole graph, every vertex

link and every edge link be expanders. We stress that

no such constructions based on Ramanujan complexes

[LSV05] are presently known. There are indications that

the situation in dimension two is less rigid than in higher

dimensions. Does this translate to some non-existence

theorems?

3) Garland’s method [Gar73] is a powerful tool in the

study of high-dimensional expansion, e.g., [Opp17],

[Pap16]. In order to apply the method for an (a,b)-
regular graph G, it needs to have the property that the

spectrum of every vertex link is contained in {−b,b}∪
[−β ,β ] for some β < b

2 . In such case, Garland’s method

asserts that G is also a global expander. However, some

substantial new ideas will be needed to construct such an

(a,b)-regular graph using only combinatorial arguments.

For instance, polygraphs cannot have this property. In-

deed, compare what happens when we start from a d-

regular graph G that is a very good expander vs. a very

bad one. While GS inherits G’s expansion quality, the

links of the two graphs are identical.

4) Trade off: The lower bound on λ2 from Theorem I.5 is

an increasing function of δ . However, we do not know

how tight this bound is and whether the best possible
lower bound on λ2 increases with δ . Theorem I.4 is

tight, so the best bounds for δ = 0 and δ > 0 differ.
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But whether the same holds as δ > 0 increases, we do

not know.

5) Is there an efficient way of checking whether bS �= 0 for

every S?

VII. APPENDIX A: COMPLETE PROOFS FOR THEOREM I.4

AND THEOREM I.5

Proof of Theorem I.4: This theorem is reminiscent of the

Alon-Boppana Theorem. We are inspired by the proof of that

theorem via the moment method (e.g., [HLW06] Section 5.2).

Let G be a d-regular graph with adjacency matrix AG = A and

eigenvalues d = λ1 ≥ λ2 ≥ . . .≥ λn. For t a positive integer we

note that

trace(At) = ∑λ t
i ≤ dt +(n−1) ·Λt , (VII.1)

where Λ = λ (G) := max{λ2,−λn}. On the other hand,

trace(At) is the number of closed walks of length t in G.

This number can be bounded from below by counting length-t
walks that start and end at some given origin vertex in G’s

universal cover Td , the (infinite) d-regular tree. Associated

with such a walk is a word in {F,B}t , where F (resp. B)

stands for a forward step away from the origin (backward step

toward it). This word satisfies the Catalan condition, i.e., it

has an equal number of B’s and F’s, and every initial segment

has at least as many F’s as B’s. Also, B-steps are uniquely

defined whereas every F-step can be realized in d− 1 ways.

By working out the number of such words, the Alon-Boppana

bound Λ≥ 2
√

d−1−on(1) is obtained.

En route to a proof there are two obvious obstacles:

At the origin, there are d possible F steps. (VII.2)

We soon address this point.

A closed walk’s length in Td is even, but we use an odd t.
(VII.3)

The advantage of having an odd t is that the term Λt in (VII.1)

can be replaced by the possibly smaller λ t
2.

Our proof needs a modified notion of forward and backward

steps and also allow for sideways step. We consider length-t
Catalan words in the alphabet Σ = {Fj| j = 1, . . . ,a−b−1}∪
{B}∪{Si|i = 1, . . . ,b}. Namely, a word with an equal number

of F’s and B’s where #F ≥ #B in each initial segment. We wish

to injectively associate to each such word a closed walk in our

graph. Roughly speaking, when the next letter in the word is Fj

we should move to the j-th forward neighbor of our current

position, likewise move to the i-th sideways neighbor upon

reading Si, and finally moving one step backward on a B.

In Td it is perfectly clear what forward and backward mean

and sideways does not exist. As we explain next, we navigate

a general graph using a local system of coordinates. To this

end we use a stack X in which we store vertices, where every

x

z (top)

Φx,z

Ψx,z

Figure 1: The local system of coordinates of x, at which the

walk currently resides, with respect to its neighbor z, that is

currently at the top of the stack.

two consecutive entries in X are two adjacent vertices in G.

An invariant that we maintain is that x, the vertex at which

the walk currently resides is always a neighbor of top, the top

entry of X . Suppose that we move next from x to a neighbor

y.

• If y is not a neighbor of top, this is a forward step, and

we push x.

• If y = top, this is a backward step and we pop.

• If y is a neighbor of top, this is a sideways step, and the

stack stays unchanged.

It remains to define which is x’s j-th forward (resp. side-

ways) neighbor. This choice is not absolute, but rather depends

on the current top: Consider two neighbors x and z in G,

where we think of z as the current top, and x as our current

position. We fix some ordering on the set Φx,z of the a−b−1

neighbors of x that are not neighbors of z and an ordering on

the set Ψx,z of the b joint neighbors of x and z. Thus, if we are

currently at x, and z is at the top of the stack, we interpret the

symbol Fj as “move to the j-th vertex in Φx,z”. Likewise Si

means “move from x to the i-th vertex in Ψx,z” and B means

“step from x to z”. In other words, Ψx,z = Gx ∩Gz, whereas

Φx,z = Gx \ (Gz∪{z}). (See Figure 1).

Given a starting vertex v and a length-t Catalan-word ω over

the alphabet Σ, we will specify a closed walk of length t +2

that starts and ends at v. Before we do that we need to deal

with the issue raised in (VII.2) above. We associate with every

vertex v one of its neighbors ϕv. We start our walk at v, then

move to ϕv and push v on the stack. Henceforth we follow

the transitions that are dictated by ω and the push/pop rules

described above. Since #Fω = #Bω , when we are done reading

ω the stack contains only the symbol v, and we therefore reside

at a neighbor of v. We now empty the stack and move to v.

This clearly associates injectively a closed path as described
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with every pair (v,ω) for v a vertex and ω a Catalan word.

We have thus shown that the number of closed walks of

length t +2 in G is at least

n ∑
0≤k< t

2

(
t

k,k, t−2k

)
1

k+1
bt−2k(a−b−1)k. (VII.4)

Here n counts the choices of the starting vertex v. The

trinomial coefficient counts words ω with #Fω = #Bω = k and

#Sω = t−2k. The term 1
k+1 accounts for the probability that the

Catalan Condition holds. Finally every F-step can be indexed

in a−b−1 ways and every S-step in b ways.

There are only O(t) terms in this sum whereas the largest

term is exponential in t, so it suffices to determine the largest

term in the sum. To this end we express k = αt, and then we

need to find the α that maximizes the expression2

H (α,α,1−2α)+α log(a−b−1)+(1−2α) logb, (VII.5)

where H is the entropy function with base 2. Straightforward

calculation yields that the maximum is log(b+ 2
√

a−b−1)

which is attained for α =
√

a−b−1

b+2
√

a−b−1
. When we return to

(VII.1), the best lower bound on λ2 is attained for t ≈
logn

logd−log(λ2)
and yields

λ2 ≥ b+2
√

a−b−1−ot(1)

as claimed.

We now prove that this bound is tight. Let H = (L,R,F) be

a connected, bipartite, left c-regular and right d-regular graph

with girth(H) ≥ 8. Associated with H is the c(d− 1)-regular

graph G = (L,E), where xy ∈ E if and only if there is a vertex

z∈R such that xz,yz∈F . Note that every link in G is a (d−2)-

regular graph which is the disjoint union of c graphs each

of which a (d− 1)-clique. All told, this is a construction of

(c(d−1),d−2)-regular graphs. For example, here is a concrete

family of bipartite graphs H as above with c = 2. Let Γ be a

d-regular triangle-free graph, and let L = E(Γ),R =V (Γ) and

F the vertex-edge incidence relation of Γ.

Of course, the links in this graph are not expanders - they

are not even connected. It is easy to see that the adjacency

matrix of G is a block in A2
H − cI. If H is a (c,d)-biregular

bipartite Ramanujan graph (see Section 2.3 in [MSS15]), then

λ (G)≤√c−1+
√

d−1. Thus

λ (G)≤ (
√

c−1+
√

d−1)2− c

= d−2+2
√

c(d−1)− (d−2)−1

showing that the bound is tight.

Proof of Theorem I.5:
To start, we improve the lower bound on λ2 in Theorem I.4

when each Gv is connected. In those cases where Theorem I.4

gives a tight bound, our census of closed walks is complete.

2Logarithms here are to base 2, unless otherwise stated.

x

z (top)

u

y

Φx,z

Ψx,z

Figure 2: The assumption that Gx is connected guarantees that

there is an edge uy between Φx,z and Ψx,z. The walk x→ u→ y
is now considered an FB move rather than an FS move as in

Theorem I.4. As a result, the vertex z, and not x, is on the top

of the stack when the walk reaches y. The better an expander

graph Gx is, the more edges there are between Φx,z and Ψx,z.

However, as we soon observe, when all the links are connected,

many additional closed walks emerge. To maintain the overall

structure of the proof F,B and S steps still go with push, pop

and no change to the stack, but they need no longer reflect the

distance from the origin.

Given an initial vertex v and a word in B,F,S (with appro-

priate indices) again we associate to these data a walk in G
that starts and ends in v. However, the correspondence is now

somewhat different. Suppose that the walk currently resides at

the vertex x, its neighbor z is at the top of the stack, and the

coming two letters are FB in this order. Because the link of

x is connected, there must be an edge between some vertex

u ∈Φx,z and some vertex y ∈Ψx,z. Say that we realize the F-

step by moving from x to u. After this move top = x and the

penultimate entry in the stack is z. In the proof of Theorem I.4

the coming B-step is realized now by moving back to x, and

popping x, making top = z. But because u has a neighbor

y ∈ Ψx,z, we can also move from u to y and pop x while

respecting the structure of the proof. In other words, now we

can and will consider the transitions x → u → y as realizing

the subword FB rather than FS (see Figure 2).

To complete the details, we place u first in the ordering

of Φx,z, and y first in Ψu,x. We interpret each subword FiB
for i = 1, . . . ,a− b− 1 (including F1B) as before. However,

we allow as well the subword F1∗B to which we associate

the transitions x→ u→ y. The same applies to subwords FiS j

which we interpret as usual. However, we forbid the subword

F1S1 to avoid overcounting the walk x→ u→ y.

This change affects the census in Theorem I.4. A subword

FB has now a− b rather a− b− 1 realizations, whereas for
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FS the count goes down from (a−b−1)b to (a−b−1)b−1.

As the next calculation shows, the gain outweighs the loss,

yielding a better lower bound on λ2.

Clearly there are
(
β 2β (1−2β )1−2β )−t(1+ot (1))

length t
words in the alphabet {F,B,S} with β t letters F and B
and (1− 2β )t letters S. Standard concentration-of-measure

inequalities show that with a proper choice of the ot(1) terms,

the same asymptotic counts remains even if we insist that:

• The Catalan condition for F and B holds

• Every pair of consecutive letters appears the ”right”

number of times. E.g., the number of FB,FS,SS sub-

words is (1+ot(1))β 2t, resp. (1+ot(1))β (1−2β )t, and

(1+ot(1))(1−2β )2t, etc.

For every such word, we compute the number of permissible

ways to index the F-steps and the S-steps as following:

• A letter F that is followed by an F can be indexed in

a−b−1 ways.

• A letter S that is not preceded by an F can be indexed in

b ways.

• A pair of consecutive letters FB can be indexed in a−b
ways.

• A pair of consecutive letters FS can be indexed in (a−
b−1)b−1 ways.

In summary, we seek to maximize

H (β ,β ,1−2β )+β 2 log(a−b−1)

+(1−2β )(1−β ) logb+β 2 log(a−b)

+(β −2β 2) log(b(a−b−1)−1).

Write log(b(a− b− 1)− 1) = logb+ log(a− b− 1)+ log(1−
1

b(a−b−1) ) and log(a−b) = log(a−b−1)+ log(1+ 1
a−b−1 ) to

conclude that instead of the analysis of Equation (VII.5) we

now seek β that maximizes

S(β ,a,b) = H (β ,β ,1−2β )
+β log(a−b−1)+(1−2β ) logb+Δ,

(VII.6)

where

Δ = β 2 log

(
1+

1

a−b−1

)

+β (1−2β ) log

(
1− 1

b(a−b−1)

)
.

We now prove that maxβ S(β ,a,b) > log(b+ 2
√

a−b−1)

whenever a−b ≥ 3 and b ≥ 2. The proof for complementary

parameter range follows from by observing that G is necessar-

ily comprised of disjoint copies of the same graph H and is

therefore not even connected. If b = 0,1 and δ > 0, then H is

a triangle. When a− b = 1,2 the same holds with H = Ka+1

and H = (Ka+2 minus a perfect matching) respectively.

We denote c =
√

a−b−1. The values of

(b+2c)2

log(e)

(
max

β
S(β ,a,b)− log(b+2c)

)

for small a and b’s are shown in the following table:

(b+2c)2

log(e) ·max(S(β ,a,b)− log(b+2c))

a−b−1\ b 2 3 4 5 6

2 0.062 0.08 0.088 0.092 0.094

3 0.281 0.287 0.29 0.29 0.291

4 0.397 0.401 0.402 0.402 0.402

5 0.472 0.474 0.475 0.475 0.475

6 0.525 0.527 0.527 0.527 0.527

7 0.565 0.567 0.567 0.567 0.567

8 0.597 0.598 0.599 0.599 0.598

Consequently, in proving our statement we can ignore the

case where both b and c are small. We do not find a closed

form expression for β that maximizes (VII.6). Instead we let

β := c
b+2c , and show that S( c

b+2c ,a,b)> log(b+2c). With this

choice of β there holds
1−2β

β = b
c , so that

Δ =
β 2

c

(
c · log(1+

1

c2
)+b · log(1− 1

b · c2
)

)
.

It is easily seen that for c > 0 fixed, this expression is an

increasing function of b, whence it suffices to verify that Δ > 0

when b= 2. Using Taylor expansion it is easily verified that this

inequality holds already for c > 1.5. The same analysis yields

that for every b≥ 2 and large c there holds Δ = log(e)−oc(1)
(b+2c)2 . It

follows that if all Gv are connected then

λ2(G)≥
(

b+2
√

a−b−1
)(

1+Ω
(

loge
(b+2c)2

))
−on(1)

as claimed.

We turn to consider what happens when the graphs Gv

expand. In this case, for every two adjacent vertices x,z there

are some edges between the sets Ψx,z and Φx,z, where, as

above, Ψx,z := Gx ∩Gz, and Φx,z := Gx \ (Gz ∪{z}). Let R be

the least number of such edges over all xz ∈ E(G). Hence, by

the definition of edge expansion, R≥min(b+1,a−b−1) ·δ .

Under the assumption that all Gv are connected we pick one

edge uy with u∈Φx,z and y∈Ψx,z and create a special forward

step denoted by F1∗ . We interpret the subword F1∗B as an

instruction to move x→ u→ y and maintaining z on the top

of the stack. In addition, we forbid the subword FiS j where u
is the i-th vertex in Φx,z and y is the j-th vertex in Ψu,x. In

the present context we can likewise consider some r≤ R edges

ukyk, k = 1, ...,r, with uk ∈Φx,z,yk ∈Ψx,z. Associated with them

we create r types of forward steps called F1∗ ,F2∗ , . . . ,Fr∗ and

associate with the subword Fk∗B the move x→ uk → yk, while z

166



stays on the top of the stack. In addition, we forbid subwords

of the form Fik S jk , where uk is the ik-th vertex in Φx,z and

yk is the jk-th vertex in Ψuk,x. This works for any choice of

r≤ R such edges. Now a pair of consecutive letters FB can be

indexed in a−b+ r−1 ways but a pair of consecutive letters

FS can be indexed only in (a−b−1)b− r ways. This yields

the same maximization problem of (VII.6) with the correction

term

Δ= β 2 log

(
1+

r
a−b−1

)
+β (1−2β ) log

(
1− r

b(a−b−1)

)
.

By letting β := c/(b+2c) as before this reformulates as

Δ =
β 2

c

(
c · log(1+

r
c2
)+b · log(1− r

bc2
)
)
.

Straightforward calculations show that the value of r that

maximizes this expression is
b(c3−c2)

b+c . So, we let r :=

min
(

R,� b(c3−c2)
b+c �

)
. In this case, when c is large, we get

Δ = r log(e)−oc(1)
(b+2c)2 and

λ2(G)≥
(

b+2
√

a−b−1
)(

1+Ω
(

r log(e)
(b+2c)2

))
−on(1)

completing the proof.

Remark VII.1. If δ < b(a−b−1)(
√

a−b−1−1)

(b+
√

a−b−1)min(b+1,a−b−1)
, then ε in-

creases with δ . Note that if a ≥ b2 + 5b+ 5, this restriction

on δ is vacuous and ε is always increasing, since the edge

expansion of a b-regular graph cannot exceed b
2 .

VIII. APPENDIX B: REGULARITY OF THE LINKS

Recall that Ω is its set of all the arrangements of the multiset

S = [l1, ..., lm]. For a positive integer i, define fi : Z2
≥0 → Z≥0

as follows:

fi( j,k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for i+ j+ k odd

0, for i+ j+k
2 < max{i, j,k}

(d−1)
j+k−i

2 , for i+ j+k
2 = max{i, j,k}

(d−2)(d−1)
j+k−i

2 −1, otherwise,

and for i = 0,

f0( j,k) =

{
0, j �= k


d(d−1) j−1�, j = k.

Thus, by Claim III.4, we conclude that

bS = ∑
ω,ω ′∈Ω

m

∏
j=1

fl j(ω j,ω ′j)).

IX. APPENDIX C: PROOFS FROM SECTION IV

A. Theorem IV.1

Proof of Theorem IV.1: The first ingredient of our argu-

ment comes from Bukh’s proof of the Boros-Füredi theorem

[Buk06]. A fan of three lines in the plane that pass through

a point x splits R2 into 6 sectors. For every finite X ⊂ R2,

there is such a fan where each sector contains at least 
 |X |6 �
points of X . But then x resides in every triangle whose three

vertices come from non–contiguous sectors of the fan. Thus it

suffices to show that if A,B,C⊂V (G[1,2,3]) are disjoint subsets

of size 
 |V (G[1,2,3])|
6 �= 
 n3

6 � each, then a constant fraction of the

triangles in G[1,2,3] are in T (A,B,C), i.e., they meet A,B and

C.

Using the expander mixing lemma (=EML), we derive an

estimate of |E[1,2,3](A,B)| and show that the density of the

A,B edges is very close to the overall edge density of G[1,2,3].

We assign a midpoint to every directed A → B edge u → v.

The crucial property of this midpoint is that d3−O(d2) of its

d3 neighbors in G[1,1,1] form together with u,v a triangle in
G[1,2,3]. This gives us a good lower bound on the number of

triangles in G[1,2,3] that have exactly one vertex in A and one in

B. Next we need to show that however we choose C, many of

these triangles have a vertex also in C. To this end, we apply

the EML to M and C in G[1,1,1], where M is the multiset of all

midpoints created as above. Here C is an arbitrary set of 
 n3

6 �
vertices outside A∪B.

We turn to carry out this plan. By Proposition III.10,

λ (G[1,2,3]) ≤ 6μd2(d− 1)3, where μ = max(λ (G),2
√

d−1),

and the EML yields:

n3

6
(d−1)3d2(d+6μ)≥ |E[1,2,3](A,B)| ≥

n3

6
(d−1)3d2(d−6μ)

Let u = (u1,u2,u3) ∈ A, v = (v1,v2,v3) ∈ B be neighbors in

G[1,2,3] and suppose that their distance profile is (1,2,3), in

this order. The vertices u2,v2 have a unique common neighbor

in G, called w. Also, let z1,z2 be the vertices on the shortest

path from u3 to v3. Then m= (u1,v2,z1) is a midpoint of the

directed edge u → v. Let x = (x1,x2,x3) be a neighbor of m

in G[1,1,1], i.e., x1u1,x2v2,x3z1 ∈ E(G). It is easily verified that

if in addition x1 �= v1, x2 �= w, and x3 �= u3,z2, then uvx is a

triangle in G[1,2,3]. Clearly (d−1)2(d−2) = d3−O(d2) of the

d3 neighbors of m satisfy these additional conditions. Figure

3 provides a local view of the three factors of G[1,2,3]:
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u1

v1x1

v2 x2

w

u2

z1

u3

x3z2

v3

Figure 3: A triangle in G[1,2,3] as viewed in G�3.

Clearly the midpoint we chose for v → u differs from the

one we choose for u→ v. Let M = M(A,B) be the multiset of

all such midpoints (for both A→ B and B→ A edges). Let C
be a set of 
 n3

6 � vertices outside A∪B. To count M,C edges

we need a version of the EML that applies as well to multisets

of vertices.

Lemma IX.1 ([Con17]). Let P,Q be two multisets of vertices
in a D-regular N-vertex graph H. Then:∣∣∣∣E(P,Q)− D

N
|P||Q|

∣∣∣∣≤
1λ (H)

√√√√(
∑
x∈P

w2
x−

|P|2
N

)(
∑
y∈Q

w2
y−

|Q|2
N

)

where wx,wy is the multiplicity of x ∈ P resp. of y ∈ Q.

By Proposition III.10, λ (G[1,1,1])≤ μd2, hence

|E[1,1,1](M,C)| ≥ d3

n3
|M||C|−μd2

√
|C| ∑

y∈M
w2

y .

As noted before, if uv is an edge in G[1,2,3] and m is the

midpoint we chose, then out of the d3 neighbors that m has

in G[1,1,1], at least (d−1)2(d−2) form a G[1,2,3]-triangle with

u,v. Therefore,

|T (A,B,C)| ≥ |E[1,1,1](M,C)|− (d3− (d−1)2(d−2))|M|
A long but routine calculation shows that the theorem holds,

e.g., with d0 = 1600, ε0 = 1/20 and α0 = 1/100.

Remark IX.2. So far we have provided no systematic expla-

nation for the connection between the multiset S = [1,2,3] and

[1,1,1]. We turn to discuss this issue. Our argument utilizes

two properties of S:

1) All its elements are positive;

2) Given a list of all the potential length profiles of triangles

in GS, one should check whether there is a triangles

that has a center with a distance profile from one of

the triangle’s vertices which is zero-free.

These are the only conditions we used about GS. Thus, [1,1,0]

fails condition (1), and [1,1,2] does not satisfy (2), but [1,2,3]

has such triangles, namely those with our specific choice of

midpoints as centers. There are many other examples such as

[2,2,2]. A curious aspect of the latter example is that for large

enough d it has the geometric overlap property even though

its link is not even connected.

B. Theorem IV.2

We establish a two sided spectral gap for Aux(C
(2)
G[1,1,0]

) (and

hence rapid mixing of the walk). A similar, but slightly harder

argument applies as well to S = [1,2,3].

Lemma IX.3. Let G be a d-regular triangle-free graph with
n vertices, where λ (G) = (1− ε)d, and let Γ = C

(2)
G[1,1,0]

. Then

λ2(Aux(Γ))≤ (1−Ω(ε4))4d.

Proof: Let F ⊆E[1,1,0] be a set of at most a half of G[1,1,0]’s

edges and consider the triangles of G[1,1,0] that have edges from

F . Proving a lower bound on Aux(Γ)’s edge expansion entails

showing that for every such F , a constant fraction of these

triangles are not contained in F .

Let Γ denote the set of triangles in T . We freely refer

to them either as triangles or as 2-faces of a complex. Each

triangle is associated to its center, so that T =
⊔

x∈Γ(0) Tx,

where Tx is the set of those triangles in Γ whose center is the

vertex x.

Every edge xy in G[1,1,0] has two midpoints, call them x′ and

y′. It is easy to verify that x′ and y′ are neighbors in G[1,1,0]

and the midpoints of the edge x′y′ are x and y. This yields

a natural duality xy←→ x′y′ among the edges of G[1,1,0]. Let

Fx be the set of those edges in F that belong to a triangle in

Tx. Note that 2|F | = ∑x∈Γ(0) |Fx|, since every edge of G[1,1,0]

has exactly two midpoints, each of which is a center of 3d2

triangles.

Let X be the set of those vertices x of Γ such that the vast

majority of edges in Tx belong to F , i.e., X := {x∈Γ(0) | |Fx| ≥
(1−δ )3d2}. We intend to show that with a proper choice of

δ > 0 there holds

∑
x �∈X
|Fx| ≥ ε

12
|F |. (IX.1)

We can assume that ∑x∈X |Fx| ≥ |F |, for otherwise

∑x �∈X |Fx| ≥ |F | and (IX.1) clearly holds. Consequently, |X | ≥
|F |
3d2 , since |Fx| ≤ 3d2 for every x. We can and will take δ < 1

4 ,

so that:

3

4
|X | ·3d2 ≤ |X |(1−δ )3d2 ≤ ∑

x∈X
|Fx| ≤ 2|F | ≤ 3d2n3

2
.

Hence |X | ≤ 2n3

3 and |Xc| ≥ 1
2 |X |. It is well known that a k-

regular graph whose second eigenvalue is μ has edge expansion

≥ k−μ
2 . Since λ (G[1,1,0]) = d2 + 2dλ (G) = 3d2 − 2εd2, we

conclude that

|E(X ,Xc)| ≥ εd2 min(|X |, |Xc|)≥ εd2

2
|X |.
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To derive an upper bound on |E(X ,Xc)|, let xy∈E(X ,Xc), with

x ∈ X ,y �∈ X and let e be the edge that is dual to xy. Clearly e
is in both Tx and Ty, so either e ∈ F and e ∈ Fy or e �∈ F and

e ∈Tx \Fx. Therefore

∑
y∈Xc

|Fy|+ ∑
x∈X
|Tx \Fx| ≥ |E(X ,Xc)|.

But if x ∈ X , then |Tx \ Fx| ≤ 3δd2. We sum the above

inequalities and conclude that

∑
y∈Xc

|Fy| ≥ εd2

2
|X |−3δd2|X | ≥ (

ε
6
−δ )|F |.

By choosing δ = ε
12 we obtain (IX.1).

We proceed to prove the main statement. The fact that

Aux(Tx) is isomorphic to ((Td)S)(ξ ,ξ ,ξ ) together with the

spectral information in Lemma III.14, imply that Aux(Tx) has

edge expansion ≥ d
2 . Hence if x ∈ Xc, then

|EAux(Γ)(Fx,Tx \Fx)| ≥ d
2

min(|Fx|, |Tx \Fx|)≥ εd
24
|Fx|.

Therefore,

|EAux(Γ)(F,F
c)|= ∑

x∈Γ(0)

|EAux(Γ)(Fx,Tx \Fx)|

≥ ∑
x∈Xc

|EAux(Γ)(Fx,Tx \Fx)

≥ ∑
x∈Xc

εd
24
|Fx| ≥ ε2

288
d|F |,

where the last step uses Inequality IX.1. In other words,

Aux(Γ) has edge expansion ≥ ε2

288 d. But the second eigenvalue

of a k-regular graph with edge-expansion h is at most
√

k2−h2

(see Appedndix B in [RS07]). Since Aux(Γ) is 4d-regular, this

yields

λ2(Aux(Γ))≤ (1− ε4

3 ·106
)4d.

In order to control the low end of Aux(Γ)’s spectrum we recall

the following:

Lemma IX.4 ([DR94]). Let G = (V,E) be an N-vertex D-
regular graph with eigenvalues λ1 ≥ . . . ≥ λN. For U ⊆ V let
b(U) denote the least number of edges that must be removed
to make subgraph induced by U bipartite. Then

λN ≥−D+
Ψ2

4D
,

where
Ψ = min

U �= /0

b(U)+ |E(U,Uc)|
|U | .

We can now establish a gap at the bottom of Aux(Γ)’s
spectrum. We consider U either as a set of vertices in Aux(Γ),
or a set of edges in G[1,1,0]. We separate the proof into two

cases:

• When U is very large, and therefore contains many

triangles;

• When U is not very large in which case we can apply

Claim IX.3.

We need the following

Claim IX.5. A set W of w edges in Kd,d,d contains at least
d(w−2d2)+ triangles. The bound is tight.

Proof: Tightness is easy. If w ≤ 2d2, we can have W
completely avoid one of the three Kd,d’s, and therefore be

triangle free. When w> 2d2, have W contain two of the Kd,d’s.

Every edge in the third Kd,d is in exactly d triangles so W has

exactly d(w− 2d2) triangles. The proof of the bound is very

similar: Start with any set W of w> 2d2 edges and sequentially

add to W every remaining edge in Kd,d,d . The addition of a

new edge creates at most d new triangles, and eventually we

reach the whole of Kd,d,d with its d3 triangles. If follows that

we must have started with at least d(w− 2d2) triangles, as

claimed.

We maintain the same notations: Ux is the set of edges in U
that belong to a triangle in Tx, the set of triangles with center

x. A triangle is associated to its center, and we partition the

triangles contained in U according to their various centers. We

also recall that the 1-skeleton of Tx is a complete tripartite

graph Kd,d,d .

Call vertex x heavy if |Ux| ≥ 5
6 |E(Kd,d,d)| = 5d2

2 , and note

that by the above claim, in this case Ux must contain at least
d3

2 triangles, which is also a lower bound on the number of

triangles in Aux(Ux). But all triangles in Aux(Ux) are edge

disjoint, so we must remove at least d3

2 edges from Aux(Ux)

to make it bipartite.

Also recall that every edge in E[1,1,0] belongs to exactly two

triangles. Consequently, if |U | ≥ 71
72 |E[1,1,0]|, then at lease 5

6 of

the vertices are heavy. Therefore, in this case we must remove

at least 5n3

6 · d3

2 = 5d3n3

12 edges to make the induced graph on U
bipartite. Therefore

b(U)

|U | ≥
5d3n3

12
· 2

3d2n3
=

5d
18

.

On the other hand, if |U | ≤ 71
72 |E[1,1,0]|, then

|EAux(Γ)(U,Uc)| ≥ dε2

192
min(|U |, |Uc|)≥ dε2

71 ·192
|U |

and therefore
|EAux(U,Uc)|

|U | ≥ dε2

2·104 . We conclude that Ψ≥ dε2

2·104 ,

and by Lemma IX.4, λN ≥−4d+ ε4d
32·108 . Since we established

an additive gap of size O(dε4) both from above and from below

for Aux(Γ), it follows that the edge-triangle-edge random walk

mixes rapidly.
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