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Abstract—In a Conditional Disclosure of Secrets (CDS)
a verifier V wants to reveal a message m to a prover P
conditioned on the fact that x is an accepting instance
of some NP-language L. An honest prover (holding the
corresponding witness w) always obtains the message
m at the end of the interaction. On the other hand,
if x /∈ L we require that no PPT P∗ can learn the
message m. We introduce laconic CDS, a two round CDS
protocol with optimal computational cost for the verifier
V and optimal communication cost. More specifically, the
verifier’s computation and overall communication grows
with poly(|x|, λ, log(T)), where λ is the security parameter
and T is the verification time for checking that x ∈ L
(given w). We obtain constructions of laconic CDS under
standard assumptions, such as CDH or LWE.

Laconic CDS serves as a powerful tool for maliciousify-
ing semi-honest protocols while preserving their computa-
tional and communication complexities. To substantiate
this claim, we consider the setting of non-interactive
secure computation: Alice wants to publish a short digest
corresponding to a private large input x on her web page
such that (possibly many) Bob, with a private input y,
can send a short message to Alice allowing her to learn
C(x,y) (where C is a public circuit). The protocol must be
reusable in the sense that Bob can engage in arbitrarily
many executions on the same digest. In this context we
obtain the following new implications.

1) UC Secure Bob-optimized 2PC: We obtain a UC
secure protocol where Bob’s computational cost and
the communication cost of the protocol grows with
poly(|x|, |y|, λ,d), where d is the depth of the
computed circuit C.

2) Malicious Laconic Function Evaluation: Next, we
move on to the setting where Alice’s input x is
large. For this case, UC secure protocols must have
communication cost growing with |x|. Thus, with
the goal of achieving better efficiency, we consider a
weaker notion of malicious security. For this setting,
we obtain a protocol for which Bob’s computational
cost and the communication cost of the protocol
grows with poly(|y|, λ,d), where d is the depth of
the computed circuit C.

Keywords-Cryptography; Secure Computation.

I. INTRODUCTION

Consider the following setting: Alice would like to

publish a digest h corresponding to her private data

x on her web page. Next, Bob (with a private input

y) would like to send a short message to Alice, so

that she learns C(x, y) for some public circuit C. As is

standard in secure computation, Alice and Bob want to

achieve this result while keeping their respective inputs

hidden from each other. Analogous to Bob’s message,

Charlie or any other party could reuse h provided by

Alice on her web page. This non-interactive nature of

Alice’s message makes this setting highly desirable and

has been extensively studied in cryptography [1]. This

primitive is commonly referred to as non-interactive
secure computation.

Bob-optimization. Unfortunately, traditional crypto-

graphic techniques for realizing the above task require

Bob’s computational complexity to grow with |C| and

|x| (in addition to y), which is undesirable in several

settings. In particular, since only Alice learns the output

of the computation, Bob might find it unfair that he has

to perform the computation of |C|. In other words, Bob

might be happy to see Alice learn the output of the

computation, but may not be willing to take on doing

the computation himself. For example, consider the case

where Alice’s input is her genomic sequence and Bob

would like to help Alice to learn how likely she is to

have cancer while keeping the logic that he is using to

make predictions secret.

Making the problem more challenging, computational

constraints on Bob imply additional constraints on the

sizes of Alice’s digest and Bob’s message, which must

now also be small. Constructing such Bob-optimized

protocols has been the focus of several recent results

such as laconic function evaluation [2] and laconic

oblivious transfer [3]. Our setting is inspired by these

works. In particular, prior work on laconic function eval-

uation [2] also considers the problem of non-interactive

secure computation, which is computationally optimized

for Bob. However, these results are limited to the semi-

honest setting and need non-falsifiable assumptions [4],

[5], [6], [7], [8] to upgrade security to the malicious

setting. This brings us to the following question:
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Can we realize maliciously secure Bob-
optimized non-interactive secure computation
from standard assumptions?

Bob-optimization when Alice has a large input. Next,

we consider the more demanding setting, where Alice’s

input x itself might be very large. As before, Bob might

be happy to see Alice learning the output of the com-

putation, but may find reading x himself prohibitively

expensive. This could be especially prohibitive if Bob

interacts with multiple users, all playing the role of

Alice. For example, the FBI (playing as Alice) could

hold a huge database of passenger names on the no-fly

list. An an airline company (playing as Bob) might want

to help the FBI check if any of the passengers on one of

its flights is on the list. Here the airline company would

prefer to perform computation independent of the FBI’s

database. This is a special case of the very important

and well-studied problem of private set intersection

(PSI) [9]. This brings us to the following question:

Can we realize maliciously secure Bob-
optimized non-interactive secure computation
when Alice has a large input from standard
assumptions?

Reusablity of Alice’s Digest. We allow multiple Bob’s

to be able to reuse Alice’s digest for multiple com-

putations. In this setting, a corrupt Bob could provide

Alice with an ill-formed message and use Alice’s output

(that it may learn in some way) to cheat Alice or to

learn something about Alice’s input x. Thus, we aim

for security against a malicious Bob that has access to

Alice’s outputs on its prior interactions.

Reverse Delegation. One can view our setting as a

reverse delegation scheme. In a delegation scheme, a

user outsources its computation to an untrusted server

with the goal of learning the output (possibly while even

keeping it private). In contrast, our applications allow a

user (Bob) to delegate its computation to the untrusted

server (Alice) while also letting it learn the output of

the computation, and nothing beyond that.

A. Our Results
In this work we introduce the notion of laconic con-

ditional disclosure of secrets (CDS). In a CDS protocol

a verifier V wants to reveal a message m to a prover P
conditioned on the fact that x is an accepting instance

of some NP-languge L. An honest prover (holding the

corresponding witness w) always obtains the message

m at the end of the interaction. On the other hand

if x /∈ L we require that no (possibly corrupted) P ∗

can learn the message m. CDS can be seen as the

two round analog of witness encryption [10]. The new

constraint that we impose is that the interaction has to

be laconic in the sense that it should not depend on the

size of the parties inputs, and in particular on the size

of the witness w. Additionally, the verifier computation

must be much smaller than recomputing the relation.

More specifically, verifier’s computation and overall

communication grows with poly(|x|, λ, log(T )), where

λ is the security parameter and T is the verification time

for checking that x ∈ L (given w).

Next, we obtain constructions of laconic CDS in

the common reference string model under standard

assumptions, such as CDH or (standard) LWE. Laconic

CDS serves as a powerful tool for maliciousifying semi-

honest protocols while preserving their computational

and communication complexities. To demonstrate this

power, we show application of laconic CDS to the

above-mentioned settings:

1) Bob-optimized 2PC: We obtain a UC secure pro-

tocol where Bob’s computational cost and the

communication cost of the protocol grows with

poly(|x|, |y|, λ, d), where d is the depth of the

computed circuit C. This protocol achieves UC-

security [11] and security is based on the LWE

assumption.

2) Malicious Laconic Function Evaluation: Next,

we consider the more demanding setting where

Alice’s input x is large. For this case, UC secure

protocols must have communication cost growing

with |x|. Thus, with the goal of achieving better

efficiency, we consider a weaker notion of ma-

licious security which we call context security.

Context security allows us to rewind parts of the

execution while at the same time providing some

form of composability and subsumes the standard

notion of indistinguishability-based security. For

this setting, we obtain a protocol for which Bob’s

computational cost and the communication cost of

the protocol grows with poly(|y|, λ, d), where d is

the depth of the computed circuit C. The security

of this construction is based on LWE as well. This

result can be seen as the malicious variant of the

recent work on laconic function evaluation [2].

The above applications demonstrate the power of la-

conic CDS. We see laconic CDS as a natural primitive

and expect it to have other applications. As another

example, laconic CDS allows a resource-constrained

client to delegate the computation of a large circuit to

an untrusted worker and to condition the payment of the

worker on the fact that the provided output is the correct

one. This does not achieve the notion of verifiable com-
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putation in the traditional sense, since the client cannot

explicitly check that the output is correct. However in

certain scenarios, e.g., mining in cryptocurrencies, one

is interested in rewarding under the condition that some
computation has been performed. Then miners are free

to give the wrong output and not claim the reward.

However, there is no clear incentive for that.

B. Technical Overview

To understand and motivate our techniques it is

instructive to discuss a few plausible approaches for

constructing laconic CDS and highlight the barriers that

they encounter. Below we start with such approaches.

Why Known Techniques Fail. If we were to omit

the laconic constraint, then CDS admits a very simple

two-round protocol based on two-round oblivious trans-

fer (OT) and Yao’s garbled circuits [12]: The prover

encodes the binary representation of its witness as the

choice bits in several parallel repetitions of the OT. The

verifier garbles the circuit that hardcodes the statement

x and the message m and returns m if and only if

R(·, x) = 1. Then it sends the garbled circuit together

with the second message of the OT on input each

pair of input label. The prover can locally recover the

labels corresponding to its witness and evaluate the

circuit learning nothing beyond its output. It is clear

that such a solution satisfies our security requirements

but falls short in achieving laconic communication since

the full circuit encoding of the NP-relation is exchanged

between the two parties. At a first glance this seems

to be inherent to garbled-circuit based solutions since

secure two-party computation with low communication

complexity usually requires more sophisticated tools,

such as fully-homomorphic encryption [13].

Another plausible angle to attack the problem is to

resort to techniques from the field of succinct argu-

ments [4], [5]. Then the prover could simply augment a

succinct proof with a public key and the verifier would

then encrypt the message if the proof correctly verifies.

Unfortunately known schemes require at least three

rounds of interaction (four without assuming a setup)

or rely on non-falsifiable assumptions [6], [7], [8]. Con-

structing succinct arguments from standard assumptions

in less than three rounds seems to hit a roadblock: It has

been shown [14] that non-interactive succinct arguments

cannot be based on falsifiable assumptions, at least in a

black-box sense.

Our Solution in a Nutshell. Our starting point is the

classical garbled circuit-based solution. A closer look

to the source of inefficiency reveals that there are two

major challenges to overcome in order to achieve our

goal: (1) We need to remove the linear dependency of

the OT with respect to the size of the witness and

(2) we cannot recompute the full blown NP-relation

in the garbled circuit. Our first insight is to bypass

the first obstacle using laconic OT [3]. A laconic OT

allows one to hash a long database into a small digest,

then the sender can compute the second message of

an OT where the choice bit is set to be the value at

an arbitrary location of the database. The important

message here is that the communication complexity is

independent of the size of the database (in our case the

witness w). This primitive alone allows us to compress

the size of the first message of the CDS. However,

laconic OT alone does not buy us anything for the

complexity of the second message. Overcoming the

second obstacle requires us to borrow techniques from

the domain of succinct arguments. The observation here

is that checking the validity of an NP-instance does not

necessarily require one to recompute the corresponding

relation: Probabilistically checkable proofs (PCP) [15]

encode a witness into a (longer) string such that the

membership of the statement can be probabilistically

verified by querying a constant amount of bits. Such

verification algorithms are inherently erroneous, but

the gap can be made negligibly small via standard

amplification techniques.

This tool gives us the right leverage for a candidate

laconic CDS construction: A prover can now hash the

PCP encoding of its witness via a laconic OT and send

the corresponding digest to the verifier. The latter then

samples a few random locations and garbles a circuit

that takes as input the bits of the PCP encoding at

such locations and returns m if the PCP verifier accepts.

Then it sends the garbled circuit in plain and the input

labels via the laconic OT. This allows the prover to

recover the labels corresponding to the bits of the PCP

encoding, evaluate the circuit, and eventually recover

the message. This introduces a negligible soundness

gap, which does not make a difference in our settings

as we rely anyway on computational assumptions. The

stretch in the size of the witness is also not a problem

since the communication complexity of a laconic OT is

independent of the size of the database (in our case the

PCP encoding).

While this construction seems to solve all problems

at once, a closer look to the building blocks reveals

the dependency on a maliciously secure laconic OT.

Currently, the only known way to construct laconic OT

resilient against active attackers is to compile a semi-

honest one with succinct arguments. Due to its com-

pressing nature, bypassing the usage of non-falsifiable
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assumptions in laconic CDS might then appear to be out

of reach of current techniques. However, we have now

reduced the problem of constructing laconic CDS to that

of building laconic OT: In this work we show how to

construct maliciously secure laconic OT assuming the

hardness of CDH or (standard) LWE with polynomial

modulo-to-noise ratio. Most of the technical innovations

of this work, and the remainder of this section, are

devoted to instantiating malicious laconic OT from

standard assumptions. Looking ahead, this will allow

us to construct laconic CDS, which in turn will be used

as the main technical component to build malicious LFE

and UC-secure Bob-optimized 2PC. An outline of our

results is given in Figure 1.

Towards Malicious Laconic OT. Before we delve into

the actual instantiations of malicious laconic OT we

further simplify the problem by lowering the efficiency

and security requirements for a laconic OT.

Our starting point is a recent work by Döttling, Garg,

Hajiabadi, Masny and Wichs [16] which constructs

maliciously secure oblivious transfer from search as-

sumptions. The main idea in [16] is to start with a very

simple notion of security against malicious receivers and

carefully bootstrap this notion to standard simulation

based notions. The weakest notion considered in [16] is

called elementary OT, and our basic notion of malicious

laconic OT extends this notion to the setting of laconic

OT. We refer to this primitive as weak malicious laconic

OT (when it is clear from the context we drop the term

malicious). Jumping ahead, we will then show, building

on techniques developed in [16] how to generically

upgrade a laconic OT that meets these conditions to

a fully efficient and fully secure one. Concretely, we

aim for the following guarantees.

1) Weak Functionality: The sender algorithm no

longer takes as input two messages (m0,m1)
to transfer but instead generates two fresh ran-

dom strings (k0, k1) together with the sender

output c. This can be seen as the analog of key-

encapsulation mechanism, where (k0, k1) are then

used as the session keys to transfer the desired

messages.

2) Weak Security: We require that, given the sender

message c, no efficient polynomial-time algorithm

can output both k0 and k1 at the same time.

This does not guarantee, for instance, that an

attacker cannot output the first half of k0 and

the second half of k1. This requirement is in

fact identical to the notion of elementary sender

security considered in [16].

3) Weak Efficiency: We consider a laconic OT where

the only efficiency constraint is that the receiver

message is 2-to-1 compressing. That is, we do not

impose any bound on the size of the setup string

and of the sender message, which are potentially

as long as the database.

Pitfalls of Known Constructions. A natural question

to ask is whether existing constructions of semi-honest

laconic OT already satisfies any meaningful notion of

security in presence of a corrupted receiver. To exem-

plify the issues that arise, we briefly recall a simplified

version of the hash-encryption construction of [17]:

The public parameters consist of a matrix of uniformly

sampled group elements

crs =

(
g
(0)
1 , . . . , g

(0)
m

g
(1)
1 , . . . , g

(1)
m

)
←$G

2×m

and the hash of a database D is computed as

d =
m∏
i=1

g
(D[i])
i .

To generate two keys for a position L, one samples two

random random integers (r, s), computes the ciphertext

c as the concatenation of the matrices⎛
⎝
(
g
(0)
1

)r
, . . . ,

(
g
(0)
L

)r
, . . . ,

(
g
(0)
m

)r
(
g
(1)
1

)r
, . . . , 1, . . . ,

(
g
(1)
m

)r
⎞
⎠

and⎛
⎝
(
g
(0)
1

)s
, . . . , 1, . . . ,

(
g
(0)
m

)s
(
g
(1)
1

)s
, . . . ,

(
g
(1)
L

)s
, . . . ,

(
g
(1)
m

)s
⎞
⎠ ,

then sets k0 = dr and k1 = ds. Security stems from

the fact that if D[L] �= b, then the receiver has to find

a different linear combination of elements that yields

the same d in order to compute the corresponding key.

This however crucially relies on the fact that the receiver

always chooses at least one group element per column

of the crs. Consider the following attack where d is set

to be d = g
(0)
1 . Then the receiver can recover the keys

for both b = {0, 1}, when encrypting with respect to

some L �= 1. This is because the element
(
g
(0)
1

)r
is

always given if L �= 1, then k0 and k1 are simply the

first element of each matrix. This breaks any meaningful

notion of security and forces us to rethink even the most

basic building block of the primitive.

Construction from CDH. Our approach diverges from

prior works and takes a fresh look at the problem. In

our scheme the public parameters consist of a vector of

group elements sampled uniformly at random

crs = (g1, . . . , gm)←$G
m
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Figure 1: Overview of our Results

and the hash of a database D is defined as

d =
m∏
i=1

g
D[i]
i .

That is the i-th element of the vector is included in the

product if D[i] = 1 and skipped if D[i] = 0. The subtle

difference with respect to previous approaches lies in

the fact that even setting d = g1 gives us a perfectly

valid hash, which corresponds to the pre-image 1‖0m−1.

To generate two session keys (k0, k1) for a location

L, the sender samples a random integer r and sets the

ciphertext to

c =
(
gr1, . . . , g

r
L−1, g

r
L+1, . . . , g

r
m

)
,

i.e., all powers are given except for grL. We now want

to define k0 and k1 in such a way that only kD[i] can

be recovered using a pre-image D of d. To this end we

set

k0 = dr and k1 = dr/grL.

Observe that if D[L] = 0, then c contains enough

information to recompute

k0 = dr =

m∏
i=1

g
D[i]·r
i ,

since grL would be excluded from the product anyway.

On the other hand if D[L] = 1, then one can only

recompute

k1 = dr/grL =

m∏
i=1,i �=L

g
D[i]·r
i .

To get an intuition why the scheme is secure for any

(possibly maliciously generated) image d, observe that

outputting both k0 and k1 also reveals k0/k1 = grL,

regardless of the value of d. However, grL was not given

as part of the ciphertext and therefore predicting it,

given only c and crs, is as hard as solving a random

instance of the CDH problem.

Construction from LWE. A CDH-based construction

is not entirely satisfactory in terms of assumptions since

most of the applications of malicious laconic OT (and

consequently of laconic CDS) are only known under

the hardness of lattice-related problems. If we were to

plug in our machinery we would introduce an addi-

tional number-theoretic assumption (i.e., CDH), which

is not ideal. An additional reason to look into lattice-

based schemes is that current cryptanalytic techniques

fail even in the quantum settings, whereas there are

polynomial-time quantum algorithms to solve discrete

logarithm-related problems. For these reasons, we turn

our attention to constructing weak malicious laconic

OT from the hardness of the LWE problem. The basic

idea of our scheme is conceptually simple, but the

noisy nature of the LWE problem introduces some

complications. The public parameters consist of a single

matrix

crs = A ∈ Z
n×m
q

where m is the size of the database and n is a parameter

that governs the hardness of the LWE problem. Hashing

a database D ∈ {0, 1}m (parsed as a column vector) is

a simple multiplication

AD = d ∈ Z
n
q

that is, we take a linear combination of the columns of

A depending on the bits of D. For a given location L,

the sender algorithm samples a column vector s←$Z
n
q

and computes a noisy inner product with each column

of A, except for the L-th one. The sender message c
consists of the set{

sTa1 + e1, . . . , s
Tam + em

} \ {sTaL + eL
}

where the noise vector is sampled from a discrete

Gaussian and has small norm. As before we set the

keys in such a way that it is easy to compute one, but
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it is hard to compute both. This is done by setting

k0 = sTd and k1 = −sTd+ sTaL + eL.

It is important to observe that k0 + k1 = sTaL + eL,

which is an LWE sample but it is not among those

included in c. This suggests that outputting both values

of k0 and k1 is equivalent to predicting an LWE sample

and it is going to be our central leverage to show the

security of the scheme. However, the more challenging

part is how to ensure that the receiver is able to recover

kD[L]. In contrast to our previous scheme, the naive

strategy fails to recover the key due to the presence of

the noise. In fact

m∑
i=1,i �=L

ci ·D[i] = kD[L]+

m∑
i=1,i �=L

ei ·D[i] = kD[L]+ ẽ.

To overcome this issue we exploit the fact that ẽ is

relatively small when compared to kD[L]. We then

partition Zq in c-many intervals and we set the actual

session key to be kb (as computed above) rounded

at the closest multiple of q/c. The key property of

this rounding function is that it is resilient to small

perturbations, which means that⌊
kD[L] + ẽ

⌋
c
=
⌊
kD[L]

⌋
c

with high probability, for a small enough ẽ. This strategy

introduces a few issues, among others the fact that the

output of the rounding function is not long enough to

argue about unpredictability (i.e., it can be randomly

guessed with high enough probability). Fortunately,

this issue can be easily circumvented with standard

amplification techniques.

Indistinguishability Laconic OT. As discussed before,

our notion of security only guarantees that the adversary

cannot output both k0 and k1 in their entirety but it

does not guarantee that there exists a consistent bit b
for which the adversary can always guess kb and never

kb⊕1. For example, it could be possible that for a fixed

value of d, the adversary is able to predict k0 for half of

the support of c and k1 for the complement. To fix this

issue, follow the blueprint of [16] and use techniques

developed in the context of hardness amplification of

puzzles [18]. The key idea of this step is to amplify the

success probability of the adversary via parallel repeti-

tions: By setting the new key to be the concatenation

of many independent instances, with high probability at

least one of elements will belong to the wrong partition

of the support of c. Thus with high enough probability,

the adversary is forced to simultaneously predict two

values (k0, k1).

Once this obstacle is surpassed, turning our weak

laconic OT into a fully functional one involves rather

standard tools: First we turn the search problem into

a decision one using Goldreich-Levin hardcore predi-

cate [19]. At this point we can give as input to the sender

algorithm any message pair (m0,m1) and implement

the standard OT functionality by augmenting c with

k0 ⊕ m0 and k1 ⊕ m1. It is easy to see that at least

one of the two messages must be hidden to the eyes

of the adversary as the key kD[L]⊕1 acts as a one-

time pad. At this point, our security definition looks as

follows: We define two experiments (Exp0 and Exp1)

where the adversary is allowed to choose a hash d,

two messages (m0,m1), and a location L, then the

challenger flips a coin b. If b = 0 then the ciphertext c
is honestly computed via the sender algorithm on input

(L,m0,m1), otherwise m0 (m1 for Exp1) is replaced

with a uniformly sampled message. The guarantee is

that the adversary cannot succeed in both experiments

with non-negligible probability.

This gives us a more intuitive security notion but it

is still not sufficient for constructing laconic CDS. The

reason is that we have no idea whether the adversary

is going to be able to succeed in Exp0 or Exp1, for

a given value of L. This information is needed by

the simulator when using laconic OT in conjunction

with garbled circuits: In a reduction against the security

of the garbling scheme we need to know in which

position we should plug the challenge label, to correctly

simulate the view of the adversary. Even worse, de-

termining whether the adversary is successful in Exp0
or Exp1, for all locations L, corresponds to extracting

the whole database D! Recall that the hash d of a

laconic OT is compressing, therefore its pre-image is

not even information-theoretically determined, let alone

efficiently computable.

Context-Secure Laconic OT. The final challenge

towards constructing malicious laconic OT boils down

to extracting the pre-image of any given (possibly mali-

ciously computed) hash. As discussed before, the hash

does not even determine the pre-image in an information

theoretic sense, so trivial solutions are not applicable.

An additional complication is that the protocol is non-

interactive, i.e., the receiver outputs a single message

and goes offline. Therefore rewinding the receiver also

does not seem to help. Of course one could just assume
the existence of an extractor, which would however

place our solution within the category of non-falsifiable

assumptions.

We address this problem by leveraging the

distinguisher-dependent simulation technique recently
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developed [20]. We introduce a new security notion

called context security to provide a versatile toolkit

which allows to deploy distinguisher-dependent

simulation in much more complex settings. While on

a technical level we use many of the same techniques

as [16], context security will allow us to use the

distinguisher-dependent simulation technique to its full

effect.

We will use distinguisher-dependent simulation in

the following way to extract the input of a malicious

receiver. A careful look to the indistinguishability-

based definition shows that, given black-box access to

a malicious receiver, we can determine the bit D[L],
by approximating the success probability in Exp0 and

Exp1: For a given location L, the experiment where the

adversary is successful must correspond to the value of

D[L]! Iterating over all locations, we can recover the

complete database.

Our main insight is that this technique can be ap-

plied to a setting where the overall communication

between receiver and sender is too small to information-

theoretically specify the input of the receiver. This is in

contrast to previous uses of this technique in [20], [16].

Somewhat counterintuitively, we are able to extract

the full pre-image of a short hash in polynomial time

without resorting to non-falsifiable assumptions. Our

new notion of context context security is crafted to

precisely characterize the security guarantees we can

achieve via distinguisher dependend simulation.

The high level idea of context security is that pro-

tocols must remain secure against any context, where

a context is defined as a (possibly corrupted) receiver

and a distinguisher that takes as input the sender’s

message. Security is defined in terms of the existence

of an extractor and a simulator: The extractor (with

oracle access to the distinguisher) recovers the original

input of the receiver and gives enough information to

the simulator to simulate the sender message, where

the simulator only interacts with the ideal functionality.

Additionally, the runtime of the extractor is indepen-

dent of that of the corrupted receiver (but depends on

that of the distinguisher). This enables a meaningful

notion of composability since the protocol is required

to be remain secure for any context. Since the extrac-

tor depends on the distinguisher, context-security does

not achieve the same strong guarantees of universal

composability (UC) [11]. However, in contrast with

UC, a protocol can be context-secure even when its

transcript does not determine the inputs of the parties in

an information theoretic sense. Thus we view context-

security as a meaningful relaxation of UC and a versatile

tool, instrumental to construct laconic CDS. Finally, we

remark that context security implies the standard notion

of indistinguishability-based secure computation.

Using ideas developed in [16] we show that any in-

distinguishability laconic OT is also context secure. The

argument crucially relies on rewinding the distinguisher

and measuring its success-probability.

Efficient Laconic OT. Equipped with a context-secure

laconic OT, we can show a bootstrapping theorem in

the same spirit as [3]: Given any 2-to-1 compressing

context-secure laconic OT we can construct an equally

efficient context-secure laconic OT where the size of

the hash (and of the common reference string) is inde-

pendent of the size of the database. The transformation

is identical to that of [3] and works by hashing the

database into a Merkle tree and using a chain of

garbled circuit to access the leaf corresponding to the

location L. However, the argument is fundamentally

different since we cannot assume that the hash is

honestly computed. The usefulness of the notion of

context security is demonstrated by our bootstrapping

theorem. We crucially rely on the recursive application

of context extractors to extract an entire Merkle-tree. A

critical aspect in this step which avoids an exponential

blowup is that the runtime of the context-extractor is

independent of the computation of the receiver.

C. Applications

We now discuss how laconic CDS can be used as

a maliciousifier for two-round protocols: A two round

protocol consists of a message m1 from the receiver

to the sender and a message m2 from the sender to

the receiver. At the end of the interaction, the receiver

performs some computation to retrieve the output of the

protocol. Using laconic CDS we can turn a semi-honest

two-round protocol into a malicious one (for a corrupted

receiver) by augmenting m1 with the first message of

a laconic CDS certifying that m1 is well formed. Then

the sender computes the second message of a laconic

CDS where the secret is set to m2. That is, the receiver

will learn m2 if and only if m1 was well-formed. The

new properties that our transformation enables are:

1) The communication complexity of the malicious

protocol is identical to that of the semi-honest one.

2) The computational complexity of the sender is

unchanged.

This comes particularly useful when the input and the

computation of the receiver are particularly burdensome.

As an example, a laconic CDS allows us to lift non-

interactive secure computation for RAM programs [3]

to the malicious settings in a very natural way. Another
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interesting scenario is when the above transformation

is applied to laconic function evaluation (LFE). In

this case we obtain the first maliciously secure Bob-

optimized non-interactive secure computation protocol

where the communication complexity grows only with

the depth of the circuit and with the size of Bob’s input.

In other words, the malicious protocol is (asymptoti-

cally) as efficient as the underlying semi-honest LFE.

We can even lift the security to the UC-settings, however

at the cost of the communication growing with the size

of the receiver’s input, which is unavoidable.

Delegating Computation. A less orthodox usage of

a laconic CDS is in the context of non-interactive

delegation of computation: A client wants to delegate

the computation of a large circuit to an untrusted worker

and wants some insurance that the output given by the

worker is the correct one. The worker performs the

computation and obtains the output z, then computes

a laconic CDS that certifies that z is indeed the correct

output. On input the first message of the laconic CDS

and z, the client conditions the payment of the worker

on the fact that z is computed correctly. This protocol

is not verifiable in the traditional sense since the client

cannot explicitly check that z is indeed the correct

output. However we can envision scenarios where this

is not a limitation. As an example, miners of cryp-

tocurrencies often aggregate in pools, where each peer

is rewarded basing on the amount of computation it

performed. In this case it is not critical to verify that the

output is correct but we are mostly interested in the fact

that some large circuit has been computed. The miners

could of course provide the wrong output and not claim

the reward, but it is unclear what would be the incentive

to do that.

II. DEFINITIONS

We denote by λ ∈ N the security parameter. We

we say that a function negl is negligible if it vanishes

faster than any polynomial. Given a set S, we denote by

s←$S the uniform sampling of an element from S. We

say that an algorithm is PPT if it can be implemented

by a probabilistic Turing machine running in time

polynomial in λ. We introduce two useful inequalities.

Theorem 1 (Hoeffding Inequality). Let (X1, . . . , XN )
be independent and identically distributed random vari-
ables in [0, 1] with expectation E[X̄]. Then it holds that

Pr

[∣∣∣∣∣ 1N
N∑
i=1

Xi − E[X̄]

∣∣∣∣∣ > δ

]
≤ 2e−2Nδ2 .

Lemma 1 (Markov Inequality for Advantages [16]). Let
A(Z) and B(Z) be two random variables depending on

a random variable Z and potentially additional random
choices. Assume that∣∣∣Pr

Z
[A(Z) = 1]− Pr

Z
[B(Z) = 1]

∣∣∣ ≥ ε ≥ 0.

Then

Pr
Z
[|Pr[A(Z) = 1]− Pr[B(Z) = 1]| ≥ ε/2] ≥ ε/2.

A. Intractable Problems

In the following we introduce some hard problems in

cryptography that are going to be useful for our work.

Computational Diffie-Hellman. We recall the search

version of the classical computational Diffie-Hellman

(CDH) problem [21]. Let G be a (prime-order) group

generator that takes as input the security parameter and

1λ and outputs (G, p, g), where G is the description of a

multiplicative cyclic group, p is the order of the group,

and g is a generator of the group.

Definition 1 (Computational Diffie-Hellman Assump-

tion). We say that G satisfies the CDH assumption (or
is CDH-hard) if for any PPT adversary A it holds that

Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ)

where (G, p, g)←$G(1λ) and (a1, a2)←$Zp.

Learning with Errors. The learning with errors (LWE)

problem was introduced by Regev [22]. In this work

we exclusively use the decisional version, since there

exists a well known reduction to the search variant of

the problem.

Definition 2 (Learning with Errors Assumption). The
LWEn,ñ,q,χ problem, for (n, ñ, q) ∈ N and for a dis-
tribution χ supported over Z, is to distinguish between
the distributions (A, sA+e mod q) and (A,u), where
A←$Z

n×ñ
q , s←$Z

n
q , e←$χñ, and u←$Z

ñ
q . Then, the

LWEn,ñ,q,χ assumption is that the two distributions are
computationally indistinguishable.

The assumption is consider to hold for any

ñ = poly(n, log(q)) and we denote this problem by

LWEn,q,χ. As shown in [22], [23], the LWEn,q,χ prob-

lem with χ being the discrete Gaussian distribution

with parameter σ = αq ≥ 2
√
n (i.e. the distribution

over Z where the probability of x is proportional to

e−π(|x|/σ)2 ), is at least as hard as approximating the

shortest independent vector problem (SIVP) to within

a factor of γ = Õ(n/α) in worst case dimension

n lattices. This is proven using a quantum reduction.

Classical reductions (to a slightly different problem)

exist as well [24], [25] but with somewhat worse param-

eters. The best known (classical or quantum) algorithms
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for these problems run in time 2Õ(n/log(γ)), and in

particular they are conjectured to be intractable for

γ = poly(n).

A discrete gaussian with parameter αq is B = αq
bounded, except with negligible probability. For param-

eter α the worst-to-average case reduction of [22] gives

a worst-case approximation factor of Õ(n/α) for SIVP.

Consequently, in terms of the bound B and the modulus

q we get a worst-case approximation factor of Õ(nq/B)
for SIVP.

B. Laconic Oblivious Transfer

In the following we introduce laconic oblivious trans-

fer (LOT), the main object of interest of our work [3].

For presentation purposes, we define two variants of

LOT with different efficiency and security requirements.

Looking ahead, we will show a generic transformation,

thereby simplifying the task of designing a LOT scheme

to its simplest flavour.

As discussed by Cho et al. [3], we can ignore any se-

curity requirement on the receiver side: Although some

bits of the database could be leaked, any LOT scheme

can be generically upgraded to achieve receiver security

through a generic transformation, i.e., by running the

LOT under a 2PC protocol. In contrast to our work,

Cho et al. [3] also considers the property of updatability

for a LOT, which allows one to modify a bit of the

database and update the digest in a significantly more

efficient way than computing it from scratch. Since it is

not relevant for our applications, we omit this property.

Weak Laconic Oblivious Transfer. A weak LOT

scheme is identical to the standard LOT [3] except

that the sender algorithm does not take as input two

messages but chooses itself two random keys (k0, k1).
This can be seen as the analogous to key encapsulation

for encryption schemes. The syntax is given below.

Definition 3 (Weak Laconic Oblivious Transfer). A
weak LOT LOT = (Setup,Hash,KGen,Receive) is
defined as the following tuple of algorithms.

Setup(1λ)→ crs : On input the security parameter 1λ,
the generation algorithm returns a common reference
string crs.

Hash(crs,D)→ (d, D̃) : On input the common refer-
ence string crs and a database D ∈ {0, 1}∗, the
hashing algorithm returns a digest d and a state D̃.

KGen(crs, d, L)→ (c, k0, k1) : On input the common
reference string crs, a digest d, and a location L ∈ N,
the key generation algorithm returns a ciphertext c and
a pair of keys (k0, k1).

ReceiveD̃(crs, c, L)→ m : On input the common refer-
ence string crs, a ciphertext c, and a location L ∈ N,
the receiver algorithm (with random access to D̃)
returns a key k.

The definition of correctness is given in the following.

Definition 4 (Correctness). A weak LOT LOT =
(Setup,Hash,KGen,Receive) is correct if for all λ ∈ N,
for all databases D of size polynomial in λ, and for all
memory locations L ∈ {1, . . . , |D|} it holds that

Pr
[
kD[L] = ReceiveD̃(crs, c, L)

]
= 1

where
• crs← Setup(1λ),
• (d, D̃)← Hash(crs,D),
• (c, k0, k1)← KGen(crs, d, L),

and the probability is taken over the random coins of
Setup and KGen.

We also consider a weaker notion of correctness

where the above probability is bounded from below by

1− 1/poly(λ), for some polynomial function poly . We

refer to such notion as (1/poly(λ))-correctness. A weak

LOT is required to satisfy only a rudimental notion of

sender security that we define in the following. Loosely

speaking, we require that the adversary is not able to

predict both keys (k0, k1) in their entirety.

Definition 5 (Weak Sender Security). A weak LOT
LOT = (Setup,Hash,KGen,Receive) is weakly sender
secure if for all λ ∈ N and for all PPT adversaries
A = (A1,A2) there exists a negligible function negl
such that

Pr
[
ExpSendSec(LOT,A)(1

λ) = 1
]
= negl(λ)

where the experiment is defined as

ExpSendSec(LOT,A)(1
λ) :

• Compute crs← Setup(1λ)
• (d, L, st)← A1(crs)
• (c, k0, k1)← KGen(crs, d, L)
• (k∗0 , k

∗
1)← A2(c, st)

• Output (k0, k1) = (k∗0 , k
∗
1)

and the probability is taken over the random coins of
Setup, A1, and KGen.

Efficiency. For efficiency, it is only required that the

size of the digest d is at most half of that of D, i.e, the

Hash function is 2-to-1 compressing. In particular, there

is no bound on the efficiency of the algorithms and on

the size of the ciphertext, except for being polynomial

in the security parameter. We refer to such notion as
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semi-efficiency. Jumping ahead, we will show a generic

transformation from any semi-efficient LOT to a full-

fledged LOT without additional assumptions.

Indistinguishable Laconic Oblivious Transfer. This

version of LOT is equivalent to that introduced in [3],

except that we upgrade the definition of sender security

to the malicious settings. Note that we consider without

loss of generality schemes that transfer a single bit

(bit-LOT), which can be turned into multi-bit schemes

(string-LOT) by simply computing multiple ciphertexts

over the same digest. The security is preserved by a

standard hybrid argument.

Definition 6 (Laconic Oblivious Transfer). A LOT
LOT = (Setup,Hash, Send,Receive) is defined as the
following tuple of algorithms.

Setup(1λ)→ crs : On input the security parameter 1λ,
the generation algorithm returns a common reference
string crs.

Hash(crs,D)→ (d, D̃) : On input the common refer-
ence string crs and a database D ∈ {0, 1}∗, the
hashing algorithm returns a digest d and a state D̃.

Send(crs, d, L,m0,m1)→ c : On input the common
reference string crs, a digest d, a location L ∈ N,
and a pair of messages (m0,m1) ∈ {0, 1}2, the sender
algorithm returns a ciphertext c.

ReceiveD̃(crs, c, L)→ m : On input the common refer-
ence string crs, a ciphertext c, and a database location
L ∈ N, the receiver algorithm (with random access to
D̃) returns a message m.

The definition of correctness is given in the following.

Definition 7 (Correctness). A LOT LOT =
(Setup,Hash, Send,Receive) is correct if for all
λ ∈ N, for all databases D of size polynomial in λ, for
all memory locations L ∈ {1, . . . , |D|}, and any pair
of messages (m0,m1) ∈ {0, 1}2 it holds that

Pr
[
mD[L] = ReceiveD̃(crs, c, L)

]
= 1

where
• crs← Setup(1λ),
• (d, D̃)← Hash(crs,D),
• c← Send(crs, d, L,m0,m1),

and the probability is taken over the random coins of
Setup and Send.

The fact that the digest of a LOT is compressing,

makes even defining sender security a non-trivial task.

We put forward the following indistinguishability-based

definition, which suffices for our purposes.

Definition 8 (Sender Indistinguishability). A LOT
LOT = (Setup,Hash, Send,Receive) is sender secure
if for all λ ∈ N, for all PPT adversaries A = (A1,A2),
and for all polynomial functions poly(λ) there exists a
negligible function negl such that

Pr

[
ε0 >

1

poly(λ)
and ε1 >

1

poly(λ)

]
= negl(λ)

where, for β ∈ {0, 1}, εβ is defined as

εβ =

∣∣∣∣∣∣
Pr
[
ExpSendInd

(0,β)
(LOT,A)(1

λ) = 1
]
−

Pr
[
ExpSendInd

(1,β)
(LOT,A)(1

λ) = 1
]
∣∣∣∣∣∣

where the experiment is defined as

ExpSendInd
(b,β)
(LOT,A)(1

λ) :

• Compute crs← Setup(1λ)
• (d, L,m0,m1, st)← A1(crs)
• If b = 0 : Set (r0, r1) = (m0,m1)
• If b = 1 : Set rβ ←$ {0, 1} and r1−β = m1−β

• c← Send(crs, d, L, r0, r1)
• b∗ ← A2(c, st)
• Output b∗

and the probabilities are taken over the random coins
of Setup, Send, and A1.

Efficiency. Here it is required that the size of the

digest d is a fixed polynomial in the security parameter.

Furthermore, we also impose a bound on the running

time of the Hash algorithm of |D|·poly(log(|D|), λ) and

on the time complexity of Setup, Encode, and Receive
of poly(log(|D|), λ). These are the same efficiency

requirements of Cho et al. [3].

C. Laconic Conditional Disclosure of Secrets

Conditional disclosure of secrets (CDS) [26] for a

language L in NP with relation R is the two-round

analog of witness encryption [10]: Given a statement

x and a message m from the sender, the receiver is

able to recover m if x ∈ L, whereas m stays hidden if

this is not the case. Furthermore, the witness w for x
should be kept secret from the eyes of the sender.

Definition 9 (Conditional Disclosure of Secrets).
A CDS scheme CDS = (CDSSetup,CDSReceive,
CDSSend,CDSDecode) for an NP-langauge L is de-
fined as the following tuple of algorithms.

CDSSetup(1λ)→ crs : On input the security parameter
1λ, the generation algorithm returns a common refer-
ence string crs.

CDSReceive(crs, x, w)→ (cds1, r) : On input the com-
mon reference string crs and a statement-witness pair
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(x,w), the receiver algorithm returns a first message
cds1 and a state r.

CDSSend(crs, x,m, cds1)→ cds2 : On input the com-
mon reference string crs, a statement x, a message
m ∈ {0, 1}∗, a first message cds1, the sender algorithm
returns a second message cds2.

CDSDecode(crs, cds2, r)→ m : On input the common
reference string crs, a second message cds2, and the
receiver state r, the decoding algorithm returns a mes-
sage m.

Correctness requires that the decoding is successful

if x ∈ L.

Definition 10 (Correctness). A CDS scheme CDS =
(CDSSetup,CDSSend,CDSReceive,CDSDecode) is
correct if for all λ ∈ N, all (x,w) ∈ R, and any
message m ∈ {0, 1}∗ it holds that

Pr [m = CDSDecode(crs, cds2, r)] = 1

where
• crs← CDSSetup(1λ),
• (cds1, r)← CDSReceive(crs, x, w),
• cds2 ← CDSSend(crs, x,m, cds1),

and the probability is taken over the random coins of
CDSSetup, CDSReceive, and CDSSend.

The central requirement for a CDS scheme is that the

message is hidden if the given statement is not in the

corresponding NP-language.

Definition 11 (Message Indistinguishability). A CDS
scheme CDS = (CDSSetup,CDSSend,CDSReceive,
CDSDecode) is message-indistinguishable if for all λ ∈
N, for all admissible PPT adversaries A = (A1,A2),
for all x /∈ L there exists a negligible function negl
such that∣∣∣∣∣∣

Pr
[
ExpMesInd

(0)
(CDS,A)(1

λ) = 1
]
−

Pr
[
ExpMesInd

(1)
(CDS,A)(1

λ) = 1
]
∣∣∣∣∣∣ = negl(λ)

where the experiment is defined as

ExpMesInd
(b)
(CDS,A)(1

λ) :

• Compute crs← CDSSetup(1λ)
• (cds1,m0,m1, st)← A1(crs)
• cds2 ← CDSSend(crs, x,mb, cds1)
• b∗ ← A2(cds2, st)
• Output b∗

where A is admissible if m0 and m1 have equal length
and the probabilities are taken over the random coins
of CDSSetup, CDSSend, and A1.

Finally, we require that no information is leaked to

the sender by the message of the receiver.

Definition 12 (Receiver Simulation). A CDS scheme
(CDSSetup,CDSSend,CDSReceive,CDSDecode) is
receiver simulatable if there exists a PPT simulator
CDSSim = (CDSSim1,CDSSim2) such that for all
λ ∈ N, all (x,w) ∈ R, and all PPT adversaries A it
holds that∣∣∣∣∣∣

Pr
[
ExpRecSim

(0)
(CDS,A)(1

λ) = 1
]
−

Pr
[
ExpRecSim

(1)
(CDS,A)(1

λ) = 1
]
∣∣∣∣∣∣ = negl(λ)

where the experiment is defined as

ExpRecSim
(b)
(CDS,A)(1

λ) :

• If b = 0 : Compute crs← CDSSetup(1λ)
• (cds1, ·)← CDSReceive(crs, x, w)
• If b = 1 : Compute (crs, td)← CDSSim1(1

λ)
• cds1 ← CDSSim2(crs, td, x)
• b∗ ← A(crs, cds1)
• Output b∗

and the probabilities are taken over the random coins
of CDSSetup, CDSReceive, CDSSim, and A.

Efficiency. The standard requirement for a CDS scheme

is to run in time polynomial in the security parameter

and, possibly, in the size of the statement and of the

witness. We say that a CDS is laconic if the commu-

nication complexity is a fixed polynomial poly(λ) and

in particular is independent of the size of w (up to a

poly-logarithmic factor). This notion can be seen as the

equivalent of succinct arguments [5], [4] with implicit

verification.

III. CONTEXT SECURITY

In this Section we provide our definition of context

security, which is a UC-inspired security notion [11].

The notion is specifically geared towards non-interactive

secure computation protocols for which the communi-

cation complexity is sublinear in the receiver’s input.

UC security ensures that a protocol is secure in any

environment or context. However, the way UC-security

is formalized makes it necessary that a straight-line

simulator is able to extract the inputs of malicious par-

ties, which immediately implies that the communication

complexity scales with the size of the inputs of the

parties. An important aspect in (standard) UC-security

is that the environment is chosen after the simulator.

Specialized-Simulator UC [27] allows the simulator to

depend on the environment, but not on its random

coins. Context security aims for a compromise, while
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salvaging the original motivation of UC, namely that

protocols remain secure in any context.
Unlike other works which relax UC security, e.g. [28],

[29], the purpose of context security is not to get rid of

a trusted setup. Rather, our goal is to obtain meaningful

composability guarantees in the malicious setting while

allowing for round-optimal protocols with communica-

tion complexity that is sublinear in the inputs. This is

neither possible with UC/straight-line extraction, nor in

the standalone simulation framework: While rewinding

does allow to extract large inputs from protocols with

small communication, it does not help in the two

message setting.
Our definition will only consider the single instance

setting, but is crafted in a way that multi instance se-

curity can be dealt with via standard hybrid arguments.

In this sense, we aim for conceptual simplicity rather

than generality. We start by providing the definition of

a context.

Definition 13 (Protocol Context). We say that a PPT
machine Z = (Z1,Z2) is a context for two message
protocol Π = (Setup,R1, S,R2), if it has the following
syntactic properties: The first stage Z1 takes as input a
common reference string crs (generated by Setup) and
random coins r1 and outputs a receiver message rec and
a state st. The second phase Z2 takes as input the state
st and random coins r2. The second phase is allowed
to make queries y to a sender oracle O(y), which
are answered by S(crs, rec, y) (using fresh randomness
from r2). In the end the context outputs a bit b∗. Define
the following experiment.
Z(1λ) :

• Choose random tapes (r1, r2)
• Compute crs← Setup(1λ)
• (st, rec)← Z1(crs, r1)

• b∗ ← ZS(crs,rec,·)
2 (st, r2).

• Output b∗

We now provide our definition of context security.

Definition 14 (Context Security). Let Π = (Setup,R1,
S,R2) be a two-message protocol realizing a two-party
functionality F . We say that Π is context-secure if the
following holds for every Π-context Z = (Z1,Z2). We
require that there exists a context extractor ExtZ and
simulators SimSetup and Sim such that the following
holds for every δ > 0:

1) SimSetup runs in time polynomial in λ (but inde-
pendent of the run-time of Z1 and Z2) and outputs
a common reference string crs and a trapdoor td.

2) ExtZ takes as input crs, st, rec, random coins
r∗ and a parameter δ and outputs a value x∗

and an auxiliary string aux. ExtZ has overhead
poly(λ, p(λ)) · T2, where T2 is the overhead of
Z2 and the polynomial is independent of Z , only
depending on λ.

3) Sim takes as input td, rec, aux and a value z and
outputs a sender-message snd. We require The
overhead of Sim to be polynomial in the overhead
of λ, but independent of Z1 and Z2.

4) Define the following experiment.

EZ(1λ, δ) :
• Choose random tapes (r1, r2)
• Compute (crs, td)← SimSetup(1λ).
• (st, d)← Z1(crs, r1)
• (x∗, aux)← ExtZ(crs, st, rec, r∗, δ)
• b∗ ← ZO′(·)

2 (st, r2), where O′(y) computes
and outputs Sim(td, rec, aux,F(x∗, y)).

• Output b∗

(Security) It holds for every inverse polynomial
ε = ε(λ) that∣∣Pr [Z(1λ) = 1

]− Pr
[EZ(1λ, ε) = 1

]∣∣ < ε,

except for finitely many λ.

Note specifically that we allow the ideal experiment

EZ to depend on the distinguishing advantage ε, which

looks unusual at first glance. However, it is precisely

this dependence which allows us to prove context

security for protocols with sublinear communication

complexity. Specifically, this dependence will let us use

the distinguisher-dependent simulation technique [20] to

construct extractors ExtZ .

The extractor ExtZ has a similar syntax as a knowl-

edge extractor [30], however the main difference is we

will be able to prove this notion under standard falsi-

fiable assumptions. An important aspect which enables

context security to be used in a meaningful way is that

ExtZ does not get to see r2.

The runtime requirement for ExtZ will make this

notion compose benignly, unlike knowledge extractors

[30]. More specifically, it will be natural and convenient

to define experiments iteratively, and this runtime re-

quirement will ensure that runtimes of the experiments

do not explode. An important aspect will be that ex-

tractors are not run recursively. Extractors will only be

used in the first phase of a modified context, but the

extractor itself does not use the first phase. That is, in

successive uses of the technique the runtime will only

grow additively, but not multiplicatively.

We remark that context-security has to be used with

care. If a context (Z1,Z2) is such that Z2 uses a long-
term secret generated by Z1, the extractor also needs to
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use this secret when simulating Z2. In particular, this

means that in a hybrid proof we cannot make any further

modifications to Z1 after extracting the receiver input,

as this could invalidate the extracted input. For example,

consider a functionality where the sender provides a

(long term) signing key for a signature and the receiver

obtains a signature on his input. Moreover, assume

that the receiver is also given the verification key of

the signature (and can therefore check the validity of

signatures). Context-security allows us to extract the

inputs of the receiver, but in order to do so the extractor

needs to know the signing key. This is problematic if

we later want to argue about the unforgeability of the

signature, where a reduction is not given the signing

key but only access to a signing oracle. Yet, by the

observation above the context-extractor cannot extract

the signing queries without being given the signing key.

Note that this issue does not exist in the setting of UC

security.

Finally, a very convenient property of context security

is that it immediately implies game-based security no-

tions with an efficient experiment. Specifically, phrase a

game as a context Z , apply context security and reason

that the advantage in EZ is 0. Via the way we have

defined context security this will immediately imply

that also in the original experiment Z the advantage

is negligible.

For instance, for non-interactive secure computation

one can consider the following indistinguishability-

based security definition. The malicious receiver first

obtains a CRS, outputs a receiver message and two

randomized functions F0 and F1 for which it holds

that on any input x the distributions F0(x) and F1(x)
are indistinguishable. The experiment flips a bit b and

provides the adversary with a sender message which

allows the receiver to evaluate Fb on his input. The

adversary then has to guess the bit b.

Any context-secure NISC scheme immediately also

satisfies this notion. We can phrase the experiment,

including the adversary as a context (Z1,Z2) where

Z1 outputs the receiver message (together with a state),

and Z2 chooses the random bit b and computes the

sender message via access to a sender oracle. Now,

context-security lets us argue that in the experiment EZ
the actual bit b used by the experiment is hidden from

the view of the adversary, as the output of the oracle

only depends on Fb(x) (which is indistinguishable from

F1−b(x)) rather than on Fb.

Some Useful Functionalities. We define the func-

tionalities corresponding to the primitives of interest of

this work, defined in Section II. Note that all of the

functionalities that we consider are single-output, in the

sense that only one party learns an output at the end of

the execution.

Laconic Oblivious Transfer: The ideal functionality

FLOT(D,m0,m1, L) takes as input a database D, a

pair of messages (m0,m1) and a location L. It returns

(mD[L], L).

Laconic Conditional Disclosure of Secrets: The ideal

functionality FCDS(w, x,m) is parametrized by an NP-

language L with relation R and takes as input a

statement x, a witness w, and a message m. The func-

tionality returns m if R(w, x) = 1 and ⊥ otherwise.

IV. MALICIOUS LACONIC OBLIVIOUS TRANSFER

In this section we present our constructions from

different cryptographic hard problems. We first con-

struct a 2-to-1 compressing weak LOT from the CDH

or the LWE assumption, then we show how to generi-

cally bootstrap any 2-to-1 compressing weak LOT to a

context-secure LOT with arbitrary compression.

A. From Computational Diffie-Hellman

We present our scheme for a weak LOT with ma-

licious security assuming the hardness of the CDH

problem over a prime-order multiplicative cyclic group

(G, p, g). For conceptual simplicity, we assume that a

group element can be represented using λ-many bits,

but the scheme can be generalized to arbitrary repre-

sentations in a natural way. The construction is given in

Figure 2.

Analysis. We show that our scheme is correct.

Theorem 2 (Correctness). Let (G, p, g) be a prime-
order multiplicative cyclic group. Then the construction
LOT = (Setup,Hash, Send,Receive) as defined in
Figure 2 is correct.

Proof of Theorem 2: The proof consists in the

observation that

kD[L] =

(
d

g
D[L]
L

)r

=

(∏2λ
i=1 g

D[i]
i

g
D[L]
L

)r

=

⎛
⎝ 2λ∏

i=1,i �=L

g
D[i]
i

⎞
⎠r

=
2λ∏

i=1,i �=L

h
D[i]
i

which is exactly the output of the receiver.

Next we argue about weak sender security.

Theorem 3 (Weak Sender Security). Let (G, p, g) be
a CDH-hard group. Then the construction LOT =
(Setup,Hash,KGen,Receive) as defined in Figure 2 is
weakly sender secure.
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Setup(1λ) :

• Sample (G, p, g)← G(1λ).
• Sample a uniform vector (g1, . . . , g2λ)←$G

2λ

• Return crs = (G, p, g, g1, . . . , g2λ).

Hash(crs,D) :

• Parse crs as (G, p, g, g1, . . . , g2λ) and D ∈ {0, 1}2λ as a bitstring.

• Compute d =
∏2λ

i=1 g
D[i]
i .

• Set D̃ = (D, d) and return (d, D̃).

KGen(crs, d, L) :

• Parse crs as (G, p, g, g1, . . . , g2λ) and d ∈ G.

• Sample a uniform r←$Zp.

• Compute the vector c = (gr1, . . . , g
r
L−1, g

r
L+1, . . . , g

r
2λ).

• Set k0 = dr and k1 = (d/gL)
r.

• Return (c, k0, k1).

ReceiveD̃(crs, c, L) :

• Parse D̃ as (D, d) and c as (h1, . . . , h2λ).

• Return
∏2λ

i=1,i �=L h
D[i]
i .

Figure 2: CDH-Based Weak LOT.

Proof of Theorem 3: The theorem is shown with

a reduction to the CDH assumption. Assume towards

contradiction that there exists a PPT adversary A =
(A1,A2) such that

Pr
[
ExpSendSec(LOT,A)(1

λ) = 1
]
=

1

poly(λ)

for some polynomial function poly . On input a CDH

challenge (G, p, g, ga1 , ga2), the reduction samples a

uniform vector (x1, . . . , x2λ)←$Z
2λ
p and an index

L̃←$ {1, . . . , 2λ}. Then it sets

crs = (G, p, g, gx1 , . . . , gxL−1 , ga1 , gxL+1 , . . . , gx2λ)

and runs (d, L, st)← A1(crs). If L �= L̃ the reduction

aborts, else it sets

c = (ga2·x1 , . . . , ga2·xL−1 , ga2·xL+1 , . . . , ga2·x2λ).

Then it runs (k0, k1) ← A2(c, st) and returns k0/k1.

The reduction runs in polynomial time and the inputs

given to the adversary are identically distributed as those

in the original game. Note that if L = L̃ and the

adversary correctly guesses both k0 and k1, then we

have that

k0
k1

=
da2

da2 · g−a2

L

= ga2

L = ga1·a2 .

Since this happens with probability at least 1
poly(λ)·2λ ,

it contradicts the CDH assumption.

B. From Learning with Errors

In the following we present our weak LOT scheme as-

suming the hardness of the LWE problem. Our scheme

is shown in Figure 3.

Rounding. Let q = c ·p be an integer modulus. Define

the rounding function �·c : Zq → Zc as

�xc = �x̄ · c/q mod c

where x̄ ∈ Z is an arbitrary residue-class representative

of x ∈ Zq . We are going to use the following lemma

about the rounding function, implicitly proven in [31].

Lemma 2. Let q = c · p be an integer modulus. Let
x←$Zq be distributed uniformly at random. Then it
holds for all v ∈ {−B, . . . , B} that �x+ vc = �xc,
except with probability (2B + 1) · c/q over the random
choice of x.

Proof of Lemma 2: Note that there are exactly c
multiples of p = q/c in Zq . Thus, the probability that a

uniform x ∈ Zq lands B-close from the nearest multiple

of q/c is exactly (2B + 1) · c/q.

Another property of the rounding function is that

it partitions the domain Zq in c-many well defined

intervals of size exactly q/c = p. More concretely, the

i-th interval is [p · (i− 1), p · i− 1]. This fact is going

to be useful for our analysis.

Analysis. Our scheme is parametrized by the following

variables:
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Setup(1λ) :

• For all i ∈ {1, . . . , λ}: Sample A(i)←$Z
n×m
q .

• Return crs = (A(1), . . . ,A(λ)).

Hash(crs,D) :

• Parse crs as (A(1), . . . ,A(λ)) and D ∈ {0, 1}m as a column vector.

• For all i ∈ {1, . . . , λ}: Compute d(i) = A(i)D.

• Set d = (d(1), . . . ,d(λ)), D̃ = (D, d), and return (d, D̃).

KGen(crs, d, L) :

• Parse crs as (A(1), . . . ,A(λ)) and d as (d(1), . . . ,d(λ)).
• Sample s←$Z

n
q and parse it as a column vector.

• For all i ∈ {1, . . . , λ}:
– Parse (a

(i)
1 , . . . ,a

(i)
m ) as the columns of A(i).

– Sample (e
(i)
1 , . . . , e

(i)
m )←$χm.

– For all j ∈ {1, . . . ,m} \ {L}: Compute b
(i)
j = sTa

(i)
j + e

(i)
j .

– Set b(i) to be the row vector (b
(i)
1 , . . . , b

(i)
m−1).

– Sample (t
(i)
0 , t

(i)
1 )←$Z

2
q .

– Set k
(i)
0 =

⌊
sTd(i) + t

(i)
0

⌋
c

and k
(i)
1 =

⌊
−sTd(i) + sTa

(i)
L + e

(i)
L + t

(i)
1

⌋
c
.

• Set c = ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 )).

• Set k0 = k
(1)
0 ‖ . . . ‖k(λ)0 and k1 = k

(1)
1 ‖ . . . ‖k(λ)1 .

• Return (c, k0, k1).

ReceiveD̃(crs, c, L) :

• Parse c as ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 )) and D̄ = D \D[L] as a column vector.

• For all i ∈ {1, . . . , λ}: Compute k(i) =
⌊
(−1)D[L] · b(i)D̄ + t

(i)
D[L]

⌋
c
.

• Return k = k(1)‖ . . . ‖k(λ).
Figure 3: LWE-Based Weak LOT.

• m : The size of the database D ∈ {0, 1}m.

• n : The dimension of the LWE problem.

• q : The modulus of the LWE problem. For ease of

the analysis we are going to assume that q is of

the form c ·p, for some constant c and an arbitrary

integer p
• B : The bound on the absolute value of the noise,

i.e., e ∈ {−B, . . . , B}.
• c : A constant that parametrizes the function �·c,

which is used in our construction.

In the analysis we set constraints on the parameters on

demand. In the end of the section we are going to show

that such a set of constraints forms a satisfiable system

of relations and that the resulting LWEn,q,χ problem

is still in the regime of parameters for which it is

conjectured to be hard.

Note that setting m ≥ 2 · �log(q)� · n · λ makes the

first message 2-to-1 compressing. We now argue about

the (weak) correctness of our scheme.

Theorem 4 (Correctness). The construction LOT =
(Setup,Hash,KGen,Receive) as defined in Figure 3 is
(1/λ2)-correct.

Proof of Theorem 4: For all i ∈ {1, . . . , λ}, we

expand the product

b(i)D̄ =
∑
j �=L

D[j] · b(i)j

=
∑
j �=L

D[j] · (sTa(i)j + e
(i)
j )

=
∑
j �=L

D[j] · sTa(i)j +
∑
j �=L

D[j] · e(i)j

= sT

⎛
⎝∑

j �=L

D[j] · a(i)j

⎞
⎠+

∑
j �=L

D[j] · e(i)j

= sTd(i) −D[L] · sTa(i)L +
∑
j �=L

D[j] · e(i)j

by linearity. Applying the equality above for all i ∈
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{1, . . . , λ} we obtain

k(i) =
⌊
(−1)D[L] · b(i)D̄ + t

(i)
D[L]

⌋
c

=

⎢⎢⎢⎢⎢⎣
(−1)D[L] ·

(
sTd(i) −D[L] · sTa(i)L

)
+

(−1)D[L] ·∑j �=L D[j] · e(i)j + t
(i)
D[L]+

D[L] · e(i)L −D[L] · e(i)L

⎥⎥⎥⎥⎥⎦
c

=

⎢⎢⎢⎢⎣ (−1)D[L] · sTd(i) +D[L] · sTa(i)L +

(−1)D[L] ·∑m
j=1 D[j] · e(i)j + t

(i)
D[L]+

D[L] · e(i)L

⎥⎥⎥⎥⎦
c

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)D[L] · sTd(i)+

D[L]
(
sTa

(i)
L + e

(i)
L

)
+

(−1)D[L] ·
m∑
j=1

D[j] · e(i)j︸ ︷︷ ︸
=ẽ

+t
(i)
D[L]

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
c

Note that the absolute value of ẽ is bounded by m ·
B. Further note that t

(i)
D[L] is uniform in Zq . Thus, by

Lemma 2 we have that

k(i) =

⌊
(−1)D[L] · sTd(i)+

D[L]
(
sTa

(i)
L + e

(i)
L

)
+ ẽ+ t

(i)
D[L]

⌋
c

=

⌊
(−1)D[L] · sTd(i)+

D[L]
(
sTa

(i)
L + e

(i)
L

)
+ t

(i)
D[L]

⌋
c

= k
(i)
D[L]

except with probability

(2mB + 1) · c
q

.

Setting log(q) ≥ 3log(λ) + log(2mBc+ c) then we

have that the above equality holds for all i ∈ {1, . . . , λ}
except with probability at most 1/λ3. Taking a union

bound over the λ-many parallel repetitions gives us the

desired inequality.

We now argue that our construction satisfies weak

sender security.

Theorem 5 (Weak Sender Security). If the LWEn,q,χ

assumption holds, then the construction LOT =
(Setup,Hash,KGen,Receive) as defined in Figure 3 is
weakly sender secure.

Proof of Theorem 5: We show the claim with

a reduction against the LWEn,q,χ problem. Assume

towards contradiction that there exists a PPT adversary

A = (A1,A2) such that

Pr
[
ExpSendSec(LOT,A)(1

λ) = 1
]
=

1

poly(λ)
.

Then we construct a reduction (R) that solves LWEn,q,χ

as follows. The reduction is given a challenge (A,u)
where A ∈ Z

n×m·λ
q and u ∈ Z

m·λ
q and parses A

as the horizontal concatenation of λ-many Z
n×m
q ma-

trices (A(i), . . . ,A(λ)). The adversary A1 is invoked

on input crs = (A(i), . . . ,A(λ)) and returns a tuple

(d, L, st). For each i ∈ {1, . . . , λ}, the reduction sets

the vector b(i) to (u(i−1)m+1, . . . ,u(i−1)m+m) except

that it omits the element u(i−1)m+L. Then samples

(t
(i)
0 , t

(i)
1 )←$Z

2
q uniformly at random. The reduction

returns to the adversary A2 the ciphertext

c = ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 ))

along with the state st. The adversary outputs a pair

(k0, k1) that is parsed by the reduction as the concate-

nation of two λ-long vectors in Zc: k0 = k
(1)
0 ‖ . . . ‖k(λ)0

and k1 = k
(1)
1 ‖ . . . ‖k(λ)1 . For all i ∈ {1, . . . , λ}, define

R
(i)
0 as the interval of all elements y0 ∈ Zq such that

�y0c = k
(i)
0 and define R

(i)
1 analogously. Let R(i) be

the set of elements in z ∈ Zq such that there exists a

y0 ∈ R
(i)
0 and a y1 ∈ R

(i)
1 such that y0 + y1 = z. The

reduction checks whether u(i−1)m+L+t
(i)
0 +t

(i)
1 ∈ R(i)

and returns 1 if this is the case for all i ∈ {1, . . . , λ}.
Else it returns 0.

Note that all steps are efficiently computable: In par-

ticular, for all k
(i)
b ∈ Zc the corresponding interval R

(i)
b

consists of [p·k(i)b , p·(k(i)b +1)−1] and consequently also

R(i) is trivial to compute. We analyze the probability

that the reduction outputs 1 for two separate cases.

Uniform Samples: In this case it is enough to observe

that all elements (uL, . . . ,u(λ−1)m+L) are uniform

in Zq and completely independent from the view of

the adversary. Therefore, for all i ∈ {1, . . . , λ}, the

probability that u(i−1)m+L + t
(i)
0 + t

(i)
1 ∈ R(i) is at

most ∣∣R(i)
∣∣

q
=

∣∣∣R(i)
0

∣∣∣+ ∣∣∣R(i)
1

∣∣∣
q

=
2q

c
· 1
q
=

2

c
.

Setting c = 4 we obtain that the probability that the

reduction outputs 1 is at most 1/2λ.

LWE Samples: Note that in this case the input given

to the adversary are identically distributed as an honest

run of the protocol where the keys are (implicitly) set

to

k
(i)
0 =

⌊
sTd(i) + t

(i)
0

⌋
c

and

k
(i)
1 =

⌊
−sTd(i) + u(i−1)m+L + t

(i)
1

⌋
c
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where d(i) is part of the digest d given by the adversary.

Let guess be the event that the adversary correctly

guesses both k0 and k1. Then, by the law of total

probability we have

Pr [1← R] = Pr [1← R|guess] Pr [guess] +
Pr [1← R|¬guess] Pr [¬guess]

≥ Pr [1← R|guess] Pr [guess]
= Pr [1← R|guess] 1

poly(λ)

by initial hypothesis. Conditioned on the fact that the

adversary correctly guesses both k0 and k1, then for all

i ∈ {1, . . . , λ} we have that

sTd(i) + t
(i)
0 ∈ R

(i)
0

and

−sTd(i) + u(i−1)m+L + t
(i)
1 ∈ R

(i)
1

by definition, and consequently

sTd(i) + t
(i)
0 − sTd(i) + u(i−1)m+L + t

(i)
1 =

u(i−1)m+L + t
(i)
1 + t

(i)
0 ∈ R(i).

Thus the reduction outputs 1 with probability 1. It

follows that Pr[1← R] ≥ 1/poly(λ).
The two bounds above show that the probability

that the reduction outputs 1 differs by a non-negligible

amount depending on whether (A,u) is an LWE sample

or not. This contradicts the LWEn,q,χ assumption and

concludes our proof.

Parameters. The above analysis fixes the following set

of constraints:

• m ≥ 2 · �log(q)� · n · λ
• log(q) ≥ 3log(λ) + log(2mBc+ c)
• c = 4

Ignoring the constants, the constraint O(log(q)) ≥
O(log(λ)+ log(m)+ log(B)) introduces a gap polyno-

mial in λ in the modulo-to-noise ratio, since m is poly-

nomially bounded. Note that the circular dependency of

the first two constraints is always satisfied for a large

enough q. The parameter n is free and can be set to the

regime for which LWEn,q,χ is conjectured to be hard.

C. Upgrading Laconic Oblivious Transfer

We first upgrade the security and then the efficiency

of a LOT, through generic transformations.

From Weak Sender Security to Sender Indistin-
guishability. We show how to generically upgrade any

weak LOT into a LOT with sender indistinguishability.

The compiler, shown in Figure 4, heavily relies on the

tools introduced by Döttling et al. [16]: We first ensure

that the adversary is not able to produce some digest d
that allows him to predict k0 for some values of c and k1
for the others. This is done by amplifying the success

probability of the adversary up to the point where it

is no longer possible to be successful consistently on

two different choices for the receiver’s bit. Then we

turn the search problem into a decision one, using the

standard Goldreich-Levin hard-core predicate [19]. Here

the function GLEnc(k; t) is defined as
∑|k|

i=1 ki · ti,
computed over F2.

The following theorem establishes our claim. The

analysis is imported by the work of Döttling et al. [16]

and is given in the full version.

Theorem 6 (Weak to Full Sender Security). Let LOT =
(Setup,Hash,KGen,Receive) be a weak LOT. Then
LOT = (Setup,Hash,KGen,Receive) as defined in
Figure 4 is a standard LOT.

From Indistinguishability Security to Context Se-
curity. We now show that any LOT with indistin-

guishabilty security also suffices context security. To

establish this, we will use distinguisher-dependent sim-

ulation. Technically, the theorem uses the same ideas of

Theorem 6.3 in [16] and some paragraphs are verbatim

from [16].

Theorem 7 (Ind. to Context Security). Assume that
LOT = (Setup,Hash, Send,Receive) satisfies indis-
tinguishability security. Then it also satisfies context
security.

Proof of Theorem 7: We prove the theorem via

several lemmas. In order to do so, we will first provide

constructions of the relevant algorithms. Fix a PPT-

context Z = (Z1,Z2) for LOT. We start by defining

a hybrid sender algorithm as follows:

Si(crs, d, (x∗
1, . . . , x

∗
i ), L,m0,m1) :

• If L > i output Send(crs, d, L,m0,m1)
• Otherwise, set m′

x∗L
= mx∗L and m′

1−x∗L
= 0,

compute and output Send(crs, d, L,m′
0,m

′
1)

We introduce the following notation. For an efficiently

sampleable random variable T ∈ {0, 1} we use the

shorthand “Compute an approximation μ̃ of E[T ] with

error δ” to denote the following algorithm which com-

putes a sample average:

• Set N = �λ/δ2�
• For j ∈ {1, . . . , N} sample tj ←$T

• Output μ̃← 1
N

∑N
j=1 tj

We also define the following bit-extraction algorithm,

which extracts an approximation of the i-th bit of the

receiver’s input.
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Setup(1λ) : Return Setup(1λ).

Hash(crs,D) : Return Hash(crs,D).

Send(crs, d, L,m0,m1) :

• For all i ∈ {1, . . . , λ}: Sample (c(i), k
(i)
0 , k

(i)
1 )← KGen(crs, d, L).

• Set c̃ = (c(1), . . . , c(λ)), K0 = (k
(1)
0 , . . . , k

(λ)
0 ), and K1 = (k

(1)
1 , . . . , k

(λ)
1 ).

• Sample two random strings (t0, t1)←$ {0, 1}|K0|+|K1|.
• For all b ∈ {0, 1}: Compute Cb = GLEnc(Kb; tb)⊕mb.

• Return c = (c̃, C0, C1, t0, t1).

Receive
D̃
(crs, c, L) :

• Parse c as (c̃, C0, C1, t0, t1).

• For all i ∈ {1, . . . , λ}: Compute k(i) ← ReceiveD̃(crs, c(i), L).
• Set K = (k(1), . . . , k(λ)).
• Return GLEnc(K; tD[L])⊕ c̃.

Figure 4: From Weak to Full Sender Security.

Extracti(crs, st, d, r1, (x
∗
1, . . . , x

∗
j−1), ε

′) :

• Compute an approximation μ̃ of

E[ZSi−1(crs,d,(x
∗
1 ,...,x

∗
i−1),·,·,·)

2 (crs, st)] with

error ε′/4
• Compute an approximation μ̃0 of

E[ZSi(crs,d,(x
∗
1 ,...,x

∗
i−1,0),·,·,·)

2 (crs, st)] with error

ε′/4
• Compute an approximation μ̃1 of

E[ZSi(crs,d,(x
∗
1 ,...,x

∗
i−1,1),·,·,·)

2 (crs, st)] with error

ε′/4.

• Set δ̃i,0 ← |μ̃i,0 − μ̃i|
• Set δ̃i,1 ← |μ̃i,1 − μ̃i|
• If δ̃i,0 > ε′ and δ̃i,1 > ε′ abort and output ⊥.

• else if δ̃i,1 > 2ε′ output x∗
i ← 0

• Otherwise output x∗
i ← 1

We now define the context extractor ExtZ and the sim-

ulator Sim. The setup-simulator SimSetup is identical

to the Setup algorithm, thus we do not specify it.

ExtZ(crs, st, d, r∗, ε) :
• For j ∈ {1, . . . , i} : Compute x∗

j ←
Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε

′)
• Output x∗ ← (x∗

1, . . . , x
∗
n)

Sim(crs, d, x∗, z = (L,m)) :

• Set m′
x∗L

= m and m′
1−x∗L

= 0

• Compute and output Send(crs, d, L,m′
0,m

′
1)

Finally, we set choose ε′(ε) = ε/n. This choice of ε′

will become meaningful in a moment. Assume towards

contradiction that there exists an inverse polynomial ε
such that it holds for infinitely many λ that∣∣Pr[Z(1λ) = 1]− Pr[EZ(1λ, ε′) = 1]

∣∣ > ε,

where ε′ = ε/n. Consider the following sequence of

hybrid experiments.

Hybrid H0 : This experiment is real context Z(1λ).
For i ∈ {1, . . . , n} define the following hybrids.

Hybrid Hi :

• Choose random tapes r1, r2
• Compute crs← Setup(1λ)
• Compute (st, d, aux)← Z1(crs, r1)
• For j ∈ {1, . . . , i} : Compute x∗

j ←
Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε

′)
• Output b∗ ← ZOi(·,·,·)

2 (st, r2), where

the oracle Oi(L,m0,m1) returns

Si(crs, d, (x∗
1, . . . , x

∗
i ), L,m0,m1)

Notice that it holds that Hn is identically distributed

to EZ(1λ, ε′). Consequently, it holds by the averaging

principle that there must exist an index i∗ ∈ {1, . . . , b}
such that

|Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]| > ε/n.

We now construct an adversary against the in-

distinguishability security of LOT. The algorithm

Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′) computes ap-

proximations δ̃i∗,0 and δ̃i∗,1 of the advantages

δi∗,0 =∣∣∣∣∣∣
Pr
[
ZSi(crs,d,(x

∗
1 ,...,x

∗
i−1,0),·,·,·)

2 (crs, st) = 1
]
−

Pr
[
ZSi∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st) = 1
]
∣∣∣∣∣∣

δi∗,1 =∣∣∣∣∣∣
Pr
[
ZSi(crs,d,(x

∗
1 ,...,x

∗
i−1,1),·,·,·)

2 (crs, st) = 1
]
−

Pr
[
ZSi∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st) = 1
]
∣∣∣∣∣∣ .
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We first establish that the approximations δ̃i∗,0 and δ̃i∗,1
are close to δi∗,0 and δi∗,1 respectively, except with

negligible probability over the coins used to compute

the approximations. We establish this by a routine

application of the Hoeffding bound.

Lemma 3. Fix crs, st, d and (x∗
1, . . . , x

∗
i∗−1). Then it

holds that

|δ̃i∗,0 − δi∗,0| ≤ ε′

|δ̃i∗,1 − δi∗,1| ≤ ε′

except with probability 2−λ over the choice of rExtract,i∗ .

Proof of Lemma 3: The random variable μ̃i∗ is

the average of N = �λ/ε′2� samples of

Y = ZSi∗−1(crs,d,(x
∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st).

Analogously, for b ∈ {0, 1} the random variables μ̃i∗,b

is the average of N = �λ/ε′2� samples of

Yb = ZSi∗ (crs,d,(x
∗
1 ,...,x

∗
i∗−1,b),·,·,·)

2 (crs, st).

We can thus write

δi∗,b = |E[Yb]− E[Y ]|.
Consequently, it holds by the Hoeffding inequality (The-

orem 1) that

Pr[|μ̃i∗ − E[Y ]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ

and for b ∈ {0, 1}
Pr [|μ̃i∗,b − E[Yb]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ.

Given that

|μ̃i∗ − E[Y ]| ≤ ε′/2
|μ̃i∗,0 − E[Y0]| ≤ ε′/2
|μ̃i∗,1 − E[Y1]| ≤ ε′/2

and using that

δ̃i∗,0 = |μ̃i∗,0 − μ̃i∗ |
δ̃i∗,1 = |μ̃i∗,1 − μ̃i∗ |

we get that

|δ̃i∗,0 − δi∗,0| ≤ ε′

and

|δ̃i∗,1 − δi∗,1| ≤ ε′.

Consequently, it holds by a union-bound that

Pr
[
|δ̃i∗,0 − δi∗,0| > ε′ or |δ̃i∗,1 − δi∗,1| > ε′

]
≤ 6 · e−λ ≤ 2−λ

which concludes the proof.

Lemma 4. Assume that

|Pr [Hi∗ = 1]− Pr [Hi∗−1 = 1]| ≥ ε′

for an i∗ ∈ {1, . . . , n}. Then there exists a PPT ad-
versary B which breaks the indistinguishability sender
security of LOT.

Proof of Lemma 4: First note that

Hi∗−1 and Hi∗ are identical until x∗
i∗ ←

Extractj(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′) is computed

in Hi∗ . We therefore first rephrase Hi∗−1 and Hi∗ .

Towards this goal, define an alternate first stage Z ′
1 by

Z ′
1(crs, r1) :

• Compute (st, d)← Z ′
1(crs, r1)

• For j ∈ {1, . . . , i∗ − 1}:Compute x∗
j ←

Extractj(crs, st, d, (x
∗
1, . . . , x

∗
j−1), ε

′)
• Output (st, d, aux, (x∗

1, . . . , x
∗
i∗))

We can now rephrase Hi∗−1 and Hi∗ by cutting of the

common prefix.

Hybrid H′
i∗(crs, st, d, aux, (x

∗
1, . . . , x

∗
i∗−1)) :

• Compute (st, d, aux, (x∗
1, . . . , x

∗
i∗−1)) ←

Z ′
1(crs, r1)

• Compute b∗ ←
Z ′Si∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (st, r2)

Hybrid H′
i∗(crs, st, d, aux, (x

∗
1, . . . , x

∗
i∗−1)) :

• Compute (st, d, aux, (x∗
1, . . . , x

∗
i∗−1)) ←

Z ′
1(crs, r1)

• Compute x∗
i∗ ←

Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′)
• Compute b∗ ← Z ′Si∗ (crs,d,(x

∗
1 ,...,x

∗
i∗ ),·,·,·)

2 (st, r2)

Further, fix crs, st, d, (x∗
1, . . . , x

∗
i∗−1) and the random

tape r∗i∗ used for Extracti∗ and collect them in a variable

z. Note that the parameters in inp also determine x∗
i∗ .

We now define three events gap(inp), approx(inp) and

good(inp) which only depend on inp.

1) gap(inp) holds, if and only if

|Pr[H′
i∗(inp) = 1]− Pr[H′

i∗−1(inp) = 1]| > 4ε′,

where the random choices are over the random

coins r2 of Z2 and the random choices made by

the oracles Si∗−1 and Si∗ .

2) Let δ̃i∗,0 and δ̃i∗,1 be the approximated values

computed during the execution of Extracti∗(crs,
st, d, (x∗

1, . . . , x
∗
i∗−1), ε

′). approx(inp) holds, if

and only if

|δ̃i∗,0 − δi∗,0| ≤ ε′

|δ̃i∗,1 − δi∗,1| ≤ ε′
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3) good(inp) holds if and only if

δi∗,0 > ε′

δi∗,1 > ε′.

We first elaborate on the events in more detail. The

event gap(inp) characterizes that for the same choice

of inp, the hybrids Hi∗(inp) and Hi∗−1(inp) have

distance at least 4ε′. Notice that the extracted pre-

fix (x̄1, . . . , x̄i∗−1) is identical in both experiments

Hi∗(inp) and Hi∗−1(inp). Consequently, gap(inp) im-

mediately implies that none of the x∗
1, . . . , x

∗
i∗−1 was

set to ⊥, as this would imply that the two experiments

are identically distributed.

The event approx(inp) ensures that the approxima-

tions δ̃i∗,0 and δ̃i∗,1 are sufficiently close to the true

advantages. Finally, the event good(inp) ensures that inp
is such that we will be able to mount a successful attack

against indistinguishability sender security of LOT. Our

first goal will be to show that the event good(inp) holds

with reasonably high probability over the choice of inp.

Once this is established, we will construct an adversary

B against the indistinguishability sender security of

LOT. Observe that by Lemma 3 it holds that

Pr
inp

[¬approx(inp)] ≤ 2−λ. (1)

Since

|Pr
inp

[Hi∗(inp) = 1]− Pr
inp

[Hi∗−1(inp) = 1]| =
|Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]| ≥ 8 · ε′

it holds by the Markov inequality for advantages

(Lemma 1) that

Prinp[gap(inp)]

= Prinp

[∣∣∣∣ Pr[Hi∗(inp) = 1]−
Pr[Hi∗−1(inp) = 1]

∣∣∣∣ > 4ε′
]

≥ 4ε′.

(2)

We now show that if gap(inp) holds, then it

must either hold good(inp) or not approx(inp). We

will establish this by showing that ¬good(inp) and

approx(inp) imply ¬gap(inp). Thus, fix inp =
(crs, st, d, (x∗

1, . . . , x
∗
i∗−1), r

∗
i∗) with ¬good(inp) and

approx(inp). From ¬good(inp) it follows that there is a

β ∈ {0, 1} such that∣∣∣∣∣ Pr[Z
Si(crs,d,(x

∗
1 ,...,x

∗
i−1,β),·,·,·)

2 (crs, st) = 1]−
Pr[ZSi∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st) = 1]

∣∣∣∣∣
≤ ε′.

We are now going to show that under this condition

Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′) will be able to

identify the correct x∗
i∗ . Observe that since it holds that

approx(inp), we get that

δ̃i∗,β ≤ δi∗,β + ε′ ≤ 2ε′.

Consequently, Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′)
will not output ⊥. We distinguish two cases.

Case 1: In this case it holds that

δi∗,1−β ≤ 4ε′.

It follows immediately that

δi∗,x∗
i∗ ≤ 4ε′,

regardless which x∗
i∗ ∈ {0, 1} is chosen.

Case 2: In this case it holds that

δi∗,1−β > 4ε′.

Again since it holds that approx(inp), we get that

δ̃i∗,1−β ≥ δi∗,1−β − ε′ ≥ 3ε′ > 2ε′.

Consequently, Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′)
will set x̄i∗ ← β and again we can conclude

δi∗,x∗
i∗ ≤ 4ε′,

Furthermore, observe that, since

Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε

′) will not

output ⊥, the output of Hi∗(inp) is distributed

according to Z ′Si∗ (crs,d,(x
∗
1 ,...,x

∗
i∗ ),·,·,·)

2 (st, r2). We also

know that Hi∗−1(inp) is distributed according to

Z ′Si∗−1(crs,d,(x
∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (st, r2). This implies that

|Pr[Hi∗(inp) = 1]− Pr[Hi∗−1(inp) = 1]| =∣∣∣∣∣ Z
′Si∗ (crs,d,(x

∗
1 ,...,x

∗
i∗ ),·,·,·)

2 (st, r2)−
Z ′Si∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (st, r2)

∣∣∣∣∣
≤ 4ε′,

which in turn implies that ¬gap(inp). Thus, we have

established that

gap(inp)⇒ good(inp) or ¬approx(inp). (3)

From (2), (3) and (1) we obtain that

4ε′ ≤ Pr[gap(inp)]

≤ Pr[good(inp) or ¬approx(inp)]
≤ Pr[good(inp)] + Pr[¬approx(inp)]
≤ Pr[(good(inp)] + 2−λ,

where the third inequality follows by the union-bound.

This implies that

Pr
inp

[good(inp)] ≥ 4ε′ − 2−λ > ε′.
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We are now ready to construct an adversary B against

the indistinguishability sender privacy of LOT. The

adversary B = (B1,B2) is given as follows. In abuse of

notation, we assume that B is stateful, i.e. the second

stage B2 remembers all variables of the first stage B1. B
essentially simulates Hi∗−1, with the modification that

calls to Send(crs, d, i∗, ·, ·) of Si∗−1 will be forwarded

to B’s oracle.

B1(crs; r1) :
• Compute (st, d)← Z ′

1(crs, r1)
• For j ∈ {1, . . . , i∗ − 1}: Compute x∗

j ←
Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε

′)
• Output (d, i∗)

BO(·,·)
2 (st, r2) :

• Compute and output b∗ ← ZSi∗ (·,·,·)
2 , where the

oracle Si∗(L,m0,m1) is implemented as follows:

– If L > i∗ output Send(crs, d, L,m0,m1)
– If L < i∗, set m′

x∗L
= mx∗L and m′

1−x∗L
= 0

output Send(crs, d, L,m′
0,m

′
1)

– If L = i∗ query and output O(m0,m1)

Fix crs and r1. We distinguish 3 cases.

Case 1: The oracle O(m0,m1) computes the function

Send(crs, d, i∗,m0,m1). It follows by inspection that

in this case the output of B is distributed according to

ZSi∗−1(crs,d,(x
∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st).

Case 2: The oracle O(m0,m1) computes the function

Send(crs, d, i∗,m0, 0). It follows by inspection that in

this case the output of B is distributed according to

ZSi∗ (crs,d,(x
∗
1 ,...,x

∗
i−1,0),·,·,·)

2 (crs, st).

Case 3: The oracle O(m0,m1) computes the function

Send(crs, d, i∗,m0, 1). It follows by inspection that in

this case the output of B is distributed according to

ZSi∗ (crs,d,(x
∗
1 ,...,x

∗
i−1,1),·,·,·)

2 (crs, st).

We conclude that the advantage of the adversary (fixing

the bit b) is equal to∣∣∣∣∣ Pr[Z
Si∗ (crs,d,(x

∗
1 ,...,x

∗
i−1,b),·,·,·)

2 (crs, st) = 1]−
Pr[ZSi∗−1(crs,d,(x

∗
1 ,...,x

∗
i∗−1),·,·,·)

2 (crs, st) = 1]

∣∣∣∣∣ .
This implies that for both b ∈ {0, 1} the advantage of

the adversary is

Pr
crs,r,r∗

[good(crs, rA, rExtract)] > ε′,

which contradicts the indistinguishability sender privacy

of LOT.

Weak to Full Efficiency. The following construction

shows that it suffices to consider LOT schemes

Hardwired Values: (t,m0,m1).
Input: (N1

0 ‖N1
1 , . . . , N

d−1
0 ‖N1

d−1, N
d).

• Return mNd[t]

Figure 5: Circuit Cleaf [m0,m1].

Hardwired Values: (crs, b,K, r).
Input: (N0, N1).

• Compute e← Send(crs,Nb,K; r).
• Return e.

Figure 6: Circuit Ctrav[crs, b,K, r].

with 2-to-1 compressing Hash and algorithms Send
and Receive with polynomial running times in the

size of the database. A similar statement already

appeared in the work of Cho et al. [3], however their

analysis crucially relies on the semi-honest settings

and does not directly extend to malicious security.

In the following we recall a simplified version of

the transformation from [3]. We assume without loss

of generality that the database has 2d · λ locations,

which can be indexed with strings of the form

b1‖ . . . ‖bd−1‖t where the bits bi define the root-to-leaf

path and the string t define the position of the leaf.

For ease of exposition we overload the notation for

the sender algorithm and we write Send(crs, d,K) as

Send(crs, d, 1, (K1
0 ,K

1
1 ))‖ . . . ‖Send(crs, d, 2λ, (K2λ

0 ,
K2λ

1 )) where K is consists of 2λ pairs of λ-bit strings.

The same shortcut is used for the receiver algorithm.

The construction (given in Figure 7) consists of a

chaining of garbled circuits that allows the receiver

to traverse the tree downwards via the selected path.

Since the sender only knows the root of the tree, the

generation of subsequent Send algorithms is deferred

by garbling the circuit Ctrav (Figure 6). Once the leaf is

reached, the choice of the message can be constrained

on the desired bit via the circuit Cread (Figure 5).

The following theorem shows that considering a LOT

with 2-to-1 compression factor suffices.

Theorem 8 (Weak to Full Efficiency). Let LOT =
(Setup,Hash, Send,Receive) be a LOT with 2-to-1 com-
pression. Then LOT = (Setup,Hash, Send,Receive) as
defined in Figure 7 is LOT with arbitrary compression.

Proof of Theorem 8: We start with the high-level

overview. Our strategy is to associate every node in

the Merkle tree with two hybrids. In this sequence of

hybrids we start in the root node traverse the tree in

such a way that it is ensure that once we reach a node
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Setup(1λ) : Return Setup(1λ).

Hash(crs,D) :

• Build a Merkle tree D of D using the function Hash(crs, ·).
• Return (ρ,D), where ρ is the root of D

Send(crs, d, L,m0,m1) :

• Parse L as b1‖ . . . ‖bd−1‖t
• For j ∈ {d, . . . , 1}:

– Sample ri←$ {0, 1}λ
– If j = 1 : Compute e0 ← Send(crs, d,K1)
– If j = d : Compute (C̃d,Kd)← Garble(1λ, Cleaf [t,m0,m1])
– Otherwise, compute (C̃i,Ki)← Garble(1λ, Ctrav[crs, bi,Ki+1, ri])

• Return c = (e0, C̃1, . . . , C̃d).
Receive

D̃
(crs, c, L) :

• Parse c as (e0, C̃1, . . . , C̃d) and L as b1‖ . . . ‖bd−1‖t.
• Denote the end note of the path b1b2 . . . bi by Db1b2...bi .

• For all i ∈ {1, . . . , d− 1}, compute:

– M i ← Receive(crs, ei−1,Db1b2...bi−10‖Db1b2...bi−11).
– ei ← Eval(Ci,M i).

• Compute Md ← Receive(crs, ed−1,Db1b2...bd−10‖Db1b2...bd−11).

• Return m = Eval(C̃leaf , (M i, . . . ,Md)).

Figure 7: From 2-to-1 to Arbitrary Compression.

ν, its parent has already been traversed, e.g. via breadth-

first search or depth-first search from the root. This will

ensure that once we reach hybrid Hν , the LOT message

corresponding to the parent of ν has been extracted. In

each node ν, we will first switch the garbled circuit to

simulation, then extract the digest dν at this node.
There are 2d−1 nodes. Let the sequence of nodes, in

the order in which they are interated be ν1, . . . , ν2d−1.

For shorthand, let � = 2d − 1. For ease of notation we

omit random coins in the notation of Z1,Z2 and ExtZ .

We first provide the hybrids and derive the simulators

and the extractor from the last hybrid. Fix a context

Z = (Z1,Z2).

Hybrid H0(δ) : This is the real experiment. Specifically,

• crs← Setup(1λ)
• (st, d)← Z1(crs)

• Compute and output b∗ ← ZO(0)(·)
2 (st)

where the oracle O(0)(L,m0,m1) implements

Send(crs, d, L,m0,m1)

Hybrid H1(δ) : In this experiment we will extract dν1

as a LOT hash (i.e. 2-to-1). First we rephrase H0 as a

context (Z(1)
1 ,Z(1)

2 ) for LOT. We will set Z(1)
1 = Z1

but interpret d = dν1
as a hash value for LOT. More-

over, we interpret ZO(0)(·)
2 as a single machine Z(1)

2 ,

except for calls by O(0) to Send(crs, d, ·), which will be

implemented by oracle calls. Consequently, ZO(0)(·)
2 and

Z(1)
2

Send(crs,d,·)
compute identical functions. Context

security of LOT yields an an extractor Ext
(1)
Z and a

simulator Sim, which we will use in the construction of

H1. We can now define H1 as follows.

• crs← Setup(1λ)
• (st, d)← Z1(crs)
• Let ν1,l be the left child node of the root node ν1

and ν1,r be the right child node of the root node

ν1.

• (dν1,l
‖dν1,r , aux1)← Ext

(1)
Z (crs, st, dν1 , δ)

• Compute and output b∗ ← ZO(1)(·)
2 (st) where

O(1) is identical to O(0), except that we replace

calls to Send(crs, dν1 ,K) for any K by calls to

Sim(crs, d, auxroot,Kdν1,l
‖dν1,r

)

Define the following hybrids i ∈ {1, . . . , 2d − 1}.
Hybrid H2i(δ) : O(2i) is identical to O(2i−1), except

for the following changes. For a given index L let

ν′1, . . . , ν
′
d be the root-to-leaf path for L, where ν′1 is

the root node and ν′l a leaf node. If νi = ν′d (i.e. νi is

the leaf-node in the path for index L), we replace the

instruction (C̃d,Kd) ← Garble(1λ, Cleaf [t,m0,m1]) by

(C̃d,Kd)← GCSim(1λ,mD[t]).

Otherwise, at node νi = ν′j for some j we
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replace the instruction (C̃i,Kj) ← Garble(1λ,
Ctrav[crs, bj ,Kj+1, rj ]) by (C̃trav,Kj

νi,l‖νi,r
) ←

GCSim(1λ, Send(crs,Nbj ,K; r)).

Hybrid H2i+1(δ) : In this experiment we will extract

dνi
as a LOT hash (i.e. 2-to-1). First we rephrase H2i

as a context for LOT. That is, we define a context Z(i)
1

which outputs a state st′ comprising of a state st and

all LOT hash preimages extracted so far. It also outputs

the hash dνi at node νi.

Moreover, we interpret ZO(2i)(·)
2 as a single machine

Z(i)
2 , except for calls by O(2i) to Send(crs, dνi

, ·),
which will be implemented by oracle calls. Conse-

quently, ZO(2i)(·)
2 and Z(i)

2

Send(crs,dνi
,·)

compute iden-

tical functions. Context security of LOT yields an an

extractor Ext
(i)
Z and a simulator Sim, which we will use

in the construction of H2i+1. We can now define H2i+1

as follows.

• crs← Setup(1λ)
• (st, d)← Z1(crs)
• For j ∈ {0, . . . , i}:

– Let νj,l be the left child of node νj and νj,r
be the right child of node νj .

– (dνj,l
‖dνj,r , auxj) ←

Ext
(j)
Z (crs, (st, (dνk

, dνk,l
, dνk,r

, auxk)k≤j),
dνj

, δ)

• Compute and output b∗ ← ZO(2i+1)(·)
2 (st), where

O(2i+1) is identical to O(2i), except that we replace

calls to Send(crs, dνi ,K) for any K by calls to

Sim(crs, d, auxi,Kdνi,l
‖dνi,r

)

In the last hybrid H2�+1)(δ), the oracle O2�+1 does

not make any calls to Send, but only calls to Sim. We

can therefore now define the extractor ExtZ and the

simulator Sim.

ExtZ(crs, st, d, δ) :
• For j ∈ {0, . . . , �}:

– Let νj,l be the left child of node νj and νj,r
be the right child of node νj .

– (dνj,l
‖dνj,r , auxj) ←

Ext
(j)
Z (crs, (st, (dνk

, dνk,l
, dνk,r

, auxk)k≤j),
dνj

, δ)
– Set D = (D1, . . . , D2d)
– Set aux = (auxj)j
– Output (D, aux)

Sim(crs, d, aux, (L, z)) :

• Let ν′1, . . . , ν
′
d be the root-to-leaf path correspond-

ing to L
• Compute (C̃d,Kd

dν′
d

)← GCSim(1λ,mD[t])

• For j ∈ {d− 1, . . . , 1}:

– Let νj,l be the left child of node ν′j and νj,r
be the right child of node ν′j .

– Compute (C̃trav,Kj) ←
GCSim(1λ, Sim(crs, d, auxk,K

j+1
dνj,l

‖dνj,r
))

• Compute e← Sim(crs, d, auxk,K
1
dν0,l

‖dν0,r
)

As there are 2�+1 hybrid steps, we set δ = ε/(2�+1).
Now assume towards contradiction that there exists an

inverse polynomial ε such that it holds for infinitely

many 1λ that

|Pr[Z(crs) = 1]− Pr[EZ(crs, ε/(2�+ 1))]| > ε.

As H0(ε/(2� + 1)) is identical to Z(crs) and

H2�+1(ε/(2� + 1)) is identical to EZ(crs, ε/(2� +
1)), by the averaging principle there exists an k ∈
{1, . . . , 2�+ 1} such that

|Pr[Hk(ε/(2�+ 1)) = 1]− Pr[Hk−1(ε/(2�+ 1))]|
> ε/(2�+ 1).

We now show that this leads to a contradiction for every

k ∈ {1, . . . , 2�+ 1}.
Case k = 1 : In this case we show that this leads to

a contradiction against the context-security of LOT.

For hybrid H1 we constructed an LOT context Z1 =

(Z(1)
1 ),Z(1)

2 which produces an output that is identically

distributed to H0. H1 is constructed in a way such

that its output is identically distributed to that of EZ .

Consequently, it holds that

|Pr[Z(1)
1 = 1]− Pr[EZ(1)(ε/(2�+ 1))) = 1]| =

|Pr[H1(ε/(2�+ 1)) = 1]− Pr[H0(ε/(2�+ 1))]| >
ε/(2�+ 1),

which contradicts the context-security of LOT.

Case k = 2i : For this case we get a contradiction via a

routine application of simulation security of the garbling

scheme. In more detail, in hybrid H2i−1 there is only

one set of input labels at node νi which Z2 can obtain.

Consequently, we can apply security of the garbling

scheme in a hybrid fashion, i.e. once for each call to

the oracle and the contradiction follows.

Case k = 2i+ 1 : In this case we show that this leads

to a contradiction against the context-security of LOT.

We proceed as in the case k = 1. More specifically,

to define hybrid H2i+1 we have rephrased H2i as a

context Z(i) = (Z(i)
1 ,Z(i)

2 ) for LOT. By the way we

have constructedH2i+1 it holds that the output ofH2i+1

is identically distributed to EZ(i). Consequently, it holds
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that

|Pr[Z(i)
1 = 1]− Pr[EZ(i)(ε/(2�+ 1))) = 1]| =

|Pr[H2i(ε/(2�+ 1)) = 1]− Pr[H2i−1(ε/(2�+ 1))]| >
ε/(2�+ 1),

which contradicts the context-security of LOT. This

concludes the proof.

ACKNOWLEDGMENT

The second author is supported in part from

DARPA/ARL SAFEWARE Award W911NF15C0210,

AFOSR Award FA9550-15-1-0274, AFOSR Award

FA9550-19-1-0200, AFOSR YIP Award, NSF CNS

Award 1936826, DARPA and SPAWAR under contract

N66001-15-C-4065, a Hellman Award and research

grants by the Okawa Foundation, Visa Inc., and Center

for Long-Term Cybersecurity (CLTC, UC Berkeley).

The views expressed are those of the author and do

not reflect the official policy or position of the funding

agencies.

The third author is supported in part by a gift

from Ripple, a gift from DoS Networks, a grant from

Northrop Grumman, a Cylab seed funding award, and

a JP Morgan Faculty Fellowship.

Part of the work was done when the fourth author

was at Carnegie Mellon University.

REFERENCES

[1] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran,
and A. Sahai, “Efficient non-interactive secure computa-
tion,” in Advances in Cryptology – EUROCRYPT 2011,
ser. Lecture Notes in Computer Science, K. G. Paterson,
Ed., vol. 6632. Tallinn, Estonia: Springer, Heidelberg,
Germany, May 15–19, 2011, pp. 406–425.

[2] W. Quach, H. Wee, and D. Wichs, “Laconic function
evaluation and applications,” in 59th Annual Symposium
on Foundations of Computer Science, M. Thorup, Ed.
Paris, France: IEEE Computer Society Press, Oct. 7–9,
2018, pp. 859–870.
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