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Abstract—We consider the classic FACILITY LOCATION
problem on planar graphs (non-uniform, uncapacitated). Given
an edge-weighted planar graph G, a set of clients C ⊆ V (G),
a set of facilities F ⊆ V (G), and opening costs open : F →
R�0, the goal is to find a subset D of F that minimizes∑

c∈C minf∈D dist(c, f) +
∑

f∈D open(f).
The FACILITY LOCATION problem remains one of the most

classic and fundamental optimization problem for which it is
not known whether it admits a polynomial-time approximation
scheme (PTAS) on planar graphs despite significant effort
for obtaining one. We solve this open problem by giving an
algorithm that for any ε > 0, computes a solution of cost at
most (1 + ε) times the optimum in time n2O(ε−2 log(1/ε))

.

Keywords-facility location, polynomial-time approximation
scheme, planar metric

I. INTRODUCTION

We study the classic FACILITY LOCATION objective in

planar metrics. Given an edge-weighted planar graph G,

together with a set C of vertices called clients, a set F
of vertices called candidate facilities, and opening costs
open : F → R�0, the FACILITY LOCATION problem asks for

a subset D of F that minimizes
∑

c∈C minf∈D dist(c, f) +∑
f∈D open(f).
The FACILITY LOCATION objective is a model of choice

when trying to identify the best location for public infras-

tructures such as hospitals, water tanks or fire stations, or

when looking for the best location for warehouses or delivery

stores. More recent applications also include prepositionning

transportation resources such as bikes, scooters, or cabs. This

has made FACILITY LOCATION a fundamental problem that

attracted a lot of attention over the years, both in theoretical

computer science and in operations research communities.

Since the problem is NP-hard, but one is often satisfied

with a near-optimum solution, a large volume of work was

devoted to the design of approximation algorithms [1], [2],

[3], [4], culminating with the 1.488-approximation algorithm
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by Li [5]. Unfortunately, there is no chance of going much

beyond this result, as the problem is known to be NP-hard to

approximate within factor better than 1.46-approximation [6].

Therefore, a natural route is to consider restricted metrics

arising in applications. For example, when the underlying

metric of the application is a road networks, the shortest path

metric induced by edge-weighted planar graphs is model of

choice. Thus, it has been a long standing open question

whether FACILITY LOCATION admits a polynomial-time

approximation scheme on planar graphs. For the uniform case,

this was resolved only recently in the affirmative by Cohen-

Addad et al. [7] using a simple local search algorithm: given

a solution D, determine whether there exists a solution D′ of
better cost that differs from D by at most O(1/ε2) centers.

If so, take D′ as the new solution and repeat, otherwise

output D. However, no such approach is known to work in

the nonuniform case and, in fact, it is easy to show that the

same local search heuristic would provide a solution of cost

at least twice the optimum in the worst-case for planar inputs.

This has been a major roadblock since local search is the

only technique we know so far for obtaining approximation

schemes to min-sum clustering objectives such as the classic

k-median, k-means or for uniform facility location, despite

a significant effort from the community. In fact, and perhaps

surprisingly, such a situation is not unique. For the problem

of computing a maximum independent set of pseudo-disks,

local search yields a PTAS in the unweighted case and it

remains an important open problem as whether a PTAS exists

for the weighted case [8]. Thus, obtaining a PTAS for the

“weighted” version of some problems seems a much harder

task than for the unweighted case.

Our main result is a polynomial-time approximation

scheme for the (nonuniform, uncapacitated) FACILITY LO-

CATION problem in planar graphs. From a complexity

perspective, our result refutes APX-hardness of FACILITY

LOCATION on planar graphs (unless NP = P). From a

techniques perspective, we believe that our approach provides

a new set of interesting tools, such as for example a “metric-

Baker” layering tailored to min-sum objectives (and so of

a different nature than the “metric-Baker” used for k-center
in recent works [9], [10]). More formally, we show that
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following theorem.

Theorem 1. Given a FACILITY LOCATION instance
(G,C, F, open), where G is a planar graph, and an accuracy
parameter ε > 0, one can in n2O(ε−2 log(1/ε))

time compute
a solution of cost at most (1 + ε) times the optimum cost.

We now describe the structure of the proof and our

algorithm. To do so conveniently, let us first introduce some

terminology: we define for a set D ⊆ F , the connection cost
of D is as conn(D,C) =

∑
c∈C dist(c,D) and the opening

cost of D as
∑

f∈D open(f).
The first step of our algorithm is to compute an O(1)-

approximate solution to a modified input instance where every

opening cost is scaled down by a factor of ε. This solution

D̃ is computed through a greedy procedure and it is still an

O(ε−1)-approximation to the original instance. Interestingly,

this solution reveals a lot of structure of the input graph

metric, which will be crucial for the proof of Theorem 1.

Indeed, the proof of the theorem and our algorithm can be

broken into two pieces. The first one consists in a partitioning

of the instance into separate, more structured, and almost

independent sub-instances (based on the output of the greedy

procedure). The second one is a heavily technical dynamic

programming algorithm for solving these sub-instances.

To understand how the two pieces articulate, we need to

introduce a couple of definitions. Let f ∈ D̃ be an opened

facility and let cluster(f) be the set of clients connected to

f in the solution D̃ (i.e., cluster(f) consists of these clients

c ∈ C for which f is the closest facility from D̃). The

average cost of cluster(f) is defined as:

avgcost(f) =
open(f) +

∑
c∈cluster(f) dist(c, f)

|cluster(f)| .

At a high-level, the sub-instances will be defined by

dividing the metric space according to the clustering induced

by D̃: putting in the same instance the clusters of D̃ that

have roughly the same avgcost values. More concretely, a

deep analysis of the structure of the approximate solution D̃
and an intricate Baker-type layering step based on average

costs of the facilities of D̃ yields an instance such that (i)

all values of avgcost(f) for f ∈ D̃ are within constant ratio

from each other, and (ii) for every f ∈ D̃ and c ∈ cluster(f)
the distance dist(c, f) is within constant ratio of avgcost(f).
This is described in Section II.

The second part of the algorithm described in Section III,

consists mainly of our technical dynamic programming

algorithm for solving the instances produced in the first

part.

II. REDUCING TO THE CONSTANT SCOPE OF THE

AVERAGE COSTS

Setup: We shall work with an instance I =
(G,C, F, open) where G is a planar edge-weighted graph,

C ⊆ V (G) is a set of clients, F ⊆ V (G) is a set of

facilities, and open : F → R�0 defines the opening cost

of facilities. We shall assume that G is embedded in a sphere

and that distances between pairs of vertices of G are finite

and pairwise distinct.

For a set of clients S ⊆ C and solution R ⊆ F , by

conn(S,R) we denote the contribution of clients from S to

the connection cost of R and by open(R) the opening cost

of R. That is,

conn(S,R) =
∑
c∈S

min
f∈R

dist(c, f)

and

open(R) =
∑
f∈R

open(f).

We write conn(R) for conn(C,R). Thus, the cost of R is

defined as cost(R) = conn(R)+open(R). For the remainder

of this section, let us fix some optimum solution D in I , and
we denote OPT = cost(D).

We consider the accuracy parameter ε > 0; w.l.o.g. we

assume that ε < 1/10. Our goal is to compute a (1 + cε)-
approximate solution for some constant c, so that ε can be

scaled appropriately at the end.

Recall that the considered problem admits a constant-

factor approximation for the problem: as shown by Li [5],

given an instance of non-uniform facility location one can in

polynomial time find a solution of cost at most α times the

optimum, where α = 1.488. We apply this algorithm to the

input instance, obtaining a solution D′ ⊆ F , and we rescale

the distances and the opening costs by the same factor so

that

cost(D′) = ε−1 · (|F |+ |C| · |E(G)|).
Note that this means that the total contribution of edges

of length less than 1 and facilities of opening cost less

than 1 to any solution is bounded by |F |+ |C| · |E(G)| �
ε · cost(D′) � αε ·OPT. Thus, at the cost of paying at most

ε · cost(D′) � αε · OPT we may assume that all edges of

length less than 1 can be traversed for free, hence we may

simply contract them. Similarly, we zero the opening costs

of all facilities whose opening cost is less than 1. Therefore,
we assume that all edges in G have weight at least 1 and all

opening costs are either 0 or at least 1, while

OPT = Θ(ε−1 · (|F |+ |C| · |E(G)|)). (1)

Robust approximate solution: Let us consider the

modified instance

Ĩ = (G,C, F, ε · open);
that is, the instance is the same as I but all the opening

costs are scaled down by a multiplicative factor of ε. For a

solution R ⊆ F , we denote the cost of R in the instance Ĩ
by cost(R; Ĩ); note that cost(R; Ĩ) = conn(R)+ε ·open(R).
Note that for any R ⊆ F , we have ε·cost(R) � cost(R; Ĩ) �
cost(R).
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We apply the aforementioned α-approximation algorithm

of Li [5] to the instance Ĩ . Furthermore, we will need the

following property from the returned approximate solution D̃:

cost(D̃ ∪ {f}; Ĩ) � cost(D̃; Ĩ) for every f ∈ F ; (2)

This is trivially true for any f ∈ D̃ and to ensure that this

holds for every f , we make use of the following greedy

process. As long as there exists a facility f ∈ F \ D̃ that

violates the condition above, we add it to D̃.

Finally, at the end of this greedy process we remove from

D̃ all facilities that do not serve any client, that is, we

remove all facilities f ∈ D̃ such that for every c ∈ C we

have dist(c, D̃) < dist(c, f). Note that this step does not

increase the cost of D̃ and does not break property (2). We

now start analysing the structure of D̃.

We start by verifying that D̃ is actually an O(ε−1)-
approximate solution in the original instance.

Lemma 2. We have cost(D̃) � αε−1 · OPT.

Proof: Recalling that D is an optimum solution in I ,
we have that

cost(D; Ĩ) � cost(D) = OPT.

On the other hand, D̃ is an α-approximate solution in Ĩ ,
hence

cost(D̃; Ĩ) � α · cost(D; Ĩ)

Finally, as observed before we have

ε · cost(D̃) � cost(D̃; Ĩ).

Combining the above three inequalities yields the claim.

Let R ⊆ F be a nonempty set of facilities. For a facility

f ∈ R, the R-cluster of f , denoted cluster(f,R), is the set

of all clients that are served by f in the solution R; that is:

cluster(f,R) = {c ∈ C : dist(c, f) = min
g∈R

dist(c, g)}.

Note that since distances between pairs of vertices in G are

pairwise different, the R-clusters are pairwise disjoint. In the

sequel we will most often work with D̃-clusters, hence we

use shorthands: a cluster means a D̃-cluster and for f ∈ D̃
we denote cluster(f) = cluster(f, D̃).

The next lemma intuitively says the following: for any

subset of clients, its connection cost in D̃ is not much larger

than its connection cost D.

Lemma 3. For any subset of clients S ⊆ C we have

conn(S, D̃) � conn(S,D) + ε · open(D).

Proof: For any f ∈ D, let

σ(f) = conn(cluster(f,D) ∩ S,D) + ε · open(f).
Observe that the right hand side of the inequality is equal to∑

f∈D σ(f).

Consider modifying the solution D̃ by opening facility f ,
for any f ∈ D, and applying (2). If in solution D̃ ∪ {f} we

consider directing all clients of cluster(f,D) ∩ S to f and

all other clients as in D̃, then

0 � cost(D̃ ∪ {f}; Ĩ)− cost(D̃; Ĩ)

� conn(cluster(f,D) ∩ S,D)

−conn(cluster(f,D) ∩ S, D̃) + ε · open(f)
= σ(f)− conn(cluster(f,D) ∩ S, D̃).

By summing the above inequality through all f ∈ D, we

infer that

0 �
∑
f∈D

σ(f)−
∑
f∈D

conn(cluster(f,D) ∩ S, D̃)

= (conn(S,D) + ε · open(D))− conn(S, D̃).

This establishes the claim.

For any f ∈ D̃, we define the average cost of f as

avgcost(f) =
open(f) +

∑
c∈cluster(f) dist(c, f)

|cluster(f)| .

Note that in this definition we use the original opening

costs of facilities, not the scaled-down ones. Recall here that

cluster(f) is nonempty for each f ∈ D̃ as we removed from

D̃ all facilites that do not serve any clients. Moreover, we

have

cost(D̃) =
∑
f∈ ˜D

|cluster(f)| · avgcost(f). (3)

Next, we prove that for every cluster cluster(f) for any

f ∈ D̃, there is always a facility of the optimum solution D
that is not far from f , measured in terms of avgcost(f). We

first state the lemma in a very abstract form so that we can

apply it later in various settings.

Lemma 4. Let I = (G,C, F, open) be a NON-UNIFORM

FACILITY LOCATION instance, R ⊆ F a nonempty set of
facilities, K ⊆ C a nonempty set of clients, and let f /∈ R
be a facility. Assume that

dist(f,R) >
2

|K| ·
(
open(f) +

∑
c∈K

dist(c, f)

)
.

Then cost(R; I) > cost(R ∪ {f}; I).
Proof: Let

a :=
open(f) +

∑
c∈K dist(c, f)

|K| .

Observe that every client c ∈ cluster(f) has to be served

in solution R by a facility that is at distance more than 2a
from f , implying by triangle inequality that

min
g∈R

dist(c, g) > 2a− dist(c, f).
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Take solution R∪{f}. By considering directing all the clients

of K to f , and all other clients as in R, we observe that

cost(R ∪ {f})− cost(R)

�
∑
c∈K

dist(c, f)−
∑
c∈K

min
g∈R

dist(c, g) + open(f)

<

(
2
∑
c∈K

dist(c, f) + open(f)

)
− 2|K| · a

� 2|K| · a− 2|K| · a = 0.

This implies that cost(R ∪ {f}) < cost(R) as desired.

Corollary 5. For every f ∈ D̃ there exists g ∈ D such that
dist(f, g) � 2 · avgcost(f).

Proof: The claim is obvious for f ∈ D. Otherwise, we

apply Lemma 4 to the instance I , optimum solution D, the

facility f , and K = cluster(f). The optimality of D implies

then that dist(f,D) � 2 · avgcost(f).
Concentrating the clusters: We now analyze every

cluster cluster(f) for f ∈ D̃ and show that, at the cost

of changing the value of OPT only slightly, we may assume

that all clients of cluster(f) have connection cost w.r.t. D̃ not

differing much from avgcost(f). More precisely, we would

like to get rid of clients that are far and close according to

the following definition: for f ∈ D̃, let

Far(f) = {c ∈ cluster(f) : dist(c, f) > ε−2 · avgcost(f)},
Close(f) = {c ∈ cluster(f) : dist(c, f) < ε2 · avgcost(f)}.
Moreover, we define

Far =
⋃
f∈ ˜D

Far(f) and Close =
⋃
f∈ ˜D

Close(f).

Let

Ψ = conn(Far, D̃).

For each f ∈ D̃ let us pick any vertex x(f) of G that

is at distance exactly ε2 · avgcost(f) from f (subdividing

some edge, if a priori there is none). Construct C ′ from
C by performing the following operation for each f ∈ D̃:

move all clients of Far(f) ∪ Close(f) to x(f), thus placing

|Far(f)| + |Close(f)| clients at x(f). Similarly, for f ∈ D̃
we define cluster′(f) to be the image of cluster(f) under this
operation, i.e. with clients from Far(f) ∪ Close(f) replaced

as above.

Let

I ′ = (G,C ′, F, open);

that is, I ′ is constructed from I by replacing the client set

with C ′. Let OPT′ be the minimum cost of a solution in the

instance I ′. We now verify that in order to find near-optimum

solution to I , it suffices to find a near-optimum solution to

I ′.

Lemma 6. We have

OPT′ � (1 + 6αε)OPT−Ψ

Moreover, for every R ⊆ F , we have

cost(R; I) � cost(R; I ′) + Ψ + 3αε · OPT.
Proof: For the first inequality, note that we have

conn(C ′, D)

= conn(C,D)

+
∑
f∈ ˜D

∑
c∈Far(f)

(dist(x(f), D)− dist(c,D))

+
∑
f∈ ˜D

∑
c∈Close(f)

(dist(x(f), D)− dist(c,D))

� conn(C,D)

+
∑
f∈ ˜D

∑
c∈Far(f)

(dist(x(f), D)− dist(c,D))

+
∑
f∈ ˜D

∑
c∈Close(f)

dist(c, x(f)). (4)

Let us analyze the last summand first. Observe that for each

f ∈ D̃ and c ∈ Close(f), we have

dist(c, x(f)) � dist(c, f)+dist(f, x(f)) � 2ε2·avgcost(f).
Thus, using (3) we have∑

f∈ ˜D

∑
c∈Close(f)

dist(c, x(f))

�
∑
f∈ ˜D

|Close(f)| · 2ε2 · avgcost(f)

� 2ε2 ·
∑
f∈ ˜D

|cluster(f)| · avgcost(f)

= 2ε2 · cost(D̃) � 2αε · OPT. (5)

We are left with analyzing the middle summand of the right

hand side of (4). Observe that we have∑
f∈ ˜D

∑
c∈Far(f)

dist(c,D) = conn(Far, D).

By Lemma 3 applied to S = Far, we infer that

Ψ = conn(Far, D̃) � conn(Far, D) + ε · OPT,
and thus we have∑

f∈ ˜D

∑
c∈Far(f)

dist(c,D) � Ψ− ε · OPT. (6)

For every f ∈ D̃, let g(f) be the facility of D that is closest

to f . By Corollary 5 we have that

dist(f, g(f)) � 2 · avgcost(f).
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Now, for every c ∈ Far(f) we have

3 · dist(c, f) � 3ε−2 · avgcost(f)
� ε−2 · dist(f, g(f)) + ε−4 · dist(f, x(f))
� ε−2 · dist(x(f), g(f))
� ε−2 · dist(x(f), D),

where in the second step we used dist(f, x(f)) = ε2 ·
avgcost(f). Summing this inequality through all f ∈ D̃
and c ∈ Far(f) we obtain that

conn(Far, D̃) =
∑
f∈ ˜D

∑
c∈Far(f)

dist(c, f)

� ε−2

3

∑
f∈ ˜D

∑
c∈Far(f)

dist(x(f), D),

which means that ∑
f∈ ˜D

∑
c∈Far(f)

dist(x(f), D)

� 3ε2 · conn(Far, D̃)

� 3ε2 · cost(D̃) � 3αε · OPT. (7)

By combining (4), (5), (6), and (7) we infer that

OPT′ � cost(D; I ′)
= open(D) + conn(C ′, D)

� open(D) + conn(C,D)

+2αε · OPT−Ψ+ ε · OPT+ 3αε · OPT
� cost(D; I) + 6αε · OPT−Ψ

= (1 + 6αε)OPT−Ψ.

This establishes the first inequality.

For the second inequality, again by triangle inequality we

have

conn(C,R) � conn(C ′, R) +
∑
f∈ ˜D

∑
c∈Far(f)

dist(c, x(f))

+
∑
f∈ ˜D

∑
c∈Close(f)

dist(c, x(f)).

The last summand has already been estimated in (5), so we

are left with analyzing the middle summand. Observe that

for each f ∈ D̃ and c ∈ Far(f), we have

dist(c, x(f)) � dist(c, f) + dist(f, x(f))

� (1 + ε4) · dist(c, f),

where the last inequality follows from dist(c, f) � ε−2 ·
avgcost(f) and dist(f, x(f)) = ε2 · avgcost(f). Thus, we

have ∑
f∈ ˜D

∑
c∈Far(f)

dist(c, x(f))

� (1 + ε4) ·
∑
f∈ ˜D

∑
c∈Far(f)

dist(c, f)

= (1 + ε4) · conn(Far, D̃)

= Ψ + ε4 · conn(Far, D̃)

� Ψ+ ε4 · cost(D̃)

� Ψ+ αε3 · OPT. (8)

By combining (8), (5), and (8) we obtain that

cost(R; I) = open(R) + conn(C,R)

� open(R) + conn(C ′, R)

+Ψ + 3αε · OPT
= cost(R; I ′) + Ψ + 3αε · OPT.

This concludes the proof.

Corollary 7. For any R ⊆ F , if

cost(R; I ′) � (1 + γ)OPT′ + δ,

for some γ, δ � 0, then

cost(R; I) � (1 + 2γ + 8αε)OPT+ δ.

Proof: First, note that

OPT′ � (1 + 5αε)OPT−Ψ � 2 · OPT.
Then we have

cost(R; I) � cost(R; I ′) + Ψ + 3αε · OPT
� (1 + γ)OPT′ + δ +Ψ+ 3αε · OPT
� OPT′ + 2γOPT+ δ +Ψ+ 3αε · OPT
� (1 + 5αε)OPT−Ψ+ 2γOPT+ δ

+Ψ+ 3αε · OPT
= (1 + 2γ + 8αε)OPT+ δ,

as claimed.

Thus, by Corollary 7 we may focus on finding a near-

optimum solution to instance I ′ instead of I . The instance

I ′, however, has the following concentration property that

will be useful later on: for every f ∈ D̃ and c ∈ cluster′(f),
we have

ε2 · avgcost(f) � dist(c, f) � ε−2 · avgcost(f).
Finally, we check that solution D̃ is still not too expensive

in the instance I ′.

Lemma 8. For every f ∈ D̃ it holds that

open(f) +
∑

c∈cluster′(f) dist(c, f)

� (1 + ε2) · |cluster(f)| · avgcost(f). (9)
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In total, we have

open(D̃)+
∑
f∈ ˜D

∑
c∈cluster′(f)

dist(c, f) � 2αε−1 ·OPT. (10)

Proof: Recall that

|cluster(f)| · avgcost(f) = open(f) +
∑

c∈cluster(f)
dist(c, f).

Thus, to show (9), it suffices to prove that∑
c∈Far(f)∪Close(f)

(dist(x(f), f)− dist(c, f)))

� ε2|cluster(f)| · avgcost(f).
For each c ∈ Far(f), we have dist(x(f), f) = ε2 ·avgcost(f)
and dist(c, f) � ε−2 · avgcost(f), hence dist(x(f), f) −
dist(c, f) � 0. On the other hand dist(x(f), f) =
ε2 · avgcost(f), hence for each c ∈ Close(f) we have

dist(x(f), f)−dist(c, f) � ε2 · avgcost(f). This proves (9).

By summing (9) over all f ∈ D̃ we obtain that

open(D̃) +
∑
f∈ ˜D

∑
c∈cluster′(f)

dist(c, f)

� (1 + ε2) · cost(D̃)

� 2αε−1 · OPT,
as claimed.

Note that in Lemma 8, the left hand side of (10) is lower

bounded by cost(D̃, I ′), but is not necessarily equal to it,

as the clients of each cluster cluster′(f) are assigned to f ,
which may cease to be the closest facility after moving a

client.

Layering on magnitudes of the average cost: We now

work with the instance I ′. The goal is to use the obtained

properties of clusters to break the instance into several

independent ones at the cost of additionally paying εOPT, so

that each of the instances concerns only clients from clusters

with average cost of the same magnitude. This is because

such instances can be solved efficiently using the following

crucial lemma, whose proof will be given later.

Lemma 9. Suppose we are given an instance J =
(G,C, F, open) of NON-UNIFORM FACILITY LOCATION

where G is planar. Moreover, we are provided a real r > 1
and a set of facilities D◦ ⊆ F such that the clients of C can
be partitioned into nonempty clusters (cluster(f))f∈D◦ so
that the following properties hold for each f ∈ D◦:
• 1 � dist(c, f) � r for each c ∈ cluster(f); and
• open(f) +

∑
c∈cluster(f) dist(c, f) � |cluster(f)| · r.

Then, given ε > 0, one can in time nO(ε−2r) compute a
solution to J with cost at most (1 + ε)OPT(J) + ε · M ,
where M = open(D◦) +

∑
f∈D◦

∑
c∈cluster(f) dist(c, f).

Breaking into separate instances that can be treated using

Lemma 9 will be done using layering on the levels of

magnitude of average costs of facilities from D̃. While

the layering itself will be quite standard, the proof of the

separation property between the instances will be quite non-

trivial and will require the fine understanding of properties

of D̃ that we have developed.

Let us partition the facilities of D̃ into layers (Li)i∈Z,
where Li comprises facilities f ∈ D̃ satisfying

ε4i � avgcost(f) > ε4i+4.

For i ∈ Z, let

�i =
∑
f∈Li

⎛⎝open(f) +
∑

c∈cluster′(f)
dist(c, f)

⎞⎠ .

By Lemma 8, we have∑
i∈Z

�i � 2αε−1 · OPT. (11)

Let q = �ε−2�. Pick a ∈ {0, 1, . . . , q − 1} such that∑
i : i≡a mod q �i is minimum. Then by (8) and the fact that

q � ε−2 we infer that∑
i : i≡a mod q

�i � ε2 · cost(D̃; I ′) � 2αε · OPT. (12)

Now, define

S =
⋃

i : i≡a mod q

Li

and

Wj =
⋃

jq+a<i<(j+1)q+a

Li for j ∈ Z.

Set Wj will be called the j-ring. It follows that S and

(Wj)j∈Z form a partition of D̃.

Intuitively, the idea is to construct a near optimum solution

by buying all the facilities of S and using them to serve all

clients served by them in D̃ (the cost of this is bounded

by 2αε · OPT by (12)), and constructing an instance for

each nonempty ring Wj that is subsequently approximated

using Lemma 9. However, we need to prepare those instances

carefully so that they can be solved separately.

To this end, we heavily rely on Lemma 4 that more or less

says that one needs to open a facility within 2 · avgcost(f)
of f for every f ∈ D̃. This, together with the exponential

scale of average costs, implies that while focusing on the

ring Wj we do not need to understand how the solution to

rings Wj′ for j
′ > j looks like (namely, what are the precise

locations of the facilities); instead, we just put one zero-cost

facility at every f ∈ Wj′ that mimicks the closest opened

facility, this will be satisfying up to losing a factor (1 + ε).
Let us now proceed with formal details. Denote

CS =
⋃
f∈S

cluster′(f).

For every j ∈ Z we create the following instance Jj =
(G,Cj , Fj , openj):
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• The graph G is the graph from the original instance;

• Cj =
⋃

f∈Wj
cluster′(f), that is, all clients in clusters

of facilities from the ring Wj ;

• Fj = F are all facilities from the input;

• openj(f) = 0 for every f ∈Wj′ with j′ > j and every

f ∈ S, and openj(f) = open(f) otherwise.

Note that the sets (Cj)j∈Z are pairwise disjoint and together

with CS form a partition C. For every j ∈ Z let Dfree
j = S∪⋃

j′>j Wj′ be the set of facilities f with openj(f) redefined

to 0 in the definition of Jj .

Observe also that if Wj = ∅, then Cj = ∅: the instance

is trivial and it admits the empty set as the optimum

solution. The algorithm does not really need to construct these

instances (and thus in fact constructs at most n instances

Jj), but we prefer to define them for the sake of clarity

of notation. We henceforth call the instances Jj trivial if

Wj = ∅ and nontrivial otherwise.

We now verify that it suffices to solve each instance Jj
separately. This is done through two lemmas. In the first one,

we show how to combine solutions to the instances Jj into

a solution to the instance I ′.

Lemma 10. Assume we are given sets Dj ⊆ Fj for every
nontrival instance Jj . Then one can construct in polynomial
time a set R ⊆ F such that

cost(R; I ′) �
∑
j

cost(Dj ; Jj) + 10αε · OPT. (13)

Proof: For every nontrivial instance Jj and for every

f ∈ Fj \Dj we check whether opening f would not increase

the cost of Dj in Jj ; if this is the case, we add f to Dj . We

also add Dfree
j to Dj as it does not increase the cost of Dj .

Henceforth we assume that for every nontrivial instance Jj
and every f ∈ Fj \Dj it holds that

cost(Dj ∪ {f}; Jj) � cost(Dj ; Jj). (14)

We define Dj = Dfree
j for every trivial instance Jj . Note

that property (14) also holds for the trivial instances. Let

D′j = Dj \ Dfree
j for every j ∈ Z; note that D′j = ∅ for

trivial Jj . Let

R := S ∪
⋃
j∈Z

D′j .

We claim that R satisfies the requirements of the lemma;

it is clearly computable in polynomial time as D′j = ∅ for

trivial Jj . Note that Dj \D′j = Dfree
j for every j ∈ Z.

For a facility f ∈ Dj , let cluster(f,Dj ; Jj) ⊆ Cj be the

set of clients served by f in the solution Dj to Jj ; that is,
cluster(f,Dj ; Jj) is the set of these c ∈ Cj for which f
is the closest facility from Dj . Consider redirecting, in the

solution R to the instance I ′, all clients from cluster′(f) to

f , for every f ∈ S ⊆ R. Then we have:

cost(R; I ′) �

⎛⎝open(S) +
∑
f∈S

∑
c∈cluster′(f)

dist(c, f)

⎞⎠
+

(
open

⎛⎝⋃
j∈Z

D′j

⎞⎠
+
∑
j∈Z

∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c, R)

)

+

⎛⎝∑
j∈Z

∑
f∈Dfree

j

∑
c∈cluster(f,Dj ;Jj)

dist(c, R)

⎞⎠ .

We bound the three summands in the inequality above

separatedly. By (12), the first summand is bounded by

2αεOPT. Since D′j ⊆ R ∩Dj for every j ∈ Z, we have for

the second summand:

open

⎛⎝⋃
j∈Z

D′j

⎞⎠+
∑
j∈Z

∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c, R)

�
∑
j∈Z

⎛⎝open(Dj) +
∑
f∈D′j

∑
c∈cluster(f,Dj ;Jj)

dist(c, f)

⎞⎠
=

∑
j∈Z

(
open(Dj)

+ conn

⎛⎝ ⋃
f∈D′j

cluster(f,Dj ; Jj), Dj ; Jj

⎞⎠)
.

We now estimate the third summand. Consider a nontrivial

instance Jj and a facility f ∈Wj . Recall that cluster′(f) ⊆
Cj . By applying Lemma 4 to the instance Jj , solution Dj ,

facility f , and set K = cluster′(f) we infer that (14) ensures

that there exists g ∈ Dj with

dist(f, g) � 2 · open(f) +
∑

c∈cluster′(f) dist(c, f)

|cluster′(f)| .

Plugging now the bound of Lemma 8, we obtain

dist(f,Dj) � 2(1 + ε2) · avgcost(f)
� 4 · avgcost(f)
� 4ε4(jq+a+1). (15)

We now observe the following.

Claim 1. For every facility f ∈ Dj , we have

dist(f,R) � 4
∞∑

j′=j+1

ε4(j
′q+a+1).

PROOF. Since all but a finite number of Dj-s are empty, we

can proceed by induction on j, assuming the claim holds for
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all j′ > j. Take any f ∈ Dj . If f ∈ R then dist(f,R) = 0
and we are done. Otherwise, f ∈ Dj \ R ⊆

⋃
j′>j Dj′ , so

f ∈ Dj′ for some j′ > j. By (15), there exists g ∈ Dj′ such

that

dist(f, g) � 4ε4(j
′q+a+1).

By induction assumption for g, we have

dist(g,R) � 4
∞∑

j′′=j′+1

ε4(j
′′q+a+1).

Hence, we have

dist(f,R) � dist(f, g) + dist(g,R)

� 4ε4(j
′q+a+1) + 4

∞∑
j′′=j′+1

ε4(j
′′q+a+1)

� 4
∞∑

j′=j+1

ε4(j
′q+a+1),

as required. �

By Claim 1, for every f ∈ Dfree
j and c ∈ cluster(f,Dj ; Jj)

with c ∈ cluster′(fc) for some fc ∈ Wj we have the

following:

dist(c, R) � dist(c, f) + dist(f,R)

� dist(c, f) +

∞∑
j′=j+1

4ε4(j
′q+a+1)

� dist(c, f) + ε4((j+1)q+a+1) · 4

1− ε4q

� dist(c, f) + 8ε4 · avgcost(fc).

By summing the above bound through all j ∈ Z and f ∈
Dfree

j we obtain

∑
j∈Z

∑
f∈Dfree

j

∑
c∈cluster(f,Dj ;Jj)

dist(c, R)

�
∑
j∈Z

conn

⎛⎝ ⋃
f∈Dfree

j

cluster(f,Dj ; Jj), Dj ; Jj

⎞⎠
+8ε4 · cost(D̃).

Since cost(D̃) � αε−1 ·OPT, we can combine the obtained

bounds as follows:

cost(R; I ′)
� 2αεOPT

+
∑
j∈Z

(
open(Dj)

+conn

⎛⎝ ⋃
f∈D′j

cluster(f,Dj ; Jj), Dj ; Jj

⎞⎠)

+
∑
j∈Z

conn

⎛⎝ ⋃
f∈Dfree

j

cluster(f,Dj ; Jj), Dj ; Jj

⎞⎠
+8αε3OPT

=
∑
j

cost(Dj ; Jj) + 2αεOPT+ 8αε3OPT

�
∑
j

cost(Dj ; Jj) + 10αεOPT.

This concludes the proof.

The second lemma shows that optima in instances Jj
almost partition the optimum in I .

Lemma 11. For j ∈ Z, let OPTj be the cost of the optimum
solution of Jj . Then∑

j∈Z
OPTj � (1 + 9αε) · OPT.

Proof: Let D′ be an optimum solution to I ′. For every

f ∈ D′ let j(f) be the maximum value of j such that there

exists g ∈ Wj with dist(f, g) � 3ε−2 · avgcost(g). If no

such j exists, we set j(f) to be the minimum value of j for

which Jj is nontrivial. For every j ∈ Z we define

D′j = {f ∈ D′ | j(f) = j} and Dj = D′j ∪Dfree
j ;

note that D′j = ∅ for trivial Jj . Our goal is to estimate∑
j∈Z cost(Dj ; Jj) by cost(D′, I ′) plus some terms of the

order of ε · OPT. First, it is immediate from the definition

that open(D′) =
∑

j∈Z openj(Dj). Clearly, for trivial Jj we

have Dj = Dfree
j and cost(Dj ; Jj) = 0. Let Jj be nontrivial.

Consider a client c ∈ Cj ; by the definition of Jj , there exists

f0 ∈Wj with c ∈ cluster′(f0).
Let f ∈ D′ be the facility that serves c in the solution D′,

that is, dist(c, f) = dist(c,D′). We consider cases depending

on the relation of j(f) and j.

Case 1: j(f) > j. By the definition of j(f), there exists

g ∈ Wf(j) ⊆ Dfree
j with dist(f, g) � 3ε−2 · avgcost(g) �

3ε2 · avgcost(f0). Therefore
dist(c,Dj) � dist(c, g)

� dist(c, f) + 3ε2 · avgcost(f0)
= dist(c,D′) + 3ε2 · avgcost(f0).
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Case 2: j(f) = j. Here f ∈ Dj and thus

dist(c,Dj) � dist(c, f) = dist(c,D′).

Case 3: j(f) < j. Supposing that f0 /∈ D′, Lemma 4

applied to the (optimal) solution D′ in I ′ with facility f0
and K = cluster′(f0) yields that there exists g0 ∈ D′ with

dist(f0, g0) � 2 · open(f0) +
∑

c∈cluster′(f0) dist(c, f0)

|cluster′(f0)|
� 2(1 + ε2) · avgcost(f0) � 4 · avgcost(f0).

Here, the penultimate inequality follows from Lemma 8. If

f0 ∈ D′, then we can take g0 = f0 and the above inequality

also holds.

By the definition of j(f) we have that dist(f, f0) >
3ε−2 · avgcost(f0). On the other hand, dist(c, f0) � ε−2 ·
avgcost(f0) while dist(f0, g0) � 4 · avgcost(f0) � ε−2 ·
avgcost(f0). Since g0 ∈ D′, we infer that f is not the

closest to c facility of D′, a contradiction. We infer that this

case is impossible.

We conclude that in any case, we have

dist(c,Dj) � dist(c,D′) + 3ε2 · avgcost(f0).
By summing this bound through all the clients and adding

opening costs to both sides, we obtain∑
j∈Z

cost(Dj ; Jj) � cost(D′; I ′) + 3ε2 · cost(D̃)

� OPT′ + 3αε · OPT
� (1 + 9αε)OPT,

where in the last inequality we use Lemma 6. This finishes

the proof of the lemma.

We conclude this section with the observation that it

remains to prove Lemma 9 in order to show a polynomial-

time approximation scheme for NON-UNIFORM FACILITY

LOCATION in planar graphs. After initial preprocessing of

the input instance I , Corollary 7 asserts that it suffices to

find a (1 +O(ε))-approximate solution to I ′.
To this end, we break I ′ into instances (Jj)j∈Z. For every

nontrivial Jj , we scale all the edge lengths and opening costs

of Jj by a factor of ε−(4(jq+q+a)+2) and define D◦ = Wj

and cluster(f) := cluster′(f) for every f ∈ D◦. Note that

(cluster(f))f∈D◦ partitions Cj . Let

r = 2ε−4q � 2ε−4ε−2

.

Then, since for every f ∈Wj we have

ε4(jq+a+1) � avgcost(f) > ε4(jq+q+a) (16)

and for every c ∈ cluster′(f) it holds that

ε2 · avgcost(f) � dist(c, f) � ε−2 · avgcost(f),
we infer that after scaling the distances, 1 � dist(c, f) � r/2
for every f ∈ Wj and c ∈ cluster′(f). Furthermore, (16)

together with Lemma 8 imply the second condition of

Lemma 9.

Consequently, the algorithm of Lemma 9 applied to Jj
prepared as above with accuracy parameter ε2 (instead of

ε) runs in time n2O(ε−2 log(1/ε))

and returns a solution Dj

of cost (after scaling back again all the edge weights and

opening costs) satisfying

cost(Dj ; Jj) � (1 + ε2)OPTj + ε2 ·Mj ,

where

Mj = open(Wj) +
∑
f∈Wj

∑
c∈cluster′(f)

dist(c, f).

Observe that∑
j∈Z

Mj � cost(D̃) � 2αε−1OPT.

Thus Lemma 10 allows us to combine the solutions Dj into

a solution R to I ′ of cost satisfying:

cost(R; I ′) � (1 + ε2)
∑
j∈Z

OPTj + 12αε · OPT.

By Lemma 11, this value is at most

(1 + ε2)OPT′ + 18αε · OPT.
Finally, we may apply Corollary 7 to conclude that

cost(R; I) � (1 + 2ε2 + 8αε)OPT+ 18αε · OPT
� (1 + 28αε) · OPT,

as required. Consequently, it remains to prove Lemma 9.

III. DYNAMIC PROGRAMMING ALGORITHM

A. Overview

Before we proceed to the formal proof of Lemma 9, we

give a short overview. The approach is based on a rather stan-

dard layering argument plus portal-based Divide&Conquer.

While the formal reasoning is quite lengthy due to a number

of technical details that require attention, we hope that

presenting an intuitive description of consecutive steps will

help the reader with guiding through the proof.

Suppose D is an optimum solution to instance J . The first

observation is that D enjoys a similar proximity property

as expressed in Lemma 4. Namely, every client c ∈ C
is at distance at most 3r from some facility of D. The

argument is essentially the same: if all clients from some

cluster cluster(f) for f ∈ D◦ had connection costs larger

than r in the solution D, one could improve D by opening

facility f and rediricting all clients from cluster(f) to f .
Otherwise, some client from cluster(f) is within distance

at most r from D, which implies that all of them are at

distance at most 3r.
This proximity property allows us to apply standard

layering. We fix a vertex s and classify facilities from D◦
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of the graph into layers (D◦i )i∈N of width 8r according to

distances from s: layer D◦i comprises facilities f ∈ D◦

satisfying i · 8r � dist(s, f) < (i + 1) · 8r. With every

facility f ∈ D◦ we can associate its contribution to M ,

equal to open(f) +
∑

c∈cluster(f) dist(c, f). Now, denoting

q = �ε−1�, there exists a ∈ {0, 1, . . . , q − 1} such that

the total contribution of facilities from layers D◦i with

i ≡ a mod q is at most εM . Hence, by paying cost εM
we may open these facilities and direct all clients from

their clusters to them. Now it is easy to see that we

have a separation property: instance J can be decomposed

into instances (Jj)j∈N, where Jj concerns connecting all

clients from clusters of facilities of
⋃

jq+a<i<(j+1)q+a D
◦
i

to facilities within distance between (jq + a) · 8r − 4r and

((j+1)q+a) ·8r−4r from s, which can be (approximately)

solved separately. This is because in the optimum solution,

no client-facility path used for connection crosses any of the

entirely bought layers due to having length at most 3r.
Let us focus on one instance Jj . We may contract all

vertices at distance less than (jq + a) · 8r − 8r onto s and

remove all vertices at distance more than ((j+1)q+a)·8r, as
these vertices anyway will not participate in any shortest path

used by an optimum solution. Thus, we essentially achieve a

small radius property in Jj : one may assume that all vertices

are at distance at most 8qr = O(ε−1r) from s.
The idea is to compute a near-optimum solution to Jj

using Divide&Conquer on balanced separators, presented as

dynamic programming. Using standard separation properties

of planar graphs one can show that the graph (or rather its

plane embedding) admits a hierarchical decomposition into

regions so that the decomposition has depth at most log n and

every region is boundaried by a union of at most 6 shortest

paths, all with one endpoint in s. Thus, each of these paths

has length O(ε−1r). We apply dynamic programming over

this decomposition, where we put portals on the boudaries of

regions to limit the number of states. That is, along each path

we put portals spaced at δ, for some parameter δ > 0, and we

allow paths connecting clients with facilities to cross region

boundaries only through portals. Since the decomposition has

depth log n, each connection path in the optimum solution can

be “snapped to portals” to conform with this requirement by

using at most 2 logn snappings, incurring a total additional

cost of 2δ · log n. Therefore, we put δ = ε/ log n so that this

error is bounded by O(ε), which summed through all clients

yields an O(εM) error term in total. Thus, the total number

of portals on the boundary of each region is O(δ−1ε−1r) =
O(ε−2r log n).

In the dynamic programming state associated with a region

R, we are concerned about opening facilities within R to

serve all clients in R. However, on the boundary of R
we have O(ε−2r log n) portals that carry information about

the assumed interaction between the parts of the overall

solution within R and outside of R. For every portal π, this
information consists of two pieces:

• request req(π) that gives a hard request on the sought

solution within R: there has to be a facility opened at

distance at most req(π) from π;
• prediction pred(π) that gives a possibility of connecting

clients to portals: every client c can be connected to π
at connection cost dist(c, π) + pred(π).

Intuitively, predictions represent “virtual” opened facilities

residing outside of R, which can be accessed at an additional

cost given by pred(π), while by satisfying requests we make

sure that predictions in other regions can be fulfilled. Since

all client-facility paths in the optimum solution are of length

at most 3r, we may assume that all requests and predictions

in all considered states are bounded by 3r. At the cost of

an additional error term O(εM) we can also assume that

requests and predictions are rounded to integer multiples

of δ. Thus, for every portal π we can limit ourselves to

O(δ−1r) = O(ε−2r log n) possibilities for req(π) and same

for pred(π).
Let us estimate the number of states constructed so far. For

each of O(ε−2 log n) portals on the boundary of R we have

O(ε−2r log n) possibilities for req(π) and for pred(π), yield-
ing a total number of states being (ε−2r log n)O(ε−2r logn) =
npoly(1/ε)·r·log logn, which is quasi-polynomial. As transitions

in this dynamic programming can be implemented efficiently,

this already yields a QPTAS, and we are left with reducing

the number of states to polynomial.

The final trick is to take a closer look at what we store in

the states. Since req(·) stores the requested distance to the

closest facility opened within R, it is safe to assume that

req(·) (before rounding to integer multiples of δ) will be

1-Lipschitz in the following sense: for any two portals π, ρ,
we have

|req(π)− req(ρ)| � dist(π, ρ).

An analogous reasoning can be applied to predictions, so

we can assume that pred(·) is 1-Lipschitz as well. Now

consider any of the 6 shortest paths comprising the boundary

of R, say P . On this path we put portals spaced at δ, say
π1, . . . , π� for � � O(ε−2r log n) in the order on P . As

argued, after rounding we have O(ε−2 log n) possibilities

for req(π1), but observe that once (rounded) req(πi−1) is

chosen, there are only at most 5 possibilites for req(πi): it
must be an integer multiple of δ that differs from req(πi−1)
by at most 2δ, due to dist(πi−1, πi) = δ. Hence, the total

number of choices for the values of requests along P is

bounded by O(ε−2 log n) · 5O(ε−2r logn) = nO(ε−2r). Same

argument applies to predictions, and as the boundary of R
consists of at most 6 such paths, the total number of states

we need to consider is nO(ε−2r).

B. Proof of Lemma 9

We now proceed with the formal proof of Lemma 9. For

the remainder of this section, let us fix the setting and the

notation from the statement of Lemma 9.
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Fix an optimum solution D ⊆ F in the instance J . We

first prove that in fact, every client is not too far from its

closest facility in D.

Lemma 12. For each c ∈ C there exists g ∈ D such that
dist(c, g) � 3r.

Proof: Let f ∈ D◦ be such that c ∈ cluster(f); then
dist(c, f) � r. We shall prove that there exists some client

d ∈ cluster(f) and facility g ∈ D such that dist(d, g) � r.
Indeed, if this is true, then we have dist(c, g) � dist(c, f) +
dist(f, d) + dist(d, g) � r + r + r = 3r, as required.

Suppose otherwise: for each d ∈ cluster(f), the distance

from d to the closest facility from D is larger than r. As

cluster(f) is nonempty, the total connection cost incurred by

clients from cluster(f) in solution D can be lower bounded

as follows: ∑
c∈cluster(f)

dist(c,D)

> |cluster(f)| · r � open(f) +
∑

c∈cluster(f)
dist(c, f).

This means that the solution D ∪ {f} has a strictly smaller

cost than D, which contradicts the optimality of D.

Let G′ be the subgraph of G induced by all vertices whose

distance from D◦ is at most 4r. Observe that all clients of

C are placed at vertices of G′. Lemma 12 now immediately

implies the following.

Lemma 13. It holds that D ⊆ V (G′) and for every c ∈ C
we have distG′(c,D) = distG(c,D).

Proof: For the first assertion, by the optimality of D,

for every g ∈ D there exists some client c ∈ C such that

g is the facility of D closest to c. By Lemma 12 we have

distG(c, g) � 3r. If now f ∈ D◦ is such that c ∈ cluster(f),
then distG(c, f) � r. Hence distG(f, g) � r + 3r = 4r, so
g ∈ V (G′).

For the second assertion, observe that by Lemma 12, for

every client c ∈ C, the shortest path from c to a facility of

D traverses only vertices that are at distance at most 4r from

the facility f ∈ D◦ satisfying c ∈ cluster′(f). It follows that

the distance from c to D is the same in G as in G′

Let F ′ consist of all the facilities that are placed at vertices

of G′, and let J ′ = (G′, C, F ′, open). We observe that

Lemma 12 implies that we can work with instance J ′ instead
of J .

Corollary 14. For every R ⊆ F ′, we have cost(R; J ′) �
cost(R; J). Moreover, we have cost(D; J ′) = cost(D; J)
and consequently OPT(J ′) = OPT(J).

Proof: The first assertion is straightforward, because

G′ is an induced subgraph of G, hence distances between

vertices of G′ are not smaller in G′ than in G. For the second

assertion, observe that by Lemma 12 we have D ⊆ F ′ and

distG′(c,D) = distG(c,D) for every client c ∈ C, hence

the connection cost of D in J and in J ′ are the same. As

the opening costs are also obviously the same, we conclude

that indeed cost(D; J ′) = cost(D, J). This, together with

the first assertion, immediately entails OPT(J ′) = OPT(J).

From now on we will assume that the graph G′ is

connected. This can be achieved either by connecting the

connected components using edges of very large (but finite)

weight, or applying the forthcoming reasoning to every

connected component of G′ separately and taking the union

of obtained solutions.

Fix any vertex s and partition the vertices of G′ into layers

(layeri)i∈N as follows: for i ∈ N we set:

layeri = {v ∈ V (G′) : i · 8r � dist(u, s) < (i+ 1)8r}.
Let D◦i = D◦∩layeri. Denote q = �ε−1�. Since (D◦i )i∈N is a

partition of D◦, it follows that there exists a ∈ {0, 1, . . . , q−
1} such that denoting S =

⋃
i : i≡a mod q D

◦
i , we have

∑
f∈S

⎛⎝open(f) +
∑

c∈cluster(f)
dist(c, f)

⎞⎠
� ε ·

∑
f∈D◦

⎛⎝open(f) +
∑

c∈cluster(f)
dist(c, f)

⎞⎠
= ε ·M. (17)

Moreover, obviously such a can be found in polynomial time.

For j ∈ N, define the j-th ring as

Wj =
⋃

jq+a<i<(j+1)q+a

layeri.

For future reference, we note that rings are separated from

each other.

Lemma 15. For any different j, j′ ∈ N and u ∈ Wj and
u′ ∈Wj′ , we have distG′(u, u

′) > 8r.

Proof: By the definition of Wj and Wj′ and since j �=
j′, we have |distG′(u, s) − distG′(u

′, s)| > 8r. Then the

statement follows by triangle inequality.

The idea now is to buy the facilities of S and connect the

clients from CS =
⋃

f∈S cluster(f) to the centers of their

clusters — which incurs cost at most ε ·M by (17) — and to

construct a separate instance for each ring Wj so that these

instances can be solved independently. We now carefully

define those instances.

Fix j ∈ N and construct graph Hj obtained from G′ in
the following manner:

1) Remove all vertices w of G′ satisfying w ∈ ⋃
ι>jq+a Lι.

2) Contract all vertices w of G′ satisfying w ∈⋃
ι<(j−1)q+a Lι onto s; we shall use the name s also

for the vertex obtained as the result of this contraction.
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3) For every vertex w that, after the contraction explained

above, becomes a neighbor of s, we assign the edge sw
weight distG′(s, w).

Note that in the second, the set of vertices w contracted

onto s induces a connected subgraph of G′, and thus the

contraction is well-defined and preserves the planarity. We

shall identify vertices of Hj with their origins in G′ in the

obvious way.

In essence, graph Hj retains all the relevant information

about distances between vertices of Wj . This is formalized

in the following lemma.

Lemma 16. The following assertions hold for each j ∈ N:

(P1) For every pair of vertices u, v ∈ V (Hj), we have
distHj (u, v) � distG′(u, v).

(P2) For every vertex u ∈ V (Hj), we have distHj (u, s) =
distG′(u, s).

(P3) For every pair of vertices u, v ∈ V (Hj) satisfying u ∈
Wj and distG′(u, v) � 3r, we have distHj

(u, v) =
distG′(u, v).

Proof: For assertion (P1), it suffices to observe that

every path in Hj with endpoints u and v can be lifted to

a path in G′ of the same length by substituting any edge

incident to s, say sw, by the shortest path between s and w in

G′. For assertion (P2), we already know that distHj (u, s) �
distG′(u, s), and to see that distHj (u, s) � distG′(u, s) we

may observe that on the shortest path in G′ from s to u,
vertices contracted onto s form a prefix; this prefix can be

then replaced by a single edge of the same weight. For

assertion (P3), the assumption that u ∈ Wj implies that in

G′, the vertex u is at distance more than 3r from any vertex

that is removed or contracted onto s in the construction of

Hj . Hence, the shortest path from u to v in G′ survives the

construction of Hj intact.

Fix

L = 8r(q + 1) � 16ε−1r.

For future reference, we also note the following observation.

Lemma 17. Let Q be a shortest path in H from s to some
vertex u. Then the length of Q−s (i.e. Q with the first vertex
removed) is smaller than L.

Proof: Let v be the successor of s on the path Q. By the

construction of H we have that u, v ∈ ⋃
(j−1)q+a�ι�jq+a Lι

which in particular means that

8r((j − 1)q + a) � dist(s, v), dist(s, u) < 8r(jq + a+ 1).

Since v lies on the shortest path from s to u, it follows

that the length of the suffix of Q from v to u (which is

Q − s) is equal to the dist(v, u), which in turn is smaller

than 8r(jq+ a+1)− 8r((j− 1)q+ a) = 8r(q+1) = L.

Having defined the graph Hj , we define the facility set

Fj and client set Cj as follows:

Fj = F ′ ∩
⋃

(j−1)q+a�ι�jq+a

Lι

and

Cj =
⋃

f∈D◦∩Wj

cluster(f).

Note that Fj ⊆ V (Hj) and Cj ⊆ V (Hj). Finally, we put

Jj = (Hj , Cj , Fj , open);

that is, the opening costs are inherited from the original

instance J . We now prove that by paying a small cost, we

may solve instances Jj separately.

Lemma 18. We have

OPT(J ′) �
∑
j∈N

OPT(Jj).

Moreover, for any sequence of solutions (Rj)j∈N to instances
(Jj)j∈N, respectively, we have

cost

⎛⎝S ∪
⋃
j∈N

Rj ; J
′

⎞⎠ � ε ·M +
∑
j∈N

cost(Rj ; Jj).

Proof: For each j ∈ N, let Dj be the set consisting of

all facilities f ∈ D with the following property: there exists

a client c ∈ Cj for which f is the closest facility from D.

By Lemmas 12 and 13, we have distG′(c,Dj) � 3r for all

c ∈ Cj , while from the definition of Dj it further follows that

distG′(f, Cj) � 3r for all f ∈ Dj . Also, every client c ∈ Cj

is at distance at most r from the center of its cluster, which

is a facility of D◦ that resides in Wj . Hence, every facility

f ∈ Dj is at distance at most 4r from Wj . By Lemma 15

and triangle inequality we now infer that sets (Dj)j∈N are

pairwise disjoint. Moreover, we have Dj ⊆ Fj and thus Dj

can be treated as a solution to the instance Jj Therefore, by

Lemma 16, assertions (P1) and (P3), we have

OPT(J ′) = cost(D; J ′)

= open(D) +
∑
c∈C

distG′(c,D)

=
∑
j∈N

⎛⎝open(Dj) +
∑
c∈Cj

distG′(c,Dj)

⎞⎠
=

∑
j∈N

⎛⎝open(Dj) +
∑
c∈Cj

distHj
(c,Dj)

⎞⎠
=

∑
j∈N

cost(Dj ; Jj) �
∑
j∈N

OPT(Jj),

completing the proof of the first assertion.
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For the second assertion, since CS and (Cj)j∈N form a

partition of C, we have

cost

⎛⎝S ∪
⋃
j∈N

Rj ; J
′

⎞⎠
� open(S) +

∑
c∈CS

dist(c, S)

+
∑
j∈N

⎛⎝open(Rj) +
∑
c∈Cj

distG′(c, Rj)

⎞⎠
� open(S) +

∑
c∈CS

dist(c, S)

+
∑
j∈N

⎛⎝open(Rj) +
∑
c∈Cj

distHj (c, Rj)

⎞⎠
� ε ·M +

∑
j∈N

cost(Rj ; Jj).

where in the second inequality we use Lemma 16, asser-

tion (P1), while in the last inequality we use (17).

Hence, from now on we focus on finding a near-optimum

solutions to instances Jj , for each j ∈ N for which Cj �= ∅,
as such solutions can be combined into a near-optimum

solution to J ′ using Lemma 18, which is then a near-optimum

solution to J by Corollary 14. This will be done by dynamic

programming. Fix j ∈ J for which Cj is non-empty. For

brevity, in the following we write H for Hj . Before we

proceed, let us observe that Jj enjoys the same proximity

property as J , expressed in Lemma 12.

Lemma 19. Suppose Dj is an optimum solution in the
instance Jj . Then for each c ∈ Cj there exists g ∈ Dj

such that distH(c, g) � 3r.

Proof: Apply the same reasoning as in the proof of

Lemma 12, noting that all relevant vertices and paths are

completely contained H due to being at distance at most 3r
from Wj .

Getting a suitable decomposition: Our dynamic pro-

gramming will work over a suitable decomposition of the

graph H . To define this decomposition, we will need some

structural understanding of H and its embedding.

Recall that we assume that H is embedded in a sphere Σ.

We shall assume that H is triangulated, as we can always

triangulate it using edges of weight +∞. Let L be the set of

faces1 of H . For future reference, we let ξ : V (H)→ L be

a function that assigns to every vertex u of H an arbitrary

face ξ(u) incident to u.
Let S be the spanning tree of shortest paths from s. That is,

if for each v ∈ V (H) by Pv we denote the shortest path from

v to s in H , then S is the union of paths {Pv : v ∈ V (H)}.
1We use L here instead of usual F in order to avoid using the same

letter as for facility sets.

Let S� be the spanning subgraph of the dual H� of H
consisting of edges of H� that are dual to the edges not
belonging to S. It is well-known that S� is then a spanning

tree of H�.

Let

A = {(f, g), (g, f) : fg ∈ E(S�)};
that is, for each edge fg of S� we add to A two (oriented)

arcs: (f, g) and (g, f). For an arc a ∈ A, let L(a) ⊆ L
denote the set of those faces of H that are contained in this

connected component of S� with (unoriented) a removed

that contains the head of a. For nonempty B ⊆ A, we denote

L(B) =
⋂
a∈B

L(a),

and we put L(∅) = L by convention. We may now state and

prove the decomposition lemma that we shall need; in the

following, all logarithms are base 2.

Lemma 20. In polynomial time one can compute a rooted
tree T together with a labelling β of nodes of T with subsets
of A such that the following holds:
(T1) T has depth at most log n;
(T2) for each node t of T , we have |β(t)| � 3;
(T3) if t0 is the root of T , then L(β(t0)) = L;
(T4) for each leaf t of T , we have |L(β(t))| = 1;
(T5) each non-leaf node t of T has at most 7 children, and

if chld(t) denotes the set of children of t, then

L(β(t)) =
⊎

t′∈chld(t)
L(β(t))

and
β(t) ⊆

⋃
t′∈chld(t)

β(t′).

Proof: A subset X of nodes of S� is connected if it

induces a connected subtree of X . For a subset of nodes X ,

by ∂X we denote the set of edges of S� with one endpoint

in X and second outside of X . Let a block be any nonempty,

connected subset of nodes X such that |∂X| � 3. Note that

since H is triangulated, S� is a tree with maximum degree at

most 3, so every node of T constitutes a single-node block.

We observe the following.

Claim 2. Every block X with |X| � 2 admits a partition
into at most 7 blocks, each of size at most |X|/2.

PROOF. Let Z ⊆ X be the set of all the nodes of X that

have a neighbor (in S�) outside of X . Then |Z| � 3 and,

consequently, there exists a node x ∈ X such that every

connected component of S�[X] − x contains at most one

node of Z. Further, it is well known that in S�[X] there

exists a balanced node: a node y such that every connected

component of S�[X] − y has at most |X|/2 nodes. Then

S�[X] − {x, y} has at most 5 connected components, and

it is straightforward to see that each of them is a block and

572



contains at most |X|/2 nodes. Hence, as |X| � 2, for the

promised partition of X into blocks we can take the node

sets of the connected components of S�[X]− {x, y}, plus
blocks {x} and {y} (or just {x}, in case x = y). �

We now construct the tree T together with labeling β(·)
by recursively applying Claim 2 as follows. We start with the

block L and, as long as the currently decomposed block X
has size larger than 1, we apply Claim 2 to X and recursively

decompose all the blocks comprising the obtained partition.

Then T is the tree of this recursion and the nodes of T can be

naturally labelled with blocks decomposed in corresponding

calls; thus, the root of T is labelled by L, while the leaves

of T are labelled by single-node blocks. Finally, for every

node t of T , say associated with a block Xt, we set β(t) to

consist of edges of ∂Xt oriented towards endpoints belonging

to Xt. It is straightforward to verify that the obtained pair

(T, β) satisfies all of the required properties. Also, the above

reasoning can be trivially translated into a polynomial-time

algorithm computing (T, β).
Thus, Lemma 20 essentially provides a hierarchical de-

composition of the face set of H using separators consisting

of six-tuples of shortest paths originating in s: two per each

arc in β(t). The idea is to put portals on those separators

and run a bottom-up dynamic programming on the tree T
that assembles a near-optimum solution while snapping paths

to the portals along the way. First, however, we need to

understand how to put portals on paths in H .

Portalization: Let X be a set of vertices of H and let

f : X → R ∪ {+∞} be a function. For positive reals d, σ
and reals α � β, we shall say that f is

• d-discrete if all its values are integer multiples of d;
• [α, β]-bounded if every its value is either +∞ or belongs

to the interval [α, β]; and
• Lipschitz with slack σ if

|f(u)− f(v)| � dist(u, v) + σ

for all u, v ∈ X with f(u), f(v) < +∞.

A function that is d-discrete, [α, β]-bounded, and Lipschitz

with slack σ will be called (d, α, β, σ)-normal.
For portalization of shortest paths we shall use the

following lemma.

Lemma 21. Let P be a shortest path in H with one endpoint
in s and let d ∈ R�0. Then one can find a set Π of at most
(L/d)+2 vertices on P with the following property: for every
vertex u on P , there exists π ∈ Π such that dist(u, π) � d.
Moreover, for any reals α � β, the number of functions on Π
that are (d, α, β, d)-normal is at most ((β−α)/d)2 ·2O(L/d),
and such functions can be enumerated in time ((β−α)/d)2 ·
2O(L/d).

Proof: Let m = β − α. Let P ′ = P − s, i.e., P ′ is
P with the first vertex removed. Then, by Lemma 17, the

length of P ′ is smaller than L.

Let u and v be the endpoints of P ′; then P ′ is the shortest

path connecting u and v. Partition the vertices of P ′ into
intervals I0, I1, I2, . . . , Ip, where p = 
L/d� such that Ii
comprises vertices w of P ′ satisfying id � dist(u,w) <
(i+1)d; since the length of P ′ is smaller than L, each of the

vertices of P ′ is placed in one of these intervals. Observe

that vertices within every interval Ii are pairwise at distance

smaller than d. Therefore, we may construct a suitable set Π′

for the path P ′ by taking one vertex πi from each interval Ii
that is non-empty; thus, Π′ has size at most p � (L/d) + 1.
Finally, we set Π = Π′ ∪ {s}.

We now bound the number (d, α, β, d)-normal functions

f on Π. Note that there are at most m/d + 2 possibilities

for the value f(s), as this value is either an integer multiple

of d between α and β, or +∞. Therefore, it suffices to

bound the number of (d, α, β, d)-normal functions on Π′

by (m/d) · 2O(L/d). Recall that |Π′| � (L/d) + 1, hence

there are at most 2(L/d)+1 choices on which portals will be

assigned value +∞. Supposing that this choice has been

made, we bound the number of choices of (finite) values

on remaining portals. Let 1 � i1 < i2 < . . . < iq � p be

the indices such that portals chosen to be assigned finite

values are in intervals Ii1 , . . . , Iiq . As above, there are at

most m/d + 1 possibilities for the value f(πi1). However,

for j > 1, the value f(πij ) must satisfy inequality

|f(πij )− f(πij−1
)| � dist(πij , πij−1

) + d

< (ij − ij−1 + 1)d+ d

= (ij − ij−1)d+ 2d.

As f(πij ) has to be an integer multiple of d, once f(πij−1
)

has been chosen, there are at most 2(ij−ij−1)+4 choices for

the value of f(πij ). Hence, having chosen f(πi1), the number

of choices for the remaining values f(πi2), . . . , f(πiq ) is

bounded by

q∏
j=2

(2(ij − ij−1) + 4) � 6q ·
q∏

j=2

(ij − ij−1)

� 6q ·
q∏

j=2

2ij−ij−1

= 6q · 2iq−i1

� 6q · 2p � 12p.

Since p � (L/d) + 1, we conclude that the total number of

(d, α, β, d)-normal functions on Π′ is bounded by (m/d) ·
2O(L/d), as required.

The above reasoning can be trivially used to construct the

promised enumeration algorithm.

Defining subproblems: As expected, in dynamic pro-

gramming we will need to solve more general subproblems,

where portals on boundaries of these subproblems are taken

into account. Formally, in an instance of the generalized

problem we are working with:
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• The original set of available facilities Fj , which we

denote F 	 for consistency; this set is always the same in

all instance of the generalized problem, and is equipped

with the original opening cost function open(·).
• A subset of relevant clients C	 ⊆ Cj ; this set varies in

instances of the generalized problem.

• A set of portals Π, which are vertices of H .

• A prediction function pred : Π→ R ∪ {+∞}.
• A request function req : Π→ R ∪ {+∞}.

Whenever considering an instance of the generalized problem,

all distances are measured in H . Note that we allow negative

requests and predictions.

Consider an instance K = (C	,Π, req, pred) of the

generalized problem. For a solution R ⊆ F 	, the connection

cost of a client c ∈ C	 is defined as

connK(c, R) = min(min
f∈R

dist(c, f),min
π∈Π

(dist(c, π)+pred(π))).

That is, every client can be connected either to a facility of f
at the cost of the distance to this facility, or to a portal at the

cost of the distance to this portal plus its prediction. Note that

portals are always all open, so the factor minπ∈Π(dist(c, π)+
pred(π)) is independent of the solution R. We will say that c
is served by the facility f or portal π for which the minimum

above is attained.

A solution R ⊆ F 	 is feasible if for every portal ρ ∈ Π
with req(ρ) �= +∞, its request is satisfied in the following

sense:

min
f∈R

dist(ρ, f) � req(x).

Note that the request of a portal has to be satisfied by a

facility included in the solution; it cannot be satisfied by

another portal. Again ρ is served by the facility f for which

the minimum above is attained.

To analyze the approximation error, we will need to

gradually relax the feasibility constraint. For this, for a

nonnegative real λ we shall say that a solution R ⊆ F 	 is

λ-near feasible if for every portal ρ ∈ Π with req(ρ) �= +∞
there exists a facility f ∈ R with dist(ρ, f) � req(ρ) + λ.
That is, we relax all requests by an additive factor of λ.

Finally, for γ ∈ R�0, a solution R ⊆ F 	 is γ-close in K
if

connK(c, R) � γ for every c ∈ C	; and
dist(π,R) � γ for every π ∈ Π with req(π) �= +∞.

The cost of a solution R is defined as

cost(R;K) = open(R) +
∑
c∈C�

connK(c, R).

Note that the connection costs of portals do not contribute to

the cost of the solution. They are only used to define (near)

feasibility of a solution. Thus, every portal essentially puts

a hard constraint that there needs to be a facility opened

within some distance from it. By OPT(K) we denote the

minimum cost of a feasible solution to K.

The intuitive meaning of predictions and requests in the

dynamic programming are as follows. In the following, think

of dynamic programming over the decomposition provided

by Lemma 20 as a recursive algorithm that breaks the given

instance into simpler ones (whose number is at most 7), solves
them using subcalls, and assembles the obtained solutions

into a solution to the input instance. Whenever we break the

instance using some separator, which constists of a constant

number of shortest paths, we put portals along them using

Lemma 21 in all the obtained subinstances. For every portal

π we guess in which subinstance lies the closest facility f
that is open in the (unknown) optimum solution, and we

approximately guess the distance d from π to this facility (up

to additive accuracy δ, to be defined later). This allows us

to define the requests and predictions in subinstances: in the

subinstance that is guessed to contain f we put a request d
on π to make sure that some facility at this distance is indeed

open there, while in other subinstances we put a prediction

d on π, so that solutions in these subinstances may use a

virtual, “promised” facility at distance d from π.
Since recursion has depth O(log n) by Lemma 20, con-

dition (T1), the rounding error will accumulate through

O(log n) levels. Therefore, we needed to put δ = O(ε/ log n)
and make rounding errors of magnitude O(δ) ·OPT at each

level, so that the total error is kept at O(ε) ·OPT. Precisely,

we fix

δ =
ε

log n
.

Dynamic programming states: Once we have defined

the generalized problem with portals, we may formally define

the instances solved in the dynamic programming. For every

vertex v of H , we may apply Lemma 21 to Pv and d = δ,
thus obtaining a suitable set of vertices Πv ⊆ V (Pv) of size

at most δ−1L+ 2 = O(ε−2r log n).
For each node t of T , we define

C	t = ξ−1(L(β(t)))∩C	 and Πt =
⋃

uv∈Bt

Πu∪Πv,

where Bt is the set of edges of H dual to the arcs of β(t).
Note that by condition (T5) of Lemma 20, we have

Πt ⊆
⋃

t′∈chld(t)
Πt′ for each non-leaf node t of T.

Observe also that if t0 is the root of T , then C	t0 = Cj and

Πt0 = ∅. Finally, the following lemma expresses the crucial

separation property provided by the decomposition (T, β).

Lemma 22. Let s and t be nodes of T that are not in the
ancestor-descendant relation, and let u ∈ ξ−1(L(β(s))) and
v ∈ ξ−1(L(β(t))). Then there exists a portal ρ ∈ Πt such
that

dist(u, v) � dist(u, ρ) + dist(ρ, v)− 2δ.
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Furthermore, the same holds when s is an ancestor of t and
u ∈ Πs.

Proof: Let B be the set of edges of H that are dual to

the arcs of β(t), and let Z be the set of endpoints of these

edges. Consider removing all paths Pz for z ∈ Z and all

edges of B from the plane. Then the plane breaks into several

connected components, out of which one consists of exactly

the faces of L(β(t)). It follows that every path connecting a

vertex from ξ−1(L(β(t))) with a vertex that does not belong

to ξ−1(L(β(t))) has to intersect one of the paths Pz for some

z ∈ Z. Observe that v ∈ ξ−1(L(β(t))). Moreover, if s and t
are not in the ancestor-descendant relation in T , then L(β(s))
and L(β(t)) are disjoint, implying u /∈ ξ−1(L(β(t))). Also,

if u ∈ Πs and s is an ancestor of t, then either u lies on one

of the paths Pz for z ∈ Z, or u /∈ ξ−1(L(β(t))).
In both cases we conclude that the shortest path connecting

u and v, call it Q, has to intersect the path Pz for some

z ∈ Z. Let w be any vertex in the intersection of these two

paths. Then, by Lemma 21, there exists ρ ∈ Πz ⊆ Πt such

that dist(w, ρ) � δ. We conclude that

dist(u, v) = dist(u,w) + dist(w, v)

� dist(u,w) + dist(w, ρ)

+dist(ρ, w) + dist(w, v)− 2δ

� dist(u, ρ) + dist(ρ, v)− 2δ,

as required.

For every node t of T , we define Ñt to be the set of

all functions from Πt to R ∪ {+∞}. Further, let Nt ⊆
Ñt be the subset of all those functions from Ñt that are

(δ,−5ε, 3r + 5ε, δ)-normal; in the sequel, when saying just

normal we mean being (δ,−5ε, 3r + 5ε, δ)-normal. While

Ñt is infinite, Nt is finite and actually of polynomial size.

Lemma 23. For each node t of T we have that |Nt| �
nO(ε−2r) and Nt can be enumerated in time nO(ε−2r).

Proof: By Lemma 17, for each vertex u of H the number

of normal functions on Πu is at most (δ−1r)2 · 2O(δ−1L) =
nO(ε−2r). Observe that Πt is the union of at most 6 sets of

the form Πu, for vertices u that are endpoints of edges dual

to the arcs β(t). Hence every normal function on Πt can

be described by a 6-tuple of such functions on sets of the

form Πu for u as above. Thus, we have |Nt| � nO(ε−2r)

as well. Moreover, since normal functions on Πu can be

enumerated in time nO(ε−2r) for each vertex u, to enumerate

Nt it suffices to enumerate all 6-tuples of functions as above,

and filter out those 6-tuples whose union is either ill-defined

or is not Lipschitz with slack δ. This takes time nO(ε−2r).

Now, for every t ∈ V (T ) and pair η = (pred, req) ∈
Ñt × Ñt, we define the instance Kt(η) of the generalized

problem as follows:

Kt(η) = (C	t ,Πt, pred, req).

Before the explaining how these instances are going to be

solved using dynamic programming, let us verify that the

subproblem at the root of T corresponds to the instance Jj
that we are trying to (approximately) solve.

Lemma 24. Suppose t0 is the root of T and, noting that
Πt0 = ∅, we let K = Kt0((∅, ∅)). Then, for any λ � 0,
every λ-near feasible solution R to K satisfies

cost(R; Jj) = cost(R;K).

In particular, we have

OPT(Jj) = OPT(K).

Proof: The first assertion follows immediately by ob-

serving that the formulas for cost(R; Jj) and cost(R;K) are

the same, because there are no portals in K. The second

assertion follows immediately from the first by observing

that every solution R to K is λ-near feasible for any λ � 0,
because in K there are no portals.

Computing transitions: We first show that the subprob-

lems in the leaves of T can be solved in polynomial time.

For this, we use the following lemma.

Lemma 25. There is an algorithm that given an instance
K = (C	,Π, pred, req) of the generalized problem and λ �
0, finds the least expensive λ-near feasible solution to K in
time 3|Π|+k · nO(1), where k is the total number of distinct
vertices on which the clients of C	 are placed.

Proof: Let W be the set of distinct vertices on which

C	 are placed, and for u ∈ W let γ(u) be the number of

clients placed at vertex u. We perform standard dynamic

programming over subsets of Π and of W , where we keep

track of the cost of connecting any subset of portals and any

subset of vertices of W , while introducing candidate facilities

one by one. Precisely, let f1, . . . , fp be the facilities of F 	,
enumerated in any order. Then for every i ∈ {0, 1, . . . , p},
A ⊆ Π, and B ⊆ W , define value dp[i, A,B] to be

the smallest cost of a λ-near feasible solution contained

in {f1, f2, . . . , fi}, where in the near-feasibility check we

consider only requests of portals from A, and in the

connection cost computation we consider only clients placed

at vertices from B. Then it is easy to see that the function

dp[·, ·, ·] satisfies the following recursive formula.

dp[0, A,B] =

{
0 if A = B = ∅,
+∞ otherwise;

dp[i, A,B] = min( dp[i− 1, A,B],

open(fi)

+ min
A′⊆A,B′⊆B : ∀π∈A\A′

dist(π,fi)�req(π)+λ

dp[i− 1, A′, B′]

+
∑

u∈B\B′
γ(u) · dist(u, fi) ).
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Using the above formula, we can in time 3|Π|+k · nO(1)

compute all the 2|Π|+k ·(p+1) values of the function dp[·, ·, ·],
and return dp[p,Π,W ] as the sought minimum cost. A λ-
near feasible solution attaining this cost can be retrieved

from dynamic programming tables by standard means within

the same running time.

Corollary 26. Suppose t is a leaf of T and λ � 0 is a given
real. Then, in total time nO(ε−2r) one can compute, for each
η ∈ Nt × Nt, the least expensive λ-near feasible solution
Rt,η ⊆ F 	 to Kt(η).

Proof: To compute each solution Rt,η, we apply the

algorithm of Lemma 25 to instance Kt(η) for η ∈ Nt ×Nt

and λ. Since t is a leaf of T , all clients in Kt(η) lie on the

unique face of L(β(t)) (Lemma 20, condition (T4)), hence

they are all place on distinct three vertices. Therefore, the

running time used by each application of the algorithm of

Lemma 25 is 3|Πt|+3 · nO(1) = nO(ε−2r). Since the number

of pairs η ∈ Nt ×Nt is |Nt|2 � nO(ε−2r), the total running

time follows.

We now proceed to the main point: how to compute values

for a node of T based on values for its children. We first

introduce even more helpful notation. For a non-leaf node t
of T , let Ωt =

⋃
t′∈chld(t) Πt; then Πt ⊆ Ωt.

For a non-leaf node t of T , define

M̃t =
∏

t′∈chld(t)
Ñt.

For each t′ ∈ chld(t) we have a natural restriction operator

restrictt,t′ : M̃t → Ñt′ that maps every tuple from M̃t to

its t′-component. Next, define

Ũt = Ñt × Ñt and W̃t = M̃t × M̃t.

Operator restrictt,t′(·) can be then regarded as an operator

from W̃t to Ũt′ by considering acting coordinate-wise.

Having defined sets M̃t, Ũt, and W̃t, we define sets Mt,

Ut, and Wt by replacing Ñt with Nt in the definitions.

Since every node of T has at most 7 children (Lemma 20,

condition (T5)), by Lemma 23 we have that |Mt| � nO(ε−2r)

and all sets Mt can be computed in time nO(ε−2r). Then

we also have that

|Ut|, |Wt| � nO(ε−2r) for each node t of T,

and all the sets Ut,Wt can be computed in time nO(ε−2r).

We now describe tuples from W̃t that may be used in the

dynamic programming to combine solutions from smaller

subproblems into a solution to a larger subproblem. The

intuition here is that when breaking a subproblem into

smaller ones, we have to ensure that requests and predictions

appropriately match so that solutions to smaller subproblems

can be combined to a solution to the original subproblem.

Definition 27. Consider a non-leaf node t of T . We shall

say that a pair η = (req, pred) ∈ Ũt and a pair ϕ =

((reqt′)t′∈chld(t), (predt′)t′∈chld(t)) ∈ W̃t are compatible
(denoted η ∼ ϕ) if the following two conditions hold:

(C1) For every π ∈ Πt with req(π) �= +∞ there exists t′ ∈
chld(t) and ρ ∈ Πt′ such that reqt′(ρ) + dist(π, ρ) �
req(π).

(C2) For every t′ ∈ chld(t) and ρ ∈ Πt′ with predt′(ρ) �=
+∞, there either exists π ∈ Πt with pred(π) +
dist(π, ρ) � predt′(ρ), or there exists t′′ ∈ chld(t) and

ρ′ ∈ Πt′′ with reqt′′(ρ
′) + dist(ρ′, ρ) � predt′(ρ).

Observe that given η ∈ Ũt and ϕ ∈ W̃t, it can be verified

in polynomial time whether η ∼ ϕ.
Finally, we formulate and prove two lemmas that will imply

the correctness of our dynamic programming. The first one

concerns combining solutions to smaller subproblems into

solutions to larger subproblems. The second one concerns

projecting solutions to larger subproblems to solutions to

smaller subproblems.

Lemma 28. Suppose t is a non-leaf node of T and let η ∈ Ũt
and ϕ ∈ W̃t be compatible. Suppose further that, for all
t′ ∈ chld(t), Rt′,ηt′ is a feasible solution to the instance
Kt′(ηt′), where ηt′ = restrictt,t′(ϕ). Then

R =
⋃

t′∈chld(t)
Rt′,ηt′

is a feasible solution to the instance Kt(η) and, moreover,

cost(R;Kt(η)) �
∑

t′∈chld(t)
cost(Rt′,ηt′ ;Kt′(ηt′)).

Proof: For brevity, we shall denote Rt′ = Rt′,ηt′ and

Kt′ = Kt′(ηt′). Also, let η = (pred, req) and Kt = Kt(η).
We first verify that R is a feasible solution to Kt. Take

any portal π ∈ Πt with req(π) �= +∞. Since η ∼ ϕ, by (C1)

there exists t′ ∈ chld(t) and ρ ∈ Πt′ such that reqt′(ρ) +
dist(π, ρ) � req(π). As Rt′ is a feasible solution to Kt′ ,

there exists f ∈ Rt′ such that dist(ρ, f) � reqt′(ρ). Then
f ∈ R as well and

dist(π, f) � dist(π, ρ) + dist(ρ, f)

� dist(π, ρ) + reqt′(ρ) � req(π),

which certifies that the request of π is satisfied by R. Hence,

R is indeed a feasible solution to Kt.

We are left with proving the postulated upper bound on

cost(R;Kt). Take any client c ∈ C	t . As (C	t′)t′∈chld(t) form

a partition of C	t , there exists a unique node t′ ∈ chld(t)
satisfying c ∈ C	t′ . Then there either exists a facility f ∈ Rt′

satisfying

dist(c, f) = connKt′ (c;Rt′)

or there exists a portal ρ ∈ Πt′ satisfying

dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′).

In the former case, since Rt′ ⊆ R we can conclude that

connK(c;R) � connKt′ (c;Rt′). (18)
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In the latter case, by (C2) either exists π ∈ Πt with

pred(π)+dist(π, ρ) � predt′(ρ), or there exists t′′ ∈ chld(t)
and ρ′ ∈ Πt′′ with reqt′′(ρ

′) + dist(ρ′, ρ) � predt′(ρ). In
the first subcase we conclude that

connK(c;R) � dist(c, π) + pred(π)

� dist(c, ρ) + dist(π, ρ) + pred(π)

� dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′),

which again establish inequality (18) in this subcase. On

the other hand, in the second subcase there exists a facility

f ∈ Rt′′ with dist(ρ′, f) � reqt′′(ρ
′). As f ∈ R as well, we

infer that

connK(c;R) � dist(c, f)

� dist(c, ρ) + dist(ρ, ρ′) + dist(ρ′, f)
� dist(c, ρ) + dist(ρ, ρ′) + reqt′′(ρ

′)
� dist(c, ρ) + predt′(ρ) = connKt′ (c;Rt′).

Hence, again inequality (18) is satisfied.

We conclude that in every case, inequality (18) holds. Sum-

ming this inequality through all clients c ∈ C	t and adding

open(R) to both sides yields yields that cost(R;Kt) �∑
t′∈chld(t) cost(Rt′ ;Kt′), as required.

Lemma 29. Suppose t is a non-leaf node of T . Suppose
further that η ∈ Ũt is such that all predictions involved
in η are nonnegative, and R is a λ-near feasible γ-close
solution to Kt(η), for some reals λ, γ > 0. Then there exist
ϕ ∈ W̃t that is compatible with η and (λ+5δ)-near feasible
(γ + 5δ)-close solutions Rt′,ηt′ ⊆ R to instances Kt′(ηt′)
for t′ ∈ chld(t), where ηt′ = restrictt,t′(ϕ), such that

cost(R;Kt(η)) �
∑

t′∈chld(t)
cost(Rt′,ηt′ ;Kt′(ηt′))− 5δ|C	t |.

Moreover, all request and prediction functions involved in
ϕ are (δ,−λ − 5δ, γ + 4δ, δ)-normal, and all predictions
involved in ϕ are nonnegative.

Proof: Denote Kt = Kt(η) and η = (pred, req). For
each t′ ∈ chld(t), let

Rt′ = ξ−1(L(β(t′))) ∩R.

Then (Rt′)t′∈chld(t) form a partition of R.

For any t′ ∈ chld(t) and ρ ∈ Πt′ , we shall say that ρ is

facility-important if

• there exists a facility f ∈ Rt′ and a client c ∈ C	

served by f in R such that dist(c, ρ) + dist(ρ, f) �
dist(c, f) + 4δ; or

• there exists a facility f ∈ Rt′ and portal π ∈ Πt with

req(π) �= +∞ served by f in R such that dist(π, ρ) +
dist(ρ, f) � dist(π, f) + 2δ.

Further, ρ is client-important if

• there exists a client c ∈ C	t′ and a facility f ∈ R
that serves c in R such that dist(c, ρ) + dist(ρ, f) �
dist(c, f) + 2δ; or

• there exists a client c ∈ C	t′ and a portal π ∈ Πt

that serves c in R such that dist(c, ρ) + dist(ρ, π) �
dist(c, π) + 2δ.

We observe the following.

Claim 3. Let ρ ∈ Πt′ for some t′ ∈ chld(t). If ρ is facility-
important, then

min
f∈Rt′

dist(ρ, f) � γ + 4δ.

If ρ is client-important, then

min(min
f∈R

dist(ρ, f), min
π∈Πt

dist(ρ, π) + pred(π)) � γ + 2δ

PROOF. Recall that R is γ-close in Kt. When ρ is facility-

important due to the first alternative in the definition, we

have

dist(ρ, f) � dist(c, f) + 4δ � γ + 4δ;

here and in the following, we assume notation from the

definition. Also, when ρ is facility-important due to the

second alternative, we have

dist(ρ, f) � dist(π, f) + 2δ � γ + 2δ.

Now, if ρ is client-important due to the first alternative in

the definition, then we have

dist(ρ, f) � dist(c, f) + 2δ � γ + 2δ.

Also, when ρ is facility-important due to the second alterna-

tive, we have

dist(ρ, π) + pred(π) � dist(c, π) + pred(π) + 2δ � γ + 2δ.

This concludes the proof. �
For a real x, let round↓(x) be the largest integer multiple

of δ that is not larger than x, and round↑(x) be the smallest

integer multiple of δ that not smaller than x. That is,

round↓(x) = δ · 
x/δ� and round↑(x) = δ · �x/δ�.
We now define ϕ = (predt′ , reqt′)t′∈chld(t). Consider any

t′ ∈ chld(t) and ρ ∈ Πt′ . We put

• reqt′(ρ) = +∞ if ρ is not facility-important, and

otherwise

reqt′(ρ) = −4δ + round↓
(

min
f∈Rt′

dist(ρ, f)− λ

)
;

• predt′(ρ) = +∞ if ρ is not client-important, and

otherwise

predt′(ρ) = 2δ + round↑
(
min

(
min
f∈R

dist(ρ, f),

min
π∈Πt

dist(ρ, π) + pred(π)
))

.

577



Clearly, functions reqt′(·) and predt′(·) are δ-discrete and,

as functions of ρ under rounding are Lipschitz, they are also

Lipschitz with slack δ. We are left with verifying that these

functions are also [−λ− 5δ, γ + 4δ]-bounded, η and ϕ are

compatible, Rt′ is a (λ + 5δ)-near feasible (γ + 5δ)-close
solution to Kt′ for each t′ ∈ chld(t), where Kt′ = Kt′(ηt′),
and that the postulated lower bound on cost(R;Kt) holds.

We prove these properties in the following claims.

Claim 4. For each t′ ∈ chld(t), the function reqt′(·) is
[−λ−5δ, γ]-bounded and the function predt′(·) is [0, γ+4δ]-
bounded.

PROOF. First, take any ρ ∈ Πt′ that is facility-important (as

otherwise reqt′(ρ) = +∞ anyway). Then reqt′(ρ) � −λ−5δ
by definition and reqt′(ρ) � γ by Claim 3. Next, take any ρ ∈
Πt′ that is client-important (as otherwise predt′(ρ) = +∞
anyway). Then predt′(ρ) � 2δ by definition and predt′(ρ) �
γ + 4δ by Claim 3. �

Claim 5. It holds that η and ϕ are compatible.

PROOF. We first verify condition (C1). Take any π ∈ Πt

with req(π) �= +∞. Since R is a λ-near feasible solution to

instance Kt, there exists f ∈ R such that

dist(π, f) � req(π) + λ.

Then f ∈ Rt′ for some t′ ∈ chld(t), and in particular ξ(f) ∈
L(β(t′)). By Lemma 22, there exists a portal ρ ∈ Πt′ such

that

dist(π, f) � dist(π, ρ) + dist(ρ, f)− 2δ. (19)

In particular ρ is facility-important, so combining the above

with the definition of reqt′(ρ) we obtain

reqt′(ρ) � dist(ρ, f)− λ− 4δ

� dist(π, f)− dist(π, ρ) + 2δ − λ− 4δ

� req(π)− dist(π, ρ)− 2δ;

this directly implies (C1).

We now verify condition (C2). Take any ρ ∈ Πt′ for

any t′ ∈ chld(t) with predt′(ρ) �= +∞. Then ρ is client-

important, so there exists a client c ∈ C	t′ and either a facility

f ∈ R serving c and satisfying dist(c, ρ) + dist(ρ, f) �
dist(c, f) + 2δ, or a portal π ∈ Πt serving c such that

dist(c, ρ) + dist(ρ, π) � dist(c, π) + 2δ. We consider these

two cases separately.

Suppose the first case holds. Since f serves c in R, for

any π′ ∈ Πt and f ′ ∈ R, we have

dist(c, f) � dist(c, π′) + pred(π′)

and

dist(c, f) � dist(c, f ′).

Then we also have

dist(ρ, f) � dist(c, f)− dist(c, ρ) + 2δ

� dist(c, π′) + pred(π′)− dist(c, ρ) + 2δ

� dist(ρ, π′) + pred(π′) + 2δ,

and similarly

dist(ρ, f) � dist(c, f)− dist(c, ρ) + 2δ

� dist(c, f ′)− dist(c, ρ) + 2δ

� dist(ρ, f ′) + 2δ.

Therefore, by the definition of predt′(ρ), we have

predt′(ρ) � dist(ρ, f).

As f ∈ R, there exists t′′ ∈ chld(t) such that f ∈ Rt′′ . Then,

by Lemma 22, there is a portal ρ′ ∈ Πt′′ such that

dist(ρ, f) � dist(ρ, ρ′) + dist(ρ′, f)− 2δ.

We note that

dist(c, f) � dist(c, ρ) + dist(ρ, f)− 2δ

� dist(c, ρ) + dist(ρ, ρ′) + dist(ρ′, f)− 4δ

� dist(c, ρ′) + dist(ρ′, f)− 4δ,

implying that ρ′ is facility-important. Therefore, by the

definition of reqt′′(ρ
′) we infer that

reqt′′(ρ
′) � dist(ρ′, f)− λ− 4δ � dist(ρ′, f)− 4δ.

Combining all the above we infer that

predt′(ρ) � dist(ρ, f)

� dist(ρ, ρ′) + dist(ρ′, f)− 4δ

� dist(ρ, ρ′) + reqt′′(ρ
′),

which establishes (C2) in this case.

Suppose now the second case holds. Since π serves c in

R, for any π′ ∈ Πt and f ′ ∈ R, we have

dist(c, π) + pred(π) � dist(c, π′) + pred(π′)

and

dist(c, π) + pred(π) � dist(c, f ′).

Using the same reasoning as in the first case, but considering

expression dist(c, π)+pred(π) instead of dist(c, f), we infer

that

predt′(ρ) � dist(ρ, π) + pred(π),

which establishes (C2) in this case as well. �
For the next claim, recall that (C	t′)t′∈chld(t) form a

partition of C	t .

Claim 6. Let c ∈ C	t and let t′ ∈ chld(t) be the unique
node satisfying c ∈ C	t′ . Then the following holds.

connKt′ (c, Rt′) � connKt
(c, R) + 5δ. (20)
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PROOF. By the definition of connKt
(c, R), there either exists

a portal π ∈ Πt such that

connKt(c, R) = dist(c, π) + pred(π),

or there exists a facility f ∈ R such that

connKt
(c, R) = dist(c, f).

Suppose the first case holds. By Lemma 22, there exists a

portal ρ ∈ Πt′ such that

dist(c, π) � dist(c, ρ) + dist(ρ, π)− 2δ.

In particular, ρ is facility-important. By the definition of

predt′(ρ), we have

predt′(ρ) � dist(ρ, π) + pred(π) + 3δ.

By combining the above we conclude that

connKt′ (c, Rt′) � dist(c, ρ) + predt′(ρ)

� dist(c, ρ) + dist(ρ, π) + pred(π) + 3δ

� dist(c, π) + pred(π) + 5δ

= connKt
(c, R) + 5δ;

This establishes (20) in this case.

Now suppose the second case holds. Since (Rt′)t′∈chld(t) is
a partition of R, there exists t′′ ∈ chld(t) such that f ∈ Rt′′ .

If t′′ = t′, then we have

connKt′ (c, Rt′) � dist(c, f) = connKt
(c, R),

so (20) indeed holds in this situation. Assume then that

t′′ �= t′. By Lemma 22, there exists a portal ρ ∈ Πt′ such

that

dist(c, f) � dist(c, ρ) + dist(ρ, f)− 2δ.

In particular, ρ is facility-important. By the definition of

predt′(ρ), we have

predt′(ρ) � dist(ρ, f) + 3δ

By combining the above we conclude that

connKt′ (c, Rt′) � dist(c, ρ) + predt′(ρ)

� dist(c, ρ) + dist(ρ, f) + 3δ

� dist(c, f) + 5δ = connKt(c, R) + 5δ.

Hence, again (20) holds in this case. �
Claim 7. It holds that

cost(R;Kt) �
∑

t′∈chld(t)
cost(Rt′ ;Kt′)− 5δ|C	t |.

PROOF. The claimed upper bound on cost(R;Kt) follows

by adding the thesis of Claim 6 through all clients c ∈ C	t ,
and adding the opening costs of facilities of R to both sides.�
Claim 8. For each t′ ∈ chld(t), Rt′ is a (λ + 5δ)-near
feasible (γ + 5δ)-close solution to Kt′ .

PROOF. We first verify the (λ+5δ)-near feasibility. Take any

ρ ∈ Πt′ with reqt′(ρ) �= +∞; then ρ is facility-important.

By the definition of reqt′(ρ), there exists a facility f ∈ Rt′

such that

reqt′(ρ) � dist(ρ, f)− λ− 5δ,

implying

dist(ρ, f) � reqt′(ρ) + λ+ 5δ,

as required.

We now verify the (γ + 5δ)-closeness. Claim 6 asserts

that for each c ∈ C	t′ we have

connKt′ (c, Rt′) � connKt(c, R) + 5δ,

which by γ-closeness of R implies that

connKt′ (c, Rt′) � γ + 5δ.

This is the first condition of the (γ + 5δ)-closeness. For the

second condition, consider any ρ ∈ Πt′ with reqt′(ρ) �= +∞.

In particular, ρ is facility-important, so there exists a facility

f ∈ Rt′ and either a client c ∈ C	 served by f such that

dist(c, ρ)+dist(ρ, f) � dist(c, f)+4δ, or a portals π ∈ Πt

served by f such that dist(π, ρ) + dist(ρ, f) � dist(π, f) +
2δ. By γ-closeness of R in K, in the first case we have

dist(ρ, f) � dist(c, f)− dist(c, ρ) + 4δ � γ + 4δ,

while in the second case we have

dist(ρ, f) � dist(π, f)− dist(π, ρ) + 2δ � γ + 2δ.

In both cases, we conclude that dist(ρ, f) � γ + 5δ, as

required. �
Claims 4, 5, 7, and 8 conclude the proof.

The algorithm: We are finally ready to present the

whole algorithm. First, using the algorithm of Lemma 20 in

polynomial time we compute the tree T together with sets

β(t) for nodes t of T . For each node t we compute the portal

set Πt and the set of functions Nt, as explained before; this

takes total time nO(ε−2r), since T is of size nO(1). Sets Nt

give rise to sets Ut and Wt as defined before.

The remaining, main part of the algorithm is summarized

using pseudo-code as Algorithm Solve. We process the

nodes of T in a bottom-up manner. For each node t, say at

depth i, and each η ∈ Ut, we construct the instance Kt(η)
and compute an 5ε-near feasible solution Rt,η to it as follows.

If t is a leaf, we use the algorithm of Corollary 26 to compute

the least expensive 5ε-near feasible solution Rt,η . Otherwise,

we iterate over all ϕ ∈ Wt such that η and ϕ are compatible,

and consider all candidate solutions R(ϕ) defined as

R =
⋃

t′∈chld(t)
Rt′,restrictt,t′ (ϕ).

Here, Rt′,restrictt,t′ (ϕ) is the pre-computed soluton to the

instance Kt′(restrictt,t′(ϕ)). Out of these candidate solutions

we take the least expensive one and we declare it as Rt,η .
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Finally, we return R = Rt0,(∅,∅) as computed solution,

where t0 is the root of T . This concludes the description of

the algorithm and we are left with analyzing its running time

and approximation guarantee.

Algorithm 1: Algorithm Solve

Input: Instance Jj , tree T , sets Ut,Wt for nodes t of T
Output: Solution R to Jj

for each node t of T in bottom-up order do
for each η ∈ Ut do

if t is a leaf then
Rt,η ← minimum-cost 5ε-near feasible

solution to Kt,η , computed using

Corollary 26

else
Rt,η ← ⊥
for each ϕ ∈ Wt such that η ∼ ϕ do

S ← ⋃
t′∈chld(t) Rt′,restrictt,t′ (ϕ)

if Rt,η = ⊥ or
cost(S,Kt,η) < cost(Rt,η,Kt,η)
then

Rt,η ← S

R← Rt0,(∅,∅), where t0 is the root of T
return R

Lemma 30. Algorithm Solve runs in time nO(ε−2r).

Proof: It suffices to observe that, by Corollary 26 and

Lemma 28, the time spent on processing every node of T
is bounded by nO(ε−2r). Since the number of nodes of T is

nO(1), the total running time follows.

Lemma 31. Algorithm Solve returns a solution R to the
instance Jj satisfying

cost(R; Jj) � OPT(Jj) + 10ε|Cj |.
Proof: Let D ⊆ Fj be an optimum solution to the

instance Jj . By Lemma 24, D is also an optimum feasible

solution to the instance K = Kt0((∅, ∅)), where t0 is the

root of T , Furthermore, by Lemma 19 we infer that D is

3r-close in K.

By applying Lemma 29 in a top-down manner along the

tree T , we obtain, for every node t of T , an element ηt ∈
Ũt and a solution Dt to the instance Kt(ηt) such that the

following holds:

• whenever t is not a leaf, we have that ϕt = (ηt′)t′∈chld(t)
is compatible with ηt;

• Dt is a (5iδ)-near feasible (3r + 5iδ)-close solution in

Kt(ηt), where i is the depth of t in T ;

• all request and prediction functions involved in ηt are

(δ,−5iδ, 3r+5iδ, δ)-normal, and all prediction functions

are nonnegative;

• whenever t is not a leaf, it holds that

cost(Dt;Kt(ηt)) �∑
t′∈chld(t)

cost(Dt′ ,Kt′(ηt′))− 5δ|C	t |. (21)

Recall that T has depth at most log n. Therefore, 5iδ � 5ε
whenever i is the depth of a node in t, implying that all

request and prediction functions involved in elements ηt are

(δ,−5ε, 3r + 5ε, δ)-normal. We infer that

ηt ∈ Ut for each node t. (22)

Recall also that for each non-leaf node t of T , we have

that {C	t′ : t′ ∈ chld(t)} form a partition of C	t . Therefore,
by combining inequalities (21) in a bottom-up manner along

T we infer that

cost(D;K)

�
∑

t : leaf of T

cost(Dt,Kt(ηt))− 5δ log n|Cj |

=
∑

t : leaf of T

cost(Dt,Kt(ηt))− 5ε|Cj |. (23)

Again, as iδ � ε whenever i � log n, for each leaf t of T
the solution Dt is 5ε-near feasible in Kt(ηt). Hence, due

to (22) for each leaf t the algorithm computes an 5ε-near
feasible solution Rt to Kt(ηt) satisfying

cost(Rt;Kt(ηt)) � cost(Dt;Kt(ηt)). (24)

For each non-leaf node t of T , define solution Rt

to instance Kt(ηt) by a bottom-up induction: Rt =⋃
t′∈chld(t) Rt′ . Then by (22) and the fact that ηt ∼ ϕt for

every non-leaf t, we have that for each node t, the algorithm

computes a solution to ηt of cost at most cost(Rt;Kt(ηt)).
In particular, if we denote R = Rt0 , where t0 is the root of

T , then the solution returned by the algorithm has cost at

most cost(R;K). Hence, we proceed with upper bounding

cost(R;K).
For each node t of T let us define tuples of functions η′t

and ϕ′t (here, only when t is not a leaf) as follows:

η′t = ηt + 5ε and ϕ′t = ϕt + 5ε.

That is, η′t is obtained from ηt by adding 5ε to all requests

and all predictions on all portals of Πt, and similarly for ϕt.

Note that for each non-leaf node t of T , we still have the

following properties:

• η′t′ = restrictt,t′(ϕ
′
t) for each t′ ∈ chld(t), and

• η′t and ϕ′t are compatible.

However, the 5ε shift in requests and predictions makes the

following assertion hold for each leaf t of T :

Rt is a feasible solution to Kt(η
′
t) with

cost(Rt;Kt(η
′
t)) � cost(Rt;Kt(ηt)) + 5ε|C	t |. (25)

That is, we obtained feasibility instead of 5ε-near feasibility

at the cost of increasing the cost of the solution.
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Denoting desc(t) the set of leaves of T that are descendants

of t, we may now apply Lemma 28 through a bottom-up

induction along the tree T to infer the following for each

node t of T :

Rt is a feasible solution to Kt(η
′
t) with

cost(Rt;Kt(η
′
t)) �

∑
t′∈desc(t)

cost(Rt′ ;Kt′(η
′
t′)). (26)

In particular, assertion (26) holds for the root t0 of T . Then,

we may use assertions (23), (24), and (25) to infer the

following:

cost(R;K) �
∑

t : leaf of T

cost(Rt;Kt(η
′
t))

�
∑

t : leaf of T

cost(Rt;Kt(ηt)) + 5ε|Cj |

�
∑

t : leaf of T

cost(Dt;Kt(ηt)) + 5ε|Cj |

� cost(D;K) + 10ε|Cj |.
It now suffices to use Lemma 24 to infer that cost(R;K) =
cost(R; Jj) and cost(D;K) = cost(D; Jj); this combined

with the above concludes the proof.

We now conclude the proof of Lemma 9. Apply Algo-

rithm Solve to each instance Jj for which Cj is non-empty,

yielding a solution Rj . As the number of such instances is

at most n, by Lemma 30 this takes total time nO(ε−2r). As

the final solution return R = S ∪ ⋃
j∈N Rj , where we set

Rj = ∅ whenever Cj = ∅. Then, by Lemmas 18 and 31 we

have

cost(R; J ′) � ε ·M +
∑
j∈N

cost(Rj ; Jj)

� ε ·M + 10ε · |C|+
∑
j∈N

OPT(Jj)

� OPT(J ′) + ε ·M + 10ε · |C|.
Finally, we observe that since dist(c, f) � 1 for each client

c ∈ cluster(f), we have

|C| �
∑
f∈D◦

∑
c∈cluster(f)

dist(c, f) � M.

Therefore, we conclude that

cost(R; J ′) � OPT(J ′) + 11ε ·M.

It now remains to apply Corollary 14 to infer the same

inequality for instance J instead of J ′, and to rescale ε by

a multiplicative factor of 11.
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