
Optimal Document Exchange
and New Codes for Insertions and Deletions

Bernhard Haeupler

Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
haeupler@cs.cmu.edu

Abstract—We give the first communication-optimal docu-
ment exchange protocol. For any n and k < n our randomized
scheme takes any n-bit file F and computes a Θ(k log n

k
)-bit

summary from which one can reconstruct F , with high proba-
bility, given a related file F ′ with edit distance ED(F, F ′) ≤ k.

The size of our summary is information-theoretically order
optimal for all values of k, giving a randomized solution to
a longstanding open question of [1, Orlitsky; FOCS’91]. It
also is the first non-trivial solution for the interesting setting
where a small constant fraction of symbols have been edited,
producing an optimal summary of size O(H(δ)n) for k =
δn. This concludes a long series of better-and-better protocols
which produce larger summaries for sub-linear values of k and
sub-polynomial failure probabilities. In particular, the recent
break-through of [2, Belazzougui, Zhang; FOCS’16] assumes
that k < nε, produces a summary of size O(k log2 k+k log n),
and succeeds with probability 1− (k log n)−O(1).

We also give an efficient derandomized document exchange
protocol with summary size O(k log2 n

k
). This1 improves, for

any k, over a deterministic document exchange protocol by
Belazzougui [6] with summary size O(k2 + k log2 n). Our de-
terministic document exchange directly provides new efficient
systematic error correcting codes for insertions and deletions.
These (binary) codes correct any δ fraction of adversarial
insertions/deletions while having a rate of 1−O(δ log2 1

δ
) and

improve over the codes of Guruswami and Li and Haeupler,
Shahrasbi and Vitercik which have rate 1−Θ

(√
δ logO(1) 1

ε

)
.

Keywords-document exchange, insertions and deletions, error
correcting codes, edit distance

I. INTRODUCTION

This paper gives the first efficient solution for the docu-

ment exchange problem with an order optimal summary size.

Our efficient randomized hashing scheme takes any n-bit file

F and for any k computes an optimal sized O(k log n
k)-bit

summary from which one can reconstruct F given a related

Supported in part by NSF grants CCF-1618280, CCF-1814603, CCF-
1527110, NSF CAREER award CCF-1750808, and a Sloan Research
Fellowship.

1The same derandomization result was simultaneously and independently
discovered by [3, Cheng, Jin, Li and Wu; FOCS’18]. Both works were put
on arxiv days apart [4], [5]. However, the author served on the program
committee of FOCS’18 and was as such not permitted to submit his work
there.

file F ′ with edit distance2 ED(F, F ′) ≤ k. We also give a

near optimal derandomization which deterministically com-

putes an O(k log2 n
k) bit summary. This leads to improved

systematic binary error correcting codes which efficiently

correct any δ fraction of adversarial insertions and deletions

while achieving a near optimal rate of 1−O(δ log2 1
δ).

Document exchange, or remote data synchronization, is an

important problem in practice that frequently occurs when

synchronizing files across computer systems or maintaining

replicated data collections over a bandwidth limited network.

In the simplest version it consists of two machines that

each hold a copy of an n-bit file F ′ where on one machine

this file may have been updated to F . When updating the

data on the other machine one would ideally like to only

send information about their differences instead of sending

the whole file F . This is particularly important because

network bandwidth and data transfer times are limiting

factors in most applications and F often differs little from

F ′, e.g., only a small number k of changes have been applied

or a small fraction of the content has been edited, i.e.,

k = δn for some small constant δ ∈ (0, 1). This “scenario

arises in a number of applications, such as synchronization

of user files between different machines, distributed file

systems, remote backups, mirroring of large web and ftp

sites, content distribution networks, or web access [over a

slow network]” [7].

One can imagine a multi-round protocol in which the two

machines adaptively figure out which parts of the outdated

file have not been changed and need not be transmitted.

However, multi-round protocols are too costly and not

possible in many settings. They incur long network round-

trip times and if multiple machines need updating then a

separate synchronization protocol needs to be run for each

individual such machine. Surprisingly, Orlitsky [1], who

initiated the theoretical study of this problem in 1991, proved

that the party knowing F can compute a short summary

of Θ(k log n
k) bits which can then be used by any other

party i knowing a file F ′i , which differs from F by k

2The edit distance ED(F, F ′) between two strings F and F ′ is the
minimal number of insertions, deletions, or symbol changes that transform
one string into the other.

334

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00029

potentially very different edits to recover F and the k edits

that have been applied to obtain F from F ′i . This is initially

quite surprising especially because the summary is, up to

constants, of equal size as a description of the unknown

changes themselves. Indeed, an exchange of Ω(k log n
k)

bits is information-theoretically necessary to describe the

difference between two n-bit strings of edit distance k.

Unfortunately however, Orlitsky’s result is merely existential

and requires exponential time computations for recovery,

which prevents the result to be of practical use. Pointing

out several powerful potential applications, Orlitsky left the

question of an efficient single-round document exchange

protocol that matches the non-constructive O(k log n
k) sum-

mary size as an open question which has since inspired many

theoretical and practical results working towards this goal.

This paper solely focuses on such single-round document

exchange schemes. For simplicity, like all other prior works,

we assume that a good upper bound k on the edit distance

ED(F, F ′) is known3.

In practice rsynch [8] has become a widely used tool

to achieve efficient two-round document exchange / file

synchronization while minimizing the amount of information

sent. Rsynch is also used as a routine in the rdiff tool to

efficiently compute changes between files, e.g., in version

control systems. Many similar protocols have been suggested

and implemented. Unfortunately rsynch and almost all other

tools do not have any guarantees on the size of the data

communicated and it is easy to give examples on which these

algorithms perform extremely poorly. A notable exception is

a scheme of Irmak, Mihaylov and Suel [7].

On the theoretical side the protocol of [7] was the first

computationally efficient single-round document exchange

scheme with a provable guarantee on the size of a summary

in terms of the edit distance k = ED(F, F ′) achieving

a size of O(k log n
k log n). Independently developed fuzzy

extractors [9] can also be seen as providing a document

exchange scheme for some k polynomially small in n. A

randomized scheme by Jowhari [10] independently achieved

a size of O(k log n log∗ n). In two recent break-throughs

Chakraborty, Goldenberg, and Kouckỳ [11] designed a

low distortion embedding from edit distance to hamming

distance which can be used to get a summary of size

Θ(k2 log n) and Bellazougi and Zhang [2] further build

on this randomized embedding and achieved a scheme

with summary size Θ(k log2 k + k log n) which is order

optimal for4 k = exp(
√
log n). All of these schemes are

randomized. The first deterministic scheme with summary

size Θ(k2 + k log2 n) was given by Belazzougui [6]. All

these document exchange schemes have some sub-linear

3Alternatively starting with k = 1 and doubling k until the recovery was
successful leads to the same amount of communication, up to a factor of
two, since the summary size only depends linearly on k.

4We write exp(x) as a shortcut for Θ(1)x = 2Θ(x).

restriction on the maximal magnitude of k. For example,

the breakthrough result of [2] assumes that k < nε for some

sufficiently small constant ε > 0. In particular, there does not

exist a scheme which works for the interesting case where

the edit distance k is a small constant fraction δ of the file

length, e.g., if 1% of the content has been edited.

Deterministic document exchange solutions are further-

more related to error correcting codes for insertions and

deletions, another topic that has been studied quite intensely

recently [12], [13], [14], [15], [16], [17], [18], [19] (see

also these surveys [20], [21]). In particular, as we will

see later, any single-round deterministic document exchange

scheme with summary size s = Θ(|SF |) for edit distance

Θ(k) is equivalent5 to an systematic error correcting block

code with redundancy Θ(s) which can correct up to Θ(k)
errors. Through this equivalence one can derive a systematic

insdel code with redundancy O(k2 + k log2 n) from the

deterministic document exchange of Belazzougui [2]. A

non-systematic code with redundancy O(k2 log k log n) was

given by by Brakensiek, Guruswami and Zbarsky [18] but

this code is only efficient for constant k. Most other works

on error correcting insdel codes [12], [13], [14], [15], [16],

[17] have focused on the setting where a constant fraction of

symbols have been corrupted, i.e., k = δn. For large finite al-

phabets Haeupler and Shahrasbi [15] gave insdel codes with

optimal redundancy (up to a (1 + ε) factor) and for binary

codes Guruswami and Li [14] and Haeupler, Shahrasbi and

Vitercik [16] gave efficient codes for insertions and deletions

with redundancy Θ
(√

δ logO(1) 1
δ · n

)
for any sufficiently

small constant δ.

II. OUR RESULTS

We positively answer the 28 year old open question

of Orlitsky [1] asking for an efficient document exchange

scheme matching the optimal summary size of the existential

results, at least for the randomized case, and give an efficient

randomized hashing scheme for the single-round document

exchange problem which, for any k, produces a summary of

order optimal size Θ(k log n
k).

Theorem II.1. For any k > 0 there is a randomized
algorithm, which given any n-bit string F produces a
Θ(k log n

k)-bit summary SF . There also is a deterministic
recovery algorithm, which given SF and any string F ′ that
is independent from the randomness used for computing SF

and satisfies ED(F, F ′) ≤ k, recovers the string F with
high probability, i.e., with probability 1− n−O(1).

This improves over the recent break-through of [2] which

produces a summary of size Θ(k log2 k+k log n) and works

5This equivalency does not hold for randomized document exchange
schemes or for non-systematic error correcting codes for insertions and
deletions.

335

as long as k < nε. We remark that the scheme in [2]

has a failure probability which is polylogarithmic in n and

polynomial in k whereas the scheme in Theorem II.1 works

with high probability. If one wants to boost the scheme

in [2] to work with high probability one needs to send
logn

log k+log logn independent summaries making the overall

summary size (up to a log log n for sub-logarithmic k) equal

to Θ(k log k log n+ k log2 n
log k) = Ω(k log1.5 n).

As a precursor to our main result we obtain a doc-

ument exchange protocol with sub-optimal summary size

that has the advantage that it can be efficiently deran-

domized6. This gives a deterministic document exchange

protocol with summary size Θ(k log2 n
k), improving over

the deterministic scheme by Belazzougui[6] with summary

size Θ(k2 + k log n).

Theorem II.2. There is a deterministic document exchange
algorithm, which given any any k > 0 and any n-bit string
F produces a Θ(k log2 n

k)-bit summary SF , such that a
deterministic recovery algorithm, which is given SF and any
string F ′ with edit distance ED(F, F ′) ≤ k, recovers F .

The schemes from Theorem II.1 and Theorem II.2 are

the first document exchange protocols which work for the

interesting setting in which a constant fraction of edits

need to be communicated. In particular, if the edit distance

between F and F ′ is δn for some small constant δ > 0 then

our optimal randomized scheme produces a summary of size

Θ(nδ log 1/δ) = Θ(nH(δ))� n, where H(.) is the binary

entropy function. Our deterministic scheme incurs another

log 1
δ factor but the summary size of Θ(nδ log2 1

δ) is still

much smaller than n for sufficiently small δ.

As mentioned above, efficient deterministic document

exchange protocols are known to be equivalent to effi-

cient, systematic error correcting codes for insertions and

deletions. Via this equivalency the deterministic document

exchange scheme from Theorem II.2 directly gives the

following near optimal, efficient, systematic error correcting

codes for insertions and deletions which work for any

k adversarial insertions and deletions with near optimal

redundancy Θ(k
log2 n

k

log q + k).

Theorem II.3. For any n, any k < n, and any finite
alphabet Σ of size q = |Σ| ≥ 2 there is a simple
deterministic encoding algorithm which takes an input string
X ∈ Σn and outputs a systematic codeword C(X) ∈ Σn+r

consisting of X itself and r = Θ(k
log2 n

k

log q + k) redundant
extra symbols and a deterministic decoding algorithm Adec

such that for any X and any C ′ with ED(C ′, C(X)) ≤ k

6The same derandomization result was simultaneously and independently
discovered by [3, Cheng, Jin, Li and Wu; FOCS’18]. Both works were put
on arxiv days apart [4], [5]. However, the author served on the program
committee of FOCS’18 and was as such not permitted to submit his work
there.

we have Adec(C
′) = X , i.e., one can recover X from any

corrupted codeword C ′ which is k-close to C(X) in edit
distance.

This is an almost quadratic improvement in terms of

redundancy and rate loss compared to the state-of-the-

art binary insdel codes of Brakensiek, Guruswami and

Zbarsky [18] and Belazzougui [2] for small values of k
and the codes of Guruswami et al. [13], [14] and Haeupler,

Shahrasbi and Vitercik [16], [15] for the case of a constant

fraction of corruptions. A more detailed comparison is given

in Section V.

III. HASH FUNCTIONS AND SUMMARY STRUCTURE

In this section we describe and define the simple inner-

product hash functions used in our schemes and the content

and structure of the summary SF of F . We start by giving

some intuition about the summary structure in Section III-A,

give our string notation in Section III-B, formally define

our hash function in Section III-C, and define our summary

structure in Section III-D.

A. Intuition for the Summary Structure

Essentially all document exchange algorithms used in

practice, including rsynch, use the very natural idea of

cutting the file F into blocks and sending across hashes

of these blocks in order to identify which of these blocks

are contained in F ′ without any edits.

Once identical blocks have been identified the remaining

information containing all differences between F and F ′

is small and can be transmitted. The protocol of Irmak,

Mihaylov and Suel [7] also follows this strategy. However,

it does not use a fixed block length but uses log n
k levels7

of exponentially decreasing block length. This allows to

progressively zoom into larger blocks containing some edits

to identify smaller blocks within them that do not contain

an edit. Given that higher levels should already identify

large parts of the string F that are identical to F ′ and

thus known to the party reconstructing F many of the

hashes of lower levels will not be of interest to the party

reconstructing F ′. To avoid having to send these hashes

one could run an adaptive multi-level protocol in which

the reconstructing party provides feedback at each level. A

great and much simpler single-round alternative introduced

by [7] is to use (the non-systematic part of) systematic

error correcting codes which allows the receiving party to

efficiently reconstruct the hashes it is missing, without the

sending party needing to know which hashes these are.

The summary SF now simply consists of these encodings

of hashes of all log n
k levels and this summary can be

sent to the reconstructing party in a single-round document

7All logarithms in this paper are with respect to basis two unless stated
otherwise.

336

exchange protocol. Given that at most ED(F, F ′) blocks can

be corrupted in each level the summary size is Θ(k log n
k ·o)

where o is the size of a single hash. Using randomized

o = Θ(log n)-bit hashes with Θ(log n)-bit seeds, which are

guaranteed to be correct with high probability, leads to the

Θ(k log n
k · log n) bit summary size of [7].

The hashing schemes in this paper mostly follow the same

practical framework. In fact, the summary structure we use

for our simpler (sub-optimal deterministic) document ex-

change protocol with summary size Θ(k log2 n
k) is identical

to [7] except that we use a smaller hash size o = Θ(log n
k)

and a compact way to describe the randomness used for

hashing, which can then also be used for derandomization.

Our main result further reduces the hash size o to merely

a fixed constant. This requires an much more robust re-

covery algorithm which can deal with high hash collision

probabilities. In particular, since the failure probability of a

hash is exponential in the hash size o, choosing o = log n
as in [7] implies that no hash collision happens with high

probability and choosing o = log n
k still keep the expected

number of hash collisions at O(k), that is, at the same order

of magnitude as the errors one has to deal with anyway. The

fact that recovery from constant size hashes with a constant

failure probability is even existentially possible requires a

much more intricate probabilistic analysis. Furthermore, the

key trick used in [7], [6], [5] to use error correcting codes to

obliviously communicate the missing or incorrect hashes in

each round inherently requires Θ(k log n
k)-bits to be sent in

each of the log n
k levels. This forms another serious barrier

that needs to be overcome for our main result.

B. String Notation

Next we briefly give the string notation we use throughout.

Let S ∈ Σ∗ be a string. We denote with |S| the length

of S and for any i, j ∈ [1, |S|] with i ≤ j we denote

with S[i, j] the substring of S between the ith and jth

symbol, both included. A sub-string of S is always a set

of consecutive symbols in S, i.e., any string of the form

S[i, j]. We also use multi-dimensional arrays of symbols, in

which every index typically begins with 0. An array position

H[i, j] with i, j ∈ N0 can either contain a symbol over some

alphabet Σ′ or be empty. We denote with H[i, .] the string

of symbols (H[i, 1], H[i, 2], . . .) containing all symbols of

the form H[i, j].

C. Inner-Product Hash Function hashoR and Randomness
Table R

Next we describe our hash function hash, which com-

putes nothing more than some F2-inner-products between

its input string and some random bits.

To properly keep track of the randomness used we will

think of the randomness being supplied by a three dimen-

sional table of bits we call R. We remark that our algorithms

do not actually need to instantiate or compute R explicitly.

Instead the description of the bits contained in R will be

so simple that they can be generated/computed on the spot

whenever needed.

In addition to the string S ∈ Σ∗ to be hashed we supply

four more arguments to hash. A call like hashoR(S, s, �)
produces a hash of the string S ∈ Σ∗ using the randomness

table R. The parameter o ∈ N denotes the size of the hash,

i.e., the number of bits that are produced as an output. The

parameters s and � denote to which starting position and

level the hash belongs to, respectively. These parameters are

used to describe where in the randomness table R to pull the

randomness for the inner product from. This ensures firstly

that hashes for different levels and intervals use different

or “fresh” random bits and secondly that summary creation

and recovery consistently use the same parts of R when

testing whether two strings stem from the same interval

in the original string F . The inner product computed by

hashoR(S, s, �) is now simply the o-bit string h1, . . . , ho for

which hi =
⊕|S|

j=1 (S[j] ·R[s+ j − 1, �, i]).

Note that if R is filled with independent and uniformly

distributed bits we have that any two non-identical strings

have colliding hashes with probability 2−o, i.e., for every

k ∈ N , S �= S′ ∈ Σk and o, s, � ∈ N it holds that

PR[hash
o
R(S, s, �) = hashoR(S

′, s, �)] = 2−o.

The reason for this is that each of the o output bits in-

dependently is an inner product between the string to be

hashed and the same uniformly random bit string of length

|S| taken from R. Therefore the difference between hi and

h′i is the inner product of a uniformly random string and

a non-zero string and as such a uniformly distributed bit.

The probability that each of the o output bits is zero is now

exactly 2−o.

Lastly, we add one further simplification to our hash

function which is that if the output length o is larger than the

length |S| of the string S to be hashed then hashoR(S, s, �)
simply outputs S as a “hash”, possibly padded with zeros.

This gives a collision probability of zero for any two same-

length strings with length at most o and allows to read off

the string S from its hash.

D. Summary Structure and Construction

In this section we formally describe and define the sum-

mary structure and construction which follows the informal

description given in Section III-A:

The summary algorithm takes the string F it wants to

summarize, the parameter k which essentially governs how

many hashes are provided per level (in coded form) and the

parameter o which determines the hash size of the hashes

used. For simplicity of the description we assume that the

length n = |F | of the string F equals 4k · 2L for some

337

integer L, i.e., n is a multiple of 4k and n
4k is a power

of two. This assumption is without loss of generality: One

can send the length of F along with the summary and, for

the hash computations, extend F to a string of length 4k ·
2m, with L = �log2 n

4k 	, by adding zeros to the end. The

recovery algorithm simply adds the same number of zeros

to F ′ during the recovery and removes them again in the

end.

The summary SF contains the following coded hashes

organized into L+ 1 levels:

• The level zero simply cuts F into 4k equal size pieces

and records the hashes for each piece. I.e., let ∀i ∈
[0, 4k − 1] : H[0, i] = hashoR(F [1 + i · 2L, (i + 1) ·
2L], i · 2L, 0) and we include H[0, .], which consists of

ko bits, in the summary.

• For level � ∈ [1, L] we cut F into 4k · 2� equal

size pieces, compute the hash for each piece to form

H[�, .]. The hashes themselves however are too large

to be sent completely. Instead our warm-up (deter-

ministic) scheme encodes these hashes using an error

correcting code Cj which is simply the non-systematic

part of a systematic linear [4k2� + 100k, 4k2�, 11k]
error correcting code over F2o . Such a code exists

and many explicit constructions based on algebraic

geometry are known if o = Θ(log n/k). Our optimal

document exchange protocol with o = Θ(1) requires

a more sophisticated scheme which we describe in

Section IV-D. The information included in SF for this

scheme consists of one or multiple hashes of (subsets

of) H[�, .] of total size Θ(o′k) for some sufficiently

large constant o′ > o.

We remark that the hashes H[�, .] of levels � ≥ L −
�log2 o� are hashes of strings of length at most o. In this

case the hash function hashoR simply outputs the strings itself

making H[L, .] (or already H[L − �log2 o�, .]) essentially

equal to F itself.

In addition to these coded hashes the summary SF also

contains the length |F | and a compact description of the

randomness table R. Throughout this paper we will use

the ε-biased probability spaces of Naor and Naor [22] for

this compact description. In particular, we prove for all our

schemes that the bits in R do not need to be independent

uniform bits but that it suffices if they are sampled from a

distribution with reasonably small bias. The often exploited

fact that a sample point from an ε-biased distribution over

nO(1) bits can be described by only O(log 1
ε + log n)

bits allows us to give very compact descriptions of the

randomness used and send these along in the summary SF .

In particular, we do not need to assume that the summary

construction and the summary recovery algorithm have any

shared source of randomness.

IV. RECOVERY ALGORITHMS

This section describes our recovery algorithms. We start in

Section IV-A by defining hash induced substring matchings,

which form the basis for our algorithms and their analysis.

We then describe our recovery algorithms. In Section IV-B

we first describe a randomized algorithm which produces a

summary of size Θ(k log2 n
k). This is a good warm-up for

our main result. It demonstrates the overall algorithmic struc-

ture common to both our recovery algorithms, introduces the

basic probabilistic analysis used to analyze them, and makes

it easier to understand the problems that need to be addressed

when pushing both the algorithmic ideas and the analysis to

the limit for our main result. We also show in Section V

how to derandomize this scheme to obtain Theorem II.2.

Lastly, Section IV-D contains the order optimal randomized

hashing scheme which uses constant size hashes and thus

achieves the optimal summary size of Θ(k log n
k).

A. Hash Induced Substring Matchings

For every n, k, � we say that two index sequences

i1, . . . , ik′ , i
′
1, . . . , i

′
k′ ∈ [1, n − 2L−� + 1] of length k′ are

a level-� size-k′ (sub-string) matching between two strings

F, F ′ ∈ {0, 1}n induced by hashoR if

• i1 ≤ i2 ≤ . . . ≤ ik′ ,
• all i-indices are starting points of blocks that got hashed

in SF in level �, i.e, ij − 1 is a multiple of 2L−� for

every j ∈ [1, k′], and

• hashes of the strings in blocks that are matched

are identical (we also say the hashes are match-

ing or consistent), i.e., for all j ∈ [1, k′] we have

that hashoR(F [ij , ij + 2L−� − 1], ij − 1, �) equals

hashoR(F
′[i′j , i

′
j + 2L−� − 1], ij − 1, �). In the rare

instances where we (temporarily) relax this requirement

we speak of a non-proper matching.

Furthermore, we call such a matching

• monotone if i′1 ≤ i′2 ≤ . . . ≤ i′k′ ,
• disjoint if intervals that are matched in F ′ are not

overlapping, i.e., we have for every j, j′ ∈ [1, k′] with

j �= j′ that |i′j − i′j′ | ≥ 2L−�.

• bad or k′-bad if for every matched blocks in F and

F ′ the actual strings are non-identical (despite having

identical hashes), i.e., if for all j ∈ [1, k′] we have that

F [ij , ij + 2L−� − 1] �= F ′[i′j , i
′
j + 2L−� − 1].

• k-plausible if it is monotone and |i1 − i′1| + |(|F | −
ik′)−(|F ′|−i′k′)|+

∑k′−1
j=1 |(ij−i′j)−(ij+1−i′j+1)| ≤

k. Note that a monotone matching is k-plausible if it

can be explained by at most k insertion and deletion

operations.

We generally assume all our matchings to be proper, mono-

tone, and disjoint and often omit these qualifiers. Whenever

we talk about non-necessarily monotone, not-necessarily

338

proper or not-necessarily non-disjoint matchings we ex-

plicitly label these matchings as non-disjoint, non-proper
and/or non-monotone. Furthermore, if the context allows it

we sometimes omit mentioning the strings F, F ′, the hash

function hashoR, or the level � with respect to which a

matching satisfies the above conditions.

For any two strings F, F ′ one can compute a monotone

matching of maximum size in time linear in the length of

the strings n and polynomial in k using a standard dynamic

program. The same is true for a maximum size disjoint,

bad, or k-plausible monotone matching. It is furthermore

likely that using the same techniques which transforms the

standard O(nk) dynamic program for edit distance into an

O(n+k2) dynamic program [23] can also be used to obtain

O(n+kO(1)) algorithms for the above maximum monotone

matching variants as well.

B. Algorithm 1: Simple Level-wise Recovery

Algorithm 1 Simple Recovery with o = Θ(log n
k) and

Summary Size O(k log2 n
k)

1: get HF [0, .] from SF

2: for � = 0 to L− 1 do

3: Ml ← largest level-� disjoint monotone matching

from hashes in HF [�, .] into F ′

� Recover level �+ 1 hashes
4: H̃F [�+ 1, .]← guesses for level �+ 1 hashes using

M� and F ′

5: HF [� + 1, .] ← DecodeC�+1
(H̃F [� +

1, .], encoding of HF [�+ 1, .] from SF)

6: F ← HF [L, .]

Our first recovery algorithm, which we call Simple Level-

wise Recovery, is now easily given (see also the pseudo-code

description of this algorithm, which is given as Algorithm 1):

Assume that the recovery algorithm has recovered all 4k ·
2� hashes HF [�, .] of F at level � correctly. Initially � = 0
and this assumption is trivially true because these hashes

are included in the summary SF . Equipped with these 4k ·
2� hashes the algorithm finds the largest monotone disjoint

matching between the level � blocks in F and blocks in F ′

of the same length. The recovery algorithm now guesses the

level � + 1 hashes HF [� + 1, .] of F using M� and F ′ as

follows: Each block of F in level � splits into exactly two

blocks in level � + 1. For any block in F that is matched

to a sub-string in F ′ with an identical hash the recovery

algorithm guesses that the strings in these blocks are also

identical and computes the hashes for the two sub-blocks

in level � + 1 by applying hashoR to the appropriate sub-

string in F ′. If a block in F is not matched one can fill in

something arbitrarily as a guess or mark it as an erasure.

The hope is that the vector of hashes H̃F [�+ 1, .] for level

�+1 guessed in this way is close in Hamming distance to the

correct hashes HF [�+1, .]. If this is the case, concatenating

H̃F (�+1, .) with the redundancy Enc�+1 for level �+1 from

SF and decoding this to the closest codeword in C� correctly

recovers the level �+ 1 hashes HF [�+ 1, .] and allows the

algorithm go proceed to the next iteration and level. In this

way the recovery algorithm iteratively recovers the hashes

for every level one by one until level L. In level L blocks are

of constant size and hashoR becomes the (padded) identity

function such that one can read off F from HF [L, .].

C. Correctness of Algorithm 1 and k-Bad Matchings

In this subsection we give a sufficient condition for the

correctness of Algorithm 1. In particular, we prove that if

there is no k-bad self-matching in F , i.e., a size-k bad mono-

tone disjoint matching, between F and itself under hashoR,

then Algorithm 1 recovers F correctly. In Appendix V we

then show that hashes of size o = Ω(log n
k) and only little

randomness in R are sufficient to make the existence of such

a witness unlikely, in fact, so little randomness that one can

easily derandomize the algorithm.

To prove the correctness of Algorithm 1 we will argue that

the matching computed in each level is sufficiently large and,

in the absence of a k-bad self-matching, of sufficient quality

to allow the recovery of the hashes for the next level using

the redundancy in SF . This allows the recovery algorithm

then to proceed similarly with the next level.

It is easy to see that the matching computed is always

large assuming that F and F ′ are not too different:

Lemma IV.1. Assuming that the hashes for level � were
correctly recovered, Algorithm 1 computes a matching of
size at least 4k · 2l − ED(F, F ′) in level �.

Proof: Since F and F ′ differ by only ED(F, F ′)
insertion, deletions, or symbol corruptions and since each

such edit can affect at most one block we know that we can

look at the monotone matching which matches all blocks in

F which did not suffer from such an edit to its identical

sub-string in F ′. Since the hashes were correctly recovered

and the hashes use the same parts of R to compute the inner-

producet hashes this is a valid monotone matching of size

4k ·2l−ED(F, F ′). Since Algorithm 1 computes the largest

valid matching it finds a matching of at least this size.

We would like to say that if in the summary SF ran-

dom enough hash functions with a small enough collision

probability are used, which usually result from a sufficiently

unbiased R and a large enough hash output length o, then

most of the matching pairs computed by Algorithm 1 are

correct, i.e., correspond to sub-strings of F and F ′ that are

identical under hashoR with the randomness R used. For any

339

matching which contains too many pairs of substrings which

are not-identical but have the same hashes we abstract out

a witness which explains why hashoR failed. For this we

focus on bad matching pairs that go between non-identical

intervals in F and F ′ which do not contain any edits. This

however is exactly a k-bad selfmatching in F . The advantage

of looking at such a witness is that its existence only depends

on SF (or hashoR, R and F) but not on F ′.

Lemma IV.2. Assume that the hashes for level i were
correctly recovered and that for level � there is no k-bad
matching of F to itself under hashoR. Then the monotone
matching computed by Algorithm 1 for this level matches at
most ED(F, F ′) + k non-identical blocks in F and F ′.

Proof: F and F ′ differ by only ED(F, F ′) insertion,

deletions, or symbol corruptions and each such edit can

affect at most one of the blocks in F ′ that are matched

to a non-identical block in F . Therefore there are at most

ED(F, F ′) such matches in the monotone matching com-

puted by Algorithm 1. Furthermore, if we restrict ourselves

to the matches between non-identical sub-strings in F and

F ′ computed by Algorithm 1 which are not of this type it

is true that each of these matches comes from matching a

sub-string in F to a sub-string in F ′ which, due to having

no edits in it, is identical do a sub-string in F . Since, by

assumption, Algorithm 1 used the correctly recovered level

� hashes and computes a monotone disjoint matching these

matches form a bad matching in F . By assumption this

matching can be of size at most k giving the desired bound

of at most ED(F, F ′) + k non-identical blocks matched in

F and F ′ by Algorithm 1

Lastly, because we use error correcting codes with suffi-

ciently large distance we can easily correct for the k missing

hashes and 2k incorrect hashes.

Lemma IV.3. Assume that for all levels there is no k-bad
matching of F to itself under hashoR used to compute SF ,
which is given to Algorithm 1 as an input. Furthermore
assume that the input file F ′ satisfies ED(F, F ′) ≤ k. Then,
Algorithm 1 correctly outputs F .

Proof: We will first show by induction on the level

� that Algorithm 1 correctly recovers the level � hashes

HF [�, .] of F that were computed for SF . For level � = 0 this

is trivial because these hashes are a part of SF and therefore

given to Algorithm 1 as an input. For the induction step we

want to show that the hashes for level �+1 will be correctly

recovered assuming that this has successfully happened for

the hashes for level �. Here Lemma IV.1 guarantees that a

matching of size 4k · 2l − ED(F, F ′) is computed which

results in at most k = ED(F, F ′) blocks in the level �
of F having no match and therefore at most 2k hashes

in level � + 1 are assigned the erasure symbol “?” in the

guessing step of Algorithm 1. Furthermore, the assumptions

for Lemma IV.2 are satisfied guaranteeing that at most

ED(F, F ′) + k = 2k of the matchings computed by Algo-

rithm 1 in level � belong to non-identical strings in F and

F ′. This results in at most 4k of the hash values computed

in the guessing step of Algorithm 1 being incorrect. The

Hamming distance between the correct hashes HF [i + 1, .]
and the estimate H̃F [i + 1, .] produced by Algorithm 1 is

therefore at most 6k. Given that the error correcting code

used has distance 13k these errors will be corrected leading

to a correct recovery of the level �+ 1 hashes in Step 5 of

Algorithm 1. In its last iteration Algorithm 1 will correctly

recover the level L hashes HF [L, .], which, as discussed at

the end of Section III-D, is equal to F (up to padding extra

zeros to each hash).

It remains to show that k-bad matchings are highly

unlikely. Lemma IV.4 does exactly this. It shows that for

sufficiently random R and o = Ω(log n
k) with high proba-

bility no k-bad matching exists. We start by showing that

a distribution whose bias is exponentially small in k log n
k

suffices to avoid a k-bad matching with high probability.

This is sufficient to guarantee the correctness of Algorithm

1. We furthermore shows how to extend these arguments

to much lower quality distributions with a polynomially

large bias. Since this second part is important for our

derandomization but not needed to understand our main

result we defer this second part to Section V.

Lemma IV.4. For every sufficiently large c ≥ 1 it holds that
if o = c log n

k and R is sampled from an (2−2ok)-biased
distribution of bits then for every level � the probability that
there exists a k-bad self-matching of F under hashoR is at
most 2−Ω(ok).

Proof: Suppose for sake of simplicity that R is sampled

from iid uniformly random bits. In this case the probability

for any individual sub-strings of F to have a bad hash is

2−o. Furthermore, for a fixed k-bad matching the probability

that all matching pairs are bad under hash is 2−ok. There

furthermore exist at most
(
n
k

)2
= 2O(k log n

k) ways to choose

the indices for a potential k-bad matching and therefore

also at most 2O(k log n
k) many such matchings. Taking a

union bound over all these potentially bad matchings and

choosing the constant c large enough this guarantees that

the probability that there exists a k-bad matching is at most

2−ok · 2O(k log n
k) = 2−Ω(ok).

Next we argue that the same argument holds if R is 2−cok-

biased. In particular, for every k- matching determining

whether it is a k-bad matching only depends on the outcome

of ok linear tests on bits from R. For each of the 2ok

different outcomes for these tests the probability deviates

at most by 2−2ok from the setting where R is sampled

from iid uniformly random bits and is therefore still at

most 2−ok + 2−2ok = 2−Ω(ok). The same union bound thus

applies.

340

D. Algorithm 2: Using Constant Size Hashes

In this section we give a more sophisticated and even more

robust recovery algorithm. Surprisingly this algorithm works

even if the hash size o used in the summary computations

is a merely a small constant, leading to our main result,

the order optimal randomized document exchange hashing

scheme.

The main difference between Algorithm 1 and Algo-

rithm 2 is that we take matchings of previous levels into

account and restricting ourself to k-plausible monotone

matchings. This is sufficient to reduce the problem to a

Hamming type problem on how to communicate the next

level of hashes when most of them are already known to

the receiver. However, here we cannot use systematic error

correcting codes anymore but need to develop more efficient

techniques.

Algorithm 2 Randomized Recovery with o = O(1) and

Summary Size O(k log n
k)

1: M0 ← ∅
2: get HF [0, .] from SF

3: for � = 0 to L− 1 do
� Transform into a proper level � matching

4: remove all matches not consistent with HF [�, .] from

M�

� Compute plausible disjoint monotone matching
for unmatched hashes

5: Δl ← largest k-plausible level-� matching of hashes

unmatched in M� into F ′

6: M�+1 ← Ml + Δ� (and split all edges into two

making it a (�+ 1)-level matching)

� Recover level �+ 1 hashes
7: Recover HF [�+1, .] by using the substrings matched

in M�+1, guessing Θ(k) incorrect hashes and their

values, and verifying correct guesses with hashes in SF

8: F̃ ← HF [L, .]

We note that the matchings M� produced by Algorithm 2

are not necessarily monotone and not necessarily disjoint,

i.e., they can contain matches to overlapping intervals in F ′.
At the beginning or end of an iteration the matching might

even be a non-proper level � matching in that there can be

matches which stem from matching level (�− 1) hashes but

do not have matching level � hashes. At the beginning of

an iteration such matches are removed making the matching

proper. In order to analyze the progress of Algorithm 2 we

introduce the following notion of an okay matching:

Definition IV.1. We say a level-� non-disjoint non-monotone
non-proper matching M� at the beginning of an iteration of

Algorithm 2 is okay if there are at most 5k unmatched hashes
or bad matches, i.e., matches between intervals in F and F ′

that are not-identical.

We can now prove that each iteration of Algorithm 2

works correctly with exponentially high probability in k,

as long as it starts with an okay matching and as long

as randomness in R is independent between levels and

sufficiently unbiased:

Lemma IV.5. Suppose the randomness in R is at most
exp(−ok)-biased and independent between levels, where
o > 1 is a sufficiently large constant. If, at the beginning
of iteration � of Algorithm 2, the matching M� is okay
and HF [�, .] has been correctly recovered then, with prob
1− exp(−ok), the matching M�+1 is also okay.

Proof: We want to bound the number of unmatched and

bad matches in the matching M�+1 produced by iteration �
of Algorithm 2. By assumption M� is okay and thus has at

most 5k unmatched or bad matches.

The number of unmatched hashes in M�+1 is easily

bounded. In particular, for any unmatched hashes there exists

a k-plausible disjoint monotone matching which leaves at

most k hashes unmatched, namely the one which matches

all blocks in F that do not have an edit in it. This is in

particular true for the hashes that are unmatched after the

matching M� has been cleaned up and transformed into a

proper level-� matching in Step 4 of Algorithm 2. Since

Δ� is the largest such matching it leaves at most k hashes

unmatched, which split into at most 2k unmatched hashes

in M�+1 in Step 6 of Algorithm 2.

Next we bound the number of bad matches in M�+1.

There are two potential sources for bad matches, namely,

they can either stem from bad matches in M� that are not

identified as bad matches by HF [�, .], or they can be newly

introduced by the matching Δ�.

The expected number of bad matches of the first type is at

most 5k ·2−o ·2 since each of the at most 5k bad matches in

the okay matching M� has a non-matching hash in HF [�, .]
with probability 2−o and gets split into two potentially bad

matches in M�+1 if it goes undetected. The probability that

this happens to more than k/2 matches leading to more than

k bad edges of this type in M�+1 is at most exp(−ok) even

if the probabilities in R are exp(−ok)-biased.

Next we want to argue that, with probability 1 −
exp(−ok), the matching Δ� introduces at most k new bad

matches which get doubled into at most 2k bad edges in

M�+1. For this we first bound the number of possible Δ�

matchings, given a fixed okay M� matching, by exp(k), and

then take a union bound. To count the number of possible

Δ� matchings, given a fixed okay M�, we specify such a

matching by indicating which of the at most 5k unmatched

hashes in M� are matched and what the offsets of their

341

starting positions is. Since |i1 − i′1|+ |(|F | − ik′)− (|F ′| −
i′k′)| +

∑k′−1
j=1 |(ij − i′j) − (ij+1 − i′j+1)|, i.e., the sum of

the differences between these offsets, is at most k for every

k-plausible matching the values and signs of these offsets

can take on at most exp(k) different values. Overall there

are therefore at most exp(k) different possibilities for Δ�

given M�. Furthermore, the probability for any fixed such

matching to be contain k bad matches is at most exp(−ok),
if the randomness in R is independent from M� and at

most exp(−ok)-biased. A union bound over all exp(k)
possibilities for Δ� thus shows that with high probability

at most exp(k − ok) = exp(−ok) there is no Δ� matching

which introduces more than k new bad matches.

Overall, with probability 1 − exp(−ok), this leads to at

most 5k unmatched hashes or bad matches in M�+1 at

the end of iteration � of Algorithm 2, making it an okay

matching as desired.

Lemma IV.5 shows that our improved matching procedure

in Algorithm 2 is robust enough to tolerate hashes of

constant size o = Θ(1). In fact, it guarantees that given an

okay matching for level � and the correctly recovered hashes

for level � a finer grained matching for level �−1 is computed

which is okay, i.e., which allows all but 5k hashes of level

�+1 to be guessed correctly. Algorithm 2 thus achieved the

crucial feat of reducing the edit distance document exchange

problem to its much simpler Hamming type equivalent in

which two parties hold a long string differing by at most 5k
Hamming errors and one party wants to help the other learn

its string.

Remark – Impossibility of Reconciling 5k (Worst-Case)
Hamming Errors with o(k log n

k) bits: In Algorithm 1 the

reduction to the Hamming problem was all that was needed.

There, too, the recovery algorithm found a guess H̃[�+1, .]
for H[� + 1, .] which differed by at most O(k) hashes.

Both of these strings of hashes were over an alphabet

of o = log n
k bits and one could then simply use the

error correcting code idea of [7] to recover H[� + 1, .]
from H̃[� + 1, .] using Θ(ko) = Θ(k log n

k) bits of addi-

tional information which could be put into SF . Concretely,

we used the non-systematic part of a systematic linear

[4k2� + 100k, 4k2�, 11k] error correcting code over F2o to

send the equivalent of O(k) hashes and recover the position

and correct value for the 5k hashes differing between the

matching generated guess and the true hashes.

Unfortunately however, for o = Θ(1), such error correct-

ing codes cannot exist and in fact it is easy to verify8 that

it is impossible to reconciliate two parties holding n long

strings over some alphabet Σ differing in any k positions

without sending at least Θ(k · (log n
k + log(|Σ| − 1))) bits,

because the position of the differences can already encode

8Thanks to Xin Li and his group for pointing out this error in the
preliminary draft of this work.

log
(
n
k

)
= Θ(k log n

k) bits. For the encoding used in SF

this implies that either Θ(k log n
k) bits need to be put into

SF per level to allow the recovery of the Θ(k) bad or

missing hashes, as we do in Algorithm 1, or one needs

to have a better understanding of the distribution of the

typical positions of bad hashes, together with a better coding

scheme which exploits the lower entropy in this distribution

to communicate efficiently. In particular, we would like to

only use Θ(1) bits per bad hash to describe its position and

correct value. This is what we do next.

Understanding the Distribution of Positions of Incor-
rectly Matched Substrings and Defining the Forest of Still
Consistent Matches: Suppose we run Algorithm 2 for �
iterations. As proved in Lemma IV.5, with high probability,

in each level the matching Δ� adds at most 5k newly

matched substrings. These substrings get split in two in

every level thereafter or eliminated if non-matching hashes

reveal that a match is inconsistent (proving that its guess

was wrong). Each matched substring in level � can thus be

classified by the level �′ ≤ � its first ancestor was generated,

which of the at most 5k newly matched substrings in level �′

this ancestor was, and which of the at most 2�−�′ substrings

stemming from this ancestor it is. In this way the set of all

substrings matched throughout Algorithm 2 can be naturally

organized into ≤ 5k binary trees of depth � − �′ for each

level �′ ≤ �. We call this the forest of all matches.

Throughout Algorithm 2 some of these matches are

discovered to be inconsistent and removed from M�. In

particular, once Algorithm 2 recovers the correct hashes

H[�, .] at the end of iteration �− 1 it will, at the beginning

of the next iteration, check for every matching edge in M�

whether it is consistent and otherwise remove it from M� to

make the matching proper. It is important to note that if a

match is discovered to be bad then all ancestor matches in

the forest of all matches are proven to be bad as well, despite

their consistent hashes having failed to detect this badness

at the time because of a hash collision. We say that a match

is still consistent if it has not (yet) been proven to be bad

through an inconsistent hash of a descendant. The set of all

substrings matched throughout Algorithm 2 which are still

consistent is similarly nicely organized as a forest of binary

trees, where there leafs are exactly the matches/substrings

in M�. The main difference to the forest of all matches is

that when a match in M� is discovered to be inconsistent

then it and all its ancestor matches in its leaf-to-root path are

removed. This cuts a tree of depth d into up to d−1 trees, at

most one for each depth smaller than d. The number of trees

in level �′ therefore never exceeds the number of matches

made in iteration �′ plus the number of bad matches (from

previous iterations) in iteration �′. According to Lemma IV.5

this is at most 5k, with high probability. Throughout the

rest of this paper we focus on the forest of still consistent

matches. We say that a match in M� stems from level �′ ≤ �

342

if its root in the forest of still consistent matches is a level

�′ match.

Since hashes fail independently with probability exp(−o)
having a substring stemming from level �′ be discovered to

be wrong has probability exp(−(�− �′)o). Of course there

are also more of these substrings, namely up to 5k2�−�′

many of them. However, given that o is a sufficiently large

constant a union bound shows that one still expects most bad

matches to be among the substrings stemming from higher

levels with the expected number of bad hashes decaying

exponentially with the level they are stemming from. This

is quite intuitive, given that matches from these more recent

iterations have not been included/tested by hashes quite as

often.

We will rely on this exponential concentration of bad

hashes towards the much smaller number of positions corre-

sponding to recent matches when trying to recover the cor-

rect H[�+1, .] from the guesses for these level �+1 hashes

generated by M�+1. In particular, we identify a sufficiently

small number of plausible guesses for sets of matches or

positions in H[�+1, .] which, with high probability, include

at least one guess which covers all inconsistent hashes. In

fact, we will show that with high probability there is a

guess which is a super-set of all bad hashes. For any such

guessed set of positions for bad/inconsistent hashes we then

enumerate all possible values for these positions to get a

guess for the correct H[� + 1, .]. We then use some extra

hash (or hashes) of H[� + 1, .], which are included in SF ,

to verify if which of the enumerated choices for H[�+ 1, .]
is correct.

Enumerating Plausible Guesses Using t-Witnesses: To

formally implement this intuition and strategy and to prove

that it works we use combinatorial structures we call t-
witnesses. They are a specially formated way of specifying

some Θ(t) guesses for incorrect positions in H[�, .] (or

equivalently inconsistent matches). To specify a t-witness at

level �, i.e., a guess of at most Θ(t) matches stemming from

levels � and above, we first specify a non-negative number

for each of the last min{l, t} levels, i.e., for each integer

0 ≤ i ≤ min{�− 1, t− 1} we specify an integer 0 ≤ bi ≤ t
with the restriction that

∑
i ibi ≤ t. As we will describe later

these bi essentially specify the number of extra substrings

stemming from level � − i for which our guessed hash is

not matching the actual hash for the next iteration because

the substring is incorrect but has gone undetected so far.

To specify which substrings among those in this level those

are we have for each integer 0 ≤ i ≤ min{� − 1, t − 1}
a subset of positive integers Bi ⊆ {1, 2, . . . , t2i} of size

|Bi| ≤ �t2−i�+ bi.

Next we explain how exactly a t-witness in level � for

t > Θ(k) encodes a set of at most
∑

i |Bi| =
∑

i�t2−i� +∑
i bi = 2t + t = 3t matches for a given matching M�.

Recall that these matches exactly correspond to leafs in the

forest of still consistent matches. Process the Bi sets from

the largest i to the smallest and process each j ∈ Bi from the

smallest to the largest. In particular, we start with the largest

i for which Bi is non-empty and select the smallest integer

j ∈ Bi. This specifies a leaf stemming from level �−i in one

of trees of depth i in the forest of still consistent matches

by simply taking the �j/2i	th such tree and selecting its

((j mod 2i) + 1)th leaf (counting leafs in cut-out subtrees

as well). Any leaf can be specified this way if there are at

most t trees. Before continuing to process the next (larger)

j (or smaller i if there is no further integer in the current

Bi) we cut all nodes from the chosen substring to its root,

creating at most i subtrees of smaller depth which we add

to the corresponding levels. In essence we treat the match as

if it was discovered to be inconsistent and update the forest

of still consistent matches accordingly. We then continue

similarly with the next guess.

The reason for the cutting is that each incorrect substring

from a level � − i tree corresponds to i failed hashes

with the caveat that for two such strings these hashes

might overlap. Cutting and reclassifying the cut-off trees

and leafs/substrings as above makes sure that any substring

specified by a j ∈ Bi corresponds to i disjoint failed hashes.

It remains to analyze the number of such t-witnesses and

to show that checking all t-witnesses for t = 6k suffices to

indeed check all typical ways in which hashes fail.

Lemma IV.6. For any t the number of t-witnesses is at most
exp(t).

Proof: The condition
∑

0≤i ibi = t implies that the

sum of all bi for a t-witness is at most t. The number

of possibilities of different choices for setting the b-values,

i.e., for distributing these these t “tokens” over at most t
levels, is at most

(
2t
t

)
= exp(t). Furthermore, the number

of possibilities to pick �t2−i�+bi integers smaller than t2i is

at most
(

t2i

�t2−i�+bi

)
= Θ(4i)Θ(t)2−i+bi ≤ exp(ti2−i + ibi).

The total number of different t-witnesses for a given set-

ting of b values is thus at most
∏

i exp(ti2
−i + ibi) =

exp(t
∑

j j2
−j) exp(

∑
i ibi) = exp(t).

Lemma IV.7. For t = 6k, with probability 1 − exp(−ot),
the set of substrings in M� that are bad can be covered by
a t-witness.

Proof: Suppose the set S of bad level � matches in

M� cannot be covered by a t-witness. This means that there

exists as subset of levels I ⊆ [�] such that for each i ∈
I the number of bad matches in M� stemming from level

� − i (after cutting) is by bi > 0 larger than �t2−i� where∑
i∈I ibi ≥ t.

Following the argument from Lemma IV.5 the number of

incorrectly matched substrings in the last level is at most 5k

343

with probability 1−exp(−ok) = 1−exp(−ot). In this case

on can choose b0 = 0 for any potential t-witness such that

I does not contain 0.

Next we show that the probability for a given set of such

bad matches to have survived up to iteration � is at most

exp(−ot). In order for a specific substring that stems from

level � − i to fail the i hashes including it in every level

but the last one must have failed. The probability for this

is exp(−io) for independent hashes, which is guaranteed

through the cutting of overlapping hashes. Given that there

are at most t2i substrings that get processed in level � − i
the expected number of such substrings to be incorrect and

not previously discovered in this level is t exp(−io) and the

probability for �t2−i�+bi such substrings to exist is at most

exp(−iobi). The probability for a fixed set of matches as

specified above to be a description of bad matches is thus at

most
∏

i∈I exp(−iobi) = exp(−o∑i∈I ibi) = exp(−ot).
According to Lemma IV.6 the number of t-witnesses is

at most exp(t) and specifying a full witness gives rise to at

least as many possibilities as just specifying the values for

all Bi with i ∈ I . Therefore A simple union bound over all

such possibilities completes the proof that having a set of

bad matches in M� which cannot be covered by a t-witness

is at most exp(t) · exp(−ot) = exp(−ot).

Therefore, checking all exp(k) many Θ(k)-witnesses suf-

fices, with probability 1− exp(−ok), to find (a superset of)

the positions of the substrings which have a non-matching

hash in this level. Even trying all exp(o)5k possibilities for

what the correct hash values are for each of these exp(k)
guesses and verifying if it leads to a matching hash hi

for the whole string of hashes works correctly because the

probability that an incorrect guess has a matching hash hi

is exp(−o′k), which even after a union bound over all

exp(k) exp(ok) guesses is negligible.

Overall for any k ∈ Ω(log log n) ∩ O(log n) this makes

Algorithm 2 correct and efficient since each of the O(log n)
levels succeeds with probability 1 − exp(−ok) > 1 −
logO(1) n and the number of guesses in each level one

needs to try is at most exp(log n) = nO(1). In the case

of k < o(log logn) there are too many levels to simply do

a union bound with the exp(−ok) failure probabilities for

correctness and for larger k the number of guesses needed

makes the algorithm inefficient. These two problems are

handled relatively easily as we show next. We first prove

Theorem II.1 for the case of small k, i.e., for k = O(log n):

Proof of Theorem II.1 for k = O(log n). : We first

note that for o = O(1) the hashes in the summary SF are

indeed of size O(ok log n
k) as desired. Furthermore, given

the constructions for ε-biased distributions from [22] one

can specify the randomness for each level using O(ok) bits

or O(ok log n
k) across all levels. We thus overall have a

summary size of Oo(k log
n
k) as claimed.

It furthermore follows almost immediately from

Lemma IV.5 that Algorithm 2 is a successful decoding

algorithm with probability log n
k · exp(−ok) as long as R is

chosen independently from an exp(−ok) biased distribution

for each level.

In particular, by induction on �, each iteration starts with

a correct HF [�, .] and an okay matching M�. This is true for

� = 0 because HF [0, .] is part of the summary of F used

as an input and M0 is the empty 0-level matching which

consists of 4k unmatched hashes in F . For subsequent levels,

we get from Lemma IV.5 that M�+1 is also okay. This then

leads to a guess H̃F (�+1, .) for the level �+1 hashes which

is correct up to 5k hashes. With probability 1 − exp(−ok)
these can be described by a Θ(k)-witness by Lemma IV.7.

Guessing the correct hash values for this witness then leads

to the correct hashes which is recognized by a matching of

the hash h′i. The probability that among the other exp(k)
many Θ(k)-witnesses each with exp(ok) guesses for their

hash values there is an incorrect one which still matches h′i
is exp(k) exp(ok) exp(−o′k) = exp(−o′k) < exp(−ok).
In each level we thus recover the correct hashes HF (� +
1, .) with probability 1− exp(−ok). A union bound over all

log n
k levels then leads to a failure probability of at most

log n
k · exp(−ok).

While this failure probability is o(1) if k = ω(log log n)
it is not quite as strong as the exp(k + log n) failure prob-

ability claimed by Theorem II.1 and furthermore becomes

meaningless for even smaller k. Therefore, for k < logn√
o

we

modify Algorithm 2 as follows: Enumerate over any subset

U of levels of size |U | = O(logn√
ok

) levels and instead of

running Algorithm 2 on this level try all exp(k) different

k-plausible matchings as a possibility of Δ�. Given that

there are at most
(
logn
|U |

)
= exp(log n log ok√

ok
) = n

log ok√
ok many

subsets of levels and at most exp(k|U |) = exp(logn√
o
) many

matchings to try for all of these levels this requires at most

n
log o√

o many different modified runs of Algorithm 2 which

is an essentially negligible overhead in the recovery time.

Furthermore, the probability that none of these runs success-

fully recovers F is at most the probability that of having

|U | failures in log n
k trials in which each trial succeeds

independently with probability exp(−ok), and thus at most(
logn
|U |

)
exp(−ok)|U | < n

log ok√
ok exp(− log n

√
o) = n−

√
o.

To see this we apply Lemma IV.5 as before until the first

iteration fails, which happens with independent probability

of exp(−ok) for each iteration. We then look at the run in

which the first failed iteration is the first iteration which the

matching process is simply replaced by a “guess” for Δ� and

in particular when this guess is the correct matching. The

following iterations in this run again fail independently with

probability exp(−ok). If we continue to replace all failing

iterations in this run we end up with a correct run, unless

more than |U | iterations fail independently.

344

Over all these runs we get at most some n
log o√

o potential

guesses for F . For each such guess we can check whether

indeed a file F was recovered with ED(F ′, F) < k. Adding

an independent random hash of F of size Θ(log n) to the

summary SF and checking whether it matches with what

was recovered is sufficient to ensure that the algorithm, with

high probability, only terminates and outputs a recovery once

the correct F is found.

Next we proof Theorem II.1 for the case of large k =
ω(log n). While here correctness and failure probabilities

are not an issue, efficiency is. In particular trying all exp(k)
guesses for Θ(t)-witnesses becomes super-polynomial and

thus intractable. The approach to avoid this is based on

simple sampling. Instead of trying to guess all Θ(k) sub-

strings with non-matching hashes and then verifying them

via the hash h′i we instead randomly put all substrings in

k/ log n subsets. With high probability each subset contains

at most O(log n) substrings that need correcting and the

same arguments as before show that with high probability

these can be specified with a Θ(log n)-witness. Trying

the polynomially many such witnesses in each class and

verifying them independently via separate hashes leads to a

simple polynomial time computation which succeeds with

high probability.

Proof of Theorem II.1 for k = ω(log n). : In addition

to the H-hashes in the summary SF which have size

O(ok log n
k) as before some Θ(k) = Ω(log n) independent

bits of randomness are added for each level which, using the

ε-biased distributions from [22] are used to color each sub-

string in each level with a uniformly random color between

0 and � k
logn	. For each level in SF there is furthermore

a hash of size O(o′ log n) bits added for each color class,

hashing the string of hashes of the same color. Here o′ >> o
is a sufficiently large constant. The summary size remains

O(k log n
k) bits as before.

The algorithm for recovery essentially also follows Algo-

rithm 2 except that in order to recover the correct new set of

level �+1 hashes HF (�+1, .) in iteration � we consider each

color class separately. In particular the algorithm enumerates

all Θ(log n)-witnesses with substrings in a single color class

c and all guesses for the correct hash values for them.

Lemma IV.6 guarantees that there are only a polynomial

number of such witnesses and thus a polynomial number of

different guesses for the part of HF (� + 1, .) colored with

c. Which of these guesses is correct can be verified by the

extra O(log n) size hash added to SF and this verification

is correct with high probability. While it is clear that among

the 5k bad substrings guaranteed by Lemma IV.5 there

will be at most O(log n) in each color class with high

probability given that any such string ends up in a specific

color class c with probability logn
k it remains to be shown

that these substrings are, with high probability, described by

a Θ(log n)-witness. This follows in the same way as the

proof of Lemma IV.7: In order for a specific substring in

level �−i to be incorrect the i hashes including it must have

failed. The probability for this is exp(−io). The probability

to get colored c for a fixed c is furthermore independent

and Θ(logn
k) giving an overall probability of logn

k exp(−io).
Among the O(k2i) substrings in level � − i the expected

number of substrings discovered to be incorrect in this level

and be in color class c is thus log n exp(−io) and the prob-

ability for |Bi| ≤ �log n2−i�+ bi such substrings to exist is

at most exp(−iobi). The probability for a fixed O(log n)-
witness to describe substrings with non-matching hashes is

thus
∏

i exp(−iobi) = exp(−o∑i ibi) = exp(−o log n) =
n−O(o). For a sufficiently large t = Θ(log n) no such t-
witness which describes substrings with incorrect hashes

exists which means that all the substrings whose hashes

need correcting can be described by a t′-witness with t′ < t
and are thus found and corrected by the recovery algorithm.

Overall each iteration succeeds with high probability also

giving the desired with high probability guarantee for the

entire algorithm.

V. DERANDOMIZING ALGORITHM 1 - THE

DETERMINISTIC DOCUMENT EXCHANGE PROTOCOL OF

THEOREM II.2 AND NEW ERROR CORRECTING CODES

In this section we show how to derandomize Algorithm 1

and complete the proofs of Theorem II.2 and Theorem II.3.

A. Derandomizing Algorithm 1 and the Proof of Theo-
rem II.2

As a first important step we show that one can

significantly weaken the requirements Lemma IV.4 puts on

the quality of the randomness provided. In particular, the

conclusion of Lemma IV.4 holds with high probability even

if we use a (n−c)-biased distribution.

Lemma V.1. For every sufficiently large c ≥ 1 it holds
that if o = c log n

k and R is sampled from an n−2c-biased
distribution of bits then for every level i the probability that
there exists a k-bad matching of F under hash and R is at
most n−Ω(c).

In order to prove this we apply a trick very similar to

the long-distance property in [17] used to derandomized

synchronization strings. In particular, we show that we can

restrict ourselves to use much smaller (sub-)matchings as

witnesses:

Lemma V.2. If F has a k-bad self-matching under hashoR
in level � than for any 1 ≤ k′ ≤ k

2 it also has a k′-bad self-
matching under hashoR in level � with (ik′−i1)+(i′k′−i′1) ≤
4k′
k n.

345

Proof: Let i1, . . . , ik, i
′
1, . . . , i

′
k ∈ [1, n] be the in-

dices for the k-bad matching of F under hashoR in

level �. Decompose this k-bad matching into � k
k′ � ≥

k
2k′ many k′-bad matchings where i(j−1)k′+1, . . . , ijk′ and

i′(j−1)k′+1, . . . , i
′
jk′ are the indices for the jth such match-

ing. Denote with �j = (ijk′−ij−1)k′+1)+(i′jk′−i′(j−1)k′+1)

the total length of the jth matching. Note that the total

length of all these k′-bad matchings sums up to at most 2n.

Therefore the shortest such matching is a k′-bad matching

in F with the desired length bound of at most 2n
k

2k′
.

We can now prove Lemma V.1 in a similar way as

Lemma IV.4.

Proof of Lemma V.1: According to Lemma V.2 it

suffices to prove that with high probability F does not have

a k′-bad matching with the “length restriction” (ik′ − i1) +
(i′k′ − i′1) ≤ 4k′

k n for some k′. We choose k′ = logn
log n

k
such

that ok′ = c log n. We again start with the case that R is

sampled from iid uniformly random bits. The probability

for any two sub-strings of F to have a bad hash is still 2−o.

Furthermore, for a fixed k′-bad matching the probability that

all matching pairs are bad under hash is 2−ok′ = n−c.

There furthermore exist at most n2 ways to pick ik′ and

i′k′ and at most
(4k′

k n
2k′−2

)
=

(
n
k

)O(k′)
ways to pick the other

2k′ − 2 indices given the length restriction for a total of

n2 ·2k′ log n
k = nO(1) potentially k′-bad matchings satisfying

the length restriction. Choosing the constant c large enough

and taking a union bound over all these potentially bad

matchings guarantees that, with high probability, no such

matching is k′ bad which due to Lemma V.2 guarantees that

F does not have a k-bad matching. Given that our argument

for one k′-bad matching (again, similar to Lemma IV.4)

under a R sampled from iid uniformly random bits only

depends on O(log n) linear test on bits from R sampling R
instead from an (n−c)-biased distribution does not change

the above argument.

The improvement of Lemma V.1 to polynomially biased

random bits is particularly useful because there are simple

constructions of such spaces with a polynomial size support

which can be efficiently explored [22]. Furthermore, our

definition of a k-bad matching in F has the advantage

that it only depends on R and F (and not F ′). This

allows one to determine independently of F ′ whether

a certain R is a good choice for the “randomness” of

Algorithm 1 when run on F . Putting all this together we

get an efficient deterministic hashing scheme with summary

size of O(k log2 n
k):

Proof of Theorem II.2: Given F and k we set n = |F |
and o = c log n

k for some small but sufficiently large constant

c. Take a construction of an |R| = no log n
k long (n−c)-

biased bit vector with polynomial support [22]. One by one

(or in parallel) set R to be one of these bit vectors and

test whether under R there exists a k-bad matching in F
under R using a standard dynamic program. Do this until one

setting of R is found for which no such matching exists. The

existence of such an R is guaranteed by Lemma V.1. The

summary creation algorithm then uses this R and hash and

o to create SF . It also adds the O(log n) bit description of R
to SF . The recovery algorithm is now simply Algorithm 1.

Furthermore, because there is, by construction, no k-bad

matching Lemma IV.3 guarantees that Algorithm 1 indeed

terminates correctly.

B. New Error Correcting Codes for Insertions and Deletions
and the Proof of Theorem II.3

Finally one can use the deterministic document exchange

protocol from Theorem II.2 and transform it into an error

correcting code for insdel errors. For sake of complete we

give here a complete proof of this (folklore) transformation:

Proof of Theorem II.3: To encode X we run the

deterministic document exchange scheme from Theorem II.2

for edit distance 2k to obtain the summary SX consisting of

Θ(k log2 n
k) bits which can be converted into O(k

log2 n
k

log q +k)
symbols from Σ. If this is less than k symbols we pad it to be

Θ(k) symbols long. Next we encode these O(k
log2 n

k

log q + k)
symbols with any efficient error correcting block code E
which protects against a constant fraction of insdel errors,

which is at least 2k insdels. For this we can use [12], [14],

[15] or [16]. This increases the size by at most a constant.

Overall we use the r = O(k
log2 n

k

log q + k) symbols of E(SX)
as the non-systematic part of the encoding C(X).

Recovery now is also simple. Given a corrupted codeword

C ′ we interpret the first n symbols as a corrupted version

X ′ of X and the last r symbols as a corrupted version E′

of E(SX). It is clear if ED(C ′, C(X)) ≤ k then both E′

and X ′ have edit distance at most 2k from E(SX) and X
respectively. This allows us to decode E′ to SX and then

use the document exchange recovery algorithm to recover

X from X ′ and SX .

The insdel codes from Theorem II.3 improve over

the error correcting code by Brakensiek, Guruswami and

Zbarsky [18] with redundancy Θ(k2 log k log n) which are

efficient under the strong assumption that k is a fixed

constant independent of n and codes from Belazzougui’s

derandomized document exchange scheme [6] which have a

redundancy of Θ(k2 + k log n). For the case of k = εn the

near optimal redundancy of Θ(ε log2 1
ε · n) is a quadratic

improvement over the codes of Guruswami et al. [13], [14]

and Haeupler, Shahrasbi and Vitercik [16], [15] which have

redundancy Θ(
√
ε
(
log 1

ε

)O(1) · n). The work of Cheng et

al. [3], which obtained Theorem II.2 independently and

simultaneously, developed the ideas behind the deterministic

346

document exchange even further and obtain non-systematic

insdel codes with redundancy O(k log n). This is asymptoti-

cally optimal for any k < n1−ε. Due to their non-systematic

nature these codes do not correspond to a deterministic

document exchange protocol. It remains an interesting open

question whether Theorem II.2 can be improved and whether

an efficient deterministic document exchange with optimal

summary size, matching Theorem II.1, is possible.

ACKNOWLEDGMENTS

The author thanks Alon Orlitsky and Venkat Guruswami

for introducing him to this problem. The author also thanks

the group from [3] for pointing out an error in the prelimi-

nary draft of this paper.

REFERENCES

[1] A. Orlitsky, “Interactive communication: Balanced distribu-
tions, correlated files, and average-case complexity,” in Pro-
ceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1991, pp. 228–238.

[2] D. Belazzougui and Q. Zhang, “Edit distance: Sketch-
ing, streaming, and document exchange,” in Proceedings of
the IEEE Symposium on Foundations of Computer Science
(FOCS), 2016, pp. 51–60.

[3] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document
exchange protocols, and almost optimal binary codes for edit
errors,” Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS), 2018.

[4] B. Haeupler, “Optimal document exchange and new codes
for small number of insertions and deletions,” ArXiv, vol.
abs/1804.03604, 2018.

[5] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document
exchange protocols, and almost optimal binary codes for edit
errors,” ArXiv, vol. abs/1804.05776, 2018.

[6] D. Belazzougui, “Efficient deterministic single round docu-
ment exchange for edit distance,” ArXiv, vol. abs/1511.09229,
2015.

[7] U. Irmak, S. Mihaylov, and T. Suel, “Improved single-round
protocols for remote file synchronization,” in Proceedings of
the IEEE International Conference on Computer Communi-
cations (INFOCOM), vol. 3, 2005, pp. 1665–1676.

[8] A. Tridgell and P. Mackerras, “The rsync algorithm,” The
Australian National University, Tech. Rep., 1996.

[9] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
extractors: How to generate strong keys from biometrics and
other noisy data,” SIAM Journal on Computing (SICOMP),
vol. 38, no. 1, pp. 97–139, 2008.

[10] H. Jowhari, “Efficient communication protocols for deciding
edit distance,” in Proceedings of the European Symposium on
Algorithms (ESA), 2012, pp. 648–658.

[11] D. Chakraborty, E. Goldenberg, and M. Kouckỳ, “Streaming
algorithms for embedding and computing edit distance in the
low distance regime,” in Proceedings of the ACM Symposium
on Theory of Computing (STOC), 2016, pp. 712–725.

[12] L. J. Schulman and D. Zuckerman, “Asymptotically good
codes correcting insertions, deletions, and transpositions,”
IEEE Transactions on Information Theory (TransInf), vol. 45,
no. 7, pp. 2552–2557, 1999.

[13] V. Guruswami and C. Wang, “Deletion codes in the high-noise
and high-rate regimes,” IEEE Transactions on Information
Theory (TransInf), vol. 63, no. 4, pp. 1961–1970, 2017.

[14] V. Guruswami and R. Li, “Efficiently decodable inser-
tion/deletion codes for high-noise and high-rate regimes,”
Proceedings of IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 620–624, 2016.

[15] B. Haeupler and A. Shahrasbi, “Synchronization strings:
Codes for insertions and deletions approaching the singleton
bound,” Proceedings of the ACM Symposium on Theory of
Computing (STOC), pp. 33–46, 2017.

[16] B. Haeupler, A. Shahrasbi, and E. Vitercik, “Synchronization
strings: Channel simulations and interactive coding for inser-
tions and deletions,” Proceedings of the International Confer-
ence on Automata, Languages, and Programming (ICALP),
2018.

[17] B. Haeupler and A. Shahrasbi, “Synchronization strings:
Explicit constructions, local decoding, and applications,” in
Proceedings of the ACM Symposium on Theory of Computing
(STOC), 2018.

[18] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-
redundancy codes for correcting multiple deletions,” Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1884–1892, 2016.

[19] B. Bukh, V. Guruswami, and J. Håstad, “An improved bound
on the fraction of correctable deletions,” IEEE Transactions
on Information Theory (TransInf), vol. 63, no. 1, pp. 93–103,
2016.

[20] N. J. Sloane, “On single-deletion-correcting codes,” Codes
and Designs, de Gruyter, Berlin, pp. 273–291, 2002.

[21] M. Mitzenmacher, “A survey of results for deletion channels
and related synchronization channels,” Probability Surveys,
vol. 6, pp. 1–33, 2009.

[22] J. Naor and M. Naor, “Small-bias probability spaces: Efficient
constructions and applications,” SIAM Journal on Computing
(SICOMP), vol. 22, no. 4, pp. 838–856, 1993.

[23] E. Ukkonen, “Algorithms for approximate string matching,”
Information and control, vol. 64, no. 1-3, pp. 100–118, 1985.

347

