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Abstract—For the tensor PCA (principal component anal-
ysis) problem, we propose a new hierarchy of increasingly
powerful algorithms with increasing runtime. Our hierarchy
is analogous to the sum-of-squares (SOS) hierarchy but is
instead inspired by statistical physics and related algorithms
such as belief propagation and AMP (approximate message
passing). Our level-t algorithm can be thought of as a linearized
message-passing algorithm that keeps track of t-wise dependen-
cies among the hidden variables. Specifically, our algorithms
are spectral methods based on the Kikuchi Hessian, which
generalizes the well-studied Bethe Hessian to the higher-order
Kikuchi free energies.

It is known that AMP, the flagship algorithm of statistical
physics, has substantially worse performance than SOS for
tensor PCA. In this work we ‘redeem’ the statistical physics ap-
proach by showing that our hierarchy gives a polynomial-time
algorithm matching the performance of SOS. Our hierarchy
also yields a continuum of subexponential-time algorithms, and
we prove that these achieve the same (conjecturally optimal)
tradeoff between runtime and statistical power as SOS. Our
proofs are much simpler than prior work, and also apply to
the related problem of refuting random k-XOR formulas. The
results we present here apply to tensor PCA for tensors of all
orders, and to k-XOR when k is even.

Our methods suggest a new avenue for systematically ob-
taining optimal algorithms for Bayesian inference problems,
and our results constitute a step toward unifying the statistical
physics and sum-of-squares approaches to algorithm design.

Keywords-tensor PCA; Kikuchi free energy; message pass-
ing; sum-of-squares hierarchy

I. INTRODUCTION

High-dimensional Bayesian inference problems are

widely studied, including planted clique [1], [2], sparse

PCA [3], and community detection [4], [5], just to name

a few. For these types of problems, two general strategies,

or meta-algorithms, have emerged. The first is rooted in

statistical physics and includes the belief propagation (BP)

algorithm [6], [7] along with variants such as approximate

message passing (AMP) [8], and related spectral methods

such as linearized BP [9], [10], and the Bethe Hessian [11].

The second meta-algorithm is the sum-of-squares (SOS)

hierarchy [12], [13], [14], a hierarchy of increasingly pow-

erful semidefinite programming relaxations to polynomial

optimization problems, along with spectral methods inspired

by it [15], [16]. Both of these meta-algorithms are known

to achieve statistically-optimal performance for many prob-

lems. Furthermore, when they fail to perform a task, this is

often seen as evidence that no polynomial-time algorithm

can succeed. Such reasoning takes the form of free energy

barriers in statistical physics [17], [18] or SOS lower bounds

(e.g., [19]). Thus, we generally expect both meta-algorithms

to have optimal statistical performance among all efficient
algorithms.

A fundamental question is whether we can unify statistical

physics and SOS, showing that the two approaches yield,

or at least predict, the same performance on a large class

of problems. However, one barrier to this comes from the

tensor principal component analysis (PCA) problem [20], on

which the two meta-algorithms seem to have very different

performance. For an integer p ≥ 2, in the order-p tensor PCA

or spiked tensor problem we observe a p-fold n×n×· · ·×n
tensor

Y = λx⊗p
∗ +G

where the parameter λ ≥ 0 is a signal-to-noise ratio (SNR),

x∗ ∈ R
n is a planted signal with normalization ‖x∗‖ =

√
n

drawn from a simple prior such as the uniform distribution

on {±1}n, and G is a symmetric noise tensor with N (0, 1)
entries. Information-theoretically, it is possible to recover

x∗ given Y (in the limit n → ∞, with p fixed) when

λ � n(1−p)/2 [20], [21]. (Here we ignore log factors, so

A � B can be understood to mean A ≥ B polylog(n).)
However, this information-theoretic threshold corresponds

to exhaustive search. We would also like to understand the

computational threshold, i.e., for what values of λ there is

an efficient algorithm.

The sum-of-squares hierarchy gives a polynomial-time

algorithm to recover x∗ when λ � n−p/4 [15], and SOS

lower bounds suggest that no polynomial-time algorithm can
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do better [15], [22]. However, AMP, the flagship algorithm

of statistical physics, is suboptimal for p ≥ 3 and fails unless

λ � n−1/2 [20]. Various other “local” algorithms such as

the tensor power method, Langevin dynamics, and gradient

descent also fail below this “local” threshold λ ∼ n−1/2

[20], [23]. This casts serious doubts on the optimality of the

statistical physics approach.
In this paper we resolve this discrepancy and “redeem”

the statistical physics approach. The Bethe free energy
associated with AMP is merely the first level of a hier-

archy of Kikuchi free energies [24], [25], [7]. From these

Kikuchi free energies, we derive a hierarchy of increasingly

powerful algorithms for tensor PCA, similar in spirit to

generalized belief propagation [7]. Roughly speaking, our

level-� algorithm can be thought of as an iterative message-

passing algorithm that reasons about �-wise dependencies

among the hidden variables. As a result, it has time and

space complexity nO(�). Specifically, the level-� algorithm

is a spectral method on a nO(�) × nO(�) submatrix of (a

first-order approximation of) the Kikuchi Hessian, i.e., the

matrix of second derivatives of the Kikuchi free energy. This

generalizes the Bethe Hessian spectral method, which has

been successful in the setting of community detection [11].

We note that the Ph.D. dissertation of Saade [26] proposed

the Kikuchi Hessian as a direction for future research.
For order-p tensor PCA with p even, we show that level

� = p/2 of the Kikuchi hierarchy gives an algorithm that

succeeds down to the SOS threshold λ ∼ n−p/4, closing

the gap between SOS and statistical physics. Furthermore,

by taking � = nδ levels for various values of δ ∈ (0, 1),
we obtain a continuum of subexponential-time algorithms

that achieve a precise tradeoff between runtime and the

signal-to-noise ratio—exactly the same tradeoff curve that

SOS is known to achieve [27], [28].1 We obtain similar

results when p is odd, by combining a matrix related to

the Kikuchi Hessian with a construction similar to [29]; see

Appendix F2.
Our approach also applies to the problem of refuting

random k-XOR formulas when k is even, showing that we

can strongly refute random formulas with n variables and

m� nk/2 clauses in polynomial time, and with a continuum

of subexponential-time algorithms that succeed at lower

densities. This gives a much simpler proof of the results

of [30], using only the matrix Chernoff bound instead of

intensive moment calculations; see Appendix F1. We leave

for future work the problem of giving a similar simplification

of [30] when k is odd.
Our results redeem the statistical physics approach to

algorithm design and give hope that the Kikuchi hierarchy

provides a systematic way to derive optimal algorithms

for a large class of Bayesian inference problems. We see

1The strongest SOS results only apply to a variant of the spiked tensor
model with Rademacher observations, but we do not expect this difference
to be important; see Section II-F.

this as a step toward unifying the statistical physics and

SOS approaches. Indeed, we propose the following informal

meta-conjecture: for high-dimensional inference problems

with planted solutions (and related problems such as refuting

random constraint satisfaction problems) the SOS hierarchy

and the Kikuchi hierarchy both achieve the optimal tradeoff

between runtime and statistical power.

After the initial appearance of this paper, some related

independent work has appeared. A hierarchy of algorithms

similar to ours is proposed by [31], but with a different

motivation based on a system of quantum particles. Also,

[32] gives an alternative “redemption” of local algorithms

based on replicated gradient descent.

II. PRELIMINARIES AND PRIOR WORK

A. Notation

Our asymptotic notation (e.g., O(·), o(·),Ω(·), ω(·)) per-

tains to the limit n → ∞ (large dimension) and may hide

constants depending on p (tensor order), which we think of

as fixed. We say an event occurs with high probability if it

occurs with probability 1− o(1).
A tensor T ∈ (Rn)⊗p is an n × n × · · · × n (p times)

multi-array with entries denoted by Ti1,...,ip , where ik ∈
[n] := {1, 2, . . . , n}. We call p the order of T and n the

dimension of T . For a vector u ∈ R
n, the rank-1 tensor

u⊗p is defined by (u⊗p)i1,...,ip =
∏p

k=1 uik . A tensor T is

symmetric if Ti1,...,ip = Tiπ(1),...,iπ(p)
for any permutation

π ∈ Sp. For a symmetric tensor, if E = {i1, . . . , ip} ⊆ [n],
we will often write TE := Ti1,...,ip .

B. The Spiked Tensor Model

A general formulation of the spiked tensor model is

as follows. For an integer p ≥ 2, let G̃ ∈ (Rn)⊗p be

an asymmetric tensor with entries i.i.d. N (0, 1). We then

symmetrize this tensor and obtain a symmetric tensor G,

G :=
1√
p!

∑
π∈Sp

G̃π,

where Sp is the symmetric group of permutations of [p],

and G̃π
i1,...,ip

:= G̃iπ(1),...,iπ(p)
. Note that if i1, . . . , ip are

distinct then Gi1,...,ip ∼ N (0, 1). We draw a ‘signal’ vector

or ’spike’ x∗ ∈ R
n from a prior distribution Px supported

on the sphere Sn−1 = {x ∈ R
n : ‖x‖ = √n}. Then we let

Y ∈ (Rn)⊗p be the tensor

Y = λx⊗p
∗ +G . (1)

We will mostly focus on the Rademacher-spiked model
where x∗ is uniform in {±1}n, i.e., Px = 2−n

∏
i

(
δ(xi −

1) + δ(xi + 1)
)
. We will sometimes state results without

specifying the prior Px, in which case the result holds for

any prior normalized so that ‖x∗‖ =
√
n. Let Pλ denote the

law of the tensor Y . The parameter λ = λ(n) may depend

on n. We will consider the limit n→∞ with p held fixed.
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Our algorithms will depend only on the entries Yi1,...,ip

where the indices i1, . . . , ip are distinct: that is, on the

collection{
YE = λxE

∗ +GE : E ⊆ [n], |E| = p
}
,

where GE ∼ N (0, 1) and for a vector x ∈ R
n we write

xE =
∏

i∈E xi.

Perhaps one of the simplest statistical tasks is binary

hypothesis testing. In our case this amounts to, given a tensor

Y as input with the promise that it was sampled from Pλ

with λ ∈ {0, λ̄}, determining whether λ = 0 or λ = λ̄. We

refer to Pλ for λ > 0 as the planted distribution, and P0 as

the null distribution.

Definition II.1. We say that an algorithm (or test) f :
(Rn)⊗p → {0, 1} achieves strong detection between P0 and

Pλ if

lim
n→∞Pλ(f(Y ) = 1) = 1 and lim

n→∞P0(f(Y ) = 0) = 1.

Additionally we say that f achieves weak detection between

P0 and Pλ if the sum of Type-I and Type-II errors remains

strictly below 1:

lim sup
n→∞

{
P0(f(Y ) = 1) + Pλ(f(Y ) = 0)

}
< 1.

An additional goal is to recover the planted vector x∗.
Note that when p is even, x∗ and −x∗ have the same

posterior probability. Thus, our goal is to recover x∗ up to

a sign.

Definition II.2. The normalized correlation between vectors

x̂, x ∈ R
n is

corr(x̂, x) =
|〈x̂, x〉|
‖x̂‖‖x‖ .

Definition II.3. An estimator x̂ = x̂(Y ) achieves weak
recovery if corr(x̂, x∗) is lower-bounded by a strictly posi-

tive constant—and we write corr(x̂, x∗) = Ω(1)—with high

probability, and achieves strong recovery if corr(x̂, x∗) =
1− o(1) with high probability.

We expect that strong detection and weak recovery are

generally equally difficult, although formal implications are

not known in either direction. We will see in Section II-E

that in some regimes, weak recovery and strong recovery

are equivalent.

The matrix case.: When p = 2, the spiked tensor

model reduces to the spiked Wigner model. We know from

random matrix theory that when λ = λ̂/
√
n with λ̂ > 1,

strong detection is possible by thresholding the maximum

eigenvalue of Y , and weak recovery is achieved by PCA,

i.e., taking the leading eigenvector [33], [34]. For many spike

priors including Rademacher, strong detection and weak

recovery are statistically impossible when λ̂ < 1 [35], [36],

[37], so there is a sharp phase transition at λ̂ = 1. (Note

that weak detection is still possible below λ̂ = 1 [38].) A

more sophisticated algorithm is AMP (approximate message

passing) [8], [39], [17], [36], which can be thought of as a

modification of the matrix power method which uses certain

nonlinear transformations to exploit the structure of the spike

prior. For many spike priors including Rademacher, AMP

is known to achieve the information-theoretically optimal

correlation with the true spike [36], [40]. However, like PCA,

AMP achieves zero correlation asymptotically when λ̂ < 1.

For certain spike priors (e.g., sparse priors), statistical-

computational gaps can appear in which it is information-

theoretically possible to succeed for some λ̂ < 1 but we do

not expect that polynomial-time algorithms can do so [17],

[18], [41].

The tensor case.: The tensor case p ≥ 3 was introduced

by [20], who also proposed various algorithms. Information-

theoretically, there is a sharp phase transition similar to the

matrix case: for many spike priors Px including Rademacher,

if λ = λ̂n(1−p)/2 then weak recovery is possible when

λ̂ > λc and impossible when λ̂ < λc for a particular

constant λc = λc(p, Px) depending on p and Px [21]. Strong

detection undergoes the same transition, being possible if

λ > λc and impossible otherwise [42], [43], [44] (see

also [45]). In fact, it is shown in these works that even

weak detection is impossible below λc, in sharp contrast

with the matrix case. There are polynomial-time algorithms

(e.g., SOS) that succeed at both strong detection and strong

recovery when λ � n−p/4 for any spike prior [20], [15],

[16], which is above the information-theoretic threshold by

a factor that diverges with n. There are also SOS lower

bounds suggesting that (for many priors) no polynomial-time

algorithm can succeed at strong detection or weak recovery

when λ  n−p/4 [15], [22]. Thus, unlike the matrix

case, we expect a large statistical-computational gap, i.e.,

a “possible-but-hard” regime when n(1−p)/2  λ n−p/4.

C. The Tensor Power Method and Local Algorithms

Various algorithms have been proposed and analyzed for

tensor PCA [20], [15], [16], [46], [23]. We will present

two such algorithms that are simple, representative, and will

be relevant to the discussion. The first is the tensor power
method [47], [20], [48].

Algorithm II.4. (Tensor Power Method) For a vector u ∈
R

n and a tensor Y ∈ (Rn)⊗p, let Y {u} ∈ R
n denote the

vector

Y {u}i =
∑

j1,...,jp−1

Yi,j1,...,jp−1uj1 · · ·ujp−1 .

The tensor power method begins with an initial guess

u ∈ R
n (e.g., chosen at random) and repeatedly iterates

the update rule u← Y {u} until u/‖u‖ converges.

The tensor power method appears to only succeed when

λ � n−1/2 [20], which is worse than the SOS threshold
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λ ∼ n−p/4. The AMP algorithm of [20] is a more sophis-

ticated variant of the tensor power method, but AMP also

fails unless λ � n−1/2 [20]. Two other related algorithms,

gradient descent and Langevin dynamics, also fail unless

λ � n−1/2 [23]. Following [23], we refer to all of these

algorithms (tensor power method, AMP, gradient descent,

Langevin dynamics) as local algorithms, and we refer to the

corresponding threshold λ ∼ n−1/2 as the local threshold.

Here “local” is not a precise notion, but roughly speaking,

local algorithms keep track of a current guess for x∗ and

iteratively update it to a nearby vector that is more favorable

in terms of e.g. the log-likelihood. This discrepancy between

local algorithms and SOS is what motivated the current

work.

D. The Tensor Unfolding Algorithm

We have seen that local algorithms do not seem able to

reach the SOS threshold. Let us now describe one of the

simplest algorithms that does reach this threshold: tensor
unfolding. Tensor unfolding was first proposed by [20],

where it was shown to succeed when λ � n−�p/2�/2

and conjectured to succeed when λ � n−p/4 (the SOS

threshold). For the case p = 3, the same algorithm was later

reinterpreted as a spectral relaxation of SOS, and proven

to succeed2 when λ � n−3/4 = n−p/4 [15], confirming

the conjecture of [20]. We now present the tensor unfolding

method, restricting to the case p = 3 for simplicity. There

is a natural extension to all p [20], and (a close variant of)

this algorithm will in fact appear as level � = �p/2� in our

hierarchy of algorithms (see Section III and Appendix C).

Algorithm II.5. (Tensor Unfolding) Given an order-3 tensor

Y ∈ (Rn)⊗3, flatten it to an n × n2 matrix M , i.e., let

Mi,jk = Yijk. Compute the leading eigenvector of MM	.

If we use the matrix power method to compute the leading

eigenvector, we can restate the tensor unfolding method as

an iterative algorithm: keep track of state vectors u ∈ R
n

and v ∈ R
n2

, initialize u randomly, and alternate between

applying the update steps v ← M	u and u ← Mv. We

will see later (see Section IV-A) that this can be interpreted

as a message-passing algorithm between singleton indices,

represented by u, and pairs of indices, represented by

v. Thus, tensor unfolding is not “local” in the sense of

Section II-C because it keeps a state of size O(n2) (keeping

track of pairwise information) instead of size O(n). We can,

however, think of it as local on a “lifted” space, and this

allows it to surpass the local threshold.

Other methods have also been shown to achieve the SOS

threshold λ ∼ n−p/4, including SOS itself and various

spectral methods inspired by it [15], [16].

2The analysis of [15] applies to a close variant of the spiked tensor model
in which the noise tensor is asymmetric. We do not expect this difference
to be important.

E. Boosting and Linearization

One fundamental difference between the matrix case (p =
2) and tensor case (p ≥ 3) is the following boosting property.

The following result, implicit in [20], shows that for p ≥ 3, if

λ is substantially above the information-theoretic threshold

(i.e., λ � n(1−p)/2) then weak recovery can be boosted to

strong recovery via a single power iteration. We give a proof

in Appendix D.

Proposition II.6. Let Y ∼ Pλ with any spike prior Px

supported on Sn−1. Suppose we have an initial guess
u ∈ R

n satisfying corr(u, x∗) ≥ τ . Obtain x̂ from u via
a single iteration of the tensor power method: x̂ = Y {u}.
There exists a constant c = c(p) > 0 such that with high
probability,

corr(x̂, x∗) ≥ 1− cλ−1τ1−pn(1−p)/2.

In particular, if τ > 0 is any constant and λ = ω(n(1−p)/2)
then corr(x̂, x) = 1− o(1).

For p ≥ 3, since we do not expect polynomial-time al-

gorithms to succeed when λ = O(n(1−p)/2), this implies

an “all-or-nothing” phenomenon: for a given λ = λ(n),
the optimal polynomial-time algorithm will either achieve

correlation that is asymptotically 0 or asymptotically 1. This

is in stark contrast to the matrix case where, for λ = λ̂/
√
n,

the optimal correlation is a constant (in [0, 1]) depending on

both λ̂ and the spike prior Px.

This boosting result substantially simplifies things when

p ≥ 3 because it implies that the only important question

is identifying the threshold for weak recovery, instead of

trying to achieve the optimal correlation. Heuristically, since

we only want to attain the optimal threshold, statistical

physics suggests that we can use a simple “linearized”

spectral algorithm instead of a more sophisticated nonlinear

algorithm. To illustrate this in the matrix case (p = 2), one

needs to use AMP in order to achieve optimal correlation,

but one can achieve the optimal threshold using linearized

AMP, which boils down to computing the top eigenvector. In

the related setting of community detection in the stochastic

block model, one needs to use belief propagation to achieve

optimal correlation [4], [5], [49], but one can achieve the

optimal threshold using a linearized version of belief propa-

gation, which is a spectral method on the non-backtracking

walk matrix [9], [10] or the related Bethe Hessian [11]. Our

spectral methods for tensor PCA are based on the Kikuchi
Hessian, which is a generalization of the Bethe Hessian.

F. Subexponential-time Algorithms for Tensor PCA

The degree-� sum-of-squares algorithm is a large semidef-

inite program that requires runtime nO(�) to solve. Often-

times the regime of interest is when � is constant, so that

the algorithm runs in polynomial time. However, one can

also explore the power of subexponential-time algorithms

by letting � = nδ for δ ∈ (0, 1), which gives an algorithm
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with runtime roughly 2n
δ

. Results of this type are known for

tensor PCA [30], [27], [28]. The strongest such results are

for a different variant of tensor PCA, which we now define.

Definition II.7. In the order-p discrete spiked tensor model
with spike prior Px (normalized so that ‖x∗‖ =

√
n) and

SNR parameter λ ≥ 0, we draw a spike x∗ ∼ Px and then

for each 1 ≤ i1 ≤ · · · ≤ ip ≤ n, we independently observe

a {±1}-valued random variable Yi1,...,ip with E[Yi1,...,ip ] =

λ(x⊗p
∗ )i1,...,ip .

This model differs from our usual one in that the obser-

vations are conditionally Rademacher instead of Gaussian,

but we do not believe this makes an important difference.

However, for technical reasons, the known SOS results are

strongest in this discrete setting.

Theorem II.8 ([28], [15]). For any 1 ≤ � ≤ n, there is an
algorithm with runtime nO(�) that achieves strong detection
and strong recovery in the order-p discrete spiked tensor
model (with any spike prior) whenever

λ ≥ �1/2−p/4n−p/4 polylog(n).

The work of [28] shows how to certify an upper bound on

the injective norm of a random {±1}-valued tensor, which

immediately implies the algorithm for strong detection.

When combined with [15], this can also be made into an

algorithm for strong recovery (see Lemma 4.4 of [15]).

Similar (but weaker) SOS results are also known for the

standard spiked tensor model (see [30] and arXiv version 1

of [28]), and we expect that Theorem II.8 also holds for this

case.

When � = nδ for δ ∈ (0, 1), Theorem II.8 implies

that we have an algorithm with runtime nO(nδ) = 2n
δ+o(1)

that succeeds when λ � nδ/2−pδ/4−p/4. Note that this in-

terpolates smoothly between the polynomial-time threshold

(λ ∼ n−p/4) when δ = 0, and the information-theoretic

threshold (λ ∼ n(1−p)/2) when δ = 1. We will prove (for

p even) that our algorithms achieve this same tradeoff, and

we expect this tradeoff to be optimal3.

III. MAIN RESULTS

In this section we present our main results about detection

and recovery in the spiked tensor model. We propose a

hierarchy of spectral methods, which are directly derived

from the hierarchy of Kikuchi free energies. Specifically,

the symmetric difference matrix defined below appears (ap-

proximately) as a submatrix of the Hessian of the Kikuchi

free energy. The full details of this derivation are given in

Section IV and Appendix E. For now we simply state the

algorithms and results.

We will restrict our attention to the Rademacher-spiked

tensor model, which is the setting in which we derived our

3One form of evidence suggesting that this tradeoff is optimal is based
on the low-degree likelihood ratio; see [50].

algorithms. However, we show in Appendix B that the same

algorithm works for a large class of priors (at least for strong

detection). Furthermore, we show in Appendix F1 that the

same algorithm can also be used for refuting random k-XOR

formulas (when k is even).

We will also restrict to the case where the tensor order p is

even. The case of odd p is discussed in Appendix C, where

we give an algorithm derived from the Kikuchi Hessian

and conjecture that it achieves optimal performance. We are

unable to prove this, but we are able to prove that optimal

results are attained by a related algorithm (see Appendix F2).

Our approach requires the introduction of two matrices:

The symmetric difference matrix of order �.: Let p
be even and let Y ∈ (Rn)⊗p be the observed order-p
symmetric tensor. We will only use the entries Yi1,...,ip for

which the indices i1, . . . , ip are distinct; we denote such

entries by YE where E ⊆ [n] with |E| = p. Fix an integer

� ∈ [p/2, n − p/2], and consider the symmetric
(
n
�

) × (
n
�

)
matrix M indexed by sets S ⊆ [n] of size �, having entries

MS,T =

{
YS
T if |S � T | = p,

0 otherwise.
(2)

Here � denotes the symmetric difference between sets. The

leading eigenvector of M is intended to be an estimate

of (xS
∗ )|S|=� where xS :=

∏
i∈S xi. The following voting

matrix is a natural rounding scheme to extract an estimate

of x∗ from such a vector.

The voting matrix.: To a vector v ∈ R
(n�) we associate

the following symmetric n×n ‘voting’ matrix V (v) having

entries

Vij(v) =
1

2

∑
S,T∈([n]

� )

vSvT1S
T={i,j} (3)

(where Vii = 0). Let us define the important quantity

d� :=

(
n− �

p/2

)(
�

p/2

)
. (4)

This is the number of sets T of size � such that |S � T | =
p for a given set S of size �. Now we are in position to

formulate our algorithms for detection and recovery.

Algorithm III.1 (Detection for even p).
1) Compute the top eigenvalue λmax(M) of the symmet-

ric difference matrix M .

2) Reject the null hypothesis P0 (i.e., return ‘1’) if

λmax(M) ≥ λd�/2.

Algorithm III.2 (Recovery for even p).
1) Compute a (unit-norm) leading eigenvector4 vtop ∈

R
(n�) of M .

4We define a leading eigenvector to be an eigenvector whose eigenvalue is
maximal (although our results still hold for an eigenvector whose eigenvalue
is maximal in absolute value).

1438



2) Form the associated voting matrix V (vtop).
3) Compute a leading eigenvector x̂ of V (vtop), and

output x̂.

The next two theorems characterize the performance of

Algorithms III.1 and III.2 for the strong detection and

recovery tasks, respectively. The proofs can be found in

Appendix A.

Theorem III.3. Consider the Rademacher-spiked tensor
model with p even. For all λ ≥ 0 and � ∈ [p/2, n − p/2],
we have

P0

(
λmax(M) ≥ λd�

2

)
∨ Pλ

(
λmax(M) ≤ λd�

2

)
≤ 2n�e−λ2d�/8.

Therefore, Algorithm III.1 achieves strong detection between
P0 and Pλ if 1

8λ
2d� − � log n→ +∞ as n→ +∞.

Theorem III.4. Consider the Rademacher-spiked tensor
model with p even. Let x̂ ∈ R

n be the output of Al-
gorithm III.2. There exists an absolute constant c0 > 0
such that for all ε > 0 and δ ∈ (0, 1), if � ≤ nε2 and
λ ≥ c0ε

−4
√
log(n�/δ)

/
d�, then corr(x̂, x∗) ≥ 1− c0ε with

probability at least 1− δ.

Remark III.5. If � = o(n), we have d� = Θ(np/2�p/2),
and so the above theorems imply that strong detec-

tion and strong recovery are possible as soon as λ �
�−(p−2)/4n−p/4

√
log n. Comparing with Theorem II.8, this

scaling coincides with the guarantees achieved by the level-

� SOS algorithm of [28], up to a possible discrepancy in

logarithmic factors.

Due to the particularly simple structure of the symmetric

difference matrix M (in particular, the fact that its entries

are simply entries of Y ), the proof of detection (Theo-

rem III.3) follows from a straightforward application of the

matrix Chernoff bound. In contrast, the corresponding SOS

results [30], [27], [28] work with more complicated matrices

involving high powers of the entries of Y , and the analysis

is much more involved.

Our proof of recovery is unusual in that the signal compo-

nent of M , call it X , is not rank-one; it even has a vanishing

spectral gap when � � 1. Thus, the leading eigenvector of

M does not correlate well with the leading eigenvector of

X . While this may seem to render recovery hopeless at

first glance, this is not the case, due to the fact that many
eigenvectors (actually, eigenspaces) of X contain non-trivial

information about the spike x∗, as opposed to only the top

one. We prove this by exploiting the special structure of X
through the Johnson scheme, and using tools from Fourier

analysis on a slice of the hypercube, in particular a Poincaré-

type inequality by [51].

Removing the logarithmic factor: Both Theorem III.3

and Theorem III.4 involve a logarithmic factor in n in the

lower bound on SNR λ. These log factors are an artifact

of the matrix Chernoff bound, and we believe they can be

removed. (The analysis of [15] removes the log factors for

the tensor unfolding algorithm, which is essentially the case

p = 3 and � = 1 of our algorithm.) This suggests the

following precise conjecture on the power of polynomial-

time algorithms.

Conjecture III.6. Fix p and let � be constant (not depending
on n). There exists a constant cp(�) > 0 with cp(�) → 0
as � → ∞ (with p fixed) such that if λ ≥ cp(�)n

−p/4 then
Algorithm III.1 and Algorithm III.2 (which run in time nO(�))
achieve strong detection and strong recovery, respectively.

Specifically, we expect cp(�) ∼ �−(p−2)/4 for large �.

IV. MOTIVATING THE SYMMETRIC DIFFERENCE

MATRICES

In this section we motivate the symmetric difference ma-

trices used in our algorithms. In Section IV-A we give some

high-level intuition, including an explanation of how our

algorithms can be thought of as iterative message-passing

procedures among subsets of size �. In Section IV-B we give

a more principled derivation based on the Kikuchi Hessian,

with many of the calculations deferred to Appendix E.

A. Intuition: Higher-Order Message-Passing and Maximum
Likelihood

As stated previously, our algorithms will choose to ignore

the entries Yi1,...,ip for which i1, . . . , ip are not distinct;

these entries turn out to be unimportant asymptotically. We

restrict to the Rademacher-spiked tensor model, as this yields

a clean and simple derivation. The posterior distribution for

the spike x∗ given the observed tensor Y is

P(x |Y ) ∝ exp
{
− 1

2

∑
i1<···<ip

(
Yi1···ip − λxi1 · · ·xip

)2}
∝ exp

{
λ

∑
i1<···<ip

Yi1···ipxi1 · · ·xip

}
= exp

{
λ

∑
|E|=p

YEx
E
}

(5)

over the domain x ∈ {±1}n. We take p to be even; a similar

derivation works for odd p. Now fix � ∈ [p/2, n− p/2]. We

can write the above as

P(x |Y ) ∝ exp
{ λ

N

∑
|S
T |=p

YS
Tx
SxT

}
, (6)

where the sum is over ordered pairs (S, T ) of sets S, T ⊆ [n]
with |S| = |T | = � and |S � T | = p, and where

N = d�
(
n
�

)
/
(
n
p

)
is the number of terms (S, T ) with a given

symmetric difference E.

A natural message-passing algorithm to maximize the log-

likelihood is the following. For each S ⊆ [n] of size |S| = �,
keep track of a variable uS ∈ R, which is intended to
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be an estimate of xS
∗ :=

∏
i∈S(x∗)i. Note that there are

consistency constraints that (xS
∗ )|S|=� must obey, such as

xS
∗x

T
∗ x

V
∗ = 1 when S � T � V = ∅; we will relax the

problem and will not require our vector u = (uS)|S|=�

to obey such constraints. Instead we simply attempt to

maximize
1

‖u‖2
∑

|S
T |=p

YS
TuSuT (7)

over all u ∈ R
(n�). To do this, we iterate the update equations

uS ←
∑

T : |S
T |=p

YS
TuT . (8)

We call S and T neighbors if |S�T | = p. Intuitively, each

neighbor T of S sends a message mT→S := YS
TuT to

S, indicating T ’s opinion about uS . We update uS to be the

sum of all incoming messages.

Now note that the sum in (7) is simply ‖u‖−2 u	Mu
where M is the symmetric difference matrix, and (8) can

be written as

u←Mu .

Thus our natural message-passing scheme is precisely power

iteration against M , and so we should take the leading

eigenvector vtop of M as our estimate of (xS
∗ )|S|=� (up to a

scaling factor). Finally, defining our voting matrix V (vtop)
and taking its leading eigenvector is a natural method for

rounding vtop to a vector of the form ux where ux
S = xS ,

thus restoring the consistency constraints we ignored before.

Indeed, if we carry out this procedure on all subsets S ⊆
[n] then this works as intended, and no rounding is neces-

sary: consider the 2n×2n matrix MS,T = YS
T1|S
T |=p.

It is easy to verify that the eigenvectors of M are precisely

the Fourier basis vectors on the hypercube, namely vectors

of the form ux where ux
S = xS and x ∈ {±1}n. Moreover,

the eigenvalue associated to ux is

1

2n
(ux)	Mux =

1

2n

∑
S,T⊆[n] : |S
T |=p

YS
Tx
SxT

=
∑
|E|=p

YEx
E .

This is the expression in the log-likelihood in (5). Thus

the leading eigenvector of M is exactly ux where x is the

maximum-likelihood estimate of x∗.
This procedure succeeds all the way down to the

information-theoretic threshold λ ∼ n(1−p)/2, but takes

exponential time. Our contribution can be viewed as showing

that even when we restrict to the submatrix M of M
supported on subsets of size �, the leading eigenvector still

allows us to recover x∗ whenever the SNR is sufficiently

large. Proving this requires us to perform Fourier analysis

over a slice of the hypercube rather than the simpler setting

of the entire hypercube, which we do by appealing to

Johnson schemes and some results of [51].

B. Variational Inference and Kikuchi Free Energy

We now introduce the Kikuchi approximations to the
free energy (or simply the Kikuchi free energies) of the

above posterior (5) [24], [25], the principle from which

our algorithms are derived. For concreteness we restrict to

the case of the Rademacher-spiked tensor model, but the

Kikuchi free energies can be defined for general graphical

models [7].

The posterior distribution in (5) is a Gibbs distribution

P(x |Y ) ∝ e−βH(x) with random Hamiltonian H(x) :=
−λ∑

i1<···<ip
Yi1···ipxi1 · · ·xip , and inverse temperature

β = 1. We let Zn(β;Y ) :=
∑

x∈{±1}n e−βH(x) be the

partition function of the model, and denote by Fn(β;Y ) :=
− 1

β logZn(β;Y ) its free energy. It is a classical fact that

the Gibbs distribution has the following variational charac-

terization. Fix a finite domain Ω (e.g., {±1}n), β > 0 and

H : Ω→ R. Consider the optimization problem

inf
μ

F (μ), (9)

where the supremum is over probability distributions μ
supported on Ω, and define the free energy functional F
of μ by

F (μ) := E
x∼μ

[H(x)]− 1

β
S(μ), (10)

where S(μ) is the Shannon entropy of μ, i.e., S(μ) =
−∑

x∈Ω μ(x) logμ(x). Then the unique optimizer of (9)

is the Gibbs distribution μ∗(x) ∝ exp(−βH(x)). If we

specialize this statement to our setting, μ∗ = P(·|Y ) and

Fn(1;Y ) = F (μ∗). We refer to [52] for more background.

In light of the above variational characterization, a natural

algorithmic strategy to learn the posterior distribution is

to minimize the free energy functional F (μ) over distri-

butions μ. However, this is a priori intractable because

(for a high-dimensional domain such as Ω = {±1}n) an

exponential number of parameters are required to represent

μ. The idea underlying the belief propagation algorithm [6],

[7] is to work only with locally-consistent marginals, or

beliefs, instead of a complete distribution μ. Standard belief

propagation works with beliefs on singleton variables and

on pairs of variables. The Bethe free energy is a proxy for

the free energy that only depends on these beliefs, and belief

propagation is a certain procedure that iteratively updates the

beliefs in order to locally minimize the Bethe free energy.

The level-r Kikuchi free energy is a generalization of the

Bethe free energy that depends on r-wise beliefs and gives

(in principle) increasingly better approximations of F (μ∗)
as r increases. Our algorithms are based on the principle

of locally minimizing Kikuchi free energy, which we define

next.

We now define the level-r Kikuchi approximation to the

free energy. We require r ≥ p, i.e., the Kikuchi level needs

to be at least as large as the interactions present in the data

(although the r < p case could be handled by defining
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a modified graphical model with auxiliary variables). The

Bethe free energy is the case r = 2.

For S ⊆ [n] with 0 < |S| ≤ r, let bS : {±1}S → R

denote the belief on S, which is a probability mass function

over {±1}|S| representing our belief about the joint distribu-

tion of xS := {xi}i∈S . Let b = {bS : S ∈ (
[n]
≤r

)} denote the

set of beliefs on s-wise interactions for all s ≤ r. Following

[7], the Kikuchi free energy is a real-valued functional K of

b having the form E − 1
βS (in our case, β = 1). Here the

first term is the ‘energy’ term

E(b) = −λ
∑
|S|=p

YS

∑
xS∈{±1}S

bS(xS)x
S .

where, recall, xS :=
∏

i∈S xi. (This is a proxy for the term

Ex∼μ[H(x)] in (10).) The second term in K is the ‘entropy’

term

S(b) =
∑

0<|S|≤r

cSSS(b), where

SS(b) = −
∑

xS∈{±1}S
bS(xS) log bS(xS),

where the overcounting numbers are cS :=∑
T⊇S, |T |≤r(−1)|T\S|. These are defined so that for

any S ⊆ [n] with 0 < |S| ≤ r,∑
T⊇S, |T |≤r

cT = 1, (11)

which corrects for overcounting. Notice that E and S each

take the form of an “expectation” with respect to the beliefs

bS ; these would be actual expectations were the beliefs the

marginals of an actual probability distribution. This situation

is to be contrasted with the notion of a pseudo-expectation,

which plays a central role in the theory underlying the sum-

of-squares algorithm.

Our algorithms are based on he Kikuchi Hessian, a gener-

alization of the Bethe Hessian matrix that was introduced in

the setting of community detection [11]. The Bethe Hessian

is the Hessian of the Bethe free energy with respect to the

moments of the beliefs, evaluated at belief propagation’s so-

called “uninformative fixed point.” The bottom eigenvector

of the Bethe Hessian is a natural estimator for the planted

signal because it represents the best direction for local

improvement of the Bethe free energy, starting from belief

propagation’s uninformative starting point. We generalize

this method and compute the analogous Kikuchi Hessian

matrix. The full derivation is given in Appendix E. The

order-� symmetric difference matrix (2) (approximately)

appears as a submatrix of the level-r Kikuchi Hessian

whenever r ≥ �+ p/2.

V. CONCLUSION

We have presented a hierarchy of spectral algorithms for

tensor PCA, inspired by variational inference and statistical

physics. In particular, the core idea of our approach is to

locally minimize the Kikuchi free energy. We specifically

implemented this via the Kikuchi Hessian, but there may be

many other viable approaches to minimizing the Kikuchi

free energy such as generalized belief propagation [7].

Broadly speaking, we conjecture that for many average-

case problems, algorithms based on Kikuchi free energy and

algorithms based on sum-of-squares should both achieve the

optimal tradeoff between runtime and statistical power. One

direction for further work is to verify that this analogy holds

for problems other than tensor PCA; in particular, we show

here that it also applies to refuting random k-XOR formulas

when k is even.

Perhaps one benefit of the Kikuchi hierarchy over the

sum-of-squares hierarchy is that it has allowed us to sys-
tematically obtain spectral methods, simply by computing

a certain Hessian matrix. Furthermore, the algorithms we

obtained are simpler than their SOS counterparts. We are

hopeful that the Kikuchi hierarchy will provide a roadmap

for systematically deriving simple and optimal algorithms

for a large class of problems.

APPENDIX

A. Analysis of Symmetric Difference and Voting Matrices

We adopt the notation xS :=
∏

i∈S xi for x ∈ {±1}n and

S ⊆ [n]. Recall the matrix M indexed by sets S ⊆ [n] of

size �, having entries

MS,T = YS
T1|S
T |=p where YS
T = λxS
T
∗ +GS
T .

(12)

First, observe that we can restrict our attention to the

case where the spike is the all-ones vector x∗ = �

without loss of generality. To see this, conjugate M by

a diagonal matrix D with diagonal entries DS,S = xS
∗

and obtain (M ′)S,T = (D−1MD)S,T = Y ′
S
T1|S
T |=p

where Y ′
S
T = xS

∗x
T
∗ YS
T = xS
T

∗ YS
T = λ + g′S
T

where g′S
T = xS
∗x

T
∗ gS
T . By symmetry of the Gaussian

distribution, (g′E)|E|=p are i.i.d. N (0, 1) random variables.

Therefore, the two matrices have the same spectrum and the

eigenvectors of M can be obtained from those of M ′ by

pre-multiplying by D. So from now on we write

M = λX +Z, (13)

where XS,T = 1|S
T |=p and ZS,T = gS
T1|S
T |=p,

where (gE)|E|=p is a collection of i.i.d. N (0, 1) r.v.’s.

1) Structure of X: The matrix X is the adjacency matrix

of a regular graph Jn,�,p on
(
n
�

)
vertices, where vertices are

represented by sets, and two sets S and T are connected by

an edge if |S�T | = p, or equivalently |S∩T | = �−p/2. This

matrix belongs to the Bose-Mesner algebra of the (n, �)-
Johnson association scheme (see for instance [53], [54]).

This is the algebra of
(
n
�

) × (
n
�

)
real- or complex-valued

symmetric matrices where the entry XS,T depends only on

the size of the intersection |S ∩ T |. In addition to this set
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of matrices being an algebra, it is a commutative algebra,

which means that all such matrices are simultaneously

diagonalizable and share the same eigenvectors.

Filmus [51] provides a common eigenbasis for this al-

gebra: for 0 ≤ m ≤ �, let ϕ = (a1, b1, . . . , am, bm) be a

sequence of 2m distinct elements of [n]. Let |ϕ| = 2m

denote its total length. Now define a vector uϕ ∈ R
(n�)

having coordinates

uϕ
S =

m∏
i=1

(1ai∈S − 1bi∈S) , |S| = � .

In the case m = 0, ϕ is the empty sequence ∅ and we have

u∅ = � (the all-ones vector).

Proposition A.1. Each uϕ is an eigenvector of X . Further-
more, the linear space Ym := span{uϕ : |ϕ| = 2m} for
0 ≤ m ≤ � is an eigenspace of X (i.e., all vectors uϕ with
sequences ϕ of length of 2m have the same eigenvalue μm).
Lastly R

(n�) =
⊕�

m=0 Ym, and dimYm =
(
n
m

)−(
n

m−1

)
. (By

convention,
(

n
−1

)
= 0.)

Proof: The first two statements are the content of

Lemma 4.3 in [51]. The dimension of Ym is given in Lemma

2.1 in [51].

We note that (uϕ)|ϕ|=2m are not linearly independent; an

orthogonal basis, called the Young basis, consisting of linear

combinations of the uϕ’s is given explicitly in [51].

We see from the above proposition that X has � + 1
distinct eigenvalues μ0 ≥ μ1 ≥ · · · ≥ μ�, each one

corresponding to the eigenspace Ym. The first eigenvalue

is the degree of the graph Jn,�,p:

μ0 = d� =

(
�

p/2

)(
n− �

p/2

)
. (14)

We provide an explicit formula for all the remaining eigen-

values:

Lemma A.2. The eigenvalues of X are, for 0 ≤ m ≤ �,

μm =

min(m,p/2)∑
s=0

(−1)s
(
m

s

)(
�−m

p/2− s

)(
n− �−m

p/2− s

)
.

(15)

Proof: These are the so-called Eberlein polynomials,

which are polynomials in m of degree p (see, e.g., [53]). We

refer to [55] for formulae in more general contexts, but we

give a proof here for completeness. Let A = {a1, . . . , am}
and B = {b1, . . . , bm}. Note that uϕ

S is nonzero if and only

if |S ∩ {ai, bi}| = 1 for each 1 ≤ i ≤ m. By symmetry,

we can assume that A ⊆ S and S ∩ B = ∅. Then μm

is the sum over all sets T , such that |S � T | = p and

|T ∩ {ai, bi}| = 1 for each i, of (−1)s where s = |T ∩B|.
For each s there are

(
m
s

)
choices of this set of indices, giving

the first binomial. Adding these bi to T and removing these

ai from S contributes 2s to |S�T |. To achieve |S�T | = p,

we also need to remove p/2− s elements of S \A from S,

giving the second binomial. We also need to add p/2 − s
elements of S ∪B to T , giving the third binomial. Finally,

we have s ≤ m and s ≤ p/2.

As the following lemma shows, the succeeding eigenval-

ues decay rapidly with m.

Lemma A.3. Let 3 ≤ p ≤ √n and let � < n/p2. For all
0 ≤ m ≤ � it holds that

|μm|
μ0

≤ max

{(
1− m

�

)p/2
,
p

n

}
.

Proof: The terms in (15) have alternating signs. We will

show that they decrease in absolute value beyond the first

nonzero term, so that it gives a bound on μm. We consider

two cases. First, suppose m ≤ � − p/2 so that the s = 0
term is positive. Then the (s+ 1)st term divided by the sth

term is, in absolute value,(
m
s+1

)(
�−m

p/2−s−1

)(
n−�−m
p/2−s−1

)(
m
s

)(
�−m
p/2−s

)(
n−�−m
p/2−s

)
=

(
m− s

s+ 1

)(
p/2− s

�−m− p/2 + s+ 1

)
×(

p/2− s

n− �−m− p/2 + s+ 1

)
≤ m(p/2)(p/2)

(�−m− p/2 + 1)(n− �−m− p/2 + 1)

≤ (�− p/2)(p/2)(p/2)

n− 2�+ 1
since m ≤ �− p/2

≤ �p2/4

n− 2�
< 1 .

It follows that the s = 0 term is an upper bound,

μm ≤
(
�−m

p/2

)(
n− �−m

p/2

)
,

and so

μm

μ0
≤

(
�−m

p/2

)/(
�

p/2

)
≤

(
�−m

�

)p/2

.

Next we consider the case m > �− p/2, so that the first

nonzero term has s = p/2 − � + m ≥ 1. Intuitively, this

reduces μm by at least a factor of n, and we will show this

is the case. For the terms with s ≥ p/2 − � +m, the ratio

of absolute values is again bounded by(
m
s+1

)(
�−m

p/2−s−1

)(
n−�−m
p/2−s−1

)(
m
s

)(
�−m
p/2−s

)(
n−�−m
p/2−s

)
=

(
m− s

s+ 1

)(
p/2− s

�−m− p/2 + s+ 1

)
×(

p/2− s

n− �−m− p/2 + s+ 1

)
<

(�− p/2)(p/2)(p/2)

(p/2− �+m+ 1)(n− 2�+ 1)
≤ �p2/4

n− 2�
< 1 .
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It follows that the s = p/2− �+m term gives a bound on

the absolute value,

|μm| ≤
(

m

�− p/2

)(
n− �−m

�−m

)
≤

(
�

p/2

)(
n− �

�−m

)
,

in which case

|μm|
μ0

≤
(
n−�
�−m

)(
n−�
p/2

) =
(p/2)!(n− �− p/2)!

(�−m)!(n− 2�+m)!

≤
(

p/2

n− �− p/2

)p/2−�+m

≤
( p

n

)p/2−�+m

≤ p

n
.

Combining these two cases gives the stated result.

2) Proof of Strong Detection: Here we prove our strong

detection result, Theorem III.3. The proof doesn’t exploit

the full details of the structure exhibited above. Instead, the

proof is a straightforward application of the matrix Chernoff

bound for Gaussian series [56] (see also Theorem 4.1.1

of [57]):

Theorem A.4. Let {Ai} be a finite sequence of fixed
symmetric d × d matrices, and let {ξi} be independent
N (0, 1) random variables. Let Σ =

∑
i ξiAi. Then, for

all t ≥ 0,

P (‖Σ‖op ≥ t) ≤ 2de−t2/2σ2

where σ2 =
∥∥E[Σ2]

∥∥
op
.

Let us first write M in the form of a Gaussian series. For

a set E ∈ (
[n]
p

)
, define the

(
n
�

)× (
n
�

)
matrix AE as

(AE)S,T = 1S
T=E .

It is immediate that for λ = 0, M = Z =
∑
|E|=p gEAE

where (gE)|E|=p is a collection of i.i.d. N (0, 1) random

variables. The second moment of this random matrix is

E[M2] =
∑

E : |E|=p

A2
E = d�I ,

since A2
E is the diagonal matrix with (AE)S,S = 1|S
E|=p,

and summing over all E gives d� on the diagonal. The

operator norm of the second moment is then d�. It follows

that for all t ≥ 0,

P0

(
λmax(M) ≥ t

) ≤ 2

(
n

�

)
e−t2/2d� ≤ 2n�e−t2/2d� . (16)

Now letting t = λd�

2 yields the first statement of the theorem.

As for the second statement, we have λmax(M) ≥
‖X‖op−‖Z‖op = λd�−‖Z‖op where Z is defined in (13).

Applying the same bound we have

Pλ

(
λmax(M) ≤ λd�

2

)
≤ P

(
‖Z‖op ≤ λd�

2

)
≤ 2n�e−λ2d�/8.

3) Proof of Strong Recovery: Here we prove our strong

recovery result, Theorem III.4. Let v0 = vtop(M) be a unit-

norm leading eigenvector of M . For a fixed m ∈ [�] (to be

determined later on), we write the orthogonal decomposition

v0 = v(m) + v⊥, where v(m) ∈ ⊕
s≤m Ys, and v⊥ in the

orthogonal complement. The goal is to first show that if m
is proportional to � then v⊥ has small Euclidean norm, so

that v0 and v(m) have high inner product. The second step

of the argument is to approximate the voting matrix V (v0)
by V (v(m)), and then use Fourier-analytic tools to reason

about the latter.

Let us start with the first step.

Lemma A.5. With Z defined as in (13), we have∥∥v⊥∥∥2 ≤ 2
‖Z‖op

λ(μ0 − μm+1)
.

Proof: Let us absorb the factor λ in the definition

of the matrix X . Let {u0, · · · , ud} be a set of eigen-

vectors of X which also form an orthogonal basis for⊕
s≤m Ys, with u0 being the top eigenvector of X (u0 is

the normalized all-ones vector). We start with the inequality

u	0 Mu0 ≤ v	0 Mv0. The left-hand side of the inequality

is μ0 + u	0 Zu0. The right-hand side is v	0 Xv0 + v	0 Zv0.

Moreover v	0 Xv0 = v	0 Xv(m) + v	0 Xv⊥. Since v(m) ∈⊕
s≤m Ys, by Proposition A.1, Xv(m) belongs to the space

as well, and therefore v	0 Xv(m) = v(m)	Xv(m). Similarly

v	0 Xv⊥ = (v⊥)	Xv⊥, so v	0 Xv0 = v(m)	Xv(m) +
(v⊥)	Xv⊥. Therefore the inequality becomes

μ0 + u	0 Zu0 ≤ v(m)	Xv(m) + (v⊥)	Xv⊥ + v	0 Zv0.

Since v⊥ is orthogonal to the top m eigenspaces of

X we have (v⊥)	Xv⊥ ≤ μm+1

∥∥v⊥∥∥2

2
. Moreover,

v(m)	Xv(m) ≤ μ0

∥∥v(m)
∥∥2

, hence

μ0 + u	0 Zu0 ≤ μ0

∥∥v(m)
∥∥2

+ μm+1

∥∥v⊥∥∥2
+ v	0 Zv0.

By rearranging and applying the triangle inequality we get,

(μ0 − μm+1)
∥∥v⊥∥∥2 ≤ |v	0 Zv0|+ |u	0 Zu0| ≤ 2‖Z‖op.

Combining this fact with Lemma A.3, recalling that μ0 =
d� we obtain

Lemma A.6. For any ε > 0 and δ ∈ (0, 1), if λ ≥
ε−1

√
2 log(n�/δ)/d�, then∥∥v⊥∥∥2 ≤ ε

�

m
,

with probability at least 1− δ.

Proof: Lemma A.3 implies 1
μ0−μm+1

≤
1
μ0

1
1−(1−m+1

� )p/2
≤ 1

μ0
· �

m . Therefore, Lemma A.5

implies ∥∥v⊥∥∥2 ≤ ‖Z‖op

λd�

�

m
.
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The operator norm of the noise can be bounded by a matrix

Chernoff bound [56], [57], similarly to our argument in the

proof of detection: for all t ≥ 0

P(‖Z‖op ≥ t) ≤ n�e−t2/2d� .

Therefore, letting λ ≥ ε−1
√
2 log(n�/δ)/d� we obtain the

desired result.

Analysis of the Voting Matrix: Recall that the voting

matrix V (v) of a vector v ∈ R
(n�) has zeros on the diagonal,

and off-diagonal entries

Vij(v) =
1

2

∑
S,T∈([n]

� )

vSvT1S
T={i,j}

=
∑

S∈([n]
� )

vSvS
{i,j}1i∈S,j /∈S , 1 ≤ i �= j ≤ n .

It will be more convenient in our analysis to work with

V (v(m)) instead of V (v0). To this end we produce the

following approximation result:

Lemma A.7. Let u, e ∈ R
(n�) and v = u+ e. Then

‖V (v)− V (u)‖2F ≤ 3�2‖e‖2(2‖u‖2 + ‖e‖2).

In particular,

∥∥V (v0)− V (v(m))
∥∥2
F
≤ 9�2

∥∥v⊥∥∥2
.

Proof: Let us introduce the shorthand notation

〈u, v〉ij :=
∑

S∈([n]
� )

vSvS
{i,j}1i∈S,j /∈S . We have

∥∥V (v)− V (u)
∥∥2
F
=

∑
i,j

(Vij(u+ e)− Vij(u))
2

=
∑
i,j

(〈u+ e, u+ e〉ij − 〈u, u〉ij)2

=
∑
i,j

(〈u, e〉ij + 〈e, u〉ij + 〈e, e〉ij)2

≤ 3
∑
i,j

(〈u, e〉2ij + 〈e, u〉2ij + 〈e, e〉2ij) ,
(17)

where the last step uses the bound (a + b + c)2 ≤ 3(a2 +

b2 + c2). Now we expand and apply Cauchy–Schwarz:

∑
i,j

〈u, e〉2ij =
∑
i,j

⎛⎝ ∑
S : |S|=�, i∈S, j /∈S

uSeS
{i,j}

⎞⎠2

≤
∑
i,j

⎛⎝ ∑
S : |S|=�, i∈S, j /∈S

u2
S

⎞⎠⎛⎝ ∑
S : |S|=�, i∈S, j /∈S

e2S
{i,j}

⎞⎠
≤

∑
i,j

⎛⎝ ∑
S : |S|=�, i∈S

u2
S

⎞⎠⎛⎝ ∑
T : |T |=�, j∈T

e2T

⎞⎠
=

⎛⎝∑
i

∑
S : |S|=�, i∈S

u2
S

⎞⎠⎛⎝∑
j

∑
T : |T |=�, j∈T

e2T

⎞⎠
=

⎛⎝�
∑
|S|=�

u2
S

⎞⎠⎛⎝�
∑
|T |=�

e2T

⎞⎠
= �2‖u‖2‖e‖2. (18)

Plugging this back into (17) yields the desired result. To

obtain ‖V (v0) − V (v(m))‖2F ≤ 9�2‖v⊥‖2 we just bound

2‖v(m)‖2 + ‖v⊥‖2 by 3.
Let us also state the following lemma, which will be need

later on:

Lemma A.8. For u ∈ R
(n�), ‖V (u)‖2F ≤ �2‖u‖4.

Proof: Note that ‖V (u)‖2F =
∑

i,j Vij(u)
2 =∑

i,j〈u, u〉2ij and so the desired result follows immediately

from (18).
Next, in the main technical part of the proof, we show

that V (v(m)) is close to a multiple of the all-ones matrix in

Frobenius norm:

Proposition A.9. Let �̂ = �/
√
n, α = �‖v(m)‖2 and η =

m
� + �

n . Then ∥∥V (v(m))− α�̂�̂	
∥∥2
F
≤ 2ηα2.

Before proving the above proposition, let us put the results

together and prove our recovery result.
Proof of Theorem III.4: For ε, δ > 0, assume λ ≥

ε−1
√
2 log(n�/δ)/d�. By Lemma A.6 and Lemma A.7 we

have ∥∥V (v0)− V (v(m))
∥∥2
F
≤ 9�2

�

m
ε,

with probability at least 1 − δ. Moreover, by Lemma A.9,

we have ∥∥V (v(m))− α�̂�̂	
∥∥2
F
≤ 2ηα2,

With α = �‖v(m)‖2 ≤ � and η = m
� + �

n . Therefore, by a

triangle inequality we have∥∥V (v0)− α�̂�̂	
∥∥
F
≤ 3�

√
�ε

m
+

√
2ηα

≤ 3�
(√ �ε

m
+

√
m

�
+

�

n

)
,
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with probability at least 1− δ. Now let us choose a value of

m that achieves a good tradeoff of the above two error terms:

m = �
√
ε. Let us also use the inequality

√
a+ b ≤ √a+

√
b

for positive a, b, to obtain

∥∥V (v0)− α�̂�̂	
∥∥
F
≤ 6�

(
ε1/4 +

√
�

n

)
, (19)

under the same event.

Now let x̂ be a leading eigenvector of V (v0), and let

R = V (v0) − α�̂�̂	. Since x̂	V (v0)x̂ ≥ �̂
	V (v0)�̂, we

have

α〈x̂, �̂〉2 + x̂	Rx̂ ≥ α+ �̂
	R�̂.

Therefore

〈x̂, �̂〉2 ≥ 1− 2
‖R‖op

α
.

Since α = �(1 − ‖v⊥‖2), and ‖v⊥‖2 ≤ ε �
m ≤ √

ε, the

bound (19) (together with ‖R‖op ≤ ‖R‖F ) implies

〈x̂, �̂〉2 ≥ 1− 12
ε1/4 +

√
�/n

1−√ε
. (20)

To conclude the proof of our theorem, we let � ≤ n
√
ε, ε <

1/16 and then replace ε by ε4: we obtain 〈x̂, �̂〉2 ≥ 1− 48ε
with probability at least 1− δ if λ ≥ ε−4

√
2 log(n�/δ)/d�.

Proof of Proposition A.9: Let α = �‖v(m)‖2. By

Lemma A.8 we have
∥∥V (v(m))

∥∥2
F
≤ α2. Therefore∥∥V (v(m))−α�̂�̂	∥∥2

F
(21)

=
∥∥V (v(m))

∥∥2
F
− 2

n
α

n∑
i,j=1

Vij(v
(m)) + α2

≤ 2α2 − 2

n
α

n∑
i,j=1

Vij(v
(m)). (22)

Now we need a lower bound on
∑n

i,j=1 Vij(v
(m)). This will

crucially rely on the fact that v(m) lies in the span of the

top m eigenspaces of X:

Lemma A.10. For a fixed m ≤ �, let v ∈⊕m
s=0 Ys. Then

n∑
i,j=1

Vij(v) ≥ ((�−m)n− �2) ‖v‖2.

We plug the result of the above lemma in (22) to obtain

∥∥V (v(m))− α�̂�̂	
∥∥2

F
≤ 2α2

(
1− �−m

�
+

�

n

)
= 2α2

(m
�
+

�

n

)
,

as desired.

A Poincaré Inequality on a Slice of the Hypercube:
To prove Lemma A.10, we need some results on Fourier

analysis on the slice of the hypercube
(
[n]
�

)
. Following [51],

we define the following. First, given a function f :
(
[n]
�

) �→
R, we define its expectation as its average value over all sets

of size �, and write

E
|S|=�

[f(S)] :=
1(
n
�

) ∑
|S|=�

f(S).

We also define its variance as

V[f ] := E
|S|=�

[f(S)2]− E
|S|=�

[f(S)]2.

Moreover, we identify a vector u ∈ R
(n�) with a function on

sets of size � in the obvious way: f(S) = uS .

Definition A.11. For u ∈ R
(n�) and i, j ∈ [n], let u(ij)

denote the vector having coordinates

u
(ij)
S =

{
uS
{i,j} if |S ∩ {i, j}| = 1
uS otherwise.

(The operation u �→ u(ij) exchanges the roles of i and j
whenever possible.)

Definition A.12. For u ∈ R
(n�) and i, j ∈ [n], define the

influence of the pair (i, j) as

Infij [u] :=
1

2
E

|S|=�

[(
u
(ij)
S − uS

)2]
,

and the total influence as

Inf[u] :=
1

n

∑
i<j

Infij [u].

With this notation, our main tool is a version of Poincaré’s

inequality on
(
[n]
�

)
:

Lemma A.13 (Lemma 5.6 in [51]). For v ∈ ⊕m
s=0 Ys we

have
Inf[v] ≤ mV[v].

Proof of Lemma A.10: We have mE|S|=�[v
2
S ] ≥

mV[v] ≥ Inf[v] = 1
n

∑
i<j Infij [v], and

2 Infij [v] = E
|S|=�

[
(v

(ij)
S − vS)

2
]

= E
|S|=�

[
1|S∩{i,j}|=1(v

(ij)
S − vS)

2
]

= E
|S|=�

[
1|S∩{i,j}|=1

(
(v

(ij)
S )2 − 2v

(ij)
S vS + v2S

)]
.

Since E|S|=�[1|S∩{i,j}|=1(v
(ij)
S )2] =

E|S|=�[1|S∩{i,j}|=1v
2
S ], the above is equal to

2 E
|S|=�

[
1|S∩{i,j}|=1

(
v2S − v

(ij)
S vS

)]
.
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Now,

1

n

∑
i<j

Infij [v]

=
1

n

∑
i<j

(
n

�

)−1 ∑
S : |S|=�, |S∩{i,j}|=1

(
v2S − v

(ij)
S vS

)
=

1

n

(
n

�

)−1

⎡⎣�(n− �)
∑
|S|=�

v2S − 2
∑
i<j

∑
S : |S|=�, i∈S, j /∈S

vSvS
{i,j}

⎤⎦
=

1

n

(
n

�

)−1
⎡⎣�(n− �)

∑
|S|=�

v2S − 2
∑
i<j

Vij(v)

⎤⎦
=

1

n

(
n

�

)−1
⎡⎣�(n− �)‖v‖2 −

∑
i,j

Vij(v)

⎤⎦ .

Therefore

m‖v‖2 ≥ 1

n

(
�(n− �)‖v‖2 −

∑
i,j

Vij(v)
)
,

and so∑
i,j

Vij(v) ≥ (�(n−�)−mn) ‖v‖2 ≥ ((�−m)n−�2) ‖v‖2.

as desired.

B. Detection for General Priors

While we have mainly focused on the Rademacher-spiked

tensor model, we now show that our algorithm works just as

well (at least for detection) for a much larger class of spike

priors.

Theorem A.14. Let p ≥ 2 be even. Consider the spiked
tensor model with a spike prior Px that draws the entries
of x∗ i.i.d. from some distribution π on R (which does
not depend on n), normalized so that E[π2] = 1. There
is a constant C (depending on p and π) such that if
λ ≥ C�1/2d

−1/2
�

√
log n then Algorithm III.1 achieves strong

detection.

Proof: From (16), we have ‖Z‖op = O(
√
�d� log n)

with high probability, and so it remains to give a lower bound

on ‖X‖op. Letting uS =
∏

i∈S sgn((x∗)i) for |S| = �,

‖X‖op ≥ u	Xu

‖u‖2 =

(
n

�

)−1

u	Xu

where

u	Xu =
∑

|S
T |=p

uSXS,TuT

=
∑

|S
T |=p

xS
T
∗

∏
i∈S

sgn((x∗)i)
∏
i∈T

sgn((x∗)i)

=
∑

|S
T |=p

∣∣xS
T
∗

∣∣ .
We have

E[u	Xu] =

(
n

�

)
d� (E|π|)p = C(π, p)

(
n

�

)
d�, (23)

and

Var
[
u	Xu

]
= Var

⎡⎣ ∑
|S
T |=p

∣∣xS
T
∗

∣∣⎤⎦
=

∑
|S
T |=p

∑
|S′
T ′|=p

Cov(|xS
T
∗ |, |xS′
T ′

∗ |).

(24)

We have

Cov(|xS
T
∗ |, |xS′
T ′

∗ |) ≤
√
Var

(
|xS
T
∗ |

)
Var

(
|xS′
T ′
∗ |

)
= Var

(|xS
T
∗ |) ≤ E

[|xS
T
∗ |2] = (E[π2])p = 1 .

Also, Cov(|xS
T
∗ |, |xS′
T ′

∗ |) = 0 unless S�T and S′�T ′

have nonempty intersection. Using Lemma A.15 (below), the

fraction of terms in (24) that are nonzero is at most p2/n
and so

Var
[
u	Xu

] ≤ [(
n

�

)
d�

]2
p2

n
. (25)

By Chebyshev’s inequality, it follows from (23) and (25)

that u	Xu ≥ 1
2C(π, p)

(
n
�

)
d� with probability at least 1 −

4p2

C(π,p)2n . This implies ‖X‖op ≥ 1
2C(π, p)d� with the same

probability, and so we have strong detection provided λ ≥
c0�

1/2d
−1/2
�

√
log n for a particular constant c0 = c0(π, p).

Above, we made use of the following lemma.

Lemma A.15. Fix A ⊆ [n] with |A| = a. Let B be chosen
uniformly at random from all subsets of [n] of size b. Then
P(A ∩B �= ∅) ≤ ab

n .

Proof: Each element of A will lie in B with probability

b/n, so the result follows by a union bound over the elements

of A.

C. The Odd-p Case

When p is odd, the Kikuchi Hessian still gives rise to a

spectral algorithm. While we conjecture that this algorithm

is optimal, we unfortunately only know how to prove sub-

optimal results for it. (However, we can prove optimal results

for a related algorithm; see Appendix F2.) We now state the

algorithm and its conjectured performance.
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Let p be odd and fix an integer � ∈ [�p/2�, n − �p/2�].
Consider the symmetric difference matrix M ∈ R

(n�)×( n
�+1)

with entries

MS,T =

{
YS
T if |S � T | = p,
0 otherwise,

where S, T ⊆ [n] with |S| = � and |T | = �+ 1.

Algorithm A.16 (Recovery for odd p). Let u be a (unit-

norm) top left-singular vector of M and let v = M	u
be the corresponding top right-singular vector. Output x̂ =
x̂(Y ) ∈ R

n, defined by

x̂i =
∑

S∈([n]
� ), T∈( [n]

�+1)

uSvT1S
T={i}, i ∈ [n].

Notice that the rounding step consisting in extracting an

n-dimensional vector x̂ from the singular vectors of M is

slightly simpler that the even-p case, in that it does not

require forming a voting matrix. We conjecture that, like

the even case, this algorithm matches the performance of

SOS.

Conjecture A.17. Consider the Rademacher-spiked tensor
model with p ≥ 3 odd. If

λ� �−(p−2)/4n−p/4

then (i) there is a threshold τ = τ(n, p, �, λ) such that strong
detection can be achieved by thresholding the top singular
value of M at τ , and (ii) Algorithm A.16 achieves strong
recovery.

Similarly to the proof of Theorem III.4, the matrix Cher-

noff bound (Theorem A.4) can be used to show that strong

recovery is achievable when λ � �−(p−1)/4n−(p−1)/4,

which is weaker than SOS when � n. We now explain the

difficulties involved in improving this. We can decompose

M into a signal part and a noise part: M = λX +
Z. In the regime of interest, �−(p−2)/4n−p/4  λ 
�−(p−1)/4n−(p−1)/4, the signal term is smaller in operator

norm than the noise term, i.e., λ‖X‖op  ‖Z‖op. While

at first sight this would seem to suggest that detection and

recovery are hopeless, we actually expect that λX still

affects the top singular value and singular vectors of M .

This phenomenon is already present in the analysis of tensor

unfolding (the case p = 3, � = 1) [15], but it seems that

new ideas are required to extend the analysis beyond this

case.

D. Proof of Boosting

Definition A.18. For a tensor G ∈ (Rn)⊗p, the injective
tensor norm is

‖G‖inj := max
‖u(1)‖=···=‖u(p)‖=1

∑
i1,...,ip

Gi1,...,ipu
(1)
i1
· · ·u(p)

ip
,

where u(j) ∈ R
n. For a symmetric tensor G, it is known

[58] that equivalently,

‖G‖inj = max
‖u‖=1

∣∣∣∣∣∣
∑

i1,...,ip

Gi1,...,ipui1 · · ·uip

∣∣∣∣∣∣ .
Proof of Proposition II.6: Write x̂ = λ〈u, x∗〉p−1x∗+

Δ where ‖Δ‖ ≤ ‖G‖inj‖u‖p−1. We have

|〈x̂, x∗〉| ≥ λ|〈u, x〉|p−1‖x∗‖2 − ‖Δ‖‖x∗‖,
and

‖x̂‖ ≤ λ|〈u, x∗〉|p−1‖x∗‖+ ‖Δ‖,
and so

corr(x̂, x∗) =
|〈x̂, x∗〉|
‖x̂‖‖x∗‖

≥ λ|〈u, x∗〉|p−1‖x∗‖ − ‖Δ‖
λ|〈u, x∗〉|p−1‖x∗‖+ ‖Δ‖

= 1− 2‖Δ‖
λ|〈u, x∗〉|p−1‖x∗‖+ ‖Δ‖

≥ 1− 2‖Δ‖
λ|〈u, x∗〉|p−1‖x∗‖

≥ 1− 2‖G‖inj‖u‖p−1

λ|〈u, x∗〉|p−1‖x∗‖
≥ 1− 2‖G‖inj

λτp−1‖x∗‖p .

Our prior Px is supported on the sphere of radius
√
n, so

‖x∗‖ =
√
n. We need to control the injective norm of the

tensor G. To this end we use Theorem 2.12 in [59] (see also

Lemma 2.1 of [20]): there exists a constant c(p) > 0 (called

E0(p) in [59]) such that for all ε > 0,

P

(√ p

n
‖G‖inj ≥ c(p) + ε

)
−→n→∞ 0.

Letting ε = c(p) we obtain

corr(x̂, x∗) ≥ 1− 4
c(p)√

p

n(1−p)/2

λτp−1
,

with probability tending to 1 as n→∞.

E. Computing the Kikuchi Hessian

In Section IV we defined the Kikuchi free energy and

explained the high level idea of how the symmetric differ-

ence matrices are derived from the Kikuchi Hessian. We

now carry out the Kikuchi Hessian computation in full

detail. This is a heuristic (non-rigorous) computation, but

we believe these methods are important as we hope they

will be useful for systematically obtaining optimal spectral

methods for a wide variety of problems.
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1) Derivatives of Kikuchi Free Energy: Following [11],

we parametrize the beliefs in terms of the moments mS =
E[xS ]. Specifically,

bS(xS) =
1

2|S|

⎛⎝1 +
∑

∅⊂T⊆S

mTx
T

⎞⎠ . (26)

We imagine mT are close enough to zero so that bS is a

positive measure. One can check that these beliefs indeed

have the prescribed moments: for T ⊆ S,∑
xS

bS(xS)x
T = mT .

Thus we can think of the Kikuchi free energy K as a function

of the moments {mS}0<|S|≤r. This parametrization forces

the beliefs to be consistent, i.e., if T ⊆ S then the marginal

distribution bS |T is equal to bT .

We now compute first and second derivatives of K = E−S
with respect to the moments mS . First, the energy term:

E = −λ
∑
|S|=p

YSmS

∂E
∂mS

=

{ −λYS if |S| = p
0 otherwise

∂2E
∂mS∂mS′

= 0.

Now the entropy term:

∂SS
∂bS(xS)

= − log bS(xS)− 1.

From (26), for ∅ ⊂ T ⊆ S,

∂bS(xS)

∂mT
=

xT

2|S|

and so

∂SS
∂mT

=
∑
xS

∂SS
∂bS(xS)

· ∂bS(xS)

∂mT

= −2−|S|
∑
xS

xT [log bS(xS) + 1]

= −2−|S|
∑
xS

xT log bS(xS). (27)

For ∅ ⊂ T ⊆ S, ∅ ⊂ T ′ ⊆ S,

∂2SS
∂mT∂mT ′

= −2−|S|
∑
xS

xT bS(xS)
−1 · ∂bS(xS)

∂mT ′

= −2−2|S|∑
xS

xTxT ′bS(xS)
−1

= −2−2|S|∑
xS

xT
T ′bS(xS)
−1 .

Finally, if T �⊆ S then ∂SS

∂mT
= 0.

2) The Case r = p: We first consider the simplest case,

where r is as small as possible: r = p. (We need to require

r ≥ p in order to express the energy term in terms of the

beliefs.)

Trivial Stationary Point: There is a “trivial stationary

point” of the Kikuchi free energy where the beliefs only

depend on local information. Specifically, if |S| < p then

bS is the uniform distribution over {±1}|S|, and if |S| = p
then

bS(xS) ∝ exp
(
λYSx

S
)

i.e.,

bS(xS) =
1

ZS
exp

(
λYSx

S
)

(28)

where

ZS =
∑
xS

exp
(
λYSx

S
)
.

Note that these beliefs are consistent (if T ⊆ S with

|S| ≤ p then bS |T = bT ) and so there is a corresponding

set of moments {mS}|S|≤p.

We now check that this is indeed a stationary point of

the Kikuchi free energy. Using (27) and (28) we have for

∅ ⊂ T ⊆ S and |S| ≤ p,

∂SS
∂mT

= −2−|S|
∑
xS

xT log bS(xS)

= −2−|S|
∑
xS

xT
[− logZS + λ1|S|=pYSx

S
]

=

{ −λYT if |T | = p
0 otherwise.

Thus if |T | < p we have ∂K
∂mT

= 0, and if |T | = p we

have

∂K
∂mT

=
∂

∂mT

⎡⎣E − ∑
0<|S|≤p

cSSS
⎤⎦

= −λYT + cTλYT

= 0

This confirms that we indeed have a stationary point.

Hessian: We now compute the Kikuchi Hessian, the

matrix indexed by subsets ∅ < |T | ≤ p with entries

HT,T ′ =
∂2K

∂mT ∂mT ′
, evaluated at the trivial stationary point.

Similarly to the Bethe Hessian [11], we expect the bottom

eigenvector of the Kikuchi Hessian to be a good estimate

for the (moments of) the true signal. This is because this

bottom eigenvector indicates the best local direction for

improving the Kikuchi free energy, starting from the trivial

stationary point. If all eigenvalues of H are positive then

the trivial stationary point is a local minimum and so an

algorithm acting locally of the beliefs should not be able

to escape from it, and should not learn anything about the
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signal. On the other hand, a negative eigenvalue (or even an

eigenvalue close to zero) indicates a (potential) direction for

improvement.

Remark A.19. When p is odd, we cannot hope for a

substantially negative eigenvalue because x∗ and −x∗ are

not equally-good solutions and so the Kikuchi free energy

should be locally cubic instead of quadratic. Still, we believe

that the bottom eigenvector of the Kikuchi Hessian (which

will have eigenvalue close to zero) yields a good algorithm.

For instance, we will see in the next section that this method

yields a close variant of tensor unfolding when r = p = 3.

Recall that for ∅ ⊂ T ⊆ S, and ∅ ⊂ T ′ ⊆ S,

∂2SS
∂mT∂mT ′

= −2−2|S|∑
xS

xT
T ′bS(xS)
−1.

If |S| < p then bS is uniform on {±1}|S| (at the triv-

ial stationary point) and so ∂2SS

∂mT ∂mT ′
= −�T=T ′ . If

|S| = p then bS(xS) = 1
ZS

exp(λYSx
S) where ZS =∑

xS
exp(λYSx

S) = 2|S| cosh(λYS), and so

∂2SS
∂mT∂mT ′

= −2−2|S|∑
xS

xT
T ′bS(xS)
−1

= −2−2|S|∑
xS

xT
T ′ZS exp(−λYSx
S)

= −2−|S|
∑
xS

xT
T ′ cosh(λYS)×(
1− λYSx

S +
1

2!
λ2Y 2

S −
1

3!
λ3Y 3

S x
S + · · ·

)
= −2−|S|

∑
xS

xT
T ′ cosh(λYS)×(
cosh(λYS)− sinh(λYS)x

S
)

since cosh(x) = 1 + 1
2!x

2 + 1
4!x

4 + · · · and sinh(x) =
x+ 1

3!x
3 + 1

5!x
5 + · · ·

=

⎧⎨⎩ − cosh2(λYS) if T = T ′, T ⊆ S
cosh(λYS) sinh(λYS) if T � T ′ = S, T ∪ T ′ ⊆ S
0 otherwise

=

⎧⎨⎩ − cosh2(λYS) if T = T ′, T ⊆ S
cosh(λYS) sinh(λYS) if T � T ′ = S
0 otherwise

where � denotes disjoint union. (Note that we have replaced

� with � due to the restriction T, T ′ ⊆ S.) We can now

compute the Hessian:

HT,T ′ =
∂2K

∂mT∂mT ′

= −
∑

S⊇T∪T ′
|S|≤p

cS
∂2SS

∂mT∂mT ′
(29)

=

⎧⎪⎨⎪⎩
∑

S⊇T
|S|<p

cS +
∑

S⊇T
|S|=p

cosh2(λYS) if T = T ′

− cosh(λYT�T ′) sinh(λYT�T ′) if |T � T ′| = p
0 otherwise

=

⎧⎪⎨⎪⎩
1 +

∑
S⊇T
|S|=p

[cosh2(λYS)− 1] if T = T ′

− cosh(λYT�T ′) sinh(λYT�T ′) if |T � T ′| = p
0 otherwise

where we used (11) in the last step. Suppose λ  1
(since otherwise tensor PCA is very easy). If T = T ′

then, using the cosh Taylor series, we have the leading-order

approximation

HT,T ≈ 1 +
∑
S⊇T
|S|=p

λ2Y 2
S

≈ 1 +

(
n− |T |
p− |T |

)
λ2

E[Y 2
S ]

≈ 1 +
np−|T |

(p− |T |)!λ
2.

This means H ≈ H̃ where

H̃T,T ′ =

⎧⎨⎩ 1 ∨ np−|T |
(p−|T |)!λ

2 if T = T ′

−λYT�T ′ if |T � T ′| = p
0 otherwise.

The Case r = p = 3: We now restrict to the case

r = p = 3 and show that the Kikuchi Hessian recovers (a

close variant of) the tensor unfolding method. Recall that in

this case the computational threshold is λ ∼ n−3/4 and so

we can assume λ  n−1/2 (or else the problem is easy).

We have

H̃T,T ′ =

⎧⎪⎪⎨⎪⎪⎩
1
2n

2λ2 if T = T ′ with |T | = 1
1 if T = T ′ with |T | ∈ {2, 3}
−λYT�T ′ if |T � T ′| = 3
0 otherwise.

This means we can write

H̃ =

⎛⎝ αI −λM 0
−λM	 I 0

0 0 I

⎞⎠
where α = 1

2n
2λ2 and M is the n × (

n
2

)
flattening of Y ,

i.e., Mi,{j,k} = Yijk1{i,j,k distinct}.
Since we are looking for the minimum eigenvalue of H̃ ,

we can restrict ourselves to the submatrix H̃≤2 indexed by

sets of size 1 and 2. We have

H̃≤2 =

(
αI −λM

−λM	 I

)
.
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An eigenvector [u v]	 of H̃≤2 with eigenvalue β satisfies

αu− λMv = βu and − λM	u+ v = βv

which implies (1 − β)v = λM	u and so λ2MM	u =
(α − β)(1− β)u. This means either u is an eigenvector of

λ2MM	 with eigenvalue (α−β)(1−β), or u = 0 and β ∈
{1, α}. Conversely, if u is an eigenvector of λ2MM	 with

eigenvalue (α− β)(1− β) �= 0, then [u v]	 with v = (1−
β)−1λM	u is an eigenvector of H̃≤2 with eigenvalue β.

Letting μ1 > · · · > μn > 0 be the eigenvalues of λ2MM	,

H̃≤2 has 2n eigenvalues of the form

α+ 1±√
(α− 1)2 + 4μi

2

and the remaining eigenvalues are α or 1. Thus, the u-part

of the bottom eigenvector of H̃≤2 is precisely the leading

eigenvector of MM	. This is a close variant of the tensor

unfolding spectral method (see Section II-D), and we expect

that its performance is essentially identical.

The General Case: r ≥ p: One difficulty when r > p
is that there is no longer a trivial stationary point that we

can write down in closed form. There is, however, a natural

guess for “uninformative” beliefs that only depend on the

local information: for 0 < |S| ≤ r,

bS(xS) =
1

ZS
exp

⎛⎜⎜⎝λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠
for the appropriate normalizing factor ZS . Unfortunately,

these beliefs are not quite consistent, so we need separate

moments for each set S:

m
(S)
T = E

xS∼bS
[xT ].

Provided λ  1, we can check that m
(S)
T ≈ m

(S′)
T to first

order, and so the above beliefs are at least approximately

consistent:

ZS =
∑
xS

exp

⎛⎜⎜⎝λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠

≈
∑
xS

⎛⎜⎜⎝1 + λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠ = 2|S|

and so

m
(S)
T =

∑
xS

bS(xS)x
T

=
1

ZS

∑
xS

xT exp

⎛⎜⎜⎝λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠

≈ 1

ZS

∑
xS

xT

⎛⎜⎜⎝1 + λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠
=

{
λYT if |T | = p
0 otherwise

which does not depend on S. Thus we will ignore the slight

inconsistencies and carry on with the derivation. As above,

the important calculation is, for T, T ′ ⊆ S,

∂2SS
∂m

(S)
T ∂m

(S)
T ′

= −2−2|S|∑
xS

xT
T ′bS(xS)
−1

= −2−2|S|∑
xS

xT
T ′ZS exp

⎛⎜⎜⎝−λ ∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠

≈ −2−|S|
∑
xS

xT
T ′ exp

⎛⎜⎜⎝−λ ∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠

≈ −2−|S|
∑
xS

xT
T ′

⎛⎜⎜⎝1− λ
∑
U⊆S
|U |=p

YUx
U

⎞⎟⎟⎠
=

⎧⎨⎩
−1 if T = T ′

λYT
T ′ if |T � T ′| = p
0 otherwise.

Analogous to (29), we compute the Kikuchi Hessian

HT,T ′ := −
∑

S⊇T∪T ′
|S|≤r

cS
∂2SS

∂m
(S)
T ∂m

(S)
T ′

.

If we fix �1, �2, the submatrix

H(�1,�2) = (HT,T ′)|T |=�1,|T ′|=�2

takes the form

H(�1,�2) ≈ a(�1, �2)1�1=�2I − b(�1, �2)M
(�1,�2)

for certain scalars a(�1, �2) and b(�1, �2), where I is the

identity matrix and M (�1,�2) ∈ R
([n]
�1
)×([n]

�2
) is the symmetric

difference matrix

M
(�1,�2)
T,T ′ =

{
YT
T ′ if |T � T ′| = p
0 otherwise.
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Instead of working with the entire Kikuchi Hessian, we

choose to work instead with M (�,�), which (when p is even)

appears as a diagonal block of the Kikuchi Hessian whenever

r ≥ � + p/2 (since there must exist |T | = |T ′| = � with

|T ∪ T ′| ≤ r and |T � T ′| = p). Our theoretical results

(see Section III) show that indeed M (�,�) yields algorithms

matching the (conjectured optimal) performance of sum-of-

squares. When p is odd, M (�,�) = 0 and so we propose to

instead focus on M (�,�+1); see Appendix C.

F. Extensions

1) Refuting Random k-XOR Formulas for k Even: Our

symmetric difference matrices can be used to give a simple

algorithm and proof for a related problem: strongly refuting

random k-XOR formulas (see [60], [30] and references

therein). This is essentially a variant of the spiked tensor

problem with sparse Rademacher observations instead of

Gaussian ones. It is known [30] that this problem exhibits

a smooth tradeoff between subexponential runtime and the

number of constraints required, but the proof of [30] involves

intensive moment calculations. When k is even, we will

give a simple algorithm and a simple proof using the matrix

Chernoff bound that achieves the same tradeoff. SOS lower

bounds suggest that this tradeoff is optimal [61], [62].

When k is odd, we expect that the construction in Sec-

tion F2 should achieve the optimal tradeoff, but we do not

have a proof for this case.

Setup: Let x1, . . . , xn be {±1}-valued variables. A

k-XOR formula Φ with m constraints is specified by a

sequence of subsets U1, . . . , Um with Ui ⊆ [n] and |Ui| = k,

along with values b1, . . . , bm with bi ∈ {±1}. For 1 ≤
i ≤ m, constraint i is satisfied if xUi = bi, where xUi :=∏

j∈Ui
xj . We write PΦ(x) for the number of constraints

satisfied by x. We will consider a uniformly random k-

XOR formula in which each Ui is chosen uniformly and

independently from the
(
n
k

)
possible k-subsets, and each bi

is chosen uniformly and independently from {±1}.
Given a formula Φ, the goal of strong refutation is

to certify an upper bound on the number of constraints

that can be satisfied. In other words, our algorithm should

output a bound B = B(Φ) such that for every formula

Φ, maxx∈{±1}n PΦ(x) ≤ B(Φ). (Note that this must be

satisfied always, not merely with high probability.) At the

same time, we want the bound B to be small with high

probability over a random Φ. Since a random assignment x
will satisfy roughly half the constraints, the best bound we

can hope for is B = m
2 (1 + ε) with ε > 0 small.

Algorithm: Let k ≥ 2 be even and let � ≥ k/2. Given

a k-XOR formula Φ, construct the order-� symmetric dif-

ference matrix M ∈ R
([n]

� )×([n]
� ) as follows. For S, T ⊆ [n]

with |S| = |T | = �, let

M
(i)
S,T =

{
bi if S � T = Ui

0 otherwise

and let

M =
m∑
i=1

M (i).

Define the parameter

d� :=

(
n− �

k/2

)(
�

k/2

)
,

which, for any fixed |S| = �, is the number of sets |T | = �
such that |S � T | = k. For an assignment x ∈ {±1}n, let

ux ∈ R
([n]

� ) be defined by ux
S = xS for all |S| = �. We have

‖M‖ ≥ (ux)	Mux

‖ux‖2 =

(
n

�

)−1 m∑
i=1

∑
S
T=Ui

xUibi

= d�

(
n

k

)−1

(2PΦ(x)−m)

since for any fixed Ui (of size k), the number of (S, T ) pairs

such that S�T = Ui is
(
n
�

)
d�
(
n
k

)−1
. Thus we can perform

strong refutation by computing ‖M‖:

PΦ(x) ≤ m

2
+

1

2d�

(
n

k

)
‖M‖. (30)

Theorem A.20. Let k ≥ 2 be even and let k/2 ≤ � ≤
n− k/2. Let β ∈ (0, 1). If

m ≥ 4e2
(
n
k

)
log

(
n
�

)
β2d�

(31)

then ‖M‖ certifies

PΦ(x) ≤ m

2
(1 + β)

with probability at least 1−3(n�)−1
over a uniformly random

k-XOR formula Φ with m constraints.

If k is constant and � = nδ with δ ∈ (0, 1), the condition (31)

becomes

m ≥ O(β−2nk/2�1−k/2 log n)

= O(β−2nk/2+δ(1−k/2) log n),

matching the result of [30]. In fact, our result is tighter by

polylog factors.

Binomial Tail Bound: The main ingredients in the

proof of Theorem A.20 will be the matrix Chernoff bound

(Theorem A.4) and the following standard binomial tail

bound.

Proposition A.21. Let X ∼ Binomial(n, p). For p < u
n <

1,

P (X ≥ u) ≤ exp

[
−u

(
log

(
u

pn

)
− 1

)]
.

Proof: We begin with the standard Binomial tail bound

[63]

P (X ≥ u) ≤ exp
(
−nD

(u
n

∥∥∥ p))
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for p < u
n < 1, where

D(a ‖ p) := a log

(
a

p

)
+ (1− a) log

(
1− a

1− p

)
.

Since log(x) ≥ 1− 1/x,

(1−a) log

(
1− a

1− p

)
≥ (1−a)

(
1− 1− p

1− a

)
= p−a ≥ −a,

and the desired result follows.
Proof: Proof of Theorem A.20: We need to bound

‖M‖ with high probability over a uniformly random k-XOR

formula Φ. First, fix the subsets U1, . . . , Um and consider

the randomness of the signs bi. We can write M as a

Rademacher series

M =

m∑
i=1

biA
(i)

where

A
(i)
S,T = �S
T=Ui .

By the matrix Chernoff bound (Theorem A.4),

P (‖M‖ ≥ t) ≤ 2

(
n

�

)
e−t2/2σ2

= 2 exp

(
log

(
n

�

)
− t2

2σ2

)
where

σ2 =

∥∥∥∥∥
m∑
i=1

(A(i))2

∥∥∥∥∥ .
In particular,

P

(
‖M‖ ≥ 2

√
σ2 log

(
n

�

))
≤ 2

(
n

�

)−1

. (32)

Now we will bound σ2 with high probability over the

random choice of U1, . . . , Um. We have

m∑
i=1

(A(i))2 = diag(D)

where DS is the number of i for which |S � Ui| = �.
This means σ2 = max|S|=� DS . For fixed S ⊆ [n] with

|S| = �, the number of sets U ⊆ [n] with |U | = k such that

|S�U | = � is d� and so DS ∼ Binomial (m, p) with p :=

d�
(
n
k

)−1
. Using the Binomial tail bound (Proposition A.21)

and a union bound over S,

P
(
σ2 ≥ u

) ≤ (
n

�

)
exp

[
−u

(
log

(
u

pm

)
− 1

)]
= exp

[
log

(
n

�

)
− u

(
log

(
u

pm

)
− 1

)]
.

Provided

u

pm
≥ e2 and u ≥ 2 log

(
n

�

)
, (33)

we have

P
(
σ2 ≥ u

) ≤ (
n

�

)−1

.

Let β ∈ (0, 1). From (30), to certify PΦ(x) ≤ m
2 (1 + β)

it suffices to have ‖M‖ ≤ βmd�
(
n
k

)−1
= βpm. Therefore,

from (32), it suffices to have

σ2 ≤ β2p2m2

4 log
(
n
�

) .
From (33), this will occur provided

β2p2m2

4 log
(
n
�

) ≥ e2pm ⇔ m ≥ 4e2 log
(
n
�

)
β2p

(34)

and

β2p2m2

4 log
(
n
�

) ≥ 2 log

(
n

�

)
⇔ m ≥ 2

√
2 log

(
n
�

)
βp

. (35)

Note that (35) is subsumed by (34). This completes the

proof.

2) Odd-Order Tensors: When the tensor order p is odd,

we have given an algorithm for tensor PCA based on the

Kikuchi Hessian (see Appendix C) but are unfortunately

unable to give a tight analysis of it. Here we present a

related algorithm for which we are able to give a better

analysis, matching SOS. The idea of the algorithm is to

use a construction from the SOS literature that transforms

an order-p tensor (with p odd) into an order-2(p − 1)
tensor via the Cauchy–Schwarz inequality [29]. We then

apply a variant of our symmetric difference matrix to the

resulting even-order tensor. A similar construction was given

independently in the recent work [31] and shown to give

optimal performance for all � ≤ nδ for a certain constant

δ > 0. The proof we give here applies to the full range

of � values: �  n. Our proof uses a certain variant of

the matrix Bernstein inequality combined with some fairly

simple moment calculations.

Setup: For simplicity, we consider the following ver-

sion of the problem. Let p ≥ 3 be odd and let Y ∈ (Rn)⊗p

be an asymmetric tensor with i.i.d. Rademacher (uniform

±1) entries. Our goal is to certify an upper bound on the

Rademacher injective norm, defined as

‖Y ‖± := max
x∈{±1}n/√n

|〈Y , x⊗p〉|.

The true value is O(
√
n) with high probability. In time n�

(where � = nδ with δ ∈ (0, 1)) we will certify the bound

‖Y ‖± ≤ np/4�1/2−p/4polylog(n), matching the results of

[27], [28]. Such certification results can be turned into

recovery results using sum-of-squares; see Lemma 4.4 of

[15]. To certify a bound on the injective norm instead of the

Rademacher injective norm (where x is constrained to the

sphere instead of the hypercube), one should use the basis-

invariant version of the symmetric difference matrices given

by [31] (but we do not do this here).
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Algorithm: We will use a trick from [29] which is often

used in the sum-of-squares literature. For any ‖x‖ = 1, we

have by the Cauchy–Schwarz inequality,

〈Y , x⊗p〉2 ≤ ‖x‖2〈T , x⊗4q〉 = 〈T , x⊗4q〉
where p = 2q + 1 and Tabcd :=

∑
e∈[n] YaceYbde where

a, b, c, d ∈ [n]q . We have E[T ]abcd = n · 1{ac = bd} and

so 〈E[T ], x⊗4q〉 = n
∑

ac(x
axc)2 = n. Let T̃ = T − E[T ],

i.e., T̃abcd = Tabcd · 1{ac �= bd}. Define the n� × n� matrix

M as follows. For S, T ∈ [n]�,

MS,T :=
∑
abcd

T̃abcd N
−1
ab,cd · 1{S

ab,cd←→ T}

where S
ab,cd←→ T roughly means that S is obtained from T

by replacing ab by cd, or cd by ab; the formal definition

is given below. Also, Nab,cd denotes the number of (S, T )

pairs for which S
ab,cd←→ T .

Definition A.22. For S, T ∈ [n]� and a, b, c, d ∈ [n]q , we

write S
ab,cd←→ T if there are distinct indices i1, . . . , i2q ∈ [�]

such that either: (i) Sij = (ab)ij and Tij = (cd)ij for all

j ∈ [2q], the values in a, b, c, d do not appear anywhere else

in S or T , and S, T are identical otherwise: Si = Ti for all

i /∈ {i1, . . . , i2q}; or (ii) the same holds but with ab and cd
interchanged. (Here ab denotes concatenation.)

Note that

Nab,cd ≥ N̄ :=

(
�

2q

)
(n− 4q)�−2q. (36)

The above construction ensures that

n�(x⊗�)	M(x⊗�) = n2q〈T̃ , x⊗4q〉 for all x ∈ {±1}n/√n.

This means we can certify an upper bound on ‖Y ‖± by

computing ‖M‖:

‖Y ‖± ≤
√
〈T , x⊗4q〉 ≤

√
〈E[T ], x⊗4q〉+

√
〈T̃ , x⊗4q〉

≤ n1/2 + n�/2−q‖M‖1/2.

Theorem A.23. Let p ≥ 3 be odd and let p − 1 ≤ � ≤
min{n− (p− 1), n

4(p−1) ,
n

8 logn}. Then ‖M‖ certifies

‖Y ‖± ≤ n1/2 + 8pp�1/2−p/4np/4(log n)1/4

with probability at least 1− n−� over an i.i.d. Rademacher
Y .

Proof: We will use the following variant of the matrix

Bernstein inequality; this is a special case (Ak = R · I) of

[57], Theorem 6.2.

Theorem A.24 (Matrix Bernstein). Consider a finite se-
quence {Xi} of independent random symmetric d × d

matrices. Suppose E[Xi] = 0 and ‖E[Xr
i ]‖ ≤ r!

2 R
r for

r = 2, 3, 4, . . .. Then

Pr

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ d · exp

( −t2/2
nR2 +Rt

)
.

For e ∈ [n], let

M
(e)
S,T :=

∑
abcd

YaceYbde N
−1
ab,cd · 1{S

ab,cd←→ T} · 1{ac �= bd}.

We will apply Theorem A.24 to the sum M =
∑

e M
(e).

Note that E[M (e)] = 0. To bound the moments

‖E[(M (e))r]‖, we will use the following basic fact.

Lemma A.25. If A is a symmetric matrix,

‖A‖ ≤ max
j

∑
i

|Aij |.

Proof: Let v be the leading eigenvector of A so that

Av = λv where ‖A‖ = |λ|. Normalize v so that ‖v‖1 = 1.

Then ‖Av‖1 = |λ| · ‖v‖1 and so

‖A‖ = |λ| · ‖v‖1 =
∑
i

∣∣∣∣∣∣
∑
j

Aijvj

∣∣∣∣∣∣ ≤
∑
ij

|Aij | · |vj |

≤
∑
j

|vj | ·
∑
i

|Aij | ≤ ‖v‖1 ·max
j

∑
i

|Aij |.

Proof of Theorem A.23: For any fixed e, we have by

Lemma A.25,

‖E[(M (e))r]‖ ≤ max
S

∑
T

|E[(M (e))r]S,T |

=: max
S

h(r, e, S).

Let π denote a “path” of the form

π = (S0, a1, b1, c1, d1,

S1, a2, b2, c2, d2, S2, . . . , ar, br, cr, dr, Sr)

such that S0 = S, (ai, ci) �= (bi, di), and Si−1
aibi,cidi←→ Si.

Then we have

h(r, e, S) =
∑
π

E

r∏
i=1

YaicieYbidieN
−1
aibi,cidi

.

Among tuples of the form (ai, ci) and (bi, di), each must

occur an even number of times (or else the term associated

with π is 0). There are 2r such tuples, so there are
(
2r
r

)
r! 2−r

ways to pair them up. Once Si−1 is chosen, there are at most

2(�n)q choices for (ai, ci), and the same is true for (bi, di).
Once Si−1, ai, bi, ci, di are chosen, there are at most (2q)!
possible choices for Si. This means

h(r, e, S) ≤
(
2r

r

)
r! 2−r[2(�n)q · (2q)!]rN̄−r.
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where N̄ is defined in (36). Since
(
2r
r

) ≤ 4r, we can apply

Theorem A.24 with R = 8(2q)!(�n)qN̄−1. This yields

Pr {‖M‖ ≥ t} ≤ n� · exp
( −t2/2
nR2 +Rt

)
.

Let t = R
√
8�n log n. Provided � ≤ n/(8 logn) we have

Rt ≤ nR2 and so

Pr
{
‖M‖ ≥ R

√
8�n log n

}
≤ exp

(
� log n− t2

4nR2

)
= exp(−� log n) = n−�.

Thus with high probability we certify

‖Y ‖± ≤ n1/2 + n�/2−q‖M‖1/2
≤ n1/2 + n�/2−qR1/2(8�n log n)1/4

= n1/2 + n�/2−q
√
8(2q)!(�n)q/2N̄−1/2(8�n log n)1/4

= n1/2 + 83/4
√
(2q)!n�/2−qN̄−1/2(�n)1/4+q/2(log n)1/4.

We have the following bound on N̄ :

N̄ =

(
�

2q

)
(n− 4q)�−2q

= n� ·
(
�
2q

)
(n− 4q)�−2q

n�

≥ n� · �2q

(2q)2q
· (n− 4q)�−2q

n�

=
n�

(2q)2q
·
(
n− 4q

n

)�−2q (
�

n

)2q

=
n�

(2q)2q
·
(
1− 4q

n

)�−2q (
�

n

)2q

≥ n�

pp
·
(
1− (�− 2q)

4q

n

)(
�

n

)2q

≥ n�

pp
·
(
1− 4q�

n

)(
�

n

)2q

≥ n�

2pp

(
�

n

)2q

provided � ≤ n/(8q). Therefore we certify

‖Y ‖± ≤ n1/2 + 21/2 · 83/4
√
(2q)!pp/2�1/4+q/2n1/4−q/2×

(�/n)−q(log n)1/4

≤ n1/2 + 8pp�1/2−p/4np/4(log n)1/4

as desired.
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