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Abstract—The problem of tolerant junta testing is a nat-
ural and challenging problem which asks if the property of
a function having some specified correlation with a k-Junta
is testable. In this paper we give an affirmative answer to
this question: There is an algorithm which given distance
parameters c, d, and oracle access to a Boolean function f
on the hypercube, has query complexity exp(k).poly(1/(c-
d)) and distinguishes between the following cases:

1) The distance of f from any k-junta is at least c;
2) There is a k-junta g which has distance at most d

from f.
This is the first non-trivial tester (i.e., query complexity is
independent of the ambient dimension n) which works for
all c and d (bounded by 0.5). The best previously known
results by Blais et al., required c to be at least 16d. In
fact, with the same query complexity, we accomplish the
stronger goal of identifying the most correlated k-junta, up
to permutations of the coordinates.

We can further improve the query complexity to
poly(k/(c-d)) for the (weaker) task of distinguishing be-
tween the following cases:

1) The distance of f from any k’-junta is at least c.
2) There is a k-junta g which is at a distance at most d

from f.
Here k’=poly(k/(c-d)). Our main tools are Fourier analysis
based algorithms that simulate oracle access to influential
coordinates of functions.

Keywords-Junta testing; Noise operator; Random restric-
tions;

I. INTRODUCTION

Juntas are a fundamental class of functions in
Boolean function analysis. A function f : {−1, 1}n →
{−1, 1} is said to be a k-junta if there are some k-
coordinates i1, . . . , ik ∈ [n] such that f(x) only depends
on xi1 , . . . , xik . In particular, special attention has been
devoted to the problem of testing juntas.

We recall that a property testing algorithm for a
class of functions C is an algorithm which given oracle
access to an f : {−1, 1}n → {−1, 1} and a distance
parameter ε > 0, satisfies

1) If f ∈ C, then the algorithm accepts with proba-
bility at least 2/3;

2) If dist(f, g) ≥ ε for every g ∈ C, then the algo-
rithm rejects with probability at least 2/3. Here
dist(f, g) = Prx∈{−1,1}n [f(x) �= g(x)].

The principal measure of the efficiency of the algorithm
is its query complexity. Also, the precise value of the
confidence parameter is irrelevant and 2/3 can be
replaced by any constant 1/2 < c < 1.

Fischer et al.[14] were the first to study the problem
of testing k-juntas and showed that k-juntas can be
tested with query complexity Õ(k2/ε). The crucial
feature of their algorithm is that the query complexity
is independent of the ambient dimension n. Since then,
there has been a long line of work on testing juntas [3],
[2], [27], [10], [9] and it continues to be of interest down
to the present day. The flagship result here is that k-
juntas can be tested with Õ(k/ε) queries and this is
tight [3], [10]. While the initial motivation to study
this problem came from long-code testing [1], [25] (re-
lated to PCPs and inapproximability), another strong
motivation comes from the feature selection problem in
machine learning (see, e.g. [6], [7]).

Tolerant testing: The definition of property tester
above requires the algorithm to accept if and only if
f ∈ C. However, for many applications, it is important
consider a noise-tolerant definition of property testing.
In particular, Parnas, Ron and Rubinfeld [24] intro-
duced the following definition of noise tolerant testers.

Definition I.1. For constants 1/2 > cu > c� ≥ 0 and
a function class C, a (cu, c�)-noise tolerant tester for C is
an algorithm which given oracle access to a function f :
{−1, 1}n → {−1, 1}

1) accepts with probability at least 2/3 if
ming∈C dist(f, g) ≤ c�.

2) rejects with probability at least 2/3 if
ming∈C dist(f, g) ≥ cu.

We observe that we restrict cu, c� < 1/2. This is
because most natural classes C are closed under com-
plementation – i.e., if g ∈ C, then −g ∈ C. For such
a class C and for any f , ming∈C dist(f, g) ≤ 1/2. Fur-
ther, note that the standard notion of property testing
corresponds to a (ε, 0)-noise tolerant tester.

The problem of testing juntas becomes quite chal-
lenging in the presence of noise. Parnas et al. [24]
observed that any tester whose (individual) queries

1537

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00092



are uniformly distributed are inherently noise tolerant
in a very weak sense. In particular, [13] used this
observation to show that the junta tester of [14] is
in fact a (ε, poly(ε/k))-noise tolerant tester for k-juntas
– note that c� is quite small, namely poly(ε/k). Later,
Chakraborty et al. [8] showed that the tester of Blais [3]
yields a (Cε, ε) tester (for some large but fixed C > 1)
with query complexity exp(k/ε). Recently, there has
been a surge of interest in tolerant junta testing. On
one hand, Levi and Waingarten showed that there are
constants 1/2 > ε1 > ε2 > 0 such that any non-
adaptive (ε1, ε2) tester requires Ω̃(k2) non-adaptive
queries. Contrast this with the result of Blais [3] who
showed that there is non-adaptive tester for k-juntas
with O(k3/2) queries when there is no noise. In par-
ticular, this shows a gap between testing in the noisy
and noiseless case.

In the opposite (i.e., algorithmic) direction,
Blais et al. [4] proved the following theorem.

Theorem I.2. There is an algorithm which for any ρ ∈
(0, 1), ε ∈ (0, 1) and parameter k ∈ N, is a (ε, ρε

16 )-noise
tolerant tester for k-juntas. The query complexity of the
tester is O

(
k log k

ερ(1−ρ)k

)
.

Note that for any C > 16, this yields an (ε, ε/C)-
tolerant tester for k-juntas with exp(k) query complex-
ity. Thus, it improves on the result of [8] who showed
the same result for an unspecified large constant C.

To understand the main shortcoming of [4], note that
this algorithm does not yield a (cu, c�) noise tolerant
tester once c� >

1
32 – e.g, no setting of parameters in the

tester of [4] can yield (say) a (0.1, 0.05) noise-tolerant
tester for k-juntas. Naturally, one would like to obtain
(cu, c�) testers for any 1/2 > cu > c�. The main result of
this paper accomplishes this goal. Below we formalize
and state the main results of the paper.

We will use Jn,k to denote the class of k-juntas
on n variables. Also, for a subset S ⊆ [n], we let
JS,k denote the class of k-juntas on the variables in
S. Further, unless indicated otherwise, all expectations
are taken over uniformly random elements of {−1, 1}n
where the ambient dimension n will be clear from the
context. Our first result constructs (cu, c�) testers for
any 1/2 > cu > c�.

Theorem I.3. There is an algorithm Maximum-
correlation-junta which takes as input parameters k ∈ N,
distance parameter ε > 0, oracle access to function f :
{−1, 1}n → {−1, 1} and has the following guarantee: With
probability 2/3, it outputs a number Ĉorrf,k such that∣∣Ĉorrf,k − max

�∈Jn,k

E
x
[�(x) · f(x)]

∣∣ ≤ ε.

It also outputs a function h : {−1, 1}k → {−1, 1} such that

there is a set of coordinates T = {i1, . . . , ik} ⊆ [n] and∣∣ max
�∈Jn,k

E
x
[�(x) · f(x)]−E

x
[h(xi1 , . . . ,xik) · f(x)]

∣∣ ≤ ε.

The query complexity of the algorithm is 2k · poly(k, 1/ε).
Note that the above algorithm is doing something

stronger than “merely” computing correlation of f
with k-juntas – in fact, the algorithm also outputs the
a k-junta that is most correlated up to ε. Note that
the algorithm cannot identify the actual subset of the
coordinates of f that maps to those of the junta, as
an standard information theory argument shows that
this requires the number of queries to depend on n,
even without noise. Further, for the task of approxi-
mately finding the most correlated k-junta, our query
complexity is essentially optimal, since even giving the
description of the most correlated k-junta takes 2k bits.
An immediate corollary of Theorem I.3 is the existence
of a noise tolerant tester for k-juntas.

Corollary I.4. For any constant 1
2 > cu > c� ≥ 0 and

k ∈ N, there is (cu, c�)-noise tolerant tester for k-juntas
with query complexity 2k · poly(k, 1/|cu − c�|).

Proof: Let ε = cu−c�
2 . Run the algorithm Maximum-

correlation-junta with distance parameter ε. Let the
output be Ĉorrf,k. Set Thr = 1− 2c�− 2ε = 1− 2cu+2ε.
The rest of the algorithm is

1) If Ĉorrf,k ≥ Thr, then the algorithm accepts.
2) The algorithm rejects otherwise.

Note that if there is a k-junta g such that dist(f, g) ≤ c�,
then maxg∈Jn,k Ex[g(x)·f(x)] ≥ 1−2c�. Thus, Ĉorrf,k ≥
1− 2c�− ε (w.p. 2/3), and so the algorithm will accept.

On the other hand, if dist(f, g) ≥ cu for every g ∈
Jn,k then maxg∈Jn,k Ex[g(x)f(x)] ≤ 1− 2cu = Thr− 2ε,
meaning that the algorithm will reject with probability
at least 2/3.

We also remark here that the algorithm Maximum-
correlation-junta can be modified in a straightforward
manner to yield a noise tolerant tester against any
subclass of juntas, including any specific junta – e.g., for
any 1/2 > cu > c� ≥ 0, we can obtain a (cu, c�)-tester
for k-linear functions [5], [26] with query complexity
poly(k, 1/|cu−c�|). We leave the proof to the interested
reader.

Finally, we can also improve the query complexity
to have a polynomial dependence on k at the cost of
achieving a weaker guarantee.

Theorem I.5. There is an algorithm Maximum-
correlation-gap-junta which takes as input parameters k ∈
N, distance parameter ε > 0, oracle access to a function
f : {−1, 1}n → {−1, 1} and has the following guarantee:
With probability 2/3, it outputs a number Ĉorrf,gap,k sat-
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isfying

max
g∈Jn,k

E
x
[g(x)f(x)]− ε ≤ Ĉorrf,gap,k

and Ĉorrf,gap,k ≤ max
g∈Jn,k2/ε2

E[g(x)f(x)] + ε.

The query complexity of the algorithm is poly(k, 1/ε).

Analogous to Corollary I.4, we get the following
corollary by applying Theorem I.5.

Corollary I.6. For any constant 1
2 > cu > c� ≥ 0

and k ∈ N, there is an algorithm with query complexity
poly(k, 1/|cu − c�|) which with probability 2/3 can distin-
guish between the following cases:

1) ming∈Jn,k
dist(g, f) ≤ c�.

2) ming∈Jn,k′ dist(g, f) ≥ cu, where k′ = k2/(cu−c�)2.

We remark that [4] contains a result along the same
lines as Corollary I.6, but with k′ = 4k and cu = 16c�.
That is, compared to the result of [4], Corollary I.6
has a worse k′, but allows for arbitrarily good noise
tolerance.

A. Overview of techniques

One of our main contributions is a Fourier based
algorithm to simulate oracles to interesting coordinates
of f . In particular, the first step in both Maximum-
correlation-junta and Maximum-correlation-gap-junta is
to obtain oracle access to the functions x �→ x� for all
� with large low-degree influence in f . This idea pre-
viously appeared (but in a real-valued setting) in [12],
and it may be of independent interest. In particular, it
is a substantial departure from previous approaches to
tolerant junta testing.

1) Sketch of Maximum-correlation-junta.:
We begin by giving the high level overview of the algo-
rithm Maximum-correlation-junta (from Theorem I.3).
Let f : {−1, 1}n → {−1, 1} and let g : {−1, 1}n →
{−1, 1} be a maximally correlated k-junta – for this de-
scription, assume that Ex[f(x) ·g(x)] = Ω(1). The main
steps in our algorithm is as follows. First, we show that
up to a small loss in correlation, we may assume that
every variable in g has at least k−Θ(1) influence in f –
see Claim III.8 for the precise quantitative parameters.
We call these the “interesting variables,” and our first
main goal is to obtain oracle access to them.
1. Suppose that x� is an interesting variable. We show
that by randomly (in a carefully chosen sense) restrict-
ing certain variables of f , with probability k−O(1) we
obtain a function (call it f�ρ) such that |f̂�ρ(�)| ≥ k−O(1).
(See Claim III.7 for the precise details.) In other words,
influential coordinates of f end up with large Fourier
coefficients under random restrictions.
2. Assuming that |f̂�ρ(�)| ≥ k−O(1), we construct a

(randomized) operator on the function f�ρ which, with
probabililty k−O(1), gives us an oracle to the variable
x�. This operator is a variant of the operator used
by Håstad [19]) in the context of dictatorship testing
and in turn uses a modified version of the standard
Bonami-Beckner noise. The details of this are in Sec-
tion III-A.
3. Having obtained an oracle for one particular variable
x�, we can just repeat steps I-A1 and I-A1 kΘ(1) times
to obtain a set S of (oracles to) variables that con-
tains all of the interesting variables. This reduces the
original problem (estimating maxg∈Jn,k Ex[g(x)f(x)])
to the problem of estimating maxg∈JS,k Ex[g(x)f(x)].
We do this via a simple sampling based algorithm
in Find-best-fit. The query complexity of this routine
is 2k · poly(k) and is the bottleneck for Maximum-
correlation-junta.

2) Sketch of Maximum-correlation-gap-junta:
The difference in the proof of Theorem I.5 vis-a-vis
Theorem I.3 lies in Step 4 of the above overview.
Namely, having obtained the set S, our goal is find
smaller subset S ′ ⊂ S of size O(k2/ε2) of the variables
that achieves the same correlation and moreover find
this correlation.
1. The novel idea of the proof is to find a polynomial
algorithm that is able to compute the function

favg,S(x) := Ey∈{−1,1}[n]\S [f(x,y)]

while only having oracle access to the variables in S.
The details of this algorithm are in Section V-A, and we
will give an outline shortly. Note that favg,S depends
only on the variables in S (of which there are poly(k)),
and among all such functions it has the highest cor-
relation with f . Further, maxg∈JS,k Ex[g(x)f(x)] =
maxg∈JS,k Ex[g(x)favg,S(x)].
2. We replace favg,S by Tρfavg,S (for ρ = 1 − O(ε/k)),
incurring an O(ε) error in the correlation. The ad-
vantage of Tρfavg,S over favg,S is that it has at most
O(k2/ε2) high-influence (meaning, influence Ω(ε/k))
variables, and that restricting our attention to juntas
on these variables only incurs another O(ε) error in
the correlation. It is also easy to produce an oracle to
Tρfavg,S from favg,S with polynomially many samples.
3. Our next step is to estimate the influence (in the
function Tρfavg,S ) of all the variables in S . We can do
so by sampling correlated pairs (x, y) repeatedly until
we obtain pairs that differ in one coordinate and then
checking the effect on Tρfavg,S . Having estimated the
influences, we let S ′ ⊆ S be the set of high-influence
variables. The problem is reduced to that of estimating
maxg∈JS′,k Ex[g(x)f(x)].
4. The final output of the algorithm is an estimate for
the correlation of f with the best function depending
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only on variables of S ′. This is just

E
x
[|favg,S′(x)|],

which can be estimated using the same averaging
procedure that we mentioned in the first step.

It remains to explain how to carry out the averaging
procedure needed for the first and last steps of the out-
line above: how do we estimate Ey∈{±1}[n]\S [f(x,y)],
given only oracle access to the variables in S? The basic
idea is to perform a random walk on the the subset of
y’s that agree with x on all the elements of S . We let
y(0) = x. Given y(i) we sample y(i+1) to be a noisy
version of y(i), where each coordinate is flipping with
probability about 1/|S|. We accept y(i+1) if the value of
all oracle functions in S is identical for y(i+1) and y(i).
If we reject the current proposal of y(i+1) we try again
an independent noisy y(i+1).

Thus we effectively perform a random walk on the
noisy hyper-cube on the coordinates in [n] \ S . The
spectral gap of the random walk is inverse polynomial
in k, and hence by taking poly(k) steps of this random
walk, we can essentially independently resample those
coordinates of x that do not belong to S. By repeating
this, we can estimate favg,S(x).

II. PRELIMINARIES

We begin with the basics of Fourier analysis, in
particular the notion of Fourier expansion of functions.

Definition II.1. For any subset S ⊆ [n], we define χS :
{−1, 1}n → {−1, 1} as χS(x) =

∏
i∈S xi. Any function

f : {−1, 1}n → R can be expressed as a linear combination
of {χS(x)}S⊆[n] (as follows):

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

This is referred to as the Fourier expansion of f and
the coefficients {f̂(S)}S⊆[n] are referred to as the Fourier
coefficients of f .

We next define the concept of influence of variables
in f : {−1, 1}n → R

Definition II.2. For any function f : {−1, 1}n → {−1, 1}
and any i ∈ [n], Infi(f) = Prx∈{−1,1}n [f(x) �= f(x⊕i)]
(where x⊕i differs from x exactly in the ith position). In
terms of Fourier coefficients, Infi(f) =

∑
S�i f̂

2(S); in the
case of a real-valued function f : {−1, 1}n → R, we take
this latter formula as the definition of Infi(f).

For a number k ≤ n, we let Inf≤k
i (f) denote the quantity

Inf≤k
i (f) =

∑
S�i:|S|≤k f̂

2(S). We also define the total
influence of f , denoted by Inf(f), as

∑
S |S|f̂2(S).

We now define the Bonami-Beckner noise operator
on the space of functions on {−1, 1}n. To do this, we

first define a general notion of noise distribution on
{−1, 1}n. For η ∈ [−1, 1]n, we let Zη denote the product
distribution on {−1, 1}n where the expectation of the
ith bit is ηi.

Definition II.3. For any ρ ∈ [−1, 1], let ρ ∈ [−1, 1]n
denote the vector all of whose coordinates are ρ. The Bonami-
Beckner noise operator (denoted by Tρ) operates on f :
{−1, 1}n → R as

Tρf(x) = Ey∼Zρ
[f(x · y)].

We let x · y denote the coordinate wise product of x and y.

A standard fact about the operator Tρ is its action
on the Fourier expansion of f (see [23] for details).

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x).

Bonami-Beckner noise operator as a Markov chain: It
will be useful for us to view the Bonami-Beckner noise
operator as a Markov chain. We recall the definition of
a Markov chain (on a finite set).

Definition II.4. Let G be a finite set and let P ∈ RG×G be
a stochastic matrix. The random variables (taking values in
G) (xi)

T
i=1 are said to follow the Markov chain MP (with

transition matrix given by P ) if for any T ≥ j > 1 and
any g1, . . . , gj ∈ G,

Pr[xj = gj |xj−1 = gj−1, . . . ,x1 = g1]

= Pr[xj = gj |xj−1 = gj−1] = P (gj−1, gj).

We refer the reader to the book by Levin and Peres [21] for
definitions of standard notions such as ergodicity, aperiod-
icity and stationary distributions.

Now, consider any ρ ∈ [−1, 1] and define the stochas-
tic matrix Pρ (whose rows and columns are indexed by
{−1, 1}n) such that

Pρ(x, y) = Pr
z∼Zρ

[x · z = y].

It is easy to see that the matrix Pρ is a symmetric
matrix and further, the second largest eigenvalue of
the matrix Pρ is at most ρ. The matrix Pρ also defines
a corresponding Markov chain Mρ (i.e., the transition
matrix of Mρ is Pρ). Markov chains have a certain
“averaging property” which is particularly useful for
us and is stated below. We will instantiate it to the
Markov chainMρ in Section V later. We now state the
following result due to Lezaud [22] (Theorem 1.1 in the
paper) which applies to ergodic and reversible Markov
chains. Similar results which apply to the special case
of random walks on undirected graphs have found
many applications in computer science [17], [20], [28],
[16].
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Lemma II.5. For ρ ∈ (−1, 1), let x(1),x(2), . . . follow
the Bonami-Beckner Markov chain Mρ with an arbitrary
initial value x(1) = x ∈ {±1}n. There is a constant C such
that for any f : {−1, 1}n → [−1, 1] and any γ, δ > 0, if
T ≥ C log(1/δ)

γ2·(1−ρ) then

Pr

[∣∣∣∣f(x1) + . . .+ f(xT )

T
−Ex∼{−1,1}n [f(x)]

∣∣∣∣ > γ

]
≤ δ.

A. Random restrictions

A crucial role in our algorithm will be played by
the notion of random restrictions from circuit complex-
ity [15], [18].

Definition II.6. For any μ ∈ [0, 1], we let Rμ ∈
{−1, 1, ∗}n denote the product distribution where each coor-
dinate is ∗ with probability μ, ±1 with probability (1−μ)/2
each. Further, for f : {±1}n → {±1} and ξ ∈ {−1, 0, 1}n,
we let f�ξ : {−1, 1}S → {−1, 1} where

1) S = {i ∈ [n] : ξi = 0}. The set of variables in S are
said to survive in f�ξ.

2) For x ∈ {±1}S , we f�ξ(x) = f(z) where zS = x and
zj = ξj for j �∈ S.

III. CONSTRUCTION OF COORDINATE ORACLES

The main result of this section is an algorithm for
constructing a set of “oracles” to all of the interesting
coordinates of a function, assuming that there are not
too many of them. The basic definition is the following:
For 1 ≤ i ≤ n, let Dicti : {−1, 1}n → {−1, 1} be defined
as Dicti : x �→ xi.

Definition III.1. Let D be a set of functions from {−1, 1}n
to {−1, 1}. We say that D is an oracle for the coordinates
S ⊂ [n] if
• for every g ∈ D, there is some i ∈ S such that g =

Dicti or g = −Dicti; and
• for every i ∈ S , there is some g ∈ D such that g =

Dicti or g = −Dicti.
In other words, D is an oracle for S if D = {Dicti : i ∈ S}
“up to sign”.

Due to our constraints, we will not be able to pro-
duce coordinate oracles exactly according to the defi-
nition above, so we will relax it slightly. Recall that we
have fixed an underlying function f : {±1}n → {−1, 1}
and a parameter k ∈ N.

Definition III.2. Let D be a set of functions from {−1, 1}n
to {−1, 1}. For ε ≤ 1

8 , we say that D is an ν-oracle for
S ⊂ [n] if
• for every g ∈ D, there is some i ∈ S such that g is

ν-close to Dicti or −Dicti (necessarily only one, since
ν ≤ 1

8 );

• for every i ∈ S , there is exactly one g ∈ D that is
ν-close to Dicti or −Dicti; and

• for every x ∈ {±1}n, every g ∈ D, and every
δ > 0, there is a randomized algorithm to compute
g(x) correctly with probability at least 1 − δ, using
poly(k, log 1

δ ) queries to f .

While the definition of D involves both ν and k,
since the latter will remain fixed throughout, the above
definition is only quantified in terms of ν. The param-
eters ν and δ that we choose will essentially allow us
to pretend that an ν-oracle is an oracle. In particular,
we will fix δ = 2−ω(k) when evaluating coordinate
oracles at a point. This will preserve the poly(k) query
complexity of each oracle query, while ensuring that
(with high probability) every query that we make to
a coordinate oracle will be computed correctly (since
in all of our algorithms, we will make no more than
2k · poly(k) queries). Our choice of ν will depend on
the setting: in the setting of Theorem I.3, we will make
at most 2k · poly(k) queries to each coordinate oracle,
so we will take ν = (2k · poly(k))−1. This means that
each oracle query requires at most poly(k) queries to f ,
while ensuring that each coordinate oracle is so close
to a dictator (or anti-dictator) that we will (with high
probability) not observe the difference. In the setting of
Theorem I.5, we will set take ν = poly(1/k) and make
at most poly(k) queries to each coordinate oracle; this
requires poly(k) queries to f and ensures that (with
high probability) we will not observe the difference
between any coordinate oracle and its corresponding
dicator. With this in mind, and to prevent a prolifera-
tion of parameters, we will often pretend that we have
access to an oracle in the sense of Definition III.1 when
we really have access to an ν-oracle in the sense of
Definition III.2.

A. A single oracle

We begin by describing how to construct an oracle
to a single coordinate. The basic step notion is the
following operator, which is related to one used by
Håstad in the context of dictatorship testing [19].

Definition III.3. Let η ∈ [−1, 1]n and Zη denote the
product distribution on {−1, 1}n where the expectation of
the ith bit is ηi. For any f : {−1, 1}n → R, we define the
operator Hasηf(x) as

E
y1,y2∈{−1,1}n,y3∈Zη

[f(y1)f(y2)f(x⊕ y1 ⊕ y2 ⊕ y3)].

In terms of the Fourier expansion, it is easy to check
that

Hasηf(x) =
∑
S

f̂3(S)χS(x)η
S ,

1541



where ηS =
∏

j∈S ηj . A consequence of this expansion
is that for the right choice of η, Hasηf is a good ap-
proximation to a certain dictator function (depending
on η).

Lemma III.4. Suppose that |f̂(1)| ≥ κ, where κ ∈ (0, 1),
and let α = κ3

16 . Choose η ∈ {0, α}n randomly so that
Pr[ηi = α] = κ6/16, independently for every i. Then with
probability at least Ω(κ6), for every x ∈ {±1}n,∣∣Hasηf(x)− f̂3(0)− αf̂3(1)x1

∣∣ ≤ α

4
|f̂(1)|3.

Proof: Let p = κ6/16 = Pr[ηi = α]. Let Γ = {i :
|f̂(i)| ≥ κ3/8}; since

∑
S f̂(S)2 ≤ 1, we have |Γ| ≤

64κ−6. Let E be the event that η1 = α and ηj = 0 for all
j ∈ Γ\{1}. Then Pr[E] = p(1−p)|Γ|−1 ≥ p(1−p)64κ−6

=
Ω(κ6), and we will show that the claimed inequality
happens on E. Indeed, the Fourier expansion above
implies that

Hasηf(x)− f̂3(0)− αf̂3(1)x1

=
∑

1<j≤n

ηj f̂
3(j)xj +

∑
|S|>1

ηS f̂3(S)χS(x)

=
∑
j 	∈Γ

ηj f̂
3(j)xj +

∑
|S|>1

ηS f̂3(S)χS(x),

where the second equality holds on the event E. Now,∑
j 	∈Γ
|ηj f̂3(j)| ≤ α

κ3

8

∑
j 	∈Γ

f̂2(j) ≤ ακ3

8

and ∑
|S|>1

|ηS f̂3(S)| ≤
∑
|S|>1

α2f̂2(S) ≤ α2,

and so the triangle inequality gives

|Hasηf(x)− f̂3(0)− αf̂3(1)x1| ≤
ακ3

8
+ α2

≤ ακ3

4
≤ α

4
|f̂(1)|3.

Lemma III.4 gives us a natural algorithm for com-
puting something that might be a coordinate oracle:
the basic idea is to sample η and then to define

gη(x) = sgn(Hasηf(x)− f̂3(0)) = sgn(Hasηf(x)−E[f ]
3).

Note that computing the function gη requires ran-
domness (to estimate Hasηf(x) and E[f ]). However,
a straightforward Chernoff bound implies that with
O(κ−12 log 1

δ ) queries to f , we can estimate both E[f ]
and Hasηf(x) to additive accuracy O(κ6), with proba-
bility 1− δ; according to Lemma III.4, this is sufficient
to correctly evaluate gη(x) with probability 1−δ. This is
the same sort of guarantee required in Definition III.2;

as discussed there, we can choose δ = 2−k2

so that with
high probability, every evaluation of gη will be correct.

Now, Lemma III.4 only provides us with a small
probability of finding a good gη . To filter out the
bad ones, we add in a dictatorship test: for i ≤ n,
let Dicti : {−1, 1}n → {−1, 1} denote the function
Dicti(x) = xi. We call Dicti a dictator function, and
−Dicti an anti-dictator function. There is an algorithm
for testing whether a function is a dictator function (see
Chapter 7 of [23]):

Theorem III.5. There is an algorithm Dictator-test which
given an error parameter ν > 0 and confidence parameter
δ̃ > 0, makes O(ν−1 log δ̃−1) queries to f : {−1, 1}n →
{−1, 1} and has the following properties:

1) If f : {−1, 1}n → {−1, 1} is a dictator or an anti-
dictator, then it accepts with probability 1.

2) Any f : {−1, 1}n → {−1, 1} which is ν-far from
every dictator and anti-dictator is accepted with prob-
ability at most δ̃.

Algorithm Construct-coordinate-oracle gives the al-
gorithm for constructing coordinate oracles.

Input: f (target function), k (arity of Junta),
δ (confidence parameter), ν ≤ 1/8 (first accuracy
parameter), τ (second accuracy parameter)
Output: an oracle D
// Construct the initial oracles

1 Let T = Ck5τ−5 log(1/δ) and let
M = Ck7τ−7 log(1/δ);

2 Let δ̃ = δ/(MT ) ;
3 Initialize D = ∅ ;
4 repeat T times
5 Sample ρ according to R1/k (as in

Definition II.6);
6 repeat M times
7 Sample η as in Lemma III.4;
8 Let g(x) = sgn(Hasηf�ρ(x)−E[f�ρ]3);
9 Apply Dictator-test to g with confidence

δ̃ and accuracy ν;
10 if Dictator-test accepts then
11 Add g to D ;

// Clean out duplicates
12 Let N = C log(MT/δ), and sample

x(1) . . . ,x(N) ∈ {±1}n independently and
uniformly ;

13 while there exist g �= h ∈ D such that
|N−1∑

i g(x
(i))h(x(i))| ≥ 1

2 do
14 Remove g from D;

15 return D
Algorithm 1: Construct-coordinate-oracle
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Lemma III.6. The algorithm Construct-coordinate-
oracle has the following guarantee:

1) As input, it gets oracle access to f : {−1, 1}n →
{−1, 1}, an arity parameter k, two accuracy parame-
ters τ and ν ≤ 1/8 and a confidence parameter δ > 0.

2) With probability 1 − δ, there is some set S ⊇ {i :
Inf≤k

i (f) ≥ τ2/k2} such that the output of Algo-
rithm 1 is an ν-oracle to S.

3) The number of oracles in D is at most
poly(k, τ−1, log(1/δ)).

4) The query complexity of the procedure is ν−1 ·
poly(k, τ−1, log(1/δ)).

Proof: Note that the number of oracles in D is at
most MT . This immediately gives Item 3. Similarly,
the query complexity of the algorithm is M · T times
the cost of applying the Dictator-test in Step 9. By
plugging the bound from Theorem III.5, we get Item 4.
This leaves us with Item 2. Like the algorithm itself,
there are two steps in this proof. The first step is to
show that after executing the loop on line 4, the set D
contains only ν-approximate dictators, and it contains
at least one dictator for every coordinate i with large
Inf≥k

i (f). The second step is to show that by the end
of the algorithm, each coordinate that was represented
by a dictator after executing the loop on line 4 is now
represented by a unique dictator. Actually, this second
step is trivial: if g and h are ν-approximate dictators for
ν ≤ 1

8 then |E[gh]| ≤ 1
4 if they represent different co-

ordinates, while |E[gh]| ≥ 3
4 if they represent the same

coordinate. By a union bound over the O(M2T 2) pairs
of elements in D, log(CMT/δ) samples are enough to
estimate all of these correlations to accuracy 1

4 with
confidence 1 − δ/4, meaning that the loop starting on
line 13 correctly (with probability at least 1 − δ/4)
chooses exactly one dictator function to represent each
coordinate.

We turn to the correctness of the first loop: it should
find a dictator for every influential coordinate. The
analysis of this part is itself divided into two parts,
corresponding to the two nested loops: we will argue
that for every influential coordinate i, at least one
iteration of the outer loop will sample ρ for which
f̂�ρ(i) is large. For this execution of the outer loop, we
will argue that at least one iteration of the inner loop
will find an oracle for coordinate i.

We will write the first of these parts as a separate
claim, and prove it later:

Claim III.7. If Inf≤k
i (f) ≥ τ2/k2 and ρ ∼ R1/k then with

probability Ω(k−4τ4), |f̂�ρ(i)| ≥ τ/(4k).

With our choice of T , Claim III.7 and a union bound
imply that with probability at least 1− δ/3, for every i
with Inf≤k

i (f) ≥ τ2/k2 there is at least one iteration of

the outer loop for which |f̂�ρ(i)| ≥ τ
4k . We will fix this

iteration, and examine the inner loop: by Lemma III.4
with κ = τ

4k , each iteration has Ω(τ6k−6) probability of
producing g that is equal to ±Dicti. By a union bound,
with probability at least 1 − δ/3, the inner loop will
succeed in adding ±Dicti to D.

Finally, a union bound implies that with probability
at least 1−δ/3, every g that passes the dictatorship test
is in fact ε-close to some dictator.

Proof of Claim III.7: For i ∈ [n], define the polyno-
mial Dif : R

n → R by

(Dif)(x) =
1

2
(f(x)− f(x−,i)),

where x−,i is equal to x, except that the ith coordinate
is negated. In terms of Fourier coefficients, it is easy to
check that

(Dif)(x) = x2i
∑

S⊆[n]\{i}
f̂(S ∪ {i})χS(x).

On the other hand, it is also immediate that for every
x ∈ {−1, 0, 1}n, and it is easy to check that f̂�ρ(i) =
Dif(ρ). In particular,

Varρ[f̂�ρ(i)] = Varρ[Dif(ρ)]

=
∑

S⊆[n]\{i}
f̂2(S ∪ {i})(1− 1/k)|S|

≥ (1− 1/k)k
∑

S⊆[n]\{i}
|S|≤k

f̂2(S ∪ {i})

≥ 1

4
Inf≤k

i (f)

≥ η2

4k2
.

We will apply an anti-concentration inequality to
the random variable Dif(ρ) = f̂�ρ(i) (see Lemma 13
in [11]): for any real-valued random variable X with
variance at least σ2 and central fourth moment at most
t4σ4,

Pr
[
|X| > σ

2

]
≥ 9

128(t+ 2)4
.

Immediately from the definition of Dif , we see that the
central fourth moment of Dif(ρ) is at most 16. Setting
σ = η/(2k) and t = 4k/η, we have

Pr
[
|f̂�ρ(i)| >

η

4k

]
≥ Ω(k−4η4),

as claimed.
Finally, the following claim, which will be useful in

both Section IV and Section V, says that if f correlates
with a k-junta, then it also correlates nearly as well
with a junta on some set S such that for every vari-
able j ∈ S, Inf≤k

j (f) is large. This is useful because
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Lemma III.6 can then be used to construct oracles to
all these relevant variables.

Claim III.8. Let f : {±1}n → {±1} and let g : {±1}n →
{±1} be a k-junta on the variables {1, . . . , k} such that
E[f · g] ≥ c. Then, for any τ > 0, there is a set S ⊆ [k] of
variables such that

1) For i ∈ S, Inf≤k
i (f) ≥ τ2

k2 .
2) There is a junta on S with correlation c− τ with f .

Proof: Let us first start with S = [k]. If all variables
i ∈ S satisfy Inf≤k

i (f) ≥ τ2

k2 , we are done. Else, let j be
any variable such that Inf≤k

j (f) ≤ τ2

k2 . For this variable
j, define gj : {±1}n → [−1, 1] as the junta on the set
[k] \ {j}

gj(x) =
1

2

(
g(x) + g(x⊕j)

)
,

where x⊕j is the same as x with the coordinate at j
flipped. Observe that for any S, ĝj(S) = ĝ(S) if j �∈ S
and 0 otherwise. Note that

|Ex[f · gj(x)]−Ex[f · g(x)]| = |
∑
S�j

ĝ(S)f̂(S)|

= |
∑

S�j:|S|≤k

ĝ(S)f̂(S)| ≤
√ ∑

S�j:|S|≤k

f̂2(S) ≤
√
Inf≤k

j (f).

Thus, E[f · gj(x)]] ≥ c− τ
k . By doing a simple random-

ized rounding step, we can in fact, assume that the
range of gj is ±1. We now set S ← [k] \ j and g = gj
and inductively repeat the argument. This finishes the
proof.

IV. DESCRIPTION OF MAXIMUM-CORRELATION-JUNTA

In this section, we want to prove Theorem I.3.
The final ingredient required to describe the algorithm
Maximum-correlation-junta (from Theorem I.3) is the
routine Find-best-fit. Here, we state the algorithmic
guarantee for this routine. The description and its
proof of correctness is deferred to Appendix A.

Lemma IV.1. There is an algorithm Find-best-fit with the
following guarantee:
1. The algorithm gets as input oracle access to a function
f : {−1, 1}n → {−1, 1} as well as a set of oracles S ⊆
{Dict1, . . . ,Dictn}. We clarify that algorithm is only given
the oracle Dicti (for Dicti ∈ S) but not i.
2. The algorithm gets as input error parameter ε > 0, arity
parameter k and confidence parameter δ > 0.
3. The algorithm makes N(k, |S|, ε, δ) = O(2k/ε2 · |S| ·
(log(1/δ) + k2 + |S|)) queries with probability 1− δ.
4. Each query point (to either f or oracle in S) is distributed
as a uniformly random element of {−1, 1}n.
5. With probability 1− δ, the algorithm outputs a number
Ĉorrf,S,k and hS,k : {−1, 1}k → {−1, 1} such that there

exists oracles Dicti1 , . . . ,Dictik ∈ S ,

Ex[f(x) · hS,k(xi1 , . . . ,xik)] ≥ max
�∈JS,k

Ex[f(x) · �(x)]− ε

and |Ĉorrf,S,k − max
�∈JS,k

Ex[f(x) · �(x)]| ≤ ε.

We next describe the algorithm Maximum-
correlation-junta (Algorithm 2).

Input: f (target function), k (arity of Junta), ε
(distance parameter)

Output: Ĉorrf,k ∈ [0, 1] and
h : {−1, 1}k → {−1, 1}

// Set parameters for the algorithm
1 Let τ = ε

4 , δ = 1/3 ;
2 Let R = poly(k, τ−1, log(1/δ)) – the upper bound

on output size from Item 3 of Lemma III.6 ;
3 Set N = N(k,R, ε/4, δ/4) where N(·) is the

function in Item 3 of Lemma IV.1 ;
4 Set ν = δ/4N ;
// Construct the initial oracles

5 Run Construct-coordinate-oracle with input
function f , junta arity parameter k, confidence
parameter δ/4, first accuracy parameter ν and
second accuracy parameter τ ;

6 Let D be the set of returned oracles ;
// Use the oracles to find maximally

correlated junta
7 Error parameter for queries to any oracle g ∈ D

is set to ν ;
8 Run Find=best-fit with target function f , oracles

given by D, confidence parameter δ/4, distance
parameter ε/4 and arity parameter k. ;

9 Let the output of this routine be Ĉorrf,D,k and
hD,k : {−1, 1}k → {−1, 1}. ;

10 Set h← hD,k and Ĉorrf,k ← Ĉorrf,D,k ;
11 return (Ĉorrf,k, h)

Algorithm 2: Maximum-correlation-junta

Proof of Theorem I.3: We begin with the following
claim.

Claim IV.2. The query complexity of the algorithm is 2k ·
poly(k, 1/ε).

Proof: By just plugging the bounds, we see that
R defined in Step 2 of the algorithm is poly(k/ε); N
defined in Step 3 is 2k · poly(k/ε) and ν defined in
Step 4 is 2−k · poly(ε/k).

Now, the query complexity of Step 5, i.e., Construct-
coordinate-oracle is then ν−1 · poly(k, τ−1) = 2k ·
poly(k/ε) (Item 4 of Lemma III.6). Next, note that
|D| ≤ poly(k/ε) (by plugging the bound from Item 3 of
Lemma III.6). However, this means that the algorithm
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Find-best-fit (from Step 3 of Lemma IV.1) makes at most
2k · poly(k, |D|) = 2k · poly(k, 1/ε) queries where each
query is either to f or to an oracle in D. However, each
call to D is made with error ν, the query complexity
of making each such call is poly(k, log(1/ν)) = poly(k).
Thus, the total query complexity is 2k · poly(k/ε).

Having proven a bound on the query complexity, we
now turn to the proof of correctness of this algorithm.
Note that every oracle g ∈ D is ν close to Dicti for
some i ∈ [n]. Further, at point x, (by definition of a ν-
oracle), we have an algorithm, which returns the value
g(x) with probability at least 1 − ν. We say that the
evaluation of g at point x is good, if we get the value
of g(x) = Dicti(x). Note that a randomly chosen point
x ∈ {−1, 1}n,

Pr[Evaluation of g is not good]
≤ Pr[g(x) �= Dicti(x) or evaluation of g is incorrect]
≤ ν + ν = 2ν.

Since the query by the algorithm Find-best-fit to each
oracle in D is a random point in {−1, 1}n (Item 4 in
Lemma IV.1) and the total number of queries to Find-
best-fit is N , hence the probability the evaluation of
g ∈ D is not good at any point is at most 2Nν = δ/2.
Thus, from now on, we will assume that g ∈ D is ν-
close to Dicti, then the algorithm Find-best-fit has exact
access to Dicti. However, with this the following claim
is immediate from Item 5 of Lemma IV.1.

Claim IV.3. Suppose the algorithm outputs (Ĉorrf,k, h).
Let V = {i ∈ [n] : Dicti is ν-close to some g ∈ D}. Then,
with probability 1−δ/4, there is some {i1, . . . , ik} ∈ V such
that

Ex[f(x) · h(xi1 , . . . ,xik)] ≥ max
�∈JV,k

Ex[f(x) · �(x)]−
ε

4

and |Ĉorrf,k − max
�∈JV,k

Ex[f(x) · �(x)]| ≤
ε

4
.

Finally, we have the following claim.

Claim IV.4. Let f : {−1, 1}n → {−1, 1} and assume
that there exists a k-junta g : {−1, 1}n → {−1, 1} such
that Ex[f(x) · g(x)] ≥ Corrf,g . Let D be the set of returned
oracles in Step 6. Let V = {i ∈ [n] : Dicti is ν-close to
some g ∈ D}. Then, with probability 1 − δ/4, there exists
T ⊆ V, |T | = k and a junta on T with correlation at least
Corrf,g − ε/4 with f .

Proof: Let W be the set of variables appearing g.
By Claim III.8 (setting τ = ε/4), there is subset W ′ ⊆
W and a W ′-junta r : {−1, 1}n → {−1, 1} with the
following properties: (a) Ex[r(x)·f(x)] ≥ Corrf,g− ε

4 . (b)
For every i ∈W ′, Inf≤k

i (f) ≥ ε2

16k2 . Now, with the same
value of τ , applying Lemma III.6 implies that W ′ ⊆ V
with probability 1− δ/4. This finishes the claim.

The proof of correctness is now immediate from
Claim IV.4 and Claim IV.3.

V. THE POLYNOMIAL-QUERY GAP TESTER

Recall the context of the relaxed tester compared
to the original one: we have already identified (using
Lemma III.6) a subset S of size poly(k, 1/ε) such that all
potentially interesting coordinates of f are contained
in S (in the sense of Claim III.8). Recall, moreover,
that we do not have an explicit representation of
the coordinates S; we only have access to coordinate
oracles in the sense of Definition III.1. Nevertheless, let
us first pretend that we do have explicit access to S,
in order to explain roughly how our algorithm works.

The first step of our algorithm is to replace f by
favg,S , defined by favg,S(x) = Ey∼Unif [f(y) | yS = xS ].
This step turns out to be unnecessary if we have
explicit access to S, but on the other hand it is also
clearly harmless, because favg,S is the orthogonal pro-
jection of f onto the space of S-juntas, and hence
E[fg] = E[favg,Sg] for every g ∈ JS,k′ .

The second step of our algorithm is to replace favg,S
with fsmooth, defined by fsmooth = T1−ε/(2k)favg,S . Ap-
plying this noise has two nice features: it approxi-
mately preserves correlation with k-Juntas, and it al-
lows us to bound total influence. First, we will show
that it preserves correlation:

Lemma V.1. For every k-Junta g, if s = ε/(2k) then

‖g − T1−sg‖2 ≤
ε

2
‖g‖2.

In particular, for all f : {±1}n → [−1, 1] and g ∈ JS,k.

|E[(T1−sf)g]−E[fg]| ≤ ε/2.

Consequently, maxg∈JS,k E[fsmoothg] is essentially the
same as maxg∈JS,k E[favg,Sg].

Proof: If g is a k-Junta then ĝS = 0 whenever |S| >
k, and so

‖g − T1−sg‖22 =
∑
|S|≤k

(1− (1− s)|S|)2ĝ2(S)

≤ ε2

4

∑
S

ĝ2(S) ≤ ε2

4
‖g‖22.

The second claim follows from the fact
that E[(T1−sf)g] = E[f(T1−sg)], and so
E[(T1−sf − f)g] = E[f(T1−sg − g)]. Then apply
Cauchy-Schwarz and the first claim (together with the
fact that ‖f‖2 and ‖g‖2 are at most 1).

As we claimed above, we can also bound the total
influence of a smoothed function:

Lemma V.2. If f : {±1}n → [−1, 1] then Inf(T1−sf) ≤
1
2s . In particular,

|{1 ≤ j ≤ n : Infj(T1−sf) ≥ 2s}| ≤ 1

4s2
.

1545



Proof: Since f takes values in [−1, 1], E[f2] ≤ 1 and
so

∑
S f̂2(S) ≤ 1. On the other hand,

Inf(T1−sf) =
∑
S

|S|(1− s)|S|f̂2(S)

≤ max{j(1− s)j : 1 ≤ j ≤ n} ≤ 1

es
≤ 1

2s

This proves the first claim. The second follows from
Markov’s inequality.

According to Lemma V.2, if S ′ = {i ∈ S :
Infi(fsmooth) ≥ ε/k} then |S ′| ≤ k2/ε2 = k′. On the other
hand, we can easily see that coordinates not belonging
to S ′ are irrelevant when it comes to approximating
fsmooth by a k-Junta:

Lemma V.3. For f : {±1}n → [−1, 1], let S ′ ⊂ S ⊂ [n]
satisfy i ∈ S ′ whenever Infi(f) ≥ t. Then∣∣∣∣ maxg∈JS,k

E[fg]− max
g∈JS′,k

E[fg]

∣∣∣∣ ≤ tk.

Proof: Let g ∈ JS,k maximize E[fg], and let T
be the set of coordinates on which g depends. Define
gavg,S′ by gavg,S′(x) = Ey∼Unif [g(y) | yS = xS ]. Then
gavg,S′ is a (S ′∩T )-Junta; it does not necessarily belong
to JS′,k because it is not necessarily Boolean. However,
maxh∈JS′,k E[fh] ≥ E[fgavg,S′ ] – this is because gavg,S′
can be rounded to a Boolean function without decreas-
ing E[fgavg,S′ ]. Therefore, it suffices to show that

E[fgavg,S′ ] ≥ E[fg]− tk.

To do this, note that the Fourier coefficients of g and
gavg,S′ are related by ĝS = (ĝavg,S′)S whenever S ⊂ S ′,
and (ĝavg,S′)S = 0 otherwise. In particular,

E[f(g − gavg,S′)] =
∑
S⊂T
S 	⊂S′

ĝS f̂S

≤
∑
S⊂T
S 	⊂S′

f̂2S ≤
∑

i∈T \S′
Infi(f) ≤ tk,

where the last inequality follows because |T \ S ′| ≤ k.

Thanks to Lemma V.3, if we set S ′ = {i ∈
S : Infi(fsmooth) ≥ ε/k} then maxg∈JS,k E[fsmoothg] �

maxg∈JS′,k E[fsmoothg]. We do not know how to esti-
mate this final quantity, but we can easily estimate (the
larger quantity) maxg∈JS′,k′ E[fsmoothg] (note that k has
become k′). This is because JS′,k′ consists of all boolean
functions depending on the coordinates in S ′. The one
with maximal correlation can be found by projecting
fsmooth onto the space of S ′-Juntas and rounding the
result to a boolean function: define fsmooth,avg,S′ by
fsmooth,avg,S′(x) = E[fsmooth(y) | yS′ = xS′ ]. Then

max
g∈JS′,k′

E[fsmoothg] = E[|fsmooth,avg,S′ |].

This number (or rather, an estimate of it) will be the
final output of our algorithm. Thanks to the preceding
arguments, it is larger (or at least, not much smaller)
than maxg∈Jn,k E[fg]. On the other hand, it is certainly
smaller than maxg∈Jn,k′ E[fg].

In order to turn the description above into an al-
gorithm, we need to describe how to compute all the
quantities above given implicit access to the coordi-
nates in S. In particular, we will first describe how
to simulate query access to favg,S . Given this, it is
obvious how to simulate query access to fsmooth. Then,
we will show how to estimate S ′; more accurately, we
will compute some S̃ ′ that contains all coordinates of
influence at least 2ε/2k and no coordinates of influence
smaller than ε/k. Finally, we will show how to simulate
query access to fsmooth,avg,S̃′ ; we can use this query
access to estimate E[|fsmooth,avg,S̃′ |], which is the final
output of our algorithm.

A. Averaging over irrelevant coordinates
An important primitive for us will be the ability to

average over irrelevant coordinates given oracle access
to the relevant ones. That is, imagine that there is a
collection of coordinates S ⊂ [n]. Given query access
to f : {±1}n → [−1, 1] and a fixed point x ∈ {±1}S , we
would like to estimate Ey∼Unif [f(y) | yS = x]. Were we
given S explicitly, this would be easy; our challenge is
to do it with only oracle access to S , in the sense of
Definition III.1.

Input: a function f , x ∈ {±1}n, an oracle D, γ
(accuracy parameter), δ (failure
parameter)

Output: a number
1 Let T = C|D| log 1/δγ2 ;
2 Let x(1) = x ;
3 for i = 1 to T − 1 do
4 repeat
5 Let y be a copy of x(i), but flip each bit

independently with probability 1
2|D| ;

6 until g(y) = g(x) for all g ∈ D ;
7 Let x(i+1) = y ;

8 return 1
T

∑T
i=1 f(x

(i))

Algorithm 3: Coordinate-projection

Lemma V.4. Coordinate-projection has the following
guarantees. Given a function f : {±1}n → [−1, 1], a point
x ∈ {±1}n, an oracle D for the coordinates S ⊂ [n], and
parameters δ, γ > 0, the algorithm makes (in expectation)
Θ(|S| log 1/δγ2 ) queries to f and to each element of D and,
with probability at least 1− δ, outputs a number within γ
of Ey∼Unif [f(y) | yS = x].
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Remark V.5. It is not hard to see that Coordinate-
projection succeeds even if it is given noisy query access to
f . For example, if each query that Coordinate-projection
makes to the function f can produce an error of at most γ,
then (under the assumptions of Lemma V.4), the output of
Coordinate-projection is, with probability at least 1 − δ,
accurate to within 2γ.

Proof: First, observe that for every i = 1, . . . , T ,
x
(i)
S = xS : indeed, D is an oracle for S and so the

test on line 6 will only pass if yS = xS . Next, observe
that conditioned on x(i), every coordinate j �∈ S
of x(i+1) is obtained by (independently) flipping x

(i)
j

with probability 1
2|S| . In other words, x

(1)

S̄ , . . . ,x
(T )

S̄
is a Bonami-Beckner Markov chain with correlation
parameter ρ = 1 − 1

|S| . If z is distributed according to
the stationary distribution of this Markov chain then
zS = xS and zS̄ is uniformly distributed on {±1}S̄ . In
particular, E[f(z)] = Ey∼Unif [f(y) | yS = xS ] and so
Lemma II.5 implies that with probability at least 1− δ,
1
T

∑T
i=1 f(x

(i)) is within γ of Ey[f(y) | yS = xS ]).
It remains to check how many oracle queries our

procedure makes; let Xi be the number of attempts
it takes to successfully generate x(i). For each i, the
probability that the test on line 6 succeeds is exactly
(1 − 1

2|S| )
|S| ≥ 1

4 . In particular, each sample takes (in
expectation) at most four queries to each element of
D, and so the overall number of queries is at most (in
expectation) O(T ) to each element of D.

B. Estimating influences
One of the things we need to do is to estimate the

influences of coordinates in S. Again, if we had explicit
access to these coordinates then this would be trivial.
The point is to get by with only oracle access, and the
difficulty is that given some x ∈ {±1}n, we cannot
simply “flip” a bit belonging to S because we don’t
know which bits those are. To work around this, we
introduce the notion of an influence-testing sample,
which essentially is a collection of points that manage
to flip each bit in S:

Definition V.6. We say that X ⊂ {±1}n is an influence-
testing sample at x ∈ {±1}n with respect to S if we can
enumerate X = {y(i) : i ∈ S} where y

(i)
i = −xi and

y
(i)
j = xj for j ∈ S \ {i}.

Note that the definition above doesn’t guarantee
anything about bits not belonging to S . The point of
the definition above is that if the function f depends
only on coordinates in S, then we can use an influence-
testing sample at a random point to obtain an unbiased
estimator for all the influences of f .

The first important point about influence-testing
samples is that we can produce them given oracle

access to S.

Input: x ∈ {±1}n, and an oracle D for S
Output: an influence-testing sample at x with

respect to S
1 Define (for z ∈ {±1}n)

I(z) = {g ∈ D : g(z) �= g(x)} ;
2 Initialize X = ∅ ;
3 while |X | < |D| do
4 Let y be a copy of x, but flip each bit

independently with probability 1
2|D| ;

5 if |I(y)| = 1 and I(y) �= I(z) for all z ∈ X
then

6 Add y to X ;

7 return X
Algorithm 4: Influence-testing-sample

Lemma V.7. Let D be an oracle for S. Given D and
x ∈ {±1}n as input, Influence-testing-sample produces
an influence-testing sample at x with respect to S, while
making (in expectation) O(|S| log |S|) queries to each ele-
ment of D.

Proof: Each element that Influence-testing-sample
adds to X differs from x on exactly one coordinate
of S. Moreover, the test on line 5 ensures that every
coordinate of S is represented by at most one element
of X . Hence, by the time the loop is complete, X is an
influence-testing sample at x with respect to S.

Note that each time we sample y, we have
Pr[|I(y)| = 1] = (1 − 2|S|−1)|S| ≥ 1

4 . Moreover, con-
ditioned on |I(y)| = 1, I(y) is uniformly distributed
among all size-one subsets of D. Hence, the number
of times that we need to sample y in order to see
all size-one subsets at least once is distributed accord-
ing to the coupon collector problem, and hence takes
O(|S| log |S|) iterations in expectation.

The other important point about influence-testing
samples is that if we can use them to estimate influ-
ences. The basic idea is to take the trivial algorithm for
estimating influences (sample random elements, and
check whether flipping the jth bit changes the value of
f ), but using the notion of an influence-testing sample
to replace the need to bits; in Threshold-influences,
x(i) are the random points at which we’re testing bit-
flips, and y

(i)
g is the copy of x(i) with a bit (the one

corresponding to g ∈ D) flipped.

Lemma V.8. Assume that D is an oracle for S and that
f is a S-junta. With probability at least 1 − δ, the output
of Threshold-influences satisfies the following: there is a
set S ′ ⊂ S such that Infi(f) ≥ 2t implies that i ∈ S ′,
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Input: a function f , an oracle D for S, threshold
parameter t, failure parameter δ

Output: an oracle D′
1 Let T = Ct−2 log 1

δ|D| ;
2 For s = 1, . . . , T , sample x(i) uniformly from
{±1}n ;

3 For s = 1, . . . , T , let {y(i)g : g ∈ D} be an
influence testing sample at x(i) (from
Influence-testing-sample), where y

(i)
g is the

element for which g(y(i)) �= g(x(i)) ;
4 For g ∈ D, let Înfg = 1

T

∑T
i=1(f(x

(i))− f(y
(i)
g ))2 ;

5 return D′ = {g ∈ D : Înfg ≥ 3
2 t}

Algorithm 5: Threshold-influences

and i ∈ S ′ implies that Infi(f) ≥ t, and the output of
Threshold-influences is an oracle for S ′.

Moreover, Threshold-influences makes O(t−2 log 1
δ|S| )

queries to f and (in expectation) O(t−2|S|2 log 1
δ ) queries

to each element of D.

Remark V.9. It is not hard to see that Threshold-
influences succeeds even if it is given access to a slightly
noisy version of f : if each evaluation of f is guaranteed to be
accurate to within t/10 then the guarantees of Lemma V.8
still hold (at the cost of increasing the constant C in
Threshold-influences).

Proof: Let us fix a single j ∈ S and its oracle g ∈ D.
We will show that with probability at least 1 − δ

|S| , if
Infj(f) ≤ t then g ∈ D′ and if Infj(f) ≥ 2t then g �∈ D′
(and then the lemma will follow by a union bound
over g). To prove this claim, it suffices to show that
(with probability at least 1− δ

|S| ) |Infj(f)− Înfg| ≤ t/2.
For z ∈ {±1}n, let z̃ denote a copy of z with bit j

flipped. Recall that Infj(f) = Ez∼Unif [(f(z) − f(z̃))2];
by a Chernoff bound, with probability at least 1− δ

|S| ,
Infj(f) is within t/2 of

1

T

T∑
i=1

(
f(x(i))− f(x̃(i))

)2
,

where x(i) are (as in Threshold-influences) indepen-
dent and uniform in {±1}n. Finally, recall that f was
assumed to be a S-Junta, and recall that among coordi-
nates of S , y(i)g differs from x(i) exactly in coordinate j.
Hence, f(y(i)g ) = f(x̃(i)) for all i, and so Înfg coincides
with the displayed quantity above. This proves the
claim about the correctness of Threshold-influences;
the claims about the number of queries follow imme-
diately from the algorithm and Lemma V.7.

C. The algorithm

In order to set up the algorithm, recall from Sec-
tion III that we can begin by finding an oracle D
to a poly(k)-sized set of relevant coordinates S. As
explained before, (e.g. by applying Claim III.8), in
order to complete the task it suffices to compute
maxg∈JS,k′ E[fg] to accuracy ε, where k′ = k2/ε2.

Recall that Coordinate-projection and Threshold-
influences have a failure probability δ > 0; we will
fix take γ = poly(ε, 1/k) and δ = 2−(k/γ), and in what
follows we will guarantee to invoke these two algo-
rithms at most poly(k, 1/ε) times, meaning that with
high probability every single invocation will succeed.

Here is the final algorithm, together with a justifica-
tion of the sample complexity:
• favg,S : {±1} → [−1, 1] is defined by favg,S(x) =

Ey∼Unif [f(y) | yS = xS ]. According to Lemma V.4,
for every x ∈ {±1}n we can approximate favg,S(x)
to within γ using poly(k, 1/ε) queries. Moreover
(recalling our choice of δ), as long as we repeat
this process at most poly(k, 1/ε) times, with high
probability we will never fail to obtain accuracy
γ. Also, favg,S is an S-Junta.

• fsmooth is defined by fsmooth = T1−ε/(2k)favg,S . By
naı̈ve sampling and a Chernoff bound, for every
x in {±1}n we can (with probability at least
1 − δ) approximate fsmooth(x) to within 2γ using
poly(1/γ, log(1/δ)) queries (each with accuracy γ)
to favg,S . Thanks to the previous point, this can be
done using poly(k, 1/ε) queries to f , and thanks
to the choice of δ we can repeat this poly(k, 1/ε)
times without failure.

• Thanks to Lemma V.8 and Remark V.9 (with t =
ε/k), we can compute an oracle D̃′ to some set
S̃ ′ such that i ∈ S̃ ′ whenever Infi(fsmooth) ≥ 2ε/k,
and Infi(fsmooth) ≥ ε/k for all i ∈ S̃ ′. This can be
done using poly(k, 1/ε) queries to fsmooth, which
(thanks to the previous point) can be done using
poly(k, 1/ε) queries to f . By Lemma V.2, |S̃ ′| ≤
k2/ε2.

• Applying Lemma V.4 again (this time, also apply-
ing Remark V.5), for every x ∈ {±1}n we can ap-
proximate fsmooth,avg,S̃′(x) := Ey[fsmooth(y) | yS̃′ =
xS̃′ ] to within 3γ using poly(k, 1/ε) queries to
fsmooth (which in turn requires poly(k, 1/ε) queries
to f ).

• Finally, use poly(k, 1/ε) independent samples to
estimate Ey[|fsmooth,avg,S̃′ |] to within accuracy 4γ
(which we can assume is at most ε). This estimate
is the output of the algorithm.

To complete the proof that this algorithm is cor-
rect (i.e. it fulfills the claims made in Theorem I.5),
let us combine our previous bounds to show that
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the final quantity being estimated in our algorithm
(namely, E[|fsmooth,avg,S̃′ |]) is approximately between
maxg∈JS,k′ E[fg] and maxg∈JS,k E[fg].

Lemma V.10. With fsmooth,avg,S̃′ defined as above,

max
g∈JS,k′

E[fg] ≥ E[|fsmooth,avg,S̃′ |]

= max
g∈Jn,k′

E[fsmooth,avg,S̃′g]

≥ max
g∈JS,k

E[fg]−
3

2
ε.

Proof: The first inequality follows immediately
from Jensen’s inequality and the fact that fsmooth,avg,S̃′
is defined by repeatedly averaging f in various senses;
we will focus on the last inequality. As we discussed
previously,

max
g∈JS,k

E[fg] = max
g∈JS,k

E[favg,Sg].

By Lemma V.1 applied to favg,S ,

max
g∈JS,k

E[fsmooth] ≥ max
g∈JS,k

E[favg,Sg]− ε/2.

By Lemma V.3 applied with S ′ = S̃ ′ and t = 2ε/k,

max
g∈JS′,k

E[fsmoothg] ≥ max
g∈JS,k

E[fsmoothg]− ε.

Finally (and for the same reason as the first point),

E[|fsmooth,avg,S̃′ |] = max
g∈JS′,k′

E[fsmooth,avg,S̃′g]

= max
g∈JS′,k′

E[fsmoothg].
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[18] J. Håstad. Computational Limitations for Small Depth
Circuits. MIT Press, Cambridge, MA, 1986.
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APPENDIX

In this section, we describe the algorithm Find-best-
fit (from Lemma IV.1) and give its proof of correctness.
We begin by describing the algorithm.

For convenience of the reader, we restate Lemma IV.1
and then give the proof.

Lemma IV.1. There is an algorithm Find-best-fit with
the following guarantee:
1. The algorithm gets as input oracle access to a function
f : {−1, 1}n → {−1, 1} as well as a set of oracles S ⊆
{Dict1, . . . ,Dictn}. We clarify that algorithm is only given
the oracle Dicti (for Dicti ∈ S) but not i.
2. The algorithm gets as input error parameter ε > 0, arity
parameter k and confidence parameter δ > 0.
3. The algorithm makes N(k, |S|, ε, δ) = O(2k/ε2 · |S| ·
(log(1/δ) + k2 + |S|)) queries with probability 1− δ.
4. Each query point (to either f or oracle in S) is distributed
as a uniformly random element of {−1, 1}n.
5. With probability 1− δ, the algorithm outputs a number
Ĉorrf,S,k and hS,k : {−1, 1}k → {−1, 1} such that there
exists oracles Dicti1 , . . . ,Dictik ∈ S ,

Ex[f(x) · hS,k(xi1 , . . . ,xik)] ≥ max
�∈JS,k

Ex[f(x) · �(x)]− ε

Input: f (target function), k (arity of Junta), ε
(distance parameter)

S (oracles to dictator functions), δ (confidence
parameter)
Output: Ĉorrf,S,k ∈ [0, 1] and

hS,k : {−1, 1}k → {−1, 1}
// Set parameters for the algorithm

1 Set N = 2k · 1ε2 · 4 ·
(
|S|+ log(1/δ) + k2

)
and

M = N · 2−k ;
// Evaluation of the oracles

2 Let N ′ = Poi(N) and sample
x(1), . . . ,x(N

′) ∈ {−1, 1}n ;
3 Evaluate f on x(1), . . . ,x(N

′) ;
4 For all S � Dictj(·), evaluate Dictj on

x(1), . . . ,x(N
′) ;

// Hypothesis testing
5 for T ⊆ S and |T | = k do
6 Let T = {Dicti1 , . . . ,Dictik} ;
7 for y ∈ {−1, 1}k do
8 Define AT ,y = {x(s) : for 1 ≤ s ≤

N ′, 1 ≤ j ≤ k and Dictij (x
(s)) = yj}. ;

9 Define ĈorrT ,y =

∑
x(s)∈AT ,y

f(x(s))

M

10 Define ĈorrT =
∑

y |ĈorrT ,y|
2k

and
hT : {−1, 1}k → {−1, 1} as
hT (y) = sign(ĈorrT ,y).

11 Define T ∗ = argmaxT ⊆S:|T |=k ĈorrT . ;
12 Output Ĉorrf,S,k ← ĈorrT ∗ and

hS,k ← hT ∗ : {−1, 1}k → {−1, 1}.
Algorithm 6: Find-best-fit

and |Ĉorrf,S,k − max
�∈JS,k

Ex[f(x) · �(x)]| ≤ ε.

Proof: The proof of Item 4 is immediate from Step 2
of the algorithm. Similarly, note that the total number
of queries made is |S| · Poi(N) where N = O(2k/ε2 ·
(log(1/δ) + k2 + |S|)). Item 3 now follows from tail
bounds on the Poisson distribution.

Thus, it just remains to prove Item 5. To prove
this, consider a fixed T (from Step 5 of the algorithm
Find-best-fit). Define BT ,y = {x ∈ {−1, 1}n : for
1 ≤ j ≤ k, Dictij (x) = yj}. Observe that AT ,y can be
seen as a sampling of Poi(M) elements from BT ,y . Let
us define CorrT ,y = Ex∈BT ,y

[f(x)]. Then, observe that
Ex(1),...,x(N) [ĈorrT ,y] = CorrT ,y. In fact, by Chernoff-
Hoeffding bounds, it follows that

Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ε/2] ≤ 2−k · δ
10 · 2|S| .
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By a union bound, this implies that ∀ y ∈ {±1}k,

Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ε/2] ≤ δ

10 · 2|S| . (1)

This implies that for any subset T ,

Pr
x(1),...,x(N)

[|CorrT ,y − ĈorrT ,y| > ε/2] ≤ δ

10 · 2|S| . (2)

Finally, note that for any subset T ,

Ex∈{−1,1}n [hT (xi1 , . . . ,xik) · f(x)]
= Ey∈{−1,1}kEx∈AT ,y

[f(x) · sign(ĈorrT ,y)]

= Ey∈{−1,1}k [sign(ĈorrT ,y) · CorrT ,y]

≥ Ey∈{−1,1}k [CorrT ,y]− 2 max
y∈{−1,1}k

[|CorrT ,y − ĈorrT ,y|]

Let us define the event E (on the probability space
x(1), . . . ,x(N)) as Ex∈{−1,1}n [hT (xi1 , . . . ,xik) · f(x)] ≥
CorrT − ε. Using (1), we have that

Pr
x(1),...,x(N)

[E ] ≥ 1− δ

10 · 2|S| . (3)

A union bound over all subsets T ⊆ S on (2) and (3)
yields Item 5.
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