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Abstract—Proving hardness of approximation for min-sum
objectives is an infamous challenge. For classic problems such
as the Traveling Salesman problem, the Steiner tree problem,
or the k-means and k-median problems, the best known
inapproximability bounds for L-p metrics of dimension O(log
n) remain well below 1.01.

In this paper, we take a significant step to improve the
hardness of approximation of the k-means problem in various
L-p metrics, and more particularly on Manhattan (L-1),
Euclidean (L-2), Hamming (L-0) and Chebyshev (L-infinity)
metrics of dimension log n and above.

We show that it is hard to approximate the k-means objective
in O(log n) dimensional space:

(1) To a factor of 3.94 in the L-infinity metric when centers
have to be chosen from a discrete set of locations (i.e.,
the discrete case). This improves upon the result of
Guruswami and Indyk (SODA’03) who proved hardness
of approximation for a factor less than 1.01.

(2) To a factor of 1.56 in the L-1 metric and to a factor of
1.17 in the L-2 metric, both in the discrete case. This
improves upon the result of Trevisan (SICOMP’00) who
proved hardness of approximation for a factor less than
1.01 in both the metrics.

(3) To a factor of 1.07 in the L-2 metric, when centers can be
placed at arbitrary locations, (i.e., the continuous case).
This improves on a result of Lee-Schmidt-Wright (IPL’17)
who proved hardness of approximation for a factor of
1.0013.

We also obtain similar improvements over the state of the art
hardness of approximation results for the k-median objective
in various L-p metrics.

Our hardness result given in (1) above, is under the standard
NP is not equal to P assumption, whereas all the remaining
results given above are under the Unique Games Conjecture
(UGC). We can remove our reliance on UGC and prove
standard NP-hardness for the above problems but for smaller
approximation factors.

Finally, we note that in order to obtain our result for the
L-1 and L-infinity metrics in O(log n) dimensional space we
introduce an embedding technique which combines the tran-
scripts of certain communication protocols with the geometric
realization of certain graphs.

Keywords-clustering; k-means; k-median; hardness of ap-
proximation; graph embedding;

I. INTRODUCTION

Clustering is a classic, routinely-used process, to solve

a large variety of problems. Case in point, it is used to

carryout unsupervised learning, or to analyze large amount

of data, or to solve information retrieval problems, or to

detect communities in social networks. Given a dataset and

a metric defined over the data elements, a clustering is a

partition of the data such that similar data elements are in

the same part. Hence, clustering allows to extract informa-

tion from the data by identifying data elements that share

common features. Clustering problems have thus become of

fundamental importance and have received a considerable

amount of attention through the years.

Arguably, the k-means and k-median objectives are the

most successful models for clustering problems. They have

been studied since the sixties and the most popular algo-

rithms used in practice, such as the famous KMEANS++

algorithm [1] or Lloyd’s method, are designed so as to opti-

mize the classic k-means objective: given a set of points P
in a metric space, find a set of k points, called centers, in the

metric space so as to minimize the sum of squared distances

from each point to its closest center (see Section I-A for

a slightly more formal definition). Similarly, the k-median
objective asks to minimize the sum of distances from each

point to its closest center.

Therefore, the question of designing algorithms for op-

timizing the k-means and k-median objectives has taken a

preponderant role in both theory and practice. From a theory

perspective, both problems are unfortunately NP-Hard, even

when the underlying metric space is the Euclidean plane [2]

but admits a PTAS when d is a fixed constant [3], [4],

[5], [6], [7]. Nonetheless, for several applications arising

in machine learning and data analysis, the dimension of

the point set corresponds to the number of features of the

datasets, which is large for many datasets. Thus, researchers

have considered the k-median and k-means in Euclidean

space of arbitrary dimension, and also in more general metric

spaces, or through the lenses of parameterized complexity.

For general metric spaces, both problems are known to be

hard to approximate within respectively a 1 + 2/e ≈ 1.73
and 1 + 8/e ≈ 3.94 factor since the late 90’s [8]. After a

long line of work, the best known approximation algorithms

for general metric spaces achieve 2.67 and 9 approximation

factors for k-median and k-means respectively [9], [10].

Then it becomes natural and of practical significance to ask
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whether there exist better approximation algorithms for the

Euclidean metric.

However, our understanding of the Euclidean clustering

inputs is pretty limited. The best known hardness of ap-

proximation for O(log n)-dimensional �p metrics, where p
is finite, is due to the celebrated result of Trevisan [11] and

remains below 1.01. While this result was later extended

to �∞ metrics by Guruswami and Indyk [12] who obtained

comparable hardness bounds, little progress has been made

over the last 15 years and the hardness of approximation for

these problems remains below 1.01, even for the �∞ metric1.

In fact, showing hardness of approximation in Euclidean

space for min-sum objectives is a fundamental challenge. For

most of the classic optimization problems in metric spaces

such as the traveling salesman problem (TSP), Steiner tree

(ST), or k-median and k-means, the best known hardness

of approximation are also obtained through the work of

Trevisan [11] and Guruswami and Indyk [12], and also

remain below 1.01. Even after the advances on hardness

of approximation based on the unique games conjecture, no

better hardness has been established for these problems in

�p-metrics.

This stands in sharp contrast to the best known approxi-

mation ratios for the k-means and k-median problems and

creates a somewhat frustrating situation: for example, the

current approximation ratio for the k-median in any �p
metric is the same as that for a general metric space (i.e.,

we are not able to leverage the geometry/topology of the �p-

metric space, for any p), while the hardness of approximation

in the �p-metrics is below 1.01 which is in contrast to

the 1 + 2/e inapproximability for general metric spaces. A

somewhat less frustrating case is the k-means problem, for

which Ahmadian et al. [10] have recently shown how to use

the structure of the �2-metric to obtain an approximation

ratio of 6.47 improving upon the approximation ratio of

9 for general metric space. Yet, the best known hardness

of approximation for the k-means problem in the �2-metric

remains below 1.01.

This also stands in contrast with the problem of showing

NP-hardness for computing exact solutions to clustering

problems in �p-metrics, a question which is much bet-

ter understood. For example, when parameterized by the

number of centers, k, both the k-median and k-means
problems are known to be W[1]-Hard, even in R4, and to

not admit a better than no(k) exact algorithm assuming the

Exponential Time Hypothesis [13]. However, and perhaps

surprisingly, a (1 + ε)-approximation algorithm running

in time 2k/ε
O(1)

nd [14], [15] is known for the �2-metric

of arbitrary dimension d, while there is no better than

1+2/e-factor approximation (for k-median) and 1+8/e-factor

1Note that �∞-metric of large dimensions are not of high interest
since hardness of approximation for general metric space directly implies
hardness of approximation for the same factor in �∞-metric of high
dimension by applying the Fréchet embedding.

approximation (for k-means) algorithms, for general metrics,

running in time f(k, ε)no(k) for any arbitrary computable

function f , assuming the Gap Exponential Time Hypothesis

[16].

Yet, in terms of hardness of approximation, no significant

progress has been made. Bridging the gap between upper and

lower bound on the approximability of the k-means and k-

median problems in Euclidean instances is thus an important

open problem.

“Discrete” vs “Continuous”.: Unfortunately, our poor

understanding of the k-means and k-median problems does

not stop here. To explain this we need to distinguish between

two variants of the k-median and k-means problems: the

discrete and the continuous. In the discrete case, centers

have to be chosen from a specific set of so-called candidate
centers that is part of the input, while in the continuous case,

centers can be chosen arbitrarily in the �p-metric space.

While hardness of approximation for the discrete variant

has been known since the work of Trevisan [11] and Gu-

ruswami and Indyk [12] as mentioned earlier, the hardness

of the continuous version had remained an open problem

for a while. Dasgupta first showed that the problem is NP-

Hard in large dimensions [17]. A recent work of Awasthi et

al. [18] showed the APX-Hardness of the k-means problem

in the Euclidean metric and the inapproximability bound

was recently improved to 1.0013 by Lee et al. [19]. Yet,

we do not know of a better approximation algorithm for the

continuous version and so the best known approximation

algorithm achieves a 6.47-approximation.

Previous Approaches.: One of the main roadblock

for obtaining higher hardness of approximation is perhaps

the “degree constraint”. More concretely, the embedding

technique that is used by Trevisan [11] for �p-metrics, where

p is finite, and by Guruswami and Indyk [12] for the �∞-

metric requires to reduce from a “bounded degree” instance

of a covering problem, such as vertex cover on bounded

degree graphs. However, the hardness of approximation

for these problems is very close to 1 and, combined with

the loss induced by the embedding, this cannot lead to a

hardness greater than 1.01. For example, the recent approach

of Awasthi et al. [18] and Lee et al. [19] is a reduction

from vertex cover on triangle-free graphs which introduces

a direct embedding for the k-means problem. Unfortunately,

the gap of the reduction is also a function of the degree of

the input graph, and so requires that the instance of vertex

cover has bounded degree.

We bypass the above barriers in two ways. We first pro-

vide better reductions, based on the vertex coverage problem

(maximization variant of the vertex cover problem), which

through a careful analysis leads to a higher gap in O(n) di-

mensions. While these reductions are satisfactory for the �2-

metric, since they imply hardness of approximation for the

problems in O(log n)-dimensional space using the Johnson-

Lindenstrauss lemma [20], they only lead to hardness of
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approximation for the problems in �1− and �∞−metrics

of dimension Ω(n). We then use a interesting, and perhaps

surprising, blend of communication protocol and embedding

techniques to extend the result to O(log n)-dimensional

space. We discuss these ideas further in Section I-B.

A. Our Results

Given two sets of points P and C in a metric

space, we define the k-means cost of P for C as the∑
p∈P

(
min
c∈C

(dist(p, c))
2

)
and the k-median cost as the∑

p∈P

(
min
c∈C

dist(p, c)

)
. Given a set of points P , the k-means

(respectively k-median) objective is the minimum over all C
of cardinality k of the k-means (respectively k-median) cost

of P for C. Given a point p ∈ P , the contribution to the k-

means (respectively k-median) cost of p is min
c∈C

(dist(p, c))
2

(respectively min
c∈C

dist(p, c)).

For every p ∈ R≥1∪{∞}, we define two quantities ζ1(p)
and ζ2(p) (see Section III for details). The behavior of these

quantities is quite intricate, but for our purpose it suffices

to know their values for p = 1, 2, and ∞. We show that

ζ1(1) = 1.1416, ζ2(1) = 1.5664, ζ1(2) ≈ 1.06, ζ2(2) ≈
1.1709, and as p → ∞, we have ζ1(p) → ζ1(∞) = ζ1(1)
and ζ2(p)→ ζ2(∞) = ζ2(1).

1) Inapproximability Results with Candidate Centers: We

start by presenting our results on the “discrete” k-median
and k-means problems. In these versions, the centers must

be chosen from a specific set of points of the metric. We

start with an informal statement below and note that some

of the results are under the unique games conjecture (UGC).

Theorem I.1 (Informal statement). Given n points and
poly(n) candidate centers in O(log n)-dimensional space it
is NP-hard to approximate
• the k-means objective within a 1.17 factor in �2-metric

(under UGC), 1.56 factor in �1-metric (under UGC),
and 1 + 8/e ≈ 3.94 in �∞-metric.

• the k-median objective within a 1.06 factor in �2-metric
(under UGC), 1.14 factor in �1-metric (under UGC),
and 1 + 2/e ≈ 1.73 in �∞-metric.

Our above results generalizes to any �p-metric, with a

bound which depends on the underlying metric and on the

problem.

Theorem I.2 (Informal statement of Theorems VII.1 and

VII.2). Let p ∈ R≥1∪{∞}. Assuming UGC, given n points
and poly(n) candidate centers in O(log n) dimensional
�p-metric space it is NP-hard to distinguish between the
following two cases:
• Completeness: The k-means objective (resp. k-median

objective) is at most β (resp. β′),
• Soundness: The k-means objective (resp. k-median

objective) is at least ζ2(p) · β (resp. ζ1(p) · β′),

where β (resp. β′) is some positive real number depending
only on n.

Note that the hardness of approximation factor for the �∞-

metric, given in Theorem I.2 is worse than the one stated

in Theorem I.1. This is because, the result in Theorem I.2

follows from combining the hardness of approximation of

the vertex coverage problem (under UGC) with certain

graph embeddings into �p-metrics, whereas, the result in

Theorem I.1 for the �∞-metric follows from combining the

hardness of approximation of the hypergraph vertex cov-
erage problem with certain hypergraph embeddings, which

currently yield meaningful results only for the �∞-metric.

2) Inapproximability Results without Candidate Centers:
We then move to the “continuous” version of the problems.

Here, centers can be placed anywhere in the metric space.

Theorem I.3 (k-means in Euclidean metric; Informal state-

ment of Theorem VII.4). Assuming UGC, given n points
in O(log n) dimensional Euclidean space it is NP-hard to
distinguish between the following two cases:
• Completeness: The k-means objective is at most β,
• Soundness: The k-means objective is at least 1.07 · β,

where β is some positive real number depending only on n.
Moreover, the above hardness holds even when the n points
have all their coordinate entries in {0, 1}.

For the k-median problem without candidate centers, it is

in fact more natural to consider the �1-metric. Indeed, given

a set of points in the �2-metric, computing the median of

this set of points is hard, even in the Euclidean plane and

no exact algorithm is known. However, in the case of the

�1-metric, it follows easily, it is as simple as computing the

location of the mean of a set of points in the �2-metric. We

thus show the following:

Theorem I.4 (k-median in �1-metric; Informal statement of

Theorem VII.3). Assuming UGC, given n points in O(log n)
dimensional �1-metric space it is NP-hard to distinguish
between the following two cases:
• Completeness: The k-median objective is at most β,
• Soundness: The k-median objective is at least 1.07 ·β,

where β is some positive real number depending only on n.
Moreover, the above hardness holds even when the n points
have all their coordinate entries in {0, 1}.

The above theorem is obtained through an intermedi-

ate hardness of approximation proof for k-median in the

Hamming metric (see Theorem V.2). Also, Theorem I.3

can be extended to the Hamming metric so as to obtain

a slightly higher inapproximability gap of 1.21 (see The-

orem V.1). Typically, it is possible to extend hardness in

the Hamming metric to hardness in the edit metric for

similarity search type problems. We formalize this intuition

and extend Theorem I.2 to the edit metric as well (see

Theorems A.2 and A.3).
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Next, we discuss about the hardness results that we

can obtain under the more standard NP �= P assumption.

From the exciting progress on the unique games conjecture

[21], [22], [23], [24], [25], [26], we can get the following

unconditional NP-hardness for approximate vertex coverage

problem.

Theorem I.5 (Essentially combining [26] and [27]). There
is some ε > 0 and d0 ∈ N, such that for all dmin > d0,
deciding an instance (G, k) of (0.9807−ε)-vertex coverage
problem on minimum degree dmin graphs is NP-hard.

Now we may define for every p ∈ R≥1 ∪ {∞}, ζ ′1(p)
and ζ ′2(p). Again for our purpose we only define them for

p = 1, 2, and ∞: ζ1(1) = 1.04, ζ2(1) = 1.15, ζ1(2) ≈ 1.02,

ζ2(2) ≈ 1.05, and as p → ∞, we have ζ1(p) → ζ1(∞) =
ζ1(1) and ζ2(p)→ ζ2(∞) = ζ2(1).

We can then combine Theorem I.5 with the embedding

given in the proof of Theorem I.2 to get the hardness of

approximation results of Theorem I.2 where ζi(p) is now

replaced by ζ ′i(p) for i ∈ {1, 2}, and we are no longer reliant

on UGC. Similarly, we also get NP-hardness (without UGC)

as in Theorems I.3 and I.4, but for approximation factors

roughly equal to 1.02.

Finally, we summarize in Table I, the state-of-the-art

inapproximability factors for the discrete and continuous

cases of the k-means and k-median problems in various

metric spaces.

B. Proof Overview

We now give an overview of our techniques.

1) Warm up: To better understand the state of the art for

the hardness of approximation for clustering problems and

the different barriers to obtain hardness of approximation

for k-median and k-means, let us recall the result of

Guha and Khuller [8] who showed the 1+2/e hardness of

approximation for k-median in general metric spaces.

Given an instance of the set cover problem, where S de-

note the sets and U denote the universe, create an instance of

the k-median (or k-means) instance by creating a candidate

center cS for each set S ∈ S and a point pu to be clustered

for each element u ∈ U . Then, set the distances from pu to

each cS such that u ∈ S to be 1 and from pu to each cS such

that u /∈ S to be 3. Other distances are set so as to satisfy

the triangle inequality. It is then easy to see that the instance

generated is a metric. Now, standard inapproximability result

for set cover or for variants such as set coverage imply that

it is hard to distinguish between an instance where there is

a set of size k covering the universe, and an instance where

no set of size k covers more than a (1−1/e) of the universe.

Thus, this implies that it is hard to distinguish between an

instance of the k-median problem where all points are at

distance exactly 1 from their center, and so of cost |U| and an

instance where for any set of k centers, the number of points

at distance 1 is at most (1 − 1/e)|U| (and the remaining

ones are at distance 3). Hence, hard to distinguish between

an instance of cost |U| and an instance of cost (1+2/e)|U|.
While this reduction yields high inapproximability results

in general metric spaces, and so in �∞-metrics of dimension

Ω(n) through the Fréchet embedding of general metric

spaces to �∞, it seems unrealistic that it can be adapted to

�1- or �2-metrics, or even O(log n)-dimensional �∞-metrics.

This is mainly due to the high degree of the hard set

cover instances. Indeed, let d ∈ N and δ ∈ (0, 1) be such

that d > 1
1−δ2 . Then it seems unlikely that we can embed (in

any dimension) every d-regular graph into �2 metric space

such that every pair of vertices which had an edge are at

distance δ and every non-adjacent pair are at distance 1. The

intuition for the previous statement stems from Theorem 5

in [29], which is a special case of the above claim. In other

words, the above claim basically says that the maximum gap

one can hope for is poly(1/d). This is a constant only when

d is a constant.

Another argument for this to be an important roadblock

is given recent advances on the parameterized complexity

of the problem (parameterized by k), we observe that high

dimensional Euclidean space admits a PTAS for k-median
and k-means, while arbitrary metric spaces don’t (assuming

Gap-ETH). The proof that general metric spaces don’t admit

a fixed-parameter approximation schemes is very similar

and so, having an embedding to high dimensional Euclidean

space of the above type of instances would contradict Gap-

ETH.

2) Inapproximability in High Dimensions: To obtain our

hardness results in high dimensions we will start from the

α-vertex coverage problem: given a graph G(V,E) and a

parameter k as input, the goal is to distinguish between the

following two cases. The Completeness case: There exists

S := {v1, . . . , vk} ⊆ V such that each edge of E is adjacent

to at least one vertex of S, and the Soundness case: For every

S := {v1, . . . , vk} ⊆ V at most an α fraction of the edges

are adjacent to a vertex of S.

This problem will serve for both the discrete and contin-

uous cases (namely the problem where centers have to be

picked at specific location and the problem where centers

can be picked arbitrarily). We have that the (0.9292 − ε)-
vertex coverage problem is NP-hard (under unique games

conjecture).

Our way of circumventing the problems with embedding

the set cover instance (discussed in previous subsubsection)

is to reduce from the maximization variant instead of the

covering variant as done in previous works [11], [12], [18],

[19]. The observation is the that a clustering problems

are not covering problems therefore all previous works

implicitly paid a factor equal to the degree of the graph

in the approximation factor while moving from the vertex

cover problem to the clustering problem. By directly using

results on the vertex coverage problem, we avoid this. It
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Metric

Problem Discrete
k-means

Discrete
k-median

Continuous
k-means

Continuous
k-median

General
1 + 8

e
≈ 3.94

[8]

1 + 2
e
≈ 1.73

[8]
Not Determined† Not Determined†

�0 1.56∗ 1.14∗ 1.21∗ 1.07∗

�1 1.56∗ 1.14∗ Not Determined 1.07∗

�2 1.17∗ 1.06∗ 1.07∗ Not Determined

�∞ 1 + 8
e
≈ 3.94 1 + 2

e
≈ 1.73 Not Determined Not Determined

Table I
IN THIS TABLE WE SUMMARIZE THE STATE-OF-THE-ART INAPPROXIMABILITY FOR k-means AND k-median CLUSTERING OBJECTIVES IN VARIOUS

METRIC SPACES FOR BOTH THE DISCRETE AND CONTINUOUS VERSIONS OF THE PROBLEM. IF A CITATION IS NOT PROVIDED FOR AN ENTRY IN THE

TABLE THEN IT IMPLIES THAT THE RESULT WAS OBTAINED IN THIS PAPER. ALSO, HARDNESS OF APPROXIMATION FACTORS OBTAINED UNDER THE

STRONGER ASSUMPTION OF THE UNIQUE GAMES CONJECTURE ARE STAR MARKED. FINALLY, THE TWO ENTRIES WHICH ARE DAGGER MARKED, I.E.,
THE INAPPROXIMABILITY FOR k-means AND k-median FOR THE GENERAL METRIC IN THE CONTINUOUS CASE, IS NOT EXPLICITLY DETERMINED IN

LITERATURE, BUT IT might BE POSSIBLE TO EXTEND FEIGE’S HARD INSTANCES OF THE MAX-COVERAGE PROBLEM [28], [8] TO OBTAIN 1 + 8
e

AND

1 + 2
e

FOR k-means AND k-median RESPECTIVELY FOR THE GENERAL METRIC IN THE CONTINUOUS CASE AS WELL.

allows us to look at embeddings where the degree does not

inhibit, on the contrary we use the fact that the degree is

large to our benefit in some of of our results.

Also, there was no techniques developed in previous

works to address all �p-metrics for the clustering problems.

We make an interesting connection to contact dimension of a

graph, motivated by recent advances in hardness of approx-

imation in fine-grained complexity [30], [31]. Elaborating,

from the vertex coverage instance G = (V,E) we create the

bipartite graph on partite sets V and E where we have an

edge (i, {j, j′}) ∈ V × E if and only if i = j or i = j′ .

Then, we show that embedding this graph so that adjacent

vertices are at distance at most β and non-adjacent vertices

are at distance at least λβ. From there our inapproximability

result follows.

3) Dimension Reduction: Extending our result to

O(log n)-dimensional space while preserving the gap is a

challenge for �1- and �∞-metric since dimension reduction

is very limited for these metrics.

Before we dive into this, let us make the following

observation. For the �2-metric and the k-means objective, the

cost of the k-means objective can be expressed as the sum

over all clusters of the sum of pairwise distances of points in

the cluster divided by the size of the cluster (see Fact V.6).

Thus, it has long been known that dimension reduction using

the Johnson-Lindenstrauss lemma preserve the cost of the

solutions by a (1 + ε)2 factor. Hence, we will simply use

this to obtain a hardness of approximation for the Euclidean

k-means problem in O(log n) dimension.

Inspired by the recent connections between communi-

cation complexity and the hardness of approximation for

(geometric) fine-grained and parameterized problems [32],

[33], [34] we develop a O(log n) dimensional embedding

technique for all �p-metrics. An appealing feature of this

embedding is that it arises naturally out of the transcript

of a (one-way) communication protocol for two-players,

where one player is given a vertex of the graph and the

other player is given an edge in the graph and the goal

is to determine if the vertex covers the edge. We develop

non-trivial randomized protocols using algebraic-geometric

codes for the aforementioned communication problem, and

show how to interpret the transcript to obtain an embedding

for both inputs (i.e., the vertex and the edge).

C. Organization of the Paper

Section II introduces some notations and relevant coding

theory concepts and results that will be used throughout

the paper. Section III discusses graph embedding in �p-

metrics, which form a critical gadget for our hardness

results. Section IV shows our result for the “discrete case”,

namely when centers have to be picked from a prescribed set.

Our results of this section apply to high dimensional spaces,

namely when the dimension of the input points is Θ(n).
Section V presents our proofs for the “continuous” versions,

where centers can be placed at arbitrary locations, also in

the case of high dimensional inputs. Sections VI and VII

presents our dimensionality reduction framework. Finally,

Section VIII presents some interesting open problems.

II. PRELIMINARIES

Notations.: For any two points a, b ∈ R
d, the dis-

tance between them in the �p-metric is denoted by ‖a −
b‖p =

(∑d
i=1 |ai − bi|p

)1/p

. Their distance in the �∞-

metric is denoted by ‖a − b‖∞ = max
i∈[d]

{|ai − bi|}, and in

the �0-metric is denoted by ‖a− b‖0 = |{i ∈ [d] : ai �= bi}|,
i.e., the number of coordinates on which a and b differ. For

every n ∈ N, we denote by [n] the set of first n natural

numbers, i.e., {1, . . . , n}. We denote by
(
[n]
r

)
, the set of all

subsets of [n] of size r. Let ei denote the vector which is 1

on coordinate i and 0 everywhere else. We denote by
(
	1
2

)
,

the vector that is 1/2 on all coordinates.
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A. Error Correcting Codes

We recall here a few coding theoretic notations. An error

correcting code of block length � over alphabet set Σ is sim-

ply a collection of codewords C ⊆ Σ�. The relative distance

between any two points is the fraction of coordinates on

which they are different. The relative distance of the code C
is defined to be the smallest relative distance between any

pair of distinct codewords in C. The message length of C is

defined to be log|Σ| |C|. The rate of C is defined as the ratio

of its message length and block length.

Theorem II.1 ([35], [36]). For every prime square q greater
than 49, there is a code family over alphabet of size q of
positive constant (depending on q) rate and relative distance
at least 1− 3√

q . Moreover, the encoding time of any code in
the family is polynomial in the message length.

The following is an informal argument justifying the

existence of the above code family. Fix q a prime square

greater than 49.

The authors in [35] provide us with a family of curves

C = {Ci}i∈N over Fq such that for every � ∈ N, we have that

C� has at least � rational points and genus at most g := 2�/√q.

Fix � ∈ N. Let P be a rational point on C�. Consider the

Riemann-Roch space L (m · P ) where m = 3�√
q . This has

dimension at least m + 1 − g = �/√q + 1. Also, any two

elements have at most m common zeroes among the rational

points of C�. Pick any set S of � Fq-rational points of C� that

does not contain P . Then the code is given by the evaluations

of elements of L (m · P ) at the points of S. The dimension

of the code is greater than �/√q. Therefore the rate is greater

than 1/√q. Also the relative distance of the code is at least

1−m/� = 1− 3/√q as any two codewords agree on at most

m coordinates. Finally, the efficient encoding of such a code

was given in [36].

In fact, random codes obtaining weaker parameters than

the parameters stated above (see Gilbert-Varshamov bound

[37], [38]) suffice for us2, but there is no known explicit

efficient construction of such codes to the best of our

knowledge. It may be possible to use concatenated codes

(arising from Reed-Solomon codes) which approach the

Gilbert-Varshamov bound in the proofs in this paper instead

of the aforementioned algebraic geometric codes.

III. GADGET CONSTRUCTIONS VIA GRAPH

EMBEDDINGS

In this section, we first introduce the notion of graph

embedding that is of interest to this paper. And then we

prove some bounds on the embedding for important �p-

metrics.

2To be precise, we need for some infinite increasing sequence (qi)i∈N

and some increasing function f : N → N, a code family over alphabet of
size qi of positive constant (depending on q) rate, relative distance at least
1− 1

f(qi)
, and efficient encoding.

Let Kr
t denote the complete r-uniform hypergraph on t

vertices (i.e., has all
(
t
r

)
possible hyperedges). Let I be

an operator on hypergraphs which maps every hypergraph

to its incidence graph. More formally, for any hypergraph

H(V,E) we define I(H) to be the bipartite graph on partite

sets V and E where we have an edge (i, J) ∈ V × E
in I(G) (i.e., J ⊆ V ) if and only if i ∈ J . For every

t, r ∈ N, consider the incidence bipartite graph of the

complete hypergraph on t vertices of uniformity (arity) r,

which we denote by H∗(t, r) := I(Kr
t ). The vertex set of

H∗(t, r) is the partite sets A∗(t) := [t] and B∗(t, r) :=
(
[t]
r

)
and (i, J) is an edge in H∗(t, r) if and only if i ∈ J .

We would like to analyze the embedding of H∗(t, r) into

�p-metric spaces for all p ∈ R≥1 ∪ {∞}.
Definition III.1 (Gap Realization of a Bipartite graph). Let
p ∈ R≥1 ∪ {∞}. For any bipartite graph G = (A∪̇B,E)
and λ ≥ 1, a mapping τ : V → R

d is said to λ-gap-realize

G (in the �p-metric) if for some β > 0, the following holds:
(i) For all (u, v) ∈ E, ‖τ(u)− τ(v)‖p = β.

(ii) For all (u, v) ∈ (A×B)\E, we have ‖τ(u)−τ(v)‖p ≥
λ · β.

Moreover, we require that τ λ-gap-realize G in the �p-metric
efficiently, i.e., there is a polynomial time algorithm (in the
size of G) which can compute τ .

We remark here that the above definition is a variant of

the notion gap contact dimension introduced in [31] in the

sense that the authors in [31] required that for all distinct

u, v both from A or both from B, ‖τ(u)−τ(v)‖p ≥ λ·β and

for all (u, v) ∈ (A×B) \E, we have ‖τ(u)− τ(v)‖p > β.

They were also interested in the size of the dimension on

to which the graph was embedded. Finally, we note that the

notion of contact dimension (i.e., with any gap greater than

1) has been studied in literature since the early eighties [39],

[40], [41], [42], [29], [30].

Definition III.2 (Gap number). Let p ∈ R≥1 ∪ {∞}. For
any bipartite graph G = (A∪̇B,E), its gap number in the
�p-metric gp(G) is the largest λ for which there exists a
mapping τ that λ-gap-realizes G in a d-dimensional �p-
metric space3 where d ≤ |A|+ |B|.

In this paper, we are interested in analyzing gp(H
∗(t, r))

for all t, r ∈ N and p ∈ R≥1∪{∞}. We prove the following

upper bound4:

Proposition III.3. Let t ≥ 3, r ≥ 2, and p ∈ R≥1 ∪ {∞}.
If r < t then gp(H

∗(t, r)) ≤ 3.

Proof: Let S = [r − 1]. Let T = S ∪ {r} and T ′ =
S ∪{r+1}. Let τ be a λ-gap-realization of H∗(t, r) in the

3For all the main results of this paper to hold, we do not require the
specified upper bound on the dimension of the mapping realizing the gap
number; any finite dimensional realization suffices.

4More generally this upper bound holds for any metric (and not neces-
sarily just the �p-metrics).
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�p-metric. Then, we have for some β > 0, that

‖τ(r)−τ(T )‖p = ‖τ(r−1)−τ(T )‖p = ‖τ(r−1)−τ(T ′)‖p = β.

But we also have have that ‖τ(r) − τ(T ′)‖p ≥ λβ. From

triangle inequality this implies λ ≤ 3.

We can meet the above bound in the �∞-metric as shown

below.

Lemma III.4. For all t ≥ 3 and r ≥ 2, we have
g∞(H∗(t, r)) = 3.

Proof: For the �∞-metric consider the mapping τ :
A∗(t) ∪ B∗(t, r) → R

t defined as follows. For every

u ∈ A∗(t), we define

τ(u) = eu +

(
	1

2

)
,

and for every J ∈ B∗(t, r) (i.e., J ∈ (
[n]
r

)
), we define

τ(J) =
∑
i∈J

ei.

Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J .

Then we have that

η := τ(J)− τ(u) =

⎛⎝ ∑
i∈J\{u}

ei

⎞⎠−
(
	1

2

)
.

Since η ∈ {−1/2, 1/2}t, we have that ‖η‖∞ = ‖τ(J) −
τ(u)‖∞ = 1/2.

On the other hand if we fix some u ∈ A∗(t) and J ∈
B∗(t, r) such that u /∈ J then we have that

‖τ(J)− τ(u)‖∞ ≥ |(τ(J))u − (τ(u))u| = 3

2
.

Thus we have that τ , 3-gap-realizes H∗(t, r) in the �∞-

metric. Finally, the equality on the gap number follows from

Proposition III.3.

Next, we consider the �1-metric and show that we can

meet Proposition III.3 for r = 2.

Lemma III.5. For all t ≥ 3 and r ≥ 2, we have
g1(H

∗(t, r)) ≥ r+1
r−1 .

Proof: For the �1-metric consider the mapping τ :
A∗(t) ∪ B∗(t, r) → {0, 1}t defined as follows. For every

u ∈ A∗(t), we define

τ(u) = eu,

and for every J ∈ B∗(t, r) (i.e., J ∈ (
[n]
r

)
), we define

τ(J) =
∑
i∈J

ei.

Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J .

Then we have that

τ(J)−τ(u) =
∑

i∈J\{u}
ei ⇒ ‖τ(J)−τ(u)‖1 = |J |−1 = r−1.

On the other hand if we fix some u ∈ A∗(t) and J ∈
B∗(t, r) such that u /∈ J then we have that

‖τ(J)− τ(u)‖1 =

∥∥∥∥∥
(∑

i∈J
ei

)
− eu

∥∥∥∥∥
1

= |J |+ 1 = r + 1.

Thus we have that τ ,
(

r+1
r−1

)
-gap-realizes H∗(t, r) in the

�1-metric.

Now we focus our attention to bounding the gap number

in the Euclidean metric. We focus on bounding the gap

number of H∗(t, r) where r = 2, as we only use it later

for this fixing of r.

Lemma III.6. For all t ≥ 3, we have g2(H
∗(t, 2)) ≥

2√
(
√
2−1)2+1

≈ 1.848.

Proof: Consider the mapping τ : A∗(t) ∪ B∗(t) →
{0, 1}t defined as follows. For every u ∈ A∗(t), we define

τ(u) =
√
2 · eu,

and for every {u, v} ∈ B∗(t), we define

τ({u, v}) = eu + ev.

Let i, j, j′ ∈ [t] be three distinct numbers. We have

‖τ(i)− τ({i, j})‖2 = ‖ei(
√
2− 1) + ej‖2

=

√
(
√
2− 1)2 + 1,

and

‖τ(i)− τ({j′, j})‖2 = ‖
√
2 · ei + ej + ej′‖2 = 2.

This implies τ ,

(
2√

(
√
2−1)2+1

)
-gap realizes H∗(t, 2) in the

�2-metric.

We wrap up our computation of gap numbers by showing

that as p grows the gap number of H∗(t, r) in the �p-metric

approaches 3. The proof of the below lemma is very similar

to the proof of Lemma III.4 but we provide it nonetheless

for the sake of completeness.

Lemma III.7. For all t ≥ 3 and r ≥ 2, we have that for
every ε > 0 there exists p ∈ N such that gp(H

∗(t, r)) >
3− ε.

Proof: Fix t ≥ 3, r ≥ 2, and ε > 0. Let p ∈ N such that

t1/p < 1+ε/3. Consider the mapping τ : A∗(t)∪B∗(t, r)→
R

t defined as follows. For every u ∈ A∗(t), we define

τ(u) = eu +

(
	1

2

)
.

and for every J ∈ B∗(t, r) (i.e., J ∈ (
[n]
r

)
), we define

τ(J) =
∑
i∈J

ei.
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Fix some u ∈ A∗(t) and J ∈ B∗(t, r) such that u ∈ J .

Then we have that

η := τ(J)− τ(u) =

⎛⎝ ∑
i∈J\{u}

ei

⎞⎠−
(
	1

2

)
.

Since η ∈ {−1/2, 1/2}t, we have that ‖η‖p = ‖τ(J) −
τ(u)‖p = t1/p/2.

On the other hand if we fix some u ∈ A∗(t) and J ∈
B∗(t, r) such that u /∈ J then we have that

‖τ(J)− τ(u)‖p ≥ |(τ(J))u − (τ(u))u| = 3

2
.

Thus we have that τ ,
(

3
t1/p

)
-gap-realizes H∗(t, r) in the

�p-metric. Finally note that 3
t1/p

> 9
3+ε = 3− 3ε

3+ε > 3− ε.

For most of the results in this paper, we will only use

the gap numbers of H∗(t, r) when r = 2, and therefore for

compactness of statements in the future, we introduce the

following.

Definition III.8. For all p ∈ R≥1 ∪ {∞}, we define γp =
min
t≥3

gp(H
∗(t, 2)).

Finally, we conclude this section by showing a ‘heredi-

tary’ property of our embedding which will be invoked for

all applications.

Proposition III.9. Let G be a r-uniform hypergraph on t ≥
3 vertices and let H := I(G). Let τ be a λ-gap realization of
H∗(t, r) in the �p-metric. Then τ restricted to the vertices of
H is a λ-gap realization of H in the �p-metric. In particular,
for r = 2, there exists a mapping τ∗ which is a γp-gap
realization of H in the �p-metric.

We skip the proof of the above proposition as it follows

in a straightforward manner from Definition III.1.

IV. INAPPROXIMABILITY OF k-means AND k-median
WITH CANDIDATE CENTERS IN HIGH DIMENSIONS

In this section, we prove Theorem I.2 but in high dimen-

sions by a reduction from the gap vertex coverage problem.

First, we define the gap vertex coverage problem.

Let G(V,E) be a graph. Let S ⊆ V . We define the cover

of S, denoted by cov(S) as follows:

cov(S) = {e ∈ E | ∃v ∈ S such that v ∈ e}.
Definition IV.1 (α-vertex coverage). In the α-vertex cov-
erage problem, we are given a graph G(V,E) and a
parameter k as input. We would like to distinguish between
the following two cases:
• Completeness: There exists S := {v1, . . . , vk} ⊆ V

such that cov(S) = E.
• Soundness: For every S := {v1, . . . , vk} ⊆ V we have
|cov(S)| ≤ α · |E|.

We recall that the minimum degree of a graph is said

to be dmin ∈ N if every vertex in the graph has degree at

least dmin. Strong inapproximability results were given for

the vertex coverage problem in5 [43]. Recently, Austrin and

Stanković provided the tight inapproximability result, which

is stated below.

Theorem IV.2 (Austrin and Stanković [27]). There is some
ε > 0 and d0 ∈ N, such that for all dmin > d0, assuming
the unique games conjecture, deciding an instance (G, k) of
(0.9292 − ε)-vertex coverage problem on minimum degree
dmin graphs is NP-hard.

We remark here that [27] computed the inapproximability

factor up to 3 decimal places, and the above hardness of

approximation factor follows from additional computation.

Also note that in [27] the hardness is not shown for min-

imum degree dmin graphs6 but if we look at the removal

of vertex weights step in Section 4 of [43] then we can

take large enough number of copies (> dmin) of each vertex

(proportional to its weight) and this will ensure the theorem

as stated above.

Another important remark is that the hardness results of

[43], [27] are for multigraph instances of the vertex coverage

problem. However, in this paper, we treat that the hard

instances of Theorem IV.2 are simple graphs for the sake

of brevity. This assumption is reasonable, because in all our

reductions, we realize every edge of the graph as a point in

space, and in the case of a multigraph, we realize two edges

with the same pair of end points, as two distinct points,

where one of the points is just a slightly perturbed version

of the other point. It is then clear that all points which

correspond to edges with the same pair of end points, will

be in the same cluster, in the optimal solution.

Next we define for every p ∈ R≥1 ∪ {∞},the quantities

ζ1(p) and ζ2(p) as follows:

ζ1(p) := 0.9292 + (γp · 0.0708) and ,

ζ2(p) := 0.9292 + (γ2
p · 0.0708).

Again notice that ζ1(1) = 1.1416, ζ2(1) = 1.5664,

ζ1(2) ≈ 1.06, ζ2(2) ≈ 1.1709, and as p → ∞, we have

ζ1(p)→ ζ1(∞) = ζ1(1) and ζ2(p)→ ζ2(∞) = ζ2(1).
Now, we state our inapproximability results for k-means

and k-median in high dimensions.

Theorem IV.3 (k-means with candidate centers in nO(1)

dimensional �p-metric space). Let p ∈ R≥1∪{∞}. Assuming
the unique games conjecture, given a point-set P ⊂ R

m of
size n (and m = poly(n)), a collection C of m candidate

5The result is implicit in [43], and is explicitly written in [44].
6We require the hard instances of gap vertex coverage problem to

have this additional minimum degree requirement only for proving our
inapproximability results of clustering objectives in the continuous case
(i.e., Theorems I.3 andI.4), and do not need it to prove our hardness of
approximation results in the discrete case (i.e., Theorem I.2).
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centers in R
m, and a parameter k as input, it is NP-hard

to distinguish between the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C
and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖2p ≤ β2n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖2p ≥ ζ2(p) · β2n,

for some constant β > 0.

Theorem IV.4 (k-median with candidate centers in nO(1)

dimensional �p-metric space). Let p ∈ R≥1∪{∞}. Assuming
the unique games conjecture, given a point-set P ⊂ R

m of
size n (and m = poly(n)), a collection C of m candidate
centers in R

m, and a parameter k as input, it is NP-hard
to distinguish between the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C
and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖p ≤ βn,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖p ≥ ζ1(p) · βn,

for some constant β > 0.

Proof of Theorems IV.3 and IV.4 : Starting from

a hard instance of (0.9292 − ε)-vertex coverage problem

G = (V,E) which is guaranteed by Theorem IV.2, we create

an instance of the k-means, or of the k-median problem

using the embedding given in Proposition III.9 as follows.

Let τ be the embedding of G̃ := I(G) prescribed by

Proposition III.9. We think of G̃ as G̃(V ∪ B, E) where V
is simply the vertex set of the (0.9292− ε)-vertex coverage

instance, and B is obtained by defining a vertex bi,j for each

edge (ui, uj) of the (0.9292− ε)-vertex coverage instance,

and E is obtained by defining an edge from each vertex

ui ∈ V to each vertex bi,j ∈ B.

The k-median or k-means instance consists of the set of

candidate centers C and the set of points to be clustered P
defined as follows:

P = {τ(v) | v ∈ B} and C = {τ(u) | u ∈ V }.

We now analyze the k-means and k-median cost of the

instance. Consider the completeness case first.

Completeness.: In this case, we know that there is a

set S ⊂ V such that |S| = k and S covers all the edges of

the (0.9292 − ε)-vertex coverage instance G. We focus on

the set of centers C′ induced by S, namely

C′ = {τ(ui) | ui ∈ S} ⊆ C.
Since each edge (ui, uj) is adjacent to at least one element

of S, we have that for every τ(bi,j), the following holds:

min
c∈C′

‖τ(bi,j)− c‖2p = β2 and min
c∈C′

‖τ(bi,j)− c‖p = β,

for some β > 0. The k-means cost of the overall instance

is thus β2 · |P|, while the k-median cost is β · |P|. Finally,

we turn to the soundness analysis.

Soundness.: Consider any set of centers C′ =
{c1, . . . , ck} ⊂ C that is optimal for the k-median or k-

means objective. Let S := {v1, . . . , vk} be the set of vertices

corresponding to the centers of C′, namely

S = {v ∈ V | τ(v) ∈ C′}.
By the assumptions of the soundness case, S covers at most

(0.9292− ε)|E| number of edges of G. For each such edge,

e = (ui, uj), we have that the contribution of τ(e) to the

k-means cost is exactly β2, and to the k-median cost is

exactly β. By the definition of the gadget τ , we have that

for any other edge e = (ui, uj) that is not covered by S, the

contribution of τ(e) to the k-median and k-means cost is

respectively γp ·β and γ2
p ·β2. Therefore, the optimal solution

w.r.t. k-median objective has cost at least ζ1(p) ·β · |P|, and

optimal solution w.r.t. k-means objective has cost at least

ζ2(p) · β2 · |P|, as claimed.

We would like to conclude this section by remarking

that the hardness of approximation results for the �∞-

metric given above are strictly weaker than the known

hardness of approximation factors for this metric [8]. By

a straightforward application of the Fréchet embedding7 to

the constructions in [8], we obtain the NP-hardness of ap-

proximating k-means (resp. k-median) to a factor better than

1 + 8/e (resp. 1 + 2/e). These inapproximability factors are

much higher than the ones given in Theorems IV.3 and IV.4.

However, our main contribution as far as the �∞-metric is

concerned is to obtain the same inapproximability factor as

[8] but in low dimensions (i.e., O(log n) dimensions). This

result is proven in Section VII-C.

V. INAPPROXIMABILITY OF k-median AND k-means
WITHOUT CANDIDATE CENTERS IN HIGH DIMENSIONS

In this section, we prove Theorems I.3 and I.4 but in

high dimensions. In particular, in Section V-A we show

our inapproximability results for the k-median and k-means
objectives without candidate centers in the Hamming metric.

7The Fréchet embedding maps n points in any metric into the �∞-
metric with polynomial in n blowup in the dimension such that all pairwise
distances are preserved.
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In Section V-B, we show our inapproximability result for

the k-median objective without candidate centers in the �1-

metric. Finally, in Section V-C, we show our inapproximabil-

ity result for the k-means objective without candidate centers

in the �2-metric.

A. Inapproximability in Hamming metric

In this subsection, we prove our inapproximability results

for the k-median and k-means objectives without candidate

centers in the Hamming metric. Our proof considers the

same reduction from the gap vertex coverage problem as

described in the proofs of Theorem IV.3 and IV.4, but

performs the completeness and soundness analysis for the

case where there is no candidate centers set given as part of

the input.

Theorem V.1 (k-means without candidate centers in nO(1)

dimensional Hamming metric space). Assuming the unique
games conjecture, given a point-set P ⊂ {0, 1}m of size
n (and m = poly(n)) and a parameter k as input, it is
NP-hard to distinguish between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆
{0, 1}m and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖20 ≤ n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ {0, 1}m
and every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖20 ≥ 1.21 · n.

Theorem V.2 (k-median without candidate centers in nO(1)

dimensional Hamming metric space). Assuming the unique
games conjecture, given a point-set P ⊂ {0, 1}m of size
n (and m = poly(n)) and a parameter k as input, it is
NP-hard to distinguish between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆
{0, 1}m and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖0 ≤ n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ {0, 1}m
and every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖0 ≥ 1.07 · n.

Proof of Theorems V.1 and V.2:
Starting from an instance of (0.9292−ε)-vertex coverage

problem G = (V,E), we create an instance of the k-means,
or of the k-median problem using the 3-gap realization

mapping τ for the �1-metric given in Lemma III.5 (by setting

r = 2) as follows. First note that τ maps points to the

Boolean hypercube and for a pair of points on the Boolean

hypercube the distances in the Hamming and �1-metric are

the same. Let τ be the embedding of G̃ := I(G) prescribed

by Lemma III.5. We think of G̃ as G̃(V ∪B, E) where V is

simply the same set of vertices as the vertex set of vertices

of the vertex coverage instance, B is obtained by defining

a vertex bi,j for each edge (ui, uj) of the vertex coverage

instance, and E is obtained by defining an edge from each

vertex ui ∈ V to each vertex bi,j ∈ B.

The k-median or k-means instance without candidate

centers is just the set of points P := {τ(v) | v ∈ B} that we

would like to cluster. In particular notice that for all v ∈ B
we have ‖τ(v)‖0 = 2. We now analyse the k-means and

k-median cost of the instance. Consider the completeness

case first.

Completeness.: In that scenario, pick a vertex coverage

V ∗ of the instance and focus on the set of centers C∗ induced

by V ∗, namely C∗ = {τ(ui) | ui ∈ V ∗}. Since by definition

of vertex coverage, each edge (ui, uj) is adjacent to at least

one element of V ∗ and so for each point τ(bi,j) we have

that minc∈C∗ ‖τ(bi,j)− c‖20 = 1 = minc∈C∗ ‖τ(bi,j)− c‖0.

The k-means and k-median cost of the overall instance is

at most |E|. Thus, let’s turn to the soundness case.

Soundness.: Consider any set of centers C∗ =
{c1, . . . , ck} ⊆ {0, 1}|V | that is optimal for the k-median
or k-means objective. Fix some arbitrary i ∈ [k]. Note that

if ‖ci‖0 ≥ 4 then, ‖ci − τ(u)‖ ≥ 2 for any u ∈ B, and

thus we could replace ci by the all zeroes vector and the

cost of k-means or k-median would not increase. Therefore

we assume all the centers have Hamming weight at most

3. We partition C∗ into C0, C1, C2, and C3 where c ∈ C∗

belongs to Cj if the Hamming weight of c is j. Consider an

optimal classification σ : P → C∗. For every point c ∈ C∗

let T σ
c ⊆ B be defined as follows:

Tσ
c = {u ∈ B | σ(τ(u)) = c}.

We propose the following claim.

Claim V.3. Given an optimal classification σ we can con-
struct an optimal classification σ∗ (which might be same as
σ) such that for any c ∈ C3 we have |Tσ∗

c | ≤ 3 and for any
c ∈ C2 we have |Tσ∗

c | ≤ 1.

Before we prove the above claim, we see how it completes

the proof. For every c ∈ C1 if its 1 is on coordinate i we

associate it with the vertex i in G. Now we partition Tσ∗
c into

Y σ∗
c and Nσ∗

c where for any u ∈ B such that σ∗(τ(u)) = c
we have that u ∈ Y σ∗

c if c ∈ u (think of c as the vertex in

G) and u ∈ Nσ∗
c otherwise. By definition of the soundness

case, we have that
∑

c∈C1
|Y σ∗

c | is at most (0.9292− ε)|E|.
Notice that there are at most 3|C3|+|C2| edges which are not

assigned to a center in C1 ∪ C0. We upper bound |C3|, |C2

by |V | and thus we have that there are at most 4|V | edges

which are not assigned to a center in C1 ∪ C0. If an edge

is assigned a center in C0 then its distance from the center

is 2. If an edge is assigned a center in c ∈ C1 and it is

contained in Y σ∗
c then its distance from the center is 1; but
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if it is contained in Nσ∗
c then its distance from the center

is 3. Therefore we have that there are at least (0.0708 +
ε)|E| − 4|V | edges that are distance at least 2 from their

allocated center according to the clustering σ∗. Notice that

in Theorem IV.2 we can choose the minimum degree of G
to be as large a constant as we want. We choose it to be

greater than 8/ε. In this case we have that |E| ≥ 4|V |/ε.

Therefore, the optimal solution w.r.t. k-median objective has

cost at least (2(0.0708) + 0.9292) · |E| = 1.0708 · |E|, and

optimal solution w.r.t. k-means objective has cost at least

(4(0.0708) + 0.9292) · |E| = 1.2124 · |E|, as claimed.

We can thus conclude the proof of the above theorem by

proving Claim V.3.

Proof of Claim V.3: Now we show how to construct σ∗

from σ. Consider c ∈ C3. Let the three coordinates where c
is 1 be i, j, j′. We think of i, j, j′ as vertices in G. Let F =
{(i, j), (i, j′), (j, j′)}. For any edge not in F its distance to

C3 is 3 from c. If any of the points corresponding to i, j, j′

under τ was picked in our set of centers then, we could

replace c by another point in τ(i), τ(j), τ(k). If this is not

the case then only the edges in E ∩F would be at distance

1 from c, and for the rest we could choose some point in C1

or C0. Thus we would obtain a new optimal classification

in which points assigned to c would be at most 3. Similar

(and simpler) argument holds for c ∈ C2 as any two edges

under τ are at distance 2.

B. Inapproximability of k-median in �1-metric

In this subsection, we prove Theorem I.4 but in high

dimensions. At a high level, our proof simply considers

the hard instances built in the Hamming metric in Theo-

rem V.2, and notes that the optimum cluster centers for those

instances in the �1-metric must have coordinate entries in

{0, 1}.
Theorem V.4 (k-median without candidate centers in nO(1)

dimensional �1-metric space). Assuming the unique games
conjecture, given a point-set P ⊂ {0, 1}m of size n (and
m = poly(n)) and a parameter k as input, it is NP-hard to
distinguish between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R

d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖1 ≤ n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖1 ≥ 1.07 · n.

Proof: The proof follows from a simple observation and

mimicking the proof of Theorem V.2. Recall first that given

a set of z integers X = {x1, . . . , xz}, we have that a median

of X is a point x∗ that minimizes
∑z

i=1 |x∗−xi|. Note that

if X contains an even number of points, then the median is

not unique, nonetheless, there is always at least one point

of X minimizing
∑z

i=1 |x∗ − xi|. We refer to these points

as the discrete medians.

Thus, consider a set of points P in a dimensional �1-

metric space. The points p∗ that minimizes
∑

p∈P ‖p−p∗‖1
is therefore the point p∗ whose ith coordinate is the median

of the ith coordinates of the points in P .

Hence, consider an instance of the k-median problem in

Hamming metric as defined in the proof of Theorem V.2

and apply the same construction to obtain an instance in

�1. We have that for this instance all the coordinates of the

points to be clustered are in {0, 1}. Thus, for any subset (i.e.

cluster) of the points of the instance, an optimal center of

the set is such that its ith coordinate is the median of a set

of values in {0, 1}. From the above discussion, we conclude

that assuming that the ith coordinate is also in {0, 1} is

without loss of generality. It follows that for any clustering,

we can assume that the centers induced by the partition have

coordinates in {0, 1}.
Therefore, the rest of the proof follows by applying the

same reasonning than in the proof of Theorem V.2 since

the instance created behaves in �1 metric like the instance

described in the proof of Theorem V.2 in Hamming metric.

C. Inapproximability of k-means in Euclidean metric

In this section, we prove Theorem I.3 but in high dimen-

sions.

Theorem V.5 (k-means without candidate centers in nO(1)

dimensional �2-metric space). Assuming the unique games
conjecture, given a point-set P ⊂ {0, 1}m of size n (and
m = poly(n)) and a parameter k as input, it is NP-hard to
distinguish between the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R
d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖22 ≤ βn,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖22 ≥ 1.07 · βn,

for some constant β > 0.

Proof:
Let ε > 0 and (G = (V,E), k) be an instance of the

(0.9292−ε)-vertex coverage problem on graph of minimum

degree at least ε−1
0 := 20

ε4 . By Theorem IV.2, for some ε > 0,

we have that deciding such an instance is NP-hard, assuming

the unique games conjecture.
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We build a set of points P as follows8: for each edge

eui,uj
, we create a point pi,j whose ith and jth coordinates

are both 1 and whose remaining coordinates are all 0. We

say that pi,j is the point corresponding to edge eui,uj . We

thus have the following fact:

Fact V.6. Consider two edges e, f . If e = (ui, uj) and f =
(ui, u�) then ‖pi,j − pi,�‖22 = 2. If e = (ui, uj) and f =
(ur, u�), where r, � /∈ {i, j} then ‖pi,j − pr,�‖22 = 4.

We now prove the completeness and soundness cases.

Completeness.: In the completeness case, we show that

the cost of the optimal solution is at most |E| − |V |/2. By

definition, there exists a vertex cover S of size k = n/2
of the instance. Define a partition of the edge set into k
parts by assigning each edge it to one of its extremity that

is in S, let {C1, . . . , Ck} be the partition induced by the

assignment. Note that since there exists such a vertex cover,

such a partition is indeed possible. We now bound the k-

means cost of solution {C1, . . . , Ck}. We claim that for each

cluster Ci, cost(Ci) = mi − 1, where mi = |Ci|.
Indeed, let vj be the vertex covering all edges of Ci.

Observe first that the jth coordinate of the centroid of Ci

is 1. The remaining coordinates of the centroid of Ci are 0

except for mi of them which are 1/mi.

Then, for a given edge (vj , v�), the k-means cost of the

corresponding point is (1 − 1/mi)
2 + (mi − 1)(1/mi)

2 =
1−2/mi+m2

i +1/mi−1/m2
i which is 1−1/mi. Summing

up over all the mi edges of Ci yields that cost(Ci) = mi−1.

Therefore, the total k-means cost of the clustering is m −
n/2.

Soundness: In the soundness case, we show that the

optimal k-means cost is at least (1.114 − 2ε)|E| − |V |.
We will use the following classic fact about the k-means
objective.

Fact V.7. Given a clustering {C1, . . . , Ck}, the k-means
cost is exactly

k∑
i=1

1

2|Ci|
∑
p∈Ci

∑
q∈Ci

‖p− q‖22

Now, consider an optimal clustering {C1, . . . , Ck} of the

instance in the soundness case. For each cluster Ci, we

define the graph Gi to be the subgraph of the graph G
induced by the edges whose corresponding points are in

Ci. We let Δi be the maximum degree in Gi. We have

the following claim.

Claim V.8. For any cluster Ci such that |Ci| ≥ 10/ε3, we
have cost(Ci) ≥ 2(1− ε)|Ci| − (1 + ε)Δi.

8The construction described here is equivalent to using the 1.848-gap
realization mapping τ for the �2-metric given in Lemma III.6 in the
following way. The k-median or k-means instance without candidate
centers is just the set of points P := {τ(e) | e ∈ E} that we would like
to classify. In particular notice that for all e ∈ E we have ‖τ(e)‖22 = 2.

Assume Claim V.8 is true for a moment. Then, the proof

of the lemma can be completed as follows. First, observe

that since the number of clusters is k = n/2 and the graph

G has at least 10n/ε4, the total number of edges in clusters

Ci such that |Ci| < 10/ε3 is at most εm/2. Let’s assume

the cost for these edges is 0 and let’s focus on the cost of

clusters of size at least 10/ε3, let k′ be the number of such

clusters. Summing up over all such clusters we have that

the total k-means cost is at least
∑k′

i=1 2(1− ε)|Ci| − (1 +

ε)Δi ≥ (2 − 3ε)m − (1 + ε)
∑k′

i=1 Δi. Then, to provide a

lower bound on Δi, consider the set S obtained by picking

a vertex of degree Δi from each Gi. This set has size at

most n/2 and so by definition of the soundness case the

sum of the degrees of the vertices in S in G is at most

(0.9292−ε)m. It follows that the cost of the optimal solution

is at least 2m − ((1 + ε)0.9292 − 4ε)m which is at least

(1.0708−O(ε)) ·m as stated.

We can thus conclude the proof of the above theorem by

proving Claim V.8.

Proof of Claim V.8: Consider a cluster Ci such that

|Ci| ≥ 10/ε3. Consider an edge e = (u�, uj) whose

corresponding point p is in Ci. By Facts V.7 and V.6 we

have that
1

2|Ci|
∑
q∈Ci

‖p− q‖22

=
1

2|Ci| (2(di,� + di,j − 2) + 4(|Ci| − di,� − di,j + 2)) ,

where di,�, di,j are the degrees of vertices u�, uj respectively

in Gi. Now, summing up over all edges in Ci this gives a

total cost for the cluster Ci of

|Ci|
2|Ci| (4|Ci|)− 2

2|Ci|
∑

e=(u�,uj)∈Ci

(di,� + di,j − 2)

which is

2|Ci|+ 2− 1

|Ci|
∑
uj

d2i,j .

We now need to provide an upper bound on 1
|Ci|

∑
uj

d2i,j .
First, consider the set S of vertices uj such that di,j <
ε|Ci| and let m0

i be the number of edges with at least one

extremity in S. We have that

1

|Ci|
∑
uj∈S

d2i,j ≤
ε|Ci|
|Ci|

∑
uj∈S

di,j ≤ 2εm0
i . (1)

We then bound
∑

uj /∈S d2i,j . Let S′ be the set of vertices

with degree larger than ε|Ci| in Gi. Moreover, let m1
i be the

set of edges with both extremities in S′. We start by arguing

that m1
i < εm.

We have that
∑

uj∈S′ di,j ≤ m1
i + |Ci| and so, there

exists a vertex uj in S′ such that di,j ≤ (m1
i + |Ci|)/|S′|.

Thus, since di,j ∈ S′, we have that di,j > ε|Ci| and

so (m1
i + |Ci|)/|S′| ≥ ε|Ci| ≥ εm1

i . This implies that
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|S′|m1
i ≤ (m1

i + |Ci|)ε−1. Now, assume towards contra-

diction that m1
i > ε|Ci|. Then |S′| < ε−1(ε−1 + 1).

Combining this with the fact that ε|Ci| ≤ (m1
i + |Ci|)/|S′|,

we have that |Ci|(|S′| − 1) ≤ m1
i ≤ |S′|(|S′|−1)

2 . Hence,

|Ci| ≤ |S′|/2 ≤ ε−1(ε−1 + 1) and so |Ci| ≤ 10ε−3, a

contradiction. Therefore m1
i ≤ ε|Ci|.

We can now bound
∑

uj /∈S d2i,j . We have∑
uj /∈S

d2i,j ≤ Δi

∑
uj /∈S

di,j ≤ Δi(1 + ε)|Ci|. (2)

Finally, combining Equations 1 and 2 we deduce that
1
|Ci|

∑
uj

d2i,j ≤ 2ε|Ci|+ (1 + ε)Δi. Therefore, cost(Ci) ≥
2(1− ε)|Ci| − (1 + ε)Δi.

1) k-means in Euclidean Metric over Reals in Low Di-
mensions: In this subsection, we prove Theorem I.3 albeit

over real vectors.

Theorem V.9 (k-means in Euclidean metric in O(log n)
dimensions without Candidate Centers over Reals). Let ε be
an arbitrarily small constant. Assuming the unique games
conjecture, given a point-set P ⊂ R

d of size n (and
d = O(log n)) and a parameter k as input, it is NP-hard to
distinguish between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R

d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖22 ≤ βn,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖22 ≥ (1.07− ε) · βn,

for some constant β > 0.

Proof: By Theorem V.5, we have that given a set of

points P ∈ R
O(n), it is hard to distinguish between the

following cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R
d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖22 ≤ βn,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖22 ≥ 1.07 · βn,

The proof of Theorem V.9 follows from the Johnson-

Lindenstrauss lemma and the following well-known observa-

tion. Given a set of n points in R
d, we have that by Fact V.7

the k-means cost of a given partition {C1, . . . , Ck} can be

expressed as
∑k

i=1
1

2|Ci|
∑

x,y∈Ci
‖x− y‖22. Thus, applying

the Johnson-Lindenstrauss lemma with target dimension

O(log n/ε5) for small enough ε, yields an instance where the

k-means cost of any clustering C is within a factor (1 + ε)
of the k-means cost of C in the original d-dimensional

instance. It follows that the gap is preserved up to a (1+ ε)
factor and the theorem follows.

Note that this can be made deterministic (for example, see

the result of Engebretsen et al. [45]).

VI. EMBEDDING VIA COMMUNICATION PROTOCOLS

In this section, we introduce our (hyper)graph embedding

technique, which will enable us to prove the same hardness

results as in Sections IV and V but for point-sets in O(log n)
dimensions.

A. One-Way Communication Model and Protocols

In this subsection, we first introduce a communication

model known in literature as the one-way communication

model.

The two-player One-Way Communication (OWC) model

was introduced by Yao [46] and has been extensively studied

in literature [47].

One-Way Communication Model. Let X and Y be two

finite sets. Let f : X × Y → {0, 1}. In the two-player one-

way communication model, we have Alice and Bob each

with an input x ∈ X and y ∈ Y respectively, and the

communication task is for Bob to determine if f(x, y) = 1.

In this model, only Alice is allowed to send messages to Bob.

In the randomized setting, we allow the players to jointly

toss some random coins before sending messages, i.e., we

allow public randomness. Moreover, we assume that the sets

X ,Y are public knowledge.

Next, we introduce the notion of OWC protocols, which

are in a nutshell one-round randomized protocols where the

players are in a computationally bounded setting.

OWC Protocols. Let π be a communication protocol for a

problem in the OWC model. We say that π is a (r, μ, α, s)-
OWC protocol if the following holds:

• The protocol is one-round with public randomness, i.e.,

the following actions happen sequentially:

1) The players receive their inputs.

2) The players jointly toss r random coins.

3) Alice on seeing the randomness (i.e. results of r coin

tosses) deterministically sends an μ-bit message to

Bob.

4) Based on the μ bits sent from Alice and randomness

r, Bob outputs accept or reject.

• The protocol has completeness 1 and soundness s, i.e.,

– If f(x, y) = 1, then Bob always accepts.

– If f(x, y) = 0, then Bob accepts with probability

at most s.

• We have that the expected number of distinct messages

that Alice could send (on randomness r) which Bob

would accept is α, where the expectation is over the

randomness r.

531



• The players are computationally bounded, i.e., all of

them perform all their computations in poly(|X |+|Y|)-
time.

In a (r, μ, α, s)-OWC protocol, we refer to r as the

randomness complexity of the protocol, μ as the message

complexity of the protocol, α as the acceptance complexity

of the protocol, and s as the soundness of the protocol. We

note here that while the randomness complexity and message

complexity are standard measures of interest in literature,

the acceptance complexity is non-standard but the measure

is important for our embedding later. We note here that

the acceptance complexity is closely related to the free bit

complexity measure studied in PCP literature [48].

Definition VI.1 (c-left bounded functions). Let X and Y be
two finite sets and c ∈ N. Let f : X ×Y → {0, 1}. For every
y ∈ Y , let Sy = {a ∈ X | f(a, y) = 1}. Then f is said to
be c-left bounded if for every y ∈ Y , we have |Sy| = c.

For every c-left bounded f , there is a trivial (determin-

istic) (0, log |X |, c, 0)-OWC protocol. We would like to use

randomness to do better on the message complexity.

Theorem VI.2. Let X and Y be sets of size m and n
respectively. Let f : X × Y → {0, 1} be a c-left bounded
function. For every prime square q � c4, there is a
(Oq(1) + log logm, �log2 q�, α, c(3/√q))-OWC protocol for
f , where

c

(
1−

(
c

2

)(
3√
q

))
≤ α ≤ c.

Proof: Let C be the code guaranteed by Theorem II.1

over alphabet of size q of message length β := logq m, block

length � := Oq(β), and relative distance at least 1− 3/√q.

The protocol.: Alice on receiving input x ∈ X and Bob

on receiving input y ∈ Y follow the below protocol.

1) Alice and Bob pick a uniformly random r ∈ [�].
2) Alice sends Bob s := C(x)r, i.e., the rth coordinate of

the encoding of x.

3) Bob computes the set of field elements, S :=
{C(a)r}a∈Sy

, i.e., the rth coordinate of the encoding

of all a ∈ Sy .

4) Bob accepts if and only if s ∈ S.

Parameters.: It is clear that the above protocol adheres

to the structure of an OWC protocol. We now show the

specific parameters of the protocol claimed in the theorem

statement hold. Alice’s message is a field element and

thus sends �log2 q� bits. The randomness complexity is

clearly �log2 �� = Oq(1) + �log2 β�. Bob accepts only

if Alice’s message (a field element) is in S, but since f
is c-left bounded, we have |Sy| = c and thus |S| ≤ c.
The acceptance complexity of the protocol is clearly the

expected size of S over the randomness. Consider the set

Cy = {C(a) | a ∈ Sy}. Since any two codewords of C
agree on at most 3/

√
q fraction of coordinates, we have by

union bound that there are at least 1 − (
c
2

)
(3/
√
q) fraction

of coordinates of [�] on which all codewords in Cy are

distinct. For such coordinates we have |S| = c. Therefore

the acceptance complexity is at least c(1− (
c
2

)
(3/
√
q)) and

at most c.
Completeness.: Suppose that f(x, y) = 1 then x ∈ Sy

and Bob always accepts.

Soundness.: Suppose that f(x, y) = 0. This implies

that x /∈ Sy . This implies that for any a ∈ Sy , we have

that C(a) and C(x) agree on at most �(3/
√
q) coordinates.

As before, by taking a union bound we have that there are

at most c�(3/
√
q) coordinates of [�] on which C(x) agrees

with C(a) for some a ∈ Sy . Therefore for the remaining

coordinates Bob would reject. This implies that Bob rejects

with probability at least 1− c(3/
√
q).

By Theorem II.1, the computation time for Alice and Bob

is polynomial time.

Informally, for large enough q the above theorem gives

a (log logm,O(1), c(1 − o(1)), o(1))-OWC protocol for

f . This should be compared with the trivial (0, logm, c, 0)-
OWC deterministic protocol for f that was mentioned ear-

lier.

B. Connecting OWC protocol to Hardness of Approximating
k-median and k-means

Definition VI.3 (Membership function). Let X and Y be
sets of size m and n respectively, where each element in X
is a subset of Y . Then Memm,n : X ×Y → {0, 1} is defined
by

Memm,n(x, y) =

{
1 if y ∈ x,

0 otherwise,
.

We rewrite the vertex coverage problem that we had

introduced in Section IV as a special case of the more

general max coverage problem. This is done so as to enable

us to prove stronger hardness of approximation factors for

the �∞-metric.

Definition VI.4 ((freq, gap)-max coverage). In the
(freq, gap)-max coverage problem, we are given a universe
U of size n, a collection S of m subsets of U where each
element in U appears in exactly freq number of subsets in
S, and a parameter k as input. We would like to distinguish
between the following two cases:
• Completeness: There exists S1, . . . , Sk ∈ S such that⋃

i∈[k]
Si = U .

• Soundness: For every S1, . . . , Sk ∈ S we have∣∣∣∣∣ ⋃
i∈[k]

Si

∣∣∣∣∣ ≤ gap · |U|.

We can now rewrite our Theorem IV.2 as follows:

Theorem VI.5 (Austrin and Stanković [27]). There is some
ε > 0 and d0 ∈ N, such that for all dmin > d0, assuming
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the unique games conjecture, deciding an instance (U ,S, k)
of (2, 0.9292−ε)-max coverage problem where |U| = n and
|S| = poly(n), and each set in S is of cardinality at least
dmin is NP-hard.

We are now ready to state our main connection between

OWC-protocols and k-means and k-median inapproximabil-

ity.

Theorem VI.6. Let p ∈ R≥1∪{∞}. Let Π be a (r, μ, α, s)-
OWC protocol for Memm,n. Let τ be a λ-gap realization
of H∗(2μ, α) in the d-dimensional �p-metric. There is a
polynomial time (in input size) algorithm A which takes as
input an instance (U ,S, k) of the (freq, gap)-max coverage
problem where |U| = n and |S| = m and outputs an
instance (P, C, k) of the k-median/k-means problem where
we are given a point-set P ⊂ R

2rd of size n, a collection
C of m candidate centers in R

2rd such that the following
holds:
• Completeness: If there exists S1, . . . , Sk ∈ S such that⋃

i∈[k]
Si = U then there exists C′ := {c1, . . . , ck} ⊆ C

and σ : P → C′ such that for all a ∈ P we have

‖a− σ(a)‖p = 2r/p · β,
• Soundness: If for every S1, . . . , Sk ∈ S we have∣∣∣∣∣ ⋃

i∈[k]
Si

∣∣∣∣∣ ≤ gap·|U| then for every C′ := {c1, . . . , ck} ⊆
C and every σ : P → C′ we have that there exists
P ′ ⊆ P such that |P ′| ≥ gap · |P| and for all a ∈ P ′
we have

‖a− σ(a)‖p ≥ 2r/p · λ · (α+ 1− freq− s)1/p · β,
and for all a ∈ P \ P ′ we have

‖a− σ(a)‖p = 2r/p · β,
for some β > 0.

Proof: Recall from Section III that A∗(t) and B∗(t, r)
are the partite vertex sets of H∗(t, r). Here we use the

short hand A∗ := A∗(2μ) and B∗ := B∗(2μ, freq). Also let

τ : A∗∪B∗ → R
d and let β > 0 be the constant from Defini-

tion III.1. We define functions TU : U×{0, 1}r → B∗∪{⊥}
and TS : S × {0, 1}r → A∗ below. Then, we will construct

functions T̃U : U → R
d·2r and TS : S → R

d·2r . Given T̃U
and T̃S the point-set P is just defined to be {T̃U (u) | u ∈ U}
and the set of candidate centers C is just {T̃S(S) | S ∈ S}.

For every γ ∈ {0, 1}r and every q ∈ {0, 1}μ we define

TS(S, γ) = q if in the OWC model where Alice and Bob

are trying to compute Memm,n : S × U → {0, 1}, Alice

given input S, following the protocol Π would send q
on randomness γ. Similarly, we define Ru,γ ⊆ {0, 1}μ,

where q ∈ {0, 1}μ is contained in Ru,γ if and only if

Bob given input u, following the protocol Π would accept

the message q sent by Alice on randomness γ. Then, we

define TU (u, γ) = Ru,γ if |Ru,γ | = freq and TU (u, γ) =⊥
otherwise.

For every possible randomness γ ∈ {0, 1}r let cγ be the

number of distinct messages that Bob would accept on input

u and randomness γ. Note that E
γ∈{0,1}r

[cγ ] = α. Let δ :=

α+1− freq. From a standard averaging argument, it is easy

to see that for every u ∈ U there is a subset Lu of {0, 1}r
of size 2r ·δ such that for all γ ∈ Lu we have TU (u, γ) �=⊥.

Now we can construct functions T̃U : U → R
d·2r and

T̃S : S → R
d·2r as follows:

∀γ ∈ {0, 1}r, T̃U (u)|γ=
{
τ(TU (u, γ)) if TU (u, γ) �=⊥
τ(ũ) otherwise

and T̃S(S)|γ= τ(TS(S, γ)),

where ũ is any arbitrary element in B∗ such that ũ is a

superset of Ru,γ .

Completeness.: Suppose there exist S1, . . . , Sk ∈ S
such that

⋃
i∈[k]

Si = U . Then, we define C′ = {T̃S(Si) | i ∈
[k]}. We define σ : P → C′ as follows: for every a ∈ P ,

where a := T̃U (u) for some u ∈ U , let σ(a) be equal to

T̃S(Si) such that u ∈ Si (if there is more than one i ∈ [k]
for which Si contains u then we choose one arbitrarily). Fix

a := T̃U (u) in P . Let c := σ(a) be the image of Si under

T̃S . By definition of σ we have that u ∈ Si. Therefore,

Memm,n(Si, u) = 1, and Bob would accept Alice’s message

for every randomness if both of them follow Π.

Fix the randomness γ. Since Memm,n(Si, u) = 1 we have

that TS(Si, γ) ∈ Ru,γ and thus we have

‖τ(TS(Si, γ))− τ(TU (u, γ))‖pp = βp.

Summing over all the blocks of coordinates we have:

‖T̃U (u)− T̃S(Si)‖p

=

⎛⎝ ∑
γ∈Lu

(‖τ(TS(Si, γ))− τ(TU (u, γ))‖pp
)⎞⎠1/p

= 2r/p · β (3)

Soundness.: Suppose for every S1, . . . , Sk ∈ S we

have

∣∣∣∣∣ ⋃
i∈[k]

Si

∣∣∣∣∣ ≤ gap · |U|. Fix some subset C′ ⊆ C of size

k. Let σ : P → C′ be some mapping. Consider the mapping

ξ : U → S defined by σ as follows. For every u ∈ U fix

some S ∈ S such that T̃S(S) = σ(T̃U (u)) (in case there

are more than one S satisfying T̃S(S) = σ(T̃U (u)), pick

one arbitrarily). Set ξ(u) = S. Clearly the range of ξ is of

size at most k. Let S ′ = {S1, . . . , Sk′} be the range of ξ
where k′ ≤ k. We know that there are at least (1−gap) · |U|
elements of U that are not contained in

⋃
i∈[k′]

Si. Let’s call

this set U ′. Therefore for any (S, u) ∈ S ′ × U ′ we have

Memm,n(S, u) = 0 and Bob would accept Alice’s message
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with probability at most s over the randomness, if both of

them follow Π.

Fix some u ∈ U ′. Let Bad ⊆ {0, 1}r such that for all

γ ∈ Bad Bob would reject Alice’s message, if both of them

follow Π. Similarly, let Good ⊆ {0, 1}r such that for all γ ∈
Good Bob would accept Alice’s message, if both of them

follow Π. We have |Good| ≤ s · 2r and |Bad| ≥ (1− s) · 2r.

Fix γ ∈ Bad∩Lu. Since Memm,n(S, u) = 0 we have that

TS(S, γ) /∈ Ru,γ and thus we have

‖τ(TS(Si, γ))− τ(TU (u, γ))‖pp ≥ λpβp.

Summing over all the blocks of coordinates we have:

‖T̃U (u)− T̃S(Si)‖p

≥
⎛⎝ ∑

γ∈Bad∩Lu

(‖τ(TS(Si, γ))− τ(TU (u, γ))‖pp
)⎞⎠1/p

= 2r/p · λ · β · (δ − s)1/p· (4)

On the other hand, if we fix some u ∈ U \ U ′ then, we

have that (3) holds.

Finally, it is easy to see that T̃U and T̃S can be computed

in polynomial time as Π is a OWC protocol where the

players are bounded to run in poly(|U|, |S|) time.

VII. INAPPROXIMABILITY OF k-median AND k-means IN

O(log n) DIMENSIONS

In this section, we finally prove Theorems I.2, I.3, and I.4.

A. k-means and k-median in �p-metric with Candidate
Centers

In this subsection, we prove Theorem I.2.

Theorem VII.1 (k-means with candidate centers in

O(log n) dimensional �p-metric space). Let p ∈ R≥1∪{∞}.
Assuming the unique games conjecture, given a point-set
P ⊂ R

d of size n (and d = O(log n)), a collection C of
m candidate centers in R

d (where m = poly(n)), and a
parameter k as input, it is NP-hard to distinguish between
the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖2p ≤ βn · (log n)2/p,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖2p ≥ ζ2(p) · βn · (log n)2/p,

for some constant β > 0.

Theorem VII.2 (k-median with candidate centers in

O(log n) dimensional �p-metric space). Let p ∈ R≥1∪{∞}.
Assuming the unique games conjecture, given a point-set

P ⊂ R
d of size n (and d = O(log n)), a collection C of

m candidate centers in R
d (where m = poly(n)), and a

parameter k as input, it is NP-hard to distinguish between
the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖p ≤ βn(log n)1/p,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖p ≥ ζ1(p) · βn(log n)1/p,

for some constant β > 0.

Proof of Theorems VII.1 and VII.2:
At a high level, we use the embedding developed in

Proposition III.9 on the instances built in Theorem VI.6

with the protocol of Theorem VI.2 (setting q to be a super

large constant and noting freq to be 2), and then finally use

the inapproximability given in Theorem VI.5 to prove the

theorems. We provide some additional details below.

Consider the (r, μ, α, s) protocol given in Theorem VI.2.

Fix some δ > 0 and c = 2. For large enough q we have that

s < δ and α ∈ (2 − δ, 2]. It is clear that the point-sets P
and candidate centers C are in dimension 2Oq(1)+log logm =
Oq(1) · logm = Oq(log n).

Fix p ∈ R≥1 ∪ {∞}. Plugging the above calculation into

Theorem VI.6, for some fixed constant β > 0 we have that

in the completeness case that the k-median cost in �p-metric

is at most β ·n(log n)1/p (and the k-means cost in �1-metric

would be at most nβ2(log n)2/p). In the soundness case we

have that the k-median cost in �p-metric is at least

β · n · (log n)1/p · (0.0708 · γp · (1− 2δ)1/p + 0.9292)

= β · n · (log n)1/p · ζ1(p).
Similarly from a simple computation of the k-means cost

in (4) we have the k-means cost in �p-metric would be at

least

β · n · (log n)2/p · (0.0708 · γ2
p · (1− 2δ)2/p + 0.9292)

= β · n · (log n)2/p · ζ2(p).
Note that we can choose δ to be as small as we want.

B. k-median in �1-metric without Candidate Centers

In this subsection, we prove Theorem I.4. We also show

Theorem I.3 (now over Boolean vectors).

Theorem VII.3 (k-median in �1-metric in O(log n) di-

mensions without Candidate Centers). Assuming the unique
games conjecture, given a point-set P ⊂ {0, 1}d of size n
(and d = O(log n)) and a parameter k as input, it is NP-
hard to distinguish between the following two cases:
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• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R
d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖22 ≤ βn log n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖22 ≥ 1.07 · βn log n,

for some constant β > 0.

Proof: Simply note that after fixing the randomness,

the problem on most blocks looks exactly like the instances

considered in Theorem V.2, so the same arguments go

through with arbitrarily small loss in approximation factor, in

case we restricted our centers to be Boolean valued. Then

notice that the translation of the hardness from Hamming

metric to �1-metric as in Theorem V.4 also holds here.

Theorem VII.4 (k-means in Euclidean metric in O(log n)
dimensions without Candidate Centers). Assuming the
unique games conjecture, given a point-set P ⊂ {0, 1}d
of size n (and d = O(log n)) and a parameter k as input, it
is NP-hard to distinguish between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ R

d

and σ : P → C′ such that∑
a∈P

‖a− σ(a)‖22 ≤ βn log n,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ R
d and

every σ : P → C′ we have:∑
a∈P

‖a− σ(a)‖22 ≥ 1.07 · βn log n,

for some constant β > 0.

Proof: Simply note that after fixing the randomness,

the problem on most blocks looks exactly like the instances

considered in Theorem V.5, so the same arguments go

through with arbitrarily small loss in approximation factor.

C. Stronger Inapproximability of k-means and k-median in
�∞-metric

In this section, we prove the result for the �∞-metric given

in Theorem I.1 by a reduction from the gap hypergraph

coverage problem. First, we define the gap hypergraph

coverage problem.

Let G(V,E) be a hypergraph. Let S ⊆ V . We define the

cover of S, denoted by cov(S) as follows:

cov(S) = {e ∈ E | ∃v ∈ S such that v ∈ e}.
Definition VII.5 (α-hypergraph coverage). In the α-
hypergraph coverage problem, we are given a hypergraph

G(V,E) and a parameter k as input. We would like to
distinguish between the following two cases:

• Completeness: There exists S := {v1, . . . , vk} ⊆ V
such that cov(S) = E.

• Soundness: For every S := {v1, . . . , vk} ⊆ V we have
|cov(S)| ≤ α · |E|.

We remark here that the hardness of approximation of the

minimization version of the hypergraph coverage problem

was already shown by Trevisan nearly two decades ago [49],

but standard techniques to convert inapproximability results

for optimization problems from minimization instances to

maximization instances does not yield the requisite (or even

any meaningful) hardness of approximation result that is

stated in Theorem VII.6. Nonetheless a careful analysis of

the original inapproximability of the max-coverage problem

by Feige [28] yields the following.

Theorem VII.6 (Hypergraph Coverage Inapproximability;

Essentially [28]). For every δ > 0 there is some h ∈ N such
that deciding an instance of (1− 1/e− ε)-hypergraph vertex
coverage problem on h-uniform hypergraphs is NP-hard.

Below are the results in focus of this subsection.

Theorem VII.7 (k-means with candidate centers in

O(log n) dimensional �∞-metric space). Let ε > 0. Given a
point-set P ⊂ R

d of size n (and d = O(log n)), a collection
C of m candidate centers in R

d (where m = poly(n)), and
a parameter k as input, it is NP-hard to distinguish between
the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C
and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖2∞ ≤ βn,

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖2∞ ≥

(
1 +

8

e
− ε

)
· βn,

for some constant β > 0.

Theorem VII.8 (k-median with candidate centers in

O(log n) dimensional �∞-metric space). Let ε > 0. Given a
point-set P ⊂ R

d of size n (and d = O(log n)), a collection
C of m candidate centers in R

d (where m = poly(n)), and
a parameter k as input, it is NP-hard to distinguish between
the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C
and σ : P → C′ such that∑

a∈P
‖a− σ(a)‖∞ ≤ βn,
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• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
‖a− σ(a)‖∞ ≥

(
1 +

2

e
− ε

)
· βn,

for some constant β > 0.

Proof of Theorems VII.7 and VII.8: At a high level,

we use the hypergraph embedding developed in Lemma III.4

on the instances built in Theorem VI.6 with the protocol of

Theorem VI.2 (setting q to be a super large constant and

noting freq to be some large h ∈ N), and then finally use

the inapproximability given in Theorem VII.6 to prove the

theorems.

VIII. OPEN PROBLEMS

It remains an important open question to improve upon

any of the hardness of approximation results given in

Table I, and in particular to improve upon the inapprox-

imability results of this paper. In this regard, a direction

worth pursuing is to design suitable OWC-protcols (for

example with acceptance complexity close to 2, arbitrarily

small constant soundness, and not too high randomness) for

the membership function corresponding to the hypergraph

coverage problem. Combining such a protocol with The-

orems VI.6 and VII.6 would enable us to prove close to

(1 + 8/e) ≈ 3.94 inapproximability for k-means in the �1-

metric and roughly 1.88 inapproximability for k-means in

the Euclidean metric (we refer to both the problems in the

discrete case here).

Another interesting open question is to improve upon the

(1 + 8/e) inapproximability of k-means or the (1 + 2/e)
inapproximability of k-median for any metric space. An

obvious barrier to getting such an improvement by starting

from the max coverage problem is the triangle inequality.

Finally, we raise the following combinatorial geome-

try question: can we improve the lower bound given in

Lemma III.6? In particular, can we show that g2(H
∗(t, 2)) ≥

2 for large enough t? Notice that when t = 3, we have

g2(H
∗(2, 2)) ≥ 2 by placing the six points on the vertices

of a regular hexagon in the plane. On the other hand, we

suspect that g2(H
∗(t, 2)) ≤ 2, and confirming such a claim

would also be interesting.

ACKNOWLEDGMENT

We are truly grateful to Per Austrin, Amey Bhangale, Eui-

woong Lee, and Pasin Manurangsi for discussions about the

inapproximability of the vertex coverage and max coverage

problem.
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APPENDIX

In this section, we show how our inapproximability results

for k-median and k-means can be extended to the edit met-

ric. First, we recall the following technical tool established

in [50].

Lemma A.1 (Rubinstein [50]). For large enough d ∈ N,
there is a function η : {0, 1}d → {0, 1}d′

, where d′ =
O(d log d), such that for all a, b ∈ {0, 1}d the following
holds for some constant λ > 0:

|ed(η(a), η(b))− λ · log d · ‖a− b‖0| = o(d′).

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in
2o(d) time.

We state our hardness of approximation result for the edit

metric below.

Theorem A.2 (k-means with candidate centers in

O(log n · log logn) dimensional Edit-metric space). Assum-
ing the unique games conjecture, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n log logn)), a collection
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C of m candidate centers in {0, 1}d (where m = poly(n)),
and a parameter k as input, it is NP-hard to distinguish
between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C

and σ : P → C′ such that∑
a∈P

ed(a, σ(a))2 ≤ n · β(n),

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
ed(a, σ(a))2 ≥ 1.56 · n · β(n),

for some fixed β : N→ N such that β(n) = polylog(n).

Theorem A.3 (k-median with candidate centers in

O(log n · log log n) dimensional Edit-metric space). Assum-
ing the unique games conjecture, given a point-set P ⊂
{0, 1}d of size n (and d = O(log n log logn)), a collection
C of m candidate centers in {0, 1}d (where m = poly(n)),
and a parameter k as input, it is NP-hard to distinguish
between the following two cases:
• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C

and σ : P → C′ such that∑
a∈P

ed(a, σ(a)) ≤ n · β(n),

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and
every σ : P → C′ we have:∑

a∈P
ed(a, σ(a)) ≥ 1.14 · n · β(n),

for some fixed β : N→ N such that β(n) = polylog(n).

Proof of Theorems A.2 and A.3: The proof follows

from the hard instances constructed in the proof of Theo-

rem VII.1 for the Hamming metric. More precisely, in the

proof of Theorem VII.1, we reduce to the following problem:

given a point-set P ⊂ {0, 1}d of size n (and d = O(log n)),
a collection C of m candidate centers in {0, 1}d (where

m = poly(n)), and a parameter k as input, it is NP-hard

to distinguish between the following two cases:

• Completeness: There exists C′ := {c1, . . . , ck} ⊆ C
and σ : P → C′ such that for all a ∈ P , we have

‖a− σ(a)‖0 = β log n, (5)

• Soundness: For every C′ := {c1, . . . , ck} ⊆ C and

every σ : P → C′ we have that there exists Pσ ⊆ P
such that |Pσ| ≥ (0.0708 + ε) · |P|, for some small

ε > 0, we have

∀a ∈ Pσ, ‖a− σ(a)‖0 ≥ (3− δ) · β log n, (6)

∀a ∈ P \ Pσ, ‖a− σ(a)‖0 = β log n, (7)

for some constant β > 0 and any δ > 0.

We consider the above given point-set P ⊂ {0, 1}d and

the collection C of candidate centers in {0, 1}d, and construct

the input point-set P∗ ⊂ {0, 1}d′
and the collection C∗ of

candidate centers in {0, 1}d′
for the edit-metric, where d′ =

O(d log d). We define P∗ and C∗ as follows:

P∗ = {η(a) | a ∈ P}, C∗ = {η(c) | c ∈ C},
where η was as given in Lemma A.1.

Let us suppose that (5) holds. Consider C′′ ⊆ C∗ defined

as

C′′ := {η(ci)|ci ∈ C′}.
Then, we have that for all a∗ ∈ P∗,
ed(a∗, η(σ(η−1(a∗))) ≤ λ · log d · ‖a− σ(a)‖0 + o(d′)

= β · λ · log n · log logn · (1 + o(1)).

Now, let us suppose that (6) and (7) holds. Consider any

C′′ ⊆ C∗ such that |C′′| = k and any σ′ : P∗ → C′′. We

now define C′ ⊆ C and σ : P → C′ as follows

C′ := {η−1(c)|c ∈ C′′}, and ∀a ∈ P, σ(a) = σ′(η(a)).

Define P∗σ′ := {η(a) | a ∈ Pσ}. Then, we have ∀a∗ ∈ P∗σ′ ,

ed(a∗, σ′(a∗)) ≥ λ · log d · ‖η−1(a∗)− σ(η−1(a∗))‖0 − o(d′),
≥ β · λ · log n · log logn · (3− δ − o(1)),

and ∀a ∈ P∗ \ P∗σ′ ,

ed(a∗, σ′(a∗)) ≥ λ · log d · ‖η−1(a∗)− σ(η−1(a∗))‖0 − o(d′)
= β · λ · log n · log logn · (1− o(1)).

The proof of the theorem statements then follows by noting

that |P∗σ′ | = |Pσ| ≥ (0.0708+ ε) · |P| ≥ (0.0708+ ε) · |P∗|.
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