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Abstract—Chattopadhyay, Mande and Sherif [CMS19] re-
cently exhibited a total Boolean function, the sink function,
that has polynomial approximate rank and polynomial ran-
domized communication complexity. This gives an exponential
separation between randomized communication complexity
and logarithm of the approximate rank, refuting the log-
approximate-rank conjecture. We show that even the quantum
communication complexity of the sink function is polynomial,
thus also refuting the quantum log-approximate-rank conjec-
ture.

Our lower bound is based on the fooling distribution method
introduced by Rao and Sinha [RS15] for the classical case and
extended by Anshu, Touchette, Yao and Yu [ATYY17] for the
quantum case. We also give a new proof of the classical lower
bound using the fooling distribution method.

Keywords-Quantum Communication, Log-rank conjecture,
Approximate rank

I. INTRODUCTION

Communication complexity [KN97], [RY18] is a basic

model of distributed computing where one only cares about

the resource of communication between the various dis-

tributed parties doing the computation. This is a beautiful

and fundamental computational model in its own right,

and has many applications to other areas, in particular for

lower bounds. For concreteness consider the two-player

communication complexity of some Boolean function f :
{0, 1}n × {0, 1}n → {0, 1}. Here Alice receives input

x ∈ {0, 1}n and Bob receives input y ∈ {0, 1}n, and

they want to compute f(x, y) with minimal communication

between them.

Much research has gone into relating the (deterministic,

randomized, nondeterministic, quantum, . . . ) communication

complexity of f to its combinatorial or algebraic properties.

In particular, we may consider the relation between the

communication complexity and the rank (over the reals)

of the 2n × 2n Boolean matrix Mf whose entries are the

values f(x, y). Mehlhorn and Schmidt [MS82] showed that
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the log of this rank lower bounds the deterministic com-

munication complexity of f , and Lovász and Saks [LS93]

conjectured that this lower bound is polynomially tight; in

other words, that deterministic communication complexity

is upper bounded by a polynomial in the logarithm of the

rank of Mf . This log-rank conjecture is one of the main

open problems in communication complexity and remains

wide open. On the one hand, the best upper bound on

deterministic communication complexity in terms of rank

is roughly the square root of the rank [Lov16], [Lov14]

(see also [Rot14]). On the other hand, the biggest known

gap between deterministic communication complexity and

log-rank is only quadratic [GPW15].

One may similarly consider the relation between random-
ized communication complexity (say with private coin flips,

and error probability ≤ 1/3 on every input x, y) and log of

the approximate rank, which is the minimal rank among

all matrices that approximate Mf entrywise up to 1/3.

The log of the approximate rank lower bounds randomized

communication complexity (even quantum communication

complexity with unlimited prior entanglement [BW01]), and

Lee and Shraibman [LS09, Conjecture 42] conjectured that

this lower bound is polynomially tight. This is known as

the log-approximate-rank conjecture. Until very recently,

the biggest separation known between randomized com-

munication complexity and the log of approximate rank

was a fourth power [GJPW17]. But then, in an important

breakthrough, Chattopadhyay, Mande and Sherif [CMS19]

devised a function, called the sink function1, that refutes

this conjecture.2

Their function is as follows. Let n =
(
t
2

)
. The function

1It turns out that the sink function was already discovered in another
context in the 1970s: Aanderaa introduced it as a counterexample to a
conjecture of Rosenberg (c.f. [BEL74]). The unpublished report [BEL74]
also introduced several other functions that may equally well be used for
separating randomized communication and approximate rank following the
ideas introduced by Chattopadhyay et al. [CMS19].

2Their function is a so-called XOR function, of the form f(x, y) = g(x⊕
y) for some n-bit Boolean function g, and thus even refutes the special
case of the log-approximate-rank conjecture restricted to XOR functions.
This special case has received much attention recently [TWXZ13], [Zha14],
[HHL16] (in part thanks to the fact that the rank of Mf equals the Fourier
sparsity of g), and remains open.
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sink : {0, 1}n → {0, 1} is defined on the edges of the

complete graph on the vertex set [t].3 For each edge e ∈
(
[t]
2

)
,

the corresponding input bit ze assigns an orientation to

the edge e (such an oriented complete graph is called a

tournament). The function sink(z) = 1 iff there is a vertex

that is a sink (i.e., that has no outgoing edges). Note that a

tournament can have at most one sink, since the orientation

of the edge between vertices v and w eliminates one of them

as a possible sink. The communication problem is defined

by Alice and Bob receiving the inputs x, y ∈ {0, 1}n and

wanting to compute the function sink(x⊕ y) where x⊕ y is

the bitwise parity. In other words, together they compute

the sink function after putting the label xe ⊕ ye on the

edge e. With slight abuse of notation, we denote the 2n-

bit communication function by sink as well.
The approximate rank of the 2n × 2n Boolean matrix

Msink associated to the sink problem is only polynomial

in n, which can be seen as follows. Consider vertex v ∈ [t],
let N(v) denote the set of edges incident on v and let

xN(v) (and yN(v)) denote the projection of the input x (and

y) to the edges in N(v). Let zN(v) ∈ {0, 1}t−1 be the

unique string of orientations that makes v the sink of the

graph. Note that v is a sink in the tournament x ⊕ y iff

xN(v) = yN(v) ⊕ zN(v). The latter problem corresponds to

a (shifted) equality problem on strings of t − 1 bits, and

it is well known that this problem has a cheap randomized

private-coin protocol that uses O(log t) = O(log n) bits of

communication, that outputs 1 with probability 1 if v is the

sink in tournament x ⊕ y, and outputs 1 with probability

∈ [0, 1/(3t)] if v is not a sink. This in turns implies the

existence of a 2n × 2n matrix Mv of rank polynomial in n,

whose (x, y)-entry is 1 if v is the sink in x⊕ y, and whose

(x, y)-entry is ∈ [0, 1/(3t)] if v is not a sink. Thanks to

the fact that at most one of the t vertices is a sink, we can

now get a good entry-wise approximation of Msink by just

adding up all the Mv-matrices over all v ∈ [t]: the resulting

matrix M̃ =
∑t

v=1Mv will have (x, y)-entry ∈ [0, 1/3]
whenever x ⊕ y has no sink, and will have (x, y)-entry in

[1, 4/3] whenever x⊕ y has a sink (if v is the sink in x⊕ y,

then Mv contributes 1 to the entry M̃xy , and the other Mw’s

together contribute at most 1/3). By subadditivity of rank,

the rank of M̃ is at most the sum of the ranks of the Mv’s,

which is polynomial in n. Hence the log of the approximate

rank of Msink is O(log n). In contrast, Chattopadhyay et al.
show that the randomized communication complexity of the

sink function is exponentially bigger:

Theorem I.1 ([CMS19]). The 1/3-error randomized com-
munication complexity of the function sink on n =

(
t
2

)
bits

is Ω(t) = Ω(
√
n).

This lower bound is optimal even for deterministic pro-

tocols: by looking at one edge, Alice and Bob can rule out

3We use t for the number of vertices in the graph instead of m as used
in [CMS19].

one vertex from being a sink. Proceeding this way, they read

t − 1 edges until they have eliminated all but one vertex v
from being a sink. At this point, they look at the t−1 edges

incident to v, and find out if v is a sink or not. This gives

an O(t)-bit deterministic communication protocol, since the

parties exchange two bits per edge.

This separation refutes the log-approximate-rank conjec-

ture, showing that randomized communication complexity

is not always upper bounded by polylog of the approximate

rank. However, quantum communication complexity can

be much smaller than randomized communication com-

plexity: polynomial gaps are known for some total func-

tions [BCW98], [AA05], [ABBD+16] and exponential gaps

are known for some partial functions [Raz99], [KR11]. Thus

one might still entertain the weaker conjecture that quantum

communication complexity is upper bounded by polylog of

the approximate rank, and indeed Lee and Shraibman [LS09,

Conjecture 57] made this conjecture explicitly. Prior to

this work, the biggest separation known between quantum

communication complexity and log of the approximate rank,

was only quadratic [ABDG+17]. Indeed, one of the main

problems left open by Chattopadhyay et al. asks about

the quantum communication complexity of the sink func-

tion. If this is large then it would refute the quantum

log-approximate-rank conjecture, but if it is small then it

would provide the first superpolynomial separation between

quantum and classical communication complexity for a

total function. We answer their open question by proving

a polynomial lower bound on the quantum communication

complexity of the sink function, thus refuting the quantum

log-approximate-rank conjecture:

Theorem I.2. The 1/3-error quantum communication com-
plexity of the function sink on n =

(
t
2

)
bits is Ω(t1/3) =

Ω(n1/6).

As Chattopadhyay et al. noted, the quantum commu-

nication complexity of the sink function is polynomially

smaller than the randomized complexity: using Grover’s

algorithm [Gro96] to search for a sink, combined with an

efficient low-error equality protocol to test whether a specific

vertex is a sink, one gets an Õ(
√
t)-qubit protocol. We

suspect that this upper bound is tight up to the log-factor,

and that our quantum lower bound should be improvable.

Independent Work: In independent and simultaneous

work, Anshu, Boddu and Touchette [ABT19] obtained the

same Ω(t1/3) lower bound using a reduction to quantum

information complexity of the equality function, but our

techniques to prove Theorem I.2 are different, as we describe

below.
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Proof Outline

Our approach to proving Theorem I.2 is to first give an

alternate and arguably simpler proof of Theorem I.1 using

the fooling distribution method (and other tools) introduced

by Rao and the first author in [RS15], and then we show

that the same approach can be used to give a (weaker)

quantum lower bound using tools from a paper by Anshu,

Touchette, Yao and Yu [ATYY17], which generalized some

of the techniques used in [RS15] to the quantum setting.

Our proofs are relatively straightforward and short given the

tools in these papers. Below we give a high-level outline.

Let us look at the classical case first. To prove a lower

bound on the randomized communication complexity, it

suffices to give a distribution on the inputs that is hard for

deterministic protocols. Let p0(X,Y ) denote the uniform

distribution on 0-inputs to sink and p1(X,Y ) denote the

uniform distribution on 1-inputs to sink. Our hard distri-

bution for deterministic protocols will be the distribution

which samples from p0(X,Y ) with probability 1
2 and from

p1(X,Y ) with probability 1
2 . Note that the messages of

any low-error protocol look very different under these two

distributions: p0(M) and p1(M) have statistical distance

close to 1, where pb(M) denotes the distribution induced

on the messages under pb(X,Y ) for b ∈ {0, 1}.
To show that this is a hard distribution for deterministic

protocols, we show that there is another distribution u(X,Y )
such that for any protocol with communication at most εt,
the induced distribution u(M) on the messages satisfies

u(M) ≈ p0(M) as well as u(M) ≈ p1(M), where ≈
denotes closeness in statistical distance. This in turn implies

that p0(M) ≈ p1(M) for small-communication protocols,

giving us a lower bound on communication. Such a distri-

bution u(X,Y ) is called a fooling distribution.

The fooling distribution u(X,Y ) for sink will just be

the uniform distribution on {0, 1}n+n. Note that under

the uniform distribution u(X,Y ), the function sink takes

value 0 with probability 1− 2−Ω(t), and since p0(X,Y ) =
u(X,Y |sink = 0), the input distributions p0(X,Y ) and

u(X,Y ) are already very close in statistical distance, and

so are the corresponding distributions on the messages. The

interesting part is to argue that the message distribution

p1(M) ≈ u(M) even though the respective input distribu-

tions p1(X,Y ) and u(X,Y ) are actually very far apart. For

this purpose, let us first note that the distribution p1(X,Y )
can be generated from u(X,Y ) by first picking a uniformly

random vertex v as the sink and conditioning on the event

that XN(v) = YN(v) ⊕ zN(v) (recall that N(v) is the set of

edges incident on v, XN(v) and YN(v) are projections of X
and Y to the edges in N(v), and zN(v) is the unique string

that encodes the orientation of the edges for which vertex v
is the sink).

To argue that p1(M) ≈ u(M), first one can use Shearer’s

inequality (see Lemma II.7) to conclude that under the

distribution u(X,Y ), the messages M reveal only a small

amount of information about XN(v) and YN(v) for a random

vertex v. In particular, since an edge appears in N(v)
with probability 2/t for a random v, one would expect

M to reveal at most (2/t) · |M | ≤ ε bits of information

about XN(v) and YN(v) each (this is also the reason for

working with the fooling distribution: since all the inputs

are independent of each other, one may use Shearer’s in-

equality). Now to relate the fooling distribution u(X,Y ) to

the input distribution p1(X,Y ) we need to condition on the

event XN(v) = YN(v) ⊕ zN(v). A lemma from [RS15] (see

Lemma III.3 in Section III) exactly captures this situation

and says that conditioning on such a collision event, when

the messages reveal little information about the colliding

variables, does not change the distribution of the messages

too much, so we can conclude that p1(M) ≈ u(M).
The proof for the quantum case proceeds more or less

analogously. It is still true that the output of a low-error

quantum protocol must look very different under distribu-

tions supported only on 0-inputs and 1-inputs respectively.

We show that u(X,Y ) is still a fooling distribution for

small-communication quantum protocols. As in the classical

case, it is easy to argue using a quantum version of Shearer’s

inequality (see Lemma II.24) that small-communication

quantum protocols do not reveal too much information about

XN(v) and YN(v) for a random vertex v under the fooling

distribution u(X,Y ). To condition on the collision event

XN(v) = YN(v) ⊕ zN(v), we use a lemma from [ATYY17]

(see Lemma IV.2 in Section IV) which allows us to argue

that for a typical vertex v, conditioning on the collision event

does not change the output too much. So, it must be the case

that for a small-communication quantum protocol, the output

on an input distribution where v is the sink (for a typical v)

must be close to the output when the input distribution is

p0(X,Y ). This implies that small-communication quantum

protocols for the sink function must have large error.

Organization: We introduce preliminaries on informa-

tion theory, quantum information theory and communication

complexity in the next section (Section II). Section III

contains the proof described above for the classical case.

The quantum lower bound is given in Section IV.

II. PRELIMINARIES

A. Classical Probability Theory

Probability Spaces and Variables: Throughout this paper,

log denotes the logarithm taken in base two. We use [k] to

denote the set {1, 2, . . . , k} and [k]<n to denote the set of all

strings of length less than n over the alphabet [k], including

the empty string. The notation |z| denotes the length of the

string z.

Random variables are denoted by capital letters (e.g. A)

and values they attain are denoted by lower-case letters
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(e.g. a). Events in a probability space will be denoted by

calligraphic letters (e.g. E). Given a = (a1, a2, . . . , an), we

write a≤i to denote a1, . . . , ai. We define a<i similarly. We

write aS to denote the projection of a to the coordinates

specified in the set S ⊆ [n].
Given a probability space p and a random variable A

in the underlying sample space, we use the notation p(A)
to denote the probability distribution of the variable A in

the probability space p. We will often consider multiple

probability spaces with the same underlying sample space,

so for example p(A) and q(A) will denote the distribution

of the random variable A under the probability spaces

p and q, respectively, with the underlying sample space

of p and q being the same. We write p(A|b) to denote

the distribution of A conditioned on the event B = b.
We write p(a) to denote the number Pp[A = a] and

p(a|b) to denote the number Pp[A = a|B = b]. Given a

distribution p(A,B,C,D), we write p(A,B,C) to denote

the marginal distribution on the variables A,B,C. We often

write p(AB) instead of p(A,B) for conciseness of notation.

Similarly, p(a, b, c) will denote the probability according to

the marginal distribution p(A,B,C) and we will often write

it as p(abc) for conciseness.

If W is an event, we write p(W) to denote its probability

according to p. For two events W and W ′, the probability of

their intersection W ∩W ′ is denoted by p(W,W ′) . Given

a probability space p and a random variable A, when we

write A ∈ W for an event W we only consider events in

the space of values taken by the variable A.

Given a fixed value c, we denote by Ep(b|c) [g(a, b, c)] :=∑
b p(b|c) · g(a, b, c), the expected value of the function

g(a, b, c) under the distribution p(B|c). If the probability

space p is clear from the context, then we will just write

Eb|c [g(a, b, c)] to denote the expectation. For a Boolean

function h(a, b) and a probability distribution p(A,B), we

use 1[h(a, b) = 0] to denote the indicator function for

the event h(a, b) = 0, and we write p(h = 0) :=
Ep(ab)[1[h(a, b) = 0]] as the probability that h is 0 under

inputs drawn from p.

We write A − M − B as a shorthand to say that the

random variables A, M and B form a Markov chain, or

in other words, that A and B are independent given M :

p(amb) = p(m) · p(a|m) · p(b|m) for every a, b,m.

To illustrate the notation, consider the following example.

Let A ∈ {0, 1}2 be a uniformly distributed random variable

in a probability space p. Then, p(A) is the uniform

distribution on {0, 1}2, and if a = (0, 0) then p(a) = 1/4.

Let A1 and A2 denote the first and second bits of A, then

if B = A1 + A2 mod 2, then when b = 1, p(A|b) is the

uniform distribution on {(0, 1), (1, 0)}. If a = (1, 0) and

b = 1, then p(a|b) = 1/2 and p(a, b) = 1/4. If E is the

event that A1 = B, then p(E) = 1/2. Let q(A) = p(A|E),
then q(A) is the uniform distribution on {(0, 0), (1, 0)}
and q(A2) is the distribution over the sample space {0, 1}

which takes the value 0 with probability 1.

Statistical Distance: For two distributions p(A), q(A),
the statistical (or total variation) distance ‖p(A)− q(A)‖tv
between them is defined to be ‖p(A)− q(A)‖tv =
maxQ (p(A ∈ Q)− q(A ∈ Q)) where Q ranges over all

events. The following propositions are easy to prove.

Proposition II.1. ‖p(A)− q(A)‖tv = 1
2

∑
a |p(a)−q(a)| =∑

a:p(a)>q(a)(p(a)− q(a)).
We say p(A) and q(A) are ε-close if ‖p(A)− q(A)‖tv ≤ ε

and we write it as p(A)
ε≈ q(A).

Proposition II.2. If p(AB), q(AB) are such that p(A) =
q(A), then

‖p(B)− q(B)‖tv = E
p(a)

[‖p(B|a)− q(B|a)‖tv] .

Lemma II.3. If E is an event such that p(E) = 1− δ, then
‖p(A|E)− p(A)‖tv = δ.

Proof: Note that for any a /∈ E , p(a|E) = 0 and for

a ∈ E , using Bayes’ rule, we get that

p(a|E) = p(a, E)
p(E) =

p(a)

p(E) =
p(a)

1− δ . (1)

By Proposition II.1, we have that

‖p(A|E)− p(A)‖tv =
1

2

∑
a∈E

|p(a|E)− p(a)|

+
1

2

∑
a/∈E

|p(a|E)− p(a)|

=
1

2

∑
a∈E

|p(a|E)− p(a)|+ δ

2

(1)
=

1

2

∑
a∈E

(
p(a)

1− δ − p(a)
)
+
δ

2

=
1

2
· δ

1− δ · p(E) +
δ

2
= δ,

where the second inequality follows from (1).

Divergence and Mutual Information: The divergence be-

tween distributions p(A) and q(A) is defined to be

D (p(A) || q(A)) =
∑
a

p(a) log
p(a)

q(a)
.

In a probability space p, the mutual information between

A,B conditioned on C is defined as

Ip (A : B|C) = E
p(bc)

[D (p(A|bc) || p(A|c))]

= E
p(ac)

[D (p(B|ac) || p(B|c))]

=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c) .
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Basic Information Theory Facts: The proofs of the fol-

lowing basic facts can be found in the book by Cover and

Thomas [CT06]. In the following, p and q are probability

spaces (over the same sample space), and A and B are

random variables on the underlying sample space.

Proposition II.4. D (p(A) || q(A)) ≥ 0.

Proposition II.5. If A ∈ {0, 1}�, then Ip (A : B) ≤ �.

Proposition II.6 (Pinsker’s Inequality).

‖p(A)− q(A)‖2tv
≤ ln 2

2
·D (p(A) || q(A)) ≤ D (p(A) || q(A)) .

Lemma II.7 (Shearer’s Inequality [GKR16]). Let A =
(A1, . . . , An) where the Ai’s are mutually independent. Let
M be another random variable and S ⊆ [n] be a random
set independent of A and M , such that p(i ∈ S) ≤ μ for
every i ∈ [n]. Then, we have

Ip (AS :M |S) ≤ μ · Ip (A :M) .

B. Classical Communication Complexity

The communication complexity of a protocol is the maxi-

mum number of bits that may be exchanged by the protocol.

Communication protocols may use shared randomness and

henceforth we will refer to such protocols as randomized

protocols. We say a randomized protocol computing a

Boolean function f(x, y) has error δ, if for every input, the

protocol outputs the correct answer with probability at least

1− δ, where the probability is over the shared randomness.

We briefly describe some basic properties of communi-

cation protocols that we need. For more details see the

textbooks [KN97] or [RY18]. For a deterministic protocol

π, let π(x, y) denote the sequence of messages (i.e., the

transcript) of the protocol on inputs x, y. For any transcript

m of the protocol, define the events:

Sm = {x | ∃y such that π(x, y) = m},
Tm = {y | ∃x such that π(x, y) = m}.

We then have:

Proposition II.8 (Messages Correspond to Rectangles). If m
is a transcript and x, y are inputs to a deterministic protocol
π, then, π(x, y) = m ⇐⇒ x ∈ Sm ∧ y ∈ Tm.

Proposition II.8 implies:

Proposition II.9 (Markov Property of Protocols). Let X
and Y be random inputs to a deterministic protocol and let
M denote the transcript of this protocol. If X and Y are
independent, then X −M − Y .

Lemma II.10 (Errors and Statistical Distance). Let h(x, y)
be a boolean function and p(X,Y ) be a distribution such
that p(h = 0) = p(h = 1) = 1

2 . If π is a deterministic
protocol with messages M that computes h with error δ on

the distribution p(XY ), then |p(M |h = 0)−p(M |h = 1)| ≥
1− 2δ.

Proof: Since |p(M |h = 0) − p(M |h = 1)| =
maxQ(p(M ∈ Q|h = 0)− p(M ∈ Q|h = 1)) it suffices to

exhibit an event Q such that p(M ∈ Q|h = 0) − p(M ∈
Q|h = 1) = 1− 2δ. Let M0 denote the event that the pro-

tocol outputs a zero. Then, since p(h = 0) = p(h = 1) = 1
2 ,

writing the probability of success in terms of M0, we have

1− δ = p(M ∈M0|h = 0)

2
+

1− p(M ∈M0|h = 1)

2

=
1

2
+
p(M ∈M0|h = 0)− p(M ∈M0|h = 1)

2
.

On rearranging, the above gives us that p(M ∈ M0|h =
0)− p(M ∈ M0|h = 1) = 1− 2δ and hence the statistical

distance must be at least 1− 2δ.

C. Quantum Information Theory

Here we briefly state the facts we need from quantum

information theory. For details, see the textbooks [Wil13] or

[Wat18].

Quantum States and Measurements: Overloading the no-

tation, we use capital letters A,B, etc. to represent registers

and use HA,HB , etc. to denote the associated Hilbert

spaces. As before, given registers A = A1, . . . , An and a

set S ⊆ [n], we will use AS to denote the sequence of

registers {Ai}i∈S . For any register A, |A| = �log(dimHA)�
denotes the number of qubits in A. Given a Hilbert space

HA, we use {|a〉A} to denote a canonical orthonormal basis,

and if A is a single-qubit register we use {|0〉A, |1〉A} to

denote the computational basis for the Hilbert space HA.

We write UA to denote a unitary acting on the Hilbert space

HA corresponding to a register A.

A density operator on HA is a linear operator from HA

to HA that is positive semi-definite and has a unit trace.

The set of all density operators on a Hilbert space HA will

be denoted by D(HA). Since a linear operator on a finite-

dimensional Hilbert space can be described equivalently

with a matrix representation, we will use these notions

interchangeably.

A (quantum) state ρA on a register A is a density operator

on HA. A state ρA is called pure if it has rank 1. For a

unit vector |ψ〉A ∈ HA (viewed as a column vector), we

denote by 〈ψ|A its adjoint (a row vector), and by ψA the

corresponding state |ψ〉〈ψ|A, but we will also sometimes

use the vector |ψ〉A to refer to the corresponding pure state.

A classical distribution p(A) can be viewed as the diagonal

state
∑

a p(a)|a〉〈a|A and vice versa, so we will refer to any

diagonal state as a classical state.

We use ρA ⊗ σB to denote the tensor product of ρA and

σB on the Hilbert space HA⊗HB . We adopt the convention

of omitting Identity operators from a tensor product: instead

of UR ⊗ IA or 〈r|R ⊗ IA, we write UR or 〈r|R since the

subscripts will convey the necessary information.
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A state ρXA is called a classical-quantum state with X
being the classical register if it is of the form ρXA =∑

x p(x)|x〉〈x|X ⊗ρxA where p(X) is a classical probability

distribution and ρxA is a state on the register A.

Given a linear operator MAB on HA ⊗ HB , the partial
trace of MAB over A is defined as

TrA(MAB) =
∑
a

〈a|AMAB |a〉A.

The partial trace operation is linear: TrA(MAB+M ′
AB) =

TrA(MAB) +TrA(M
′
AB) and satisfies the following identi-

ties: TrA(MA⊗MB) = TrA(MA)MB and TrA(UBMAB) =
UBTrA(MAB).

With the above, we can define the notion of a marginal or

reduced state: for a bipartite state ρAB , the marginal state ρB
on the register B is defined as ρB := TrA(ρAB). Note that

if we have a classical-quantum state ρXA, then the marginal

state ρX is a classical state.

Given a state ρA we can always consider it as a marginal

of a pure state ρEA = |ρEA〉〈ρEA|EA on a larger system.

Such a state |ρEA〉EA is called a purification of ρA. We

will adopt the convention of using the same Greek letters

to denote the purification: if we say that |ρEA〉EA is a

purification with reference register E, then it is a purifi-

cation of the state ρA, that is, ρA = TrE(|ρEA〉〈ρEA|EA).
Given a classical state ρX =

∑
x p(x)|x〉〈x|X , we define∑

x

√
p(x)|x〉X |x〉X to be its canonical purification.

A positive operator valued measurement (POVM) is a

collection {Λi}i of linear operators acting on a Hilbert space

HA such that for each i, the operator Λi is positive semi-

definite, and
∑

i Λi = IA. The probability that the outcome

of applying a POVM on a quantum state ρA ∈ D(H)
is j is given by Tr(ΛjρA). Given a single-qubit register

A, we will specifically be interested in measurement in

the computational basis, which corresponds to the POVM

{|0〉〈0|A, |1〉〈1|A}. Given a state ρA ∈ D(HA), the proba-

bility that the measurement outcome is the bit b ∈ {0, 1} is

Tr(|b〉〈b|AρA).
We say that UXA is a unitary with X as a control register

if UXA =
∑

x |x〉〈x|X ⊗ Ux
A for some unitary Ux

A’s. Also,

note that in this case U†XA is a unitary controlled by X as

well.

Distance Measures: Recall that the trace norm ‖M‖1 of

a matrix M is defined as ‖M‖1 = Tr
√
M†M . Equivalently,

‖M‖1 is the sum of the singular values of M . Then, the

trace distance between two quantum states ρA and σA is

defined as ‖ρA − σA‖1. We say two states ρA and σA are

ε-close in trace norm if ‖ρA − σA‖1 ≤ ε, and write this as

ρA
ε≈ σA.

The fidelity between two quantum states is defined as

F (ρA, σA) =
∥∥√ρA√σA∥∥1 (note that some papers define

fidelity as the square of our definition). If ρA and σA are pure

states, then their fidelity is just the absolute value of the inner

product of the corresponding vectors. The Hellinger distance
between the states is h (ρA, σA) =

√
1− F (ρA, σA) =√

1−
∥∥√ρA√σA∥∥1. If ψA = |ψ〉〈ψ|A is a pure state,

for brevity we will sometimes write h (|ψ〉A, |σ〉A) (or

F (|ψ〉A, |σ〉A)) to mean h (ψA, σA) (or F (ψA, σA)). The

Hellinger distance is a metric and in particular satisfies the

triangle inequality: h (ρA, σA) ≤ h (ρA, ψA)+h (ψA, σA).
The trace distance and Hellinger distance are both in-

variant under applying unitaries and decrease under taking

marginals:

Proposition II.11. Given unitaries UA and VA, it holds that∥∥∥UA(ρA − σA)V †A
∥∥∥
1
= ‖ρA − σA‖1 and

h
(
UAρAV

†
A, UAσAV

†
A

)
= h (ρA, σA) .

Proposition II.12. ‖ρA − σA‖1 ≤ ‖ρAB − σAB‖1 and
h (ρA, σA) ≤ h (ρAB , σAB) .

The Hellinger and trace distance are related in the follow-

ing way:

Proposition II.13. For quantum states ρA and σA, it holds
that

h (ρA, σA)
2 ≤ 1

2
‖ρA − σA‖1 ≤

√
2 h (ρA, σA) .

The trace distance normalized by 2 is the largest prob-

ability difference a POVM could produce between the two

states, which is the quantum generalization of total variation

distance:

Proposition II.14. For states ρA and σA in D(HA), it holds
that

1

2
‖ρA − σA‖1 = max

Λ
Tr(Λ(ρA − σA)),

where Λ ranges over all positive semi-definite operators over
HA that have eigenvalues at most one.

Proposition II.15 (Uhlmann’s Theorem). Let |ρ〉EA and
|σ〉EA be pure states. Then, we have

F (ρA, σA) = max
UE

F (UE |ρ〉EA, |σ〉EA),

or equivalently,

h (ρA, σA) = min
UE

h (UE |ρ〉EA, |σ〉EA) ,

where UE ranges over all unitaries acting on the register E.

The unitary UE which minimizes the Hellinger distance

in Uhlmann’s theorem is the one for which
√
ρE
√
σEUE is

positive semidefinite (such a unitary is always guaranteed to

exist) but we will only need the following simple case:

Proposition II.16. Let p(X,Y ) and q(X,Y ) be
distributions such that p(X) = q(X). Then for the
quantum states |ρ〉XXY Y =

∑
xy

√
p(x, y)|xxyy〉XXY Y
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and |σ〉XXY Y =
∑

xy

√
q(x, y)|xxyy〉XXY Y , there exists

a unitary WXY Y with X as a control register such that
WXY Y |ρ〉XXY Y = |σ〉XXY Y .

The above is a special case of Uhlmann’s

Theorem as ρX = σX but one can explicitly take

WXY Y =
∑

x |x〉〈x|X ⊗ Ux
Y Y

where Ux
Y Y

is any

unitary that maps the vector
∑

y

√
p(x, y)|yy〉Y Y to∑

y

√
q(x, y)|yy〉Y Y .

Quantum Divergence and Mutual Information: The di-
vergence (or relative entropy) between two quantum states

ρA, σA ∈ D(HA) is defined as

D (ρA || σA) = Tr(ρA log ρA)− Tr(ρA log σA).

Note that the divergence between two states ρA and σA is

always non-negative, and equal to zero iff ρA = σA. The

quantum mutual information of the bipartite state ρAB is

defined as

Iρ (A : B) = D (ρAB || ρA ⊗ ρB) . (2)

For a tripartite quantum state ρABC ∈ D(HA⊗HB ⊗HC),
the conditional quantum mutual information is defined as

Iρ (A : B|C) = Iρ (A : BC) − Iρ (A : C). For empty C,

this equals the definition of mutual information in (2).

It follows from the non-negativity of divergence that

quantum mutual information is also non-negative, but it

turns out that even conditional mutual information is non-

negative:

Proposition II.17 (Strong subadditivity). Iρ (A : B|C) ≥ 0.

Proposition II.18 (Chain Rule). Iρ (A : BC) =
Iρ (A : C) + Iρ (A : B|C) .
Proposition II.19. Iρ (A : B|C) ≤ 2min{|A|, |B|}.
Proposition II.20. If ρAB = ρA⊗ρB , then Iρ (A : B) = 0.

Basic Lemmas about Divergence and Mutual Information:
Below ρABC , σABC ∈ D(HA ⊗ HB ⊗ HC) and UB is a

unitary acting on B.

Proposition II.21 (Pinsker’s inequality). 1
8 ‖ρA − σA‖

2
1 ≤

h (ρA, σA)
2 ≤ D (ρA || σA) .

The proposition below says that mutual information does

not change under local operations:

Proposition II.22. If σABC = UB ρABC U†B , then
Iσ (A : BC) = Iρ (A : BC) .

Furthermore, (2) combined with Pinsker’s inequality,

gives us

Proposition II.23. Let ρAB ∈ D(HA ⊗ HB), then
h (ρAB , ρA ⊗ ρB) ≤

√
Iρ (A : B).

Define Iρ (AS : B|S) := ES [Iρ (AS : B)], then we have

the following quantum version of Shearer’s inequality from

[ATYY17]:

Lemma II.24 (Quantum Shearer’s Lemma [ATYY17]). Let
A = A1, . . . , An and B be registers. Let ρ ∈ D(HA⊗HB)
be a state such that ρA = ρA1

⊗ρA2
⊗· · ·⊗ρAn

. Let S ⊆ [n]
be a random set independent of ρAB such that P[i ∈ S] ≤ μ
for every i ∈ [n]. Then, we have

Iρ (AS : B|S) ≤ μ · Iρ (A : B) .

D. Quantum Communication Complexity

We consider quantum protocols where Alice and Bob

are allowed to exchange qubits and they share some pure

entangled state in the beginning, for instance a number of

EPR-pairs that they are not charged for. Any lower bound in

this model also translates to a lower bound in other models

of quantum communication (Yao’s model [Yao93] with qubit

communication without prior entanglement or the Cleve-

Buhrman model [CB97] with classical communication and

prior entanglement).

The total state of a quantum protocol consists of: Alice

and Bob’s input registers X and Y , Alice’s private register

A, the communication channel C, and Bob’s private register

B. We assume that initially Alice and Bob share some pure

entangled state ψA′B′ where A′ and B′ are part of Alice’s

and Bob’s private registers A and B respectively, while the

rest of the qubits in their private workspaces are initially zero

(|0〉). The channel is also initially zero. Before the start of

the protocol Alice and Bob copy their inputs from the input

registers to their private workspaces. Let |ψ〉AB denote the

state of registers A and B at the start. This includes the initial

entangled state on A′ and B′, a number of zero-qubits and

copy of their inputs x and y.

Given an input distribution p(X,Y ) on the inputs, the

starting state of the protocol is then

ρ
(0)
XYABC =

∑
xy

p(xy)|xy〉〈xy|XY ⊗ |ψ〉〈ψ|AB ⊗ |0〉〈0|C .

Note that the marginal state ρ
(0)
XY is a classical state, but

not necessarily pure if X and Y are not independent. To

make the above state a pure state, we will add purifying

registers X and Y and consider the canonical purification

of ρ
(0)
XY which is the pure state

|ρ(0)〉XXY Y =
∑
xy

√
p(xy)|xxyy〉XXY Y .

With the above purifying registers, the initial global state

of the protocol is the pure state

|ρ(0)〉XXY Y ABC = |ρ(0)〉XXY Y ⊗ |ψ〉AB ⊗ |0〉C .
At each step of the protocol, either Alice or Bob applies

a unitary to a subset of the registers. We will assume that

they alternate: on odd rounds Alice acts and on even rounds
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Bob acts. We will also assume that the channel C consists

of one qubit. These assumptions can be made without loss

of generality as they only affect the communication by a

constant factor (see the remark at the end of Section IV,

though).

In an odd round r, Alice applies a fixed unitary transfor-

mation U
(r)
XAC =

∑
x |x〉〈x|X⊗U

(r),x
AC to her private register

and the channel. This corresponds to her private computation

as well as to putting a one-qubit message on the channel.

Note that the unitary uses the input register only as a control

and does not change its contents. In an even round, Bob

proceeds similarly. Hence the content of the input registers

X and Y as well as the corresponding purifying registers X
and Y remain unchanged throughout the protocol.

We assume that in the last round of the protocol Bob talks.

The final state of an �-round protocol (for even �) on input

distribution p(X,Y ) is the following pure state:

|ρ(�)〉XXY Y ABC

= U
(�)
Y BCU

(�−1)
XAC · · ·U

(1)
XAC |ρ(0)〉XXY Y ABC .

For technical reasons it will be convenient to assume that

at the end of the protocol, the channel contains the answer.

A measurement of the channel qubit in the computational

basis then determines the output bit of the protocol. We say

that the protocol computes f(x, y) on a distribution p(X,Y )
if the probability of error on the input distribution p(X,Y ) is

at most ε. Note that we may consider the run of the protocol

on a fixed input x, y by taking the initial distribution p(X,Y )
such that p(x, y) = 1. We say that the protocol computes

f(x, y) with error ε if for every input x, y the probability of

error is at most ε.

For notational convenience, throughout this work we will

sometimes write ρ(r) instead of ρ
(r)

XXY Y ABC
to denote the

global state of the protocol on all the registers after round

r. When referring to the marginal states, however, we will

always write the corresponding registers.

Basic Properties of Quantum Protocols: In the following

preliminary lemmas ρ
(r)

XXY Y ABC
and σ

(r)

XXY Y ABC
are the

states of a quantum protocol after r rounds when it is

run on input distributions p(XY ) and q(XY ) respectively.

Moreover, � will denote the last round of the protocol. The

following proposition is easily seen to be true since the

protocol applies the same sequence of unitaries on every

input x, y:

Proposition II.25. There are pure states {|ψ(r),xy〉ABC}xy

such that

|ρ(r)〉XXY Y ABC

=
∑
xy

√
p(xy)|xxyy〉XXY Y ⊗ |ψ(r),xy〉ABC , and

|σ(r)〉XXY Y ABC

=
∑
xy

√
q(xy)|xxyy〉XXY Y ⊗ |ψ(r),xy〉ABC

Note that after the first round the states |ψ(1),xy〉ABC only

depend on x.

The above proposition implies that if p(X,Y ) is a product

distribution on X and Y , and if in a round r, Bob applies

a unitary U
(r)
Y BC , then the marginal states satisfy

ρ
(r)

XXY Y BC
= U

(r)
Y BCρ

(r−1)

XXY Y BC

(
U

(r)
Y BC

)†
and

ρ
(r)

XXY Y A
= ρ

(r−1)

XXY Y A
,

and a similar statement also holds when Alice acts.

The following lemma follows easily from Proposition

II.25:

Lemma II.26. 1
2

∥∥∥ρ(r)C − σ(r)
C

∥∥∥
1
≤ ‖p(XY )− q(XY )‖tv.

Proof: Let δ = ‖p(XY )− q(XY )‖tv. Then using

Proposition II.25, we can write

1

2

∥∥∥ρ(r)C − σ(r)
C

∥∥∥
1
=

1

2

∥∥∥∥∥∑
xy

(p(xy)− q(xy))ψ(r),xy
C

∥∥∥∥∥
1

≤ 1

2

∑
xy

|p(xy)− q(xy)|
∥∥∥ψ(r),xy

C

∥∥∥
1
≤ δ,

where the second inequality is the triangle inequality and

the last one follows from Proposition II.1 and the fact that

{ψ(r),xy
C }xy are density operators and have unit trace.

Using Proposition II.14, the above also implies that if

p(XY ) and q(XY ) are δ-close, then the output distributions

of the protocol for both cases are δ-close.

Lemma II.27 (Errors and Trace Norm). Given a boolean
function f(x, y), let p(X,Y ) be a distribution supported on
its 0-inputs and q(X,Y ) be a distribution supported on its
1-inputs. If an �-round quantum protocol computes f(x, y)
with error δ, then 1

2

∥∥∥ρ(�)C − σ(�)
C

∥∥∥
1
≥ 1− 2δ.

Proof: Recall that the last bit of the channel contains

the answer and since the output of a protocol is given by

a measurement of the channel qubit in the computational

basis, the probabilities that the output is 0 under ρC and

σC are respectively given by Tr(|0〉〈0|CρC) ≥ 1 − δ and

Tr(|0〉〈0|CσC) ≤ δ. Using Proposition II.14, we have

1

2

∥∥∥ρ(�)C − σ(�)
C

∥∥∥
1
≥ Tr(|0〉〈0|C(ρC − σC))
≥ (1− δ)− δ = 1− 2δ.
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Quantum protocols have no notion of a transcript, but

the following lemma still gives a bound on how much

information is revealed by a quantum protocol in terms of

the communication.

Lemma II.28 (Information Cost). Let p(XY ) be a product
input distribution on X and Y . Then, for any round r in the
communication protocol, it holds that

Iρ(r)

(
X : Y Y BC

)
≤ 2r and Iρ(r)

(
Y : XXAC

)
≤ 2r.

Proof: The proof is by induction on the number of

rounds. We will only prove the first inequality as the

second one follows analogously. When r = 0, no messages

have been exchanged and since p(x, y) = p(x)p(y) for

any x, y, it follows that the initial state is of the form

ρ
(0)

XXY Y ABC
= ρ

(0)

XX
⊗ ρ(0)

Y Y
⊗ ρ(0)ABC . So, using Proposition

II.20, it follows that Iρ(0)

(
X : Y Y BC

)
= 0.

Now, let us assume that the statement holds for

r − 1 rounds. When r is even, Bob applies a uni-

tary U
(r)
Y BC . Since p(XY ) is a product distribution on

X and Y , Proposition II.25 implies that ρ
(r)

XY Y BC
=

U
(r)
Y BCρ

(r−1)

XY Y BC

(
U

(r)
Y BC

)†
. Hence, using Proposition II.22,

we have

Iρ(r)

(
X : Y Y BC

)
= Iρ(r−1)

(
X : Y Y BC

)
≤ 2(r − 1),

where the inequality follows from the inductive hypothesis.

When r is odd, Alice applies a unitary U
(r)
XAC with X as

control. Using chain rule, we can write

Iρ(r)

(
X : Y Y BC

)
= Iρ(r)

(
X : Y Y B

)
+ Iρ(r)

(
X : C|Y Y B

)
≤ Iρ(r)

(
X : Y Y B

)
+ 2 = Iρ(r−1)

(
X : Y Y B

)
+ 2

≤ Iρ(r−1)

(
X : Y Y BC

)
+ 2 ≤ 2(r − 1) + 2 = 2r,

where the first inequality follows from Proposition II.19 and

the fact that |C| = 1, the second equality follows since

ρ
(r)

XY Y B
= ρ

(r−1)

XY Y B
as Alice applies a unitary UXAC with

X as a control register, and the second inequality follows

from chain rule and non-negativity of conditional mutual

information.

III. CLASSICAL COMMUNICATION LOWER BOUND

In this section, we present a new proof of the classical

communication lower bound that we will later generalize

to the quantum setting. We will prove that any randomized

protocol for the sink function that errs with probability at

most 1/3 must communicate at least Ω(t) bits.

As is standard, to prove this we use a hard distribution

p(XY ) on the inputs.

Hard Input Distribution p(X,Y ): Let p0(X,Y ) and

p1(X,Y ) denote the uniform distribution on sink−1(0) and

sink−1(1) respectively. In the input distribution p(X,Y ), the

input is sampled from p0(X,Y ) with probability 1
2 and from

p1(X,Y ) with probability 1
2 .

Since we have a distribution on the inputs, we may assume

without loss of generality that the randomized protocol is

deterministic. We will prove a lower bound on the com-

munication by showing that if the length of the messages

of the protocol is at most 1
2ε

3t, then the distribution of

the messages looks almost the same under the distributions

p0(X,Y ) and p1(X,Y ): denoting by p0(M) and p1(M)
the induced distributions on the messages under p0(X,Y )
and p1(X,Y ), respectively, we will show that p0(M) and

p1(M) are close in statistical distance. To show this, we

use the fooling distribution method from [RS15]. We will

give another distribution u(X,Y ) such that the induced

distribution u(M) will be close to each of p0(M) and

p1(M). For the sink function, this fooling distribution
u(X,Y ) is the uniform distribution on {0, 1}n+n. More

precisely, we prove:

Theorem III.1. Let ε > 0 be a constant and t be large
enough. Then, for any deterministic protocol for the sink
function with communication at most 1

2ε
3t, we have that

p0(M)
o(1)
≈ u(M)

4ε≈ p1(M).

Since the input distribution p(X,Y ) is balanced, using

Lemma II.10, the distributions p0(M) and p1(M) must have

statistical distance at least 1/3 if the protocol has error 1/3
on p(X,Y ). So, it must be that 4ε + o(1) ≥ 1/3, and

hence ε ≥ 1/12 − o(1), and the Ω(t) lower bound on the

communication (Theorem I.1) follows.

Next, we prove Theorem III.1. Before the proof, it will

be helpful to keep in mind how the distributions p1(X,Y ),
p0(X,Y ) and u(X,Y ) are related. Note that by defini-

tion, p0(X,Y ) = u(X,Y |sink = 0) and p1(X,Y ) =
u(X,Y |sink = 1). Also, notice that the input distributions

p0(X,Y ) and u(X,Y ) are already very close in statistical

distance:

Claim III.2. p0(X,Y )
γ≈ u(X,Y ) with γ = t2−(t−1) =

o(1).
Proof: Note that under the uniform distribution u(XY ),

the probability that the function sink takes value 1 is exactly

t2−(t−1), because for each vertex v, the event that v is the

sink has probability exactly 2−(t−1), and these events are

disjoint for the t vertices. This means that

u(sink = 0) = 1− t2−(t−1).

Since p0(XY ) = u(XY |sink = 0), Lemma II.3 implies

‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = γ.

Furthermore, recall that we can generate the distribution

p1(X,Y ) from u(X,Y ) by conditioning on a simple col-
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lision event: for any vertex v, denoting by N(v) the set

of edges incident on v, the distribution p1(X,Y ) can be

generated from u(X,Y ) by first picking a uniformly random

vertex V ∈ [t] as the sink, and then conditioning on the event

that XN(V ) = YN(V ) ⊕ zN(V ), where zN(v) is the unique

string that encodes the orientations of the edges in N(v)
when vertex v is the sink.

To complete the proof, we use the following lemma

from [RS15], which bounds the effect of conditioning on

a collision event (for completeness we include a proof in

Appendix A).

Lemma III.3 (Lemma 4.3 in [RS15]). Given a probability
space q, if A,B ∈ [r] are uniform and independent random
variables, and A−C −B, then q(C)

ε≈ q(C|A = B), with
ε = 2 3

√
Iq (C : A) + 2 3

√
Iq (C : B).

Proof of Theorem III.1: Because we have that

‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = o(1) from Claim

III.2, this already implies that ‖p0(M)− u(M)‖tv = o(1)
since M is a function of X,Y . So, we focus on bounding

‖p1(M)− u(M)‖tv. For this, let V ∈ [t] and let u(V ) be

the uniform distribution on [t]. Recall that

p1(XY ) = Eu(v)[u(XY |XN(v) = YN(v) ⊕ zN(v))].

We will show that under the fooling distribution u(XY ),
the messages of the protocol contain little information about

XN(V ) and YN(V ). Lemma III.3 and concavity will then

complete the proof.

Note that for any fixed edge e, it holds that u(e ∈
N(V )) = 2

t . Since under u(XY ), the binary random

variables Xe (resp. Ye) and Xe′ (resp. Ye′ ) are mutually

independent for any two edges e and e′, applying Shearer’s

inequality (Lemma II.7), we get that

Iu
(
XN(V ) :M |V

)
≤ 2

t
· Iu (X :M) ≤ 2

t
· |M | ≤ ε3 and

Iu
(
YN(V ) :M |V

)
≤ 2

t
· Iu (Y :M) ≤ 2

t
· |M | ≤ ε3. (3)

Note that for any v, shifting YN(v) by a fixed string zN(v)

does not change the mutual information Iu
(
YN(v) :M

)
.

Furthermore, since X and Y are independent X −M − Y
holds. Hence, using Proposition II.2 and Lemma III.3 (with

A = XN(v), B = YN(v) ⊕ zN(v), C =M ), it holds that

‖p1(M)− u(M)‖tv
=
∥∥Eu(v)[u(M |XN(v) = YN(v) ⊕ zN(v))]− u(M)

∥∥
tv

= Eu(v)

[∥∥ u(M |XN(v) = YN(v) ⊕ zN(v))− u(M)
∥∥
tv

]
≤ 2Eu(v)

3

√
Iu
(
XN(v) :M

)
+ 2Eu(v)

3

√
Iu
(
YN(v) :M

)
.

Further, using concavity of the cube root function over non-

negative reals and (3), we get that

‖p1(M)− u(M)‖tv
≤ 2 3

√
Eu(v)Iu

(
XN(v) :M

)
+ 2 3

√
Eu(v)Iu

(
YN(v) :M

)
= 2 3

√
Iu
(
XN(V ) :M |V

)
+ 2 3

√
Iu
(
YN(V ) :M |V

) (3)

≤ 4ε.

Hence for t large enough, ‖p0(M)− u(M)‖tv = o(1) and

‖p1(M)− u(M)‖tv ≤ 4ε, concluding the proof.

IV. QUANTUM COMMUNICATION LOWER BOUND

The proof for the quantum case proceeds similarly to the

classical case with some minor but technical differences. Let

p0(XY ), and u(XY ) be as before: p0(XY ) is uniform on

sink−1(0) and u(XY ) is the uniform distribution. Fix an

�-qubit protocol where per our convention � is even as Bob

sends the last message. Let o(�) and μ(�) be the final pure

states of the protocol on distributions p0(XY ) and u(XY ),
respectively. Let V ∈ [t], let u(V ) denote the uniform

distribution on [t] and let ιv,(�) denote the final pure state

of the protocol when run on distribution u(XY |XN(v) =
YN(v)⊕ zN(v)), that is, when vertex v is the sink. Note that

the distribution u(XY |XN(v) = YN(v)⊕zN(v)) is supported

on only the 1-inputs to the sink function. If the protocol

computes the sink function with error at most 1/3 on every

input, then Lemma II.27 implies

Eu(v)

[∥∥∥ιv,(�)C − o(�)C

∥∥∥
1

]
≥ 2/3. (4)

We are going to argue that if �� t1/3, then the distribution

u(XY ) is also a fooling distribution for quantum protocols.

That is, it must be the case that both o
(�)
C ≈ μ

(�)
C and, for a

typical vertex v, ι
v,(�)
C ≈ μ

(�)
C (and hence ι

v,(�)
C ≈ o

(�)
C for a

typical v).

Theorem IV.1. Let ε > 0 be a constant and t be large
enough. Then, for any quantum protocol for the sink function
with communication complexity at most � = 1

8ε
2/3t1/3, we

have that
Eu(v)

[∥∥∥ιv,(�)C − o(�)C

∥∥∥
1

]
≤ ε.

Combining this theorem with (4) immediately implies the

quantum communication lower bound of Ω(t1/3) promised

by Theorem I.2.

First, o
(�)
C ≈ μ

(�)
C is clear because p0(X,Y ) ≈ u(X,Y )

(see Lemma II.26). To prove that ι
v,(�)
C ≈ μ

(�)
C for a typical

v, we will use Lemma 3.6 from [ATYY17] (we state it a

bit differently here to make it easier for our application).

This allows us to relate the fooling distribution with the

input distribution similar to the role of Lemma III.3 in the

proof for the classical case. The proof of this lemma is an
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involved round-by-round induction; we include a proof in

Appendix A for completeness.

Lemma IV.2 (Lemma 3.6 in [ATYY17]). Let X = X1X2

and Y = Y1Y2 be random variables where X,Y ∈ {0, 1}n.
Let u′(XY ) be the uniform distribution on XY and let
q(XY ) = u′(XY |X1 = Y1) be another distribution. For
every s ≤ r, let ρ(s) and σ(s) denote the state of a quantum
protocol after s rounds on distributions u′(XY ) and q(XY )
respectively. If for every s ≤ r, we have

Iρ(s)

(
X1 : Y Y BC

)
≤ εs for odd s, and

Iρ(s)

(
Y1 : XXAC

)
≤ εs for even s,

then it holds that∥∥∥σ(r)
X1Y1C

− σ(r)
X1Y1

⊗ ρ(r)C

∥∥∥
1
≤ 4

√
2

r∑
s=1

√
εs.

Let us fix a vertex v ∈ [t] and for notational convenience,

define εv,s = Iμ(s)

(
XN(v) : Y Y BC

)
for odd rounds s, and

εv,s = Iμ(s)

(
YN(v) : XXAC

)
for even rounds s. If these

εv,s’s are mostly small, then ι
v,(�)
C ≈ μ

(�)
C as the following

lemma shows.

Lemma IV.3.
∥∥∥ιv,(�)C − μ(�)

C

∥∥∥
1
≤ 4

√
2
∑�

s=1

√
εv,s.

Proof: To apply Lemma IV.2, we will

choose X1 = XN(v), X2 = XN(v)c and

Y1 = YN(v) ⊕ zN(v), Y2 = YN(v)c and u′(XY ) = u(XY ).
Note that u′(XY ) is still the uniform distribution.

Furthermore, using Proposition II.25, for every s, the state

ρ(s) in Lemma IV.2 is the same as μ(s) after a suitable

relabeling. Hence, it follows that Iρ(s)

(
X1 : Y Y BC

)
=

Iμ(s)

(
XN(v) : Y Y BC

)
= εv,s for odd s, and

Iρ(s)

(
Y1 : XXAC

)
= Iμ(s)

(
YN(v) : XXAC

)
= εv,s

for even s.
Now, we apply Lemma IV.2. Since TrX1Y1

(
ι
v,(�)
X1Y1C

)
=

ι
v,(�)
C and TrX1Y1

(
ιvX1Y1

⊗ μ(�)
C

)
= μ

(�)
C , we get

that
∥∥∥ιv,(�)C − μ(�)

C

∥∥∥
1
≤

∥∥∥ιv,(�)X1Y1C
− ιvX1Y1

⊗ μ(�)
C

∥∥∥
1
≤

4
√
2
∑�

s=1

√
εv,s.

We move on to the proof of the theorem now.

Proof of Theorem IV.1: Recall that

‖p0(XY )− u(XY )‖tv ≤ t2−(t−1) = o(1) from Claim

III.2, and using Lemma II.26, this already implies that∥∥∥o(�)C − μ(�)
C

∥∥∥
1
= o(1).

Let us turn to bounding Eu(v)

[∥∥∥ιv,(�)C − μ(�)
C

∥∥∥
1

]
. We first

show that under the fooling distribution u(XY ), the states of

the quantum protocol contain little information about XN(V )

and YN(V ). Then, applying Lemma IV.3 and appealing to

concavity will complete the proof similar to the classical

case.

Note that for any fixed edge e, it holds that u(e ∈
N(V )) = 2

t , and also recall that under u(XY ), the random

variables Xe (resp. Ye) and Xe′ (resp. Ye′ ) are mutually

independent for any two edges e and e′. Therefore, using

Proposition II.25 the state μ
(�)
X = ⊗

e
μ
(�)
Xe

(and similarly

μ
(�)
Y = ⊗

e
μ
(�)
Ye

). Hence, applying the quantum version of

Shearer’s inequality (Lemma II.24) and using Lemma II.28,

for every round s ≤ � we get that

Iμ(s)

(
XN(V ) : Y Y BC|V

)
≤ 2

t
· Iμ(s)

(
X : Y Y BC

)
≤ 4�

t
and

Iμ(s)

(
YN(V ) : XXAC|V

)
≤ 2

t
· Iμ(s)

(
Y : XXAC

)
≤ 4�

t
. (5)

Further using Lemma IV.3, concavity, and (5) we get

Eu(v)

[∥∥∥ιv,(�)C − μ(�)
C

∥∥∥
1

]
≤ 4

√
2 Eu(v)

[
�∑

s=1

√
εv,s

]

≤ 4
√
2

�∑
s=1

√
Eu(v)[εv,s]

= 4
√
2

�∑
s=1
s odd

√
Iμ(s)

(
XN(V ) : Y Y BC|V

)

+ 4
√
2

�∑
s=1
s even

√
Iμ(s)

(
YN(V ) : XXAC|V

)

≤ 4
√
2 · �

2

√
4�

t
+ 4
√
2 · �

2

√
4�

t
=

√
128�3

t
≤ ε

2
.

Using the triangle inequality, we get that for large enough

t, the following holds

Eu(v)

[∥∥∥ιv,(�)C − o(�)C

∥∥∥
1

]
≤ Eu(v)

[∥∥∥ιv,(�)C − μ(�)
C

∥∥∥
1

]
+
∥∥∥o(�)C − μ(�)

C

∥∥∥
1

≤ ε

2
+ o(1) ≤ ε.

We remark that the proof given above can be modified to

show the stronger result that the r-round quantum communi-

cation complexity of the sink function is Ω(max{t/r2, r}).
We briefly sketch the modifications necessary, but do not

attempt a formal proof here. First note that for ease of

presentation, so far we used the communication model where

the size of the channel remains fixed; one can do this without

loss of generality if one does not care about rounds, but to

properly define bounded-round quantum protocols one has

to consider a different communication model where the size

of the channel register can be different in different rounds. In

this model, one can still show that the corresponding infor-

mation quantities in Lemma II.28 remain upper bounded by
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twice the total communication until that point. Moreover,

Lemma IV.2 also remains valid in this model (this is the

model considered in [ATYY17]). Then, proceeding as in the

proof of Theorem IV.1, one upper bounds the trace distance

between the corresponding final states by O(r
√
�/t), where

� is the total communication of the protocol. Because that

distance is Ω(1) for a good protocol, we obtain � = Ω(t/r2).
Since at least one qubit must be communicated per round,

we also have � = Ω(r).

V. FUTURE WORK

One obvious remaining open problem is to close the gap

between the current lower bound of Ω(t1/3) on the quantum

communication complexity of the sink function, and the best

known upper bound of Õ(
√
t). We conjecture the upper

bound is essentially tight. One way to improve our lower

bound would be to improve Lemma IV.3, maybe with a

different distance measure.
The main question left open by this work, as well as

by [CMS19], [ABT19], is of course the status of the (non-

approximate) log-rank conjecture itself. The proof that the

sink function has low approximate rank crucially uses the

fact that the identity matrix has low approximate rank (which

follows from the fact that the equality function has low

randomized communication complexity). In contrast, the

actual (non-approximate) rank of the identity matrix is as

large as its dimension. Accordingly, it is not so clear what

examples like the sink function suggest for the status of the

log-rank conjecture itself. We are not sure what to conjecture

about that conjecture.
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APPENDIX

Lemma III.3 (Lemma 4.3 in [RS15]). Given a probability
space q, if A,B ∈ [r] are uniform and independent random
variables, and A−C −B, then q(C)

ε≈ q(C|A = B), with
ε = 2 3

√
Iq (C : A) + 2 3

√
Iq (C : B).

Proof: We assume Iq (C : A) , Iq (C : B) ≤ 1, since

otherwise the lemma is trivially true. For brevity, set

α3 = Iq (C : A) = E
q(c)

[D (q(A|c) || q(A))] and

β3 = Iq (C : B) = E
q(c)

[D (q(B|c) || q(B))] .

Call c bad if D (q(A|c) || q(A)) ≥ α2 or

D (q(B|c) || q(B)) ≥ β2, and good otherwise. By

Markov’s inequality, the probability that C is bad is at most

α+ β. To prove Lemma III.3, we need the following claim

proved in [GKR16]. For completeness, we include the short

proof after finishing the proof of Lemma III.3.

Claim A.1. Given independent random variables
A∗, B∗ ∈ [r] in a probability space q, if A∗ is γ1-
close to uniform, and B∗ is γ2-close to uniform, then

q(A∗ = B∗) ≥ 1− γ1 − γ2
r

.

When c is good, Pinsker’s inequality (Proposition II.6)

implies that conditioned on c, A is α-close to uniform and

B is β-close to uniform. Then, since A−C−B, using Claim

A.1 (with A∗ = A and B∗ = B in the probability space q
conditioned on c) implies that q(A = B|c) ≥ 1−α−β

r . Since

q(A = B) = 1
r , we have that for a good c,

q(c|A = B) =
q(c) · q(A = B|c)

q(A = B)
≥ (1− α− β) · q(c).

(6)

For any event Q, (6) implies that

q(C ∈ Q)− q(C ∈ Q|A = B)

≤
∑

c∈Q,c bad

q(c) +
∑

c∈Q,c good

(q(c)− q(c|A = B))

≤ q(C is bad) +
∑
c

q(c)(α+ β)

≤ α+ β +
∑
c

q(c)(α+ β) ≤ 2α+ 2β,

and since ‖q(C)− q(C|A = B)‖tv = maxQ(q(C ∈ Q) −
q(C ∈ Q|A = B)) we get the required upper bound on

statistical distance.
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Proof of Claim A.1: For each i, let q(A∗ = i) = 1
r +αi

and q(B∗ = i) = 1
r + βi. Then,

∑
i αi =

∑
i βi = 0, and

αi, βi ≥ − 1
r . Using these facts,

q(A∗ = B∗) =
∑
i

(
1

r
+ αi

)(
1

r
+ βi

)
=

1

r
+

∑
i αi

r
+

∑
i βi
r

+
∑
i

αiβi

=
1

r
+
∑
i

αiβi.

To lower bound the above, we will only consider the negative

terms in the summation:

q(A∗ = B∗) ≥ 1

r
+

∑
i:αi>0,βi<0

αiβi +
∑

i:αi<0,βi>0

αiβi

≥ 1

r
− 1

r

∑
i:αi>0

αi −
1

r

∑
i:βi>0

βi.

From Proposition II.1, it follows that
∑

i:αi>0 αi is the

statistical distance γ1 between A∗ and the uniform distribu-

tion on [r] and likewise for B∗. So we get

q(A∗ = B∗) ≥ 1− γ1 − γ2
r

.

Lemma IV.2 (Lemma 3.6 in [ATYY17]). Let X = X1X2

and Y = Y1Y2 be random variables where X,Y ∈ {0, 1}n.
Let u′(XY ) be the uniform distribution on XY and let
q(XY ) = u′(XY |X1 = Y1) be another distribution. For
every s ≤ r, let ρ(s) and σ(s) denote the state of a quantum
protocol after s rounds on distributions u′(XY ) and q(XY )
respectively. If for every s ≤ r, we have

Iρ(s)

(
X1 : Y Y BC

)
≤ εs for odd s, and

Iρ(s)

(
Y1 : XXAC

)
≤ εs for even s,

then it holds that∥∥∥σ(r)
X1Y1C

− σ(r)
X1Y1

⊗ ρ(r)C

∥∥∥
1
≤ 4

√
2

r∑
s=1

√
εs.

To simplify the notation in the proof, define R =
X2X2Y2Y2AB, and X ′1 = X1X1, Y ′1 = Y1Y1, X ′2 = X2X2

and Y ′2 = Y2Y2. Furthermore, we will use boldface letters to

denote different classical registers with the same dimensions,

for example X′1 = X1X1 will denote an independent

register of the same dimension as X ′1. One should think of

the boldface registers as a relabeling of the original registers

but they will be needed since we will consider states like

|σ(r)〉X′1Y ′1 ⊗ |ρ(r)〉X′1Y′1RC .

Also, note that if we have two unitaries UXA and VXB

that both have a classical register X as control, then UXA

and VXB commute (recall our convention that we omit

to write tensor product with the identity operator on the

remaining spaces).

Proof of Lemma IV.2:
We will bound∥∥∥σ(r)

X1Y1C
− σ(r)

X1Y1
⊗ ρ(r)C

∥∥∥
1

(7)

≤ 2
√
2 h
(
σ
(r)
X1Y1C

, σ
(r)
X1Y1

⊗ ρ(r)C

)
= 2

√
2 min

˜U
h
(
Ũ |σ(r)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 ,(8)

|σ(r)〉X′1Y ′1 ⊗ |ρ
(r)〉X′1Y′1RC

)
where the inequality used Proposition II.13, and the equality

follows from Uhlmann’s theorem (Proposition II.15) with Ũ
ranging over all unitaries acting on X1Y 1X

′
1Y

′
1R. Notice

that apart from X1Y 1R, we also need the boldface registers

to make the state σ
(r)
X1Y1

⊗ ρ(r)C a pure state. Also, note that

|ρ(r)〉X′1Y ′1 and |σ(r)〉X′1Y ′1 remain the same throughout all

rounds, so we will drop the superscript r for these states.

To upper bound the right-hand side in (7), we will exhibit

a unitary Ũ so that the Hellinger distance is small. Let us

first note that since u′(X1) = q(X1), using Proposition

II.16, there exists a unitary WX1Y ′1 with X1 as a control

register such that WX1Y ′1 |ρ〉X′1 |ρ〉Y ′1 = |σ〉X′1Y ′1 . Similarly,

since u′(Y1) = q(Y1) there exists a similar unitary WX′1Y1

with Y1 as a control (we will use the same letter to denote

them since the subscripts will make the registers clear).

We first claim that

Claim A.2. There exist unitaries V (s)

X1X′1X
′
2A

for odd s, and

V
(s)

Y 1Y′1Y
′
2B

for even s with V
(0)

Y 1Y′1Y
′
2B

= IY 1Y′1Y
′
2B

, such
that

h
(
V

(s)

X1X′1X
′
2A
WX1Y ′1 |ρ

(s)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 ,

|ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1
)
≤ √εs for odd s, and

h
(
V

(s)

Y 1Y′1Y
′
2B
WX′1Y1

|ρ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 ,

|ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1
)
≤ √εs for even s.

Below we will drop the registers when we are writing

states over all the registers X ′1Y
′
1RCX

′
1Y

′
1. We will also

drop the registers from the unitaries V (s) since their indices

(whether odd or even) will describe the corresponding reg-

isters they act on, unless we need to emphasize it.

Let us define

|θ(s)〉 = V (s)V (s−1)|σ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 and

|λ(s)〉 = |ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 . (9)

Then, we will prove by induction that for every round s, the

following holds:

Claim A.3. h
(
|θ(s)〉, |λ(s)〉

)
≤ δs where δs =

√
εs +√

εs−1 + 2
∑s−2

i=1

√
εi.

For s = r, Claim A.3 implies that the unitary V (r)V (r−1)

is a particular unitary acting on X1Y 1X
′
1Y

′
1R for which the
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right-hand side in (7) is small, so taking Ũ to be V (r)V (r−1)

in (7),∥∥∥σ(r)
X1Y1C

− σ(r)
X1Y1

⊗ ρ(r)C

∥∥∥
1

≤ 2
√
2

(
√
εr +

√
εr−1 + 2

r−2∑
s=1

√
εs

)
≤ 4

√
2

(
r∑

s=1

√
εs

)
.

This completes the proof of Lemma IV.2 assuming the

claims.

We next prove Claims A.2 and A.3 in order.

Proof of Claim A.2: We will only prove the first

inequality as the second one is analogous. From the as-

sumption that Iρ(s)

(
X1 : Y Y BC

)
≤ εs it also follows that

Iρ(s) (X1 : Y′1Y
′
2BC) ≤ εs since we are just relabeling the

Y ′1 registers to Y′1 (recall Y ′1 = Y1Y 1). Using Proposition

II.23,

h
(
ρ
(s)
X1Y′1Y

′
2BC , ρ

(s)
Y′1Y

′
2BC ⊗ ρX1

)
≤
√
Iρ(s) (X1 : Y′1Y

′
2BC) ≤

√
εs.

Recalling that R = X2X2Y2Y2AB and using Uhlmann’s

Theorem (Proposition II.15), there exists a unitary

V
(s)

X1X′1X
′
2A

such that

√
εs ≥ h

(
V

(s)

X1X′1X
′
2A
|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1 ,

|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1
)

= h
(
V

(s)

X1X′1X
′
2A
|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1 ⊗ |ρ〉Y ′1 ,

|ρ(s)〉X′1Y′1RC ⊗ |ρ〉X′1 ⊗ |ρ〉Y ′1
)

= h
(
V

(s)

X1X′1X
′
2A
WX1Y ′1 |ρ

(s)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 ,

|ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1
)
,

where in the last equality we multiplied both states by

the unitary WX1Y ′1 and used that WX1Y ′1 |ρ〉X′1 ⊗ |ρ〉Y ′1 =

|σ〉X′1Y ′1 as well as the fact that WX1Y ′1 and V
(s)

X1X′1X
′
2A

commute (disjoint registers).

Proof of Claim A.3: Base case s = 1: Recall that V (0)

is the identity. Let WX1Y ′1 be the unitary that satisfies

WX1Y ′1 |ρ〉X′1Y ′1 = |σ〉X′1Y ′1 as before. Then, since u′(X) =
q(X) and q(Y1Y2) = q(Y1)q(Y2) and q(Y2) = u′(Y2), it

follows from Proposition II.25 that WX1Y ′1 |ρ(1)〉X′1Y ′1RC =

|σ(1)〉X′1Y ′1RC (recall that R = X2X2Y2Y2AB). Using this

and the fact that |ρ(1)〉X′1Y′1RC = |ρ(1)〉X′1RC ⊗ |ρ〉Y′1 and

|ρ〉X′1Y ′1 = |ρ〉X′1 ⊗ |ρ〉Y ′1 , we get

WX1Y ′1 |ρ
(1)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1

=WX1Y ′1 |ρ
(1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

= |σ(1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 . (10)

Furthermore, by the definition of |θ(1)〉 and |λ(1)〉 with

equations (9) and (10) above, it follows that

h
(
|θ(1)〉, |λ(1)〉

)
= h
(
V

(1)

X1X′1X
′
2A
WX1Y ′1 |ρ

(1)〉X′1Y′1RC ⊗ |ρ〉X′1Y ′1 ,

|ρ(1)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 ≤
√
ε1
)
,

where we used (10) to show that |θ(1)〉 equals the first state

in the middle expression and the inequality follows from

Claim A.2. This proves the base case.

Induction: For the induction let us assume that s is

even (since the case for odd s is similar) and that

h
(
|θ(s−1)〉, |λ(s−1)〉

)
≤ δs−1. Using the triangle inequality

we bound

h
(
|θ(s)〉, |λ(s)〉

)
≤ h

(
|θ(s)〉, |ω(s)〉

)
+ h

(
|ω(s)〉, |π(s)〉

)
+ h

(
|π(s)〉, |λ(s)〉

)
, (11)

where

|ω(s)〉 = V (s)U
(s)
Y BC

(
V (s−2)

)†
|λ(s−1)〉, and

|π(s)〉 = V (s)WX′1Y1
|ρ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 , (12)

with U
(s)
Y BC being the protocol unitary with Y as control

that Bob applies in round s. Note that from the definition

of the protocol we have that

|σ(s)〉X′1Y ′1RC = U
(s)
Y BC |σ(s−1)〉X′1Y ′1RC . (13)

Let us consider the first term in (11). Since Hellinger

distance is unitarily invariant, we multiply both states with

V (s−2)
(
U

(s)
Y BC

)†(
V (s)

)†
and using (9), (12) and (13), we

get that

h
(
|θ(s)〉, |ω(s)〉

)
(12)
= h

(
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
|θ(s)〉, |λ(s−1)〉

)
= h

(
|θ(s−1)〉, |λ(s−1)〉

)
≤ δs−1,

where we used that the first state in the middle expression

equals |θ(s−1)〉:

V (s−2)
(
U

(s)
Y BC

)†(
V (s)

)†
|θ(s)〉

(9)
= V (s−2)

(
U

(s)
Y BC

)†
V (s−1)|σ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

(13)
= V (s−2)V (s−1)|σ(s−1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1
= V (s−1)V (s−2)|σ(s−1)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1

(9)
= |θ(s−1)〉,
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with the second equality using (13) and the fact that U
(s)
Y BC

and V
(s−1)

X1X′1X
′
2A

commute, and the third equality using that

V
(s−1)

X1X′1X
′
2A

and V
(s−2)

Y 1Y′1Y
′
2B

commute.

To bound the second term, notice that by the definition of

the protocol |ρ(s−1)〉X′1Y′1RC = U
(s−1)
X1X2AC |ρ(s−2)〉X′1Y′1RC

(recall R = X2X2Y2Y2AB) and therefore using (12) and

(9), it follows that

|ω(s)〉 = V (s)U
(s)
Y BC(V

(s−2))
†
U

(s−1)
X′1X2AC |ρ(s−2)〉X′1Y′1RC

⊗ |σ〉X′1Y ′1 . (14)

Now multiplying both states by the unitary Q =(
U

(s−1)
X1X2AC

)†
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
and again using

unitary invariance of Hellinger, we get that

h
(
|ω(s)〉, |π(s)〉

)
= h

(
Q|ω(s)〉, Q|π(s)〉

)
(14)
= h

(
|ρ(s−2)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1 ,
V (s−2)|ρ(s−2)〉X′1Y ′1RC ⊗ |σ〉X′1Y′1

)
≤ √εs−2,

where the inequality follows from Claim A.2 and we sim-

plified the second state Q|π(s)〉 using commutativity of

the pairs

{(
V

(s−2)

Y 1Y′1Y
′
2B

)†
,
(
U

(s−1)
X1X2AC

)†}
(disjoint regis-

ters),

{(
U

(s)
Y BC

)†
,WX′1Y1

}
(disjoint registers except for

both being controlled on the shared register Y1), and{(
U

(s−1)
X1X2AC

)†
,WX′1Y1

}
(disjoint registers) as follows:

Q|π(s)〉 =
(
U

(s−1)
X1X2AC

)†
V (s−2)

(
U

(s)
Y BC

)†(
V (s)

)†
|π(s)〉

(12)
= V (s−2)

(
U

(s−1)
X1X2AC

)† (
U

(s)
Y BC

)†
WX′1Y1

|ρ(s)〉X′1Y ′1RC

⊗ |ρ〉X′1Y′1
= V (s−2)

(
U

(s−1)
X1X2AC

)†
WX′1Y1

(
U

(s)
Y BC

)†
|ρ(s)〉X′1Y ′1RC

⊗ |ρ〉X′1Y′1
= V (s−2)WX′1Y1

(
U

(s−1)
X1X2AC

)†
|ρ(s−1)〉X′1Y ′1RC

⊗ |ρ〉X′1Y′1
= V (s−2)WX′1Y1

|ρ(s−2)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 .
To upper bound the third term of (11), by the definition

of states |π(s)〉 and |λ(s)〉 (equations (12) and (9)) and

Claim A.2, we get

h
(
|π(s)〉, |λ(s)〉

)
= h
(
V (s)WX′1Y1

|ρ(s)〉X′1Y ′1RC ⊗ |ρ〉X′1Y′1 ,
|ρ(s)〉X′1Y′1RC ⊗ |σ〉X′1Y ′1

)
≤ √εs.

Plugging the bounds for each of the terms back in (11),

we get that

h
(
|θ(s)〉, |ω(s)〉

)
≤ δs−1 +

√
εs−2 +

√
εs

=
√
εs +

√
εs−1 + 2

s−2∑
i=1

√
εi = δs.
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