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∗Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

† Charles University in Prague, Czechia
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Abstract—We consider the classic Facility Location, k-
Median, and k-Means problems in metric spaces of constant
doubling dimension. We give the first nearly linear-time ap-
proximation schemes for each problem, making a significant
improvement over the state-of-the-art algorithms.

Moreover, we show how to extend the techniques used to get
the first efficient approximation schemes for the problems of
prize-collecting k-Medians and k-Means, and efficient bicriteria
approximation schemes for k-Medians with outliers, k-Means
with outliers and k-Center.

I. INTRODUCTION

The k-Median and k-Means problems are classic clus-
tering problems that are highly popular for modeling the
problem of computing a “good” partition of a set of points
of a metric space into k parts so that points that are
“close” should be in the same part. Since a good cluster-
ing of a dataset allows to retrieve information from the
underlying data, the k-Median and k-Means problems are
the cornerstone of various approaches in data analysis and
machine learning. The design of efficient algorithms for
these clustering problems has thus become an important
challenge.

The input for the problems is a set of points in a metric
space and the objective is to identify a set of k centers C
such that the sum of the pth power of the distance from each
point of the metric to its closest center in C is minimized.
In the k-Median problem, p is set to 1 while in the k-Means
problem, p is set to 2. In general metric spaces both problems
are known to be APX-hard, and this hardness even extends to
Euclidean spaces of any dimension d = Ω(log n) [5]. Both
problems also remain NP-hard for points in R

2 [33]. For k-
Center, the goal is to minimize the maximum distance from
each point in the metric to its closest center. This problem
is APX-hard even in Euclidean Spaces [17], and computing
a solution with optimal cost but (1 + ε)k centers requires

time at least Ω(n
√

1/ε) [30]. Therefore, to get an efficient
approximation scheme one needs to approximate both the
number of centers and the cost. (See Section I-C for more
related work).

To bypass these hardness of approximation results, re-
searchers have considered low-dimensional inputs like Eu-
clidean spaces of fixed dimension or more generally metrics
of fixed doubling dimension. There has been a large body

of work to design good tools for clustering in metrics of
fixed doubling dimension, from the general result of Tal-
war [37] to very recent coreset constructions for clustering
problems [23]. In their seminal work, Arora et al. [4] gave
a polynomial time approximation scheme (PTAS) for k-
Median in R

2, which generalizes to a quasi-polynomial
time approximation scheme (QPTAS) for inputs in R

d. This
result was improved in two ways. First by Talwar [37]
who generalized the result to any metric space of fixed
doubling dimension. Second by Kolliopoulos and Rao [25]
who obtained an f(ε, d) · n logd+6 n time algorithm for k-
Median in d-dimensional Euclidean space. Unfortunately,
Kolliopoulos and Rao’s algorithm relies on the Euclidean
structure of the input and does not immediately generalize
to low dimensional doubling metric. Thus, until recently
the only result known for k-Median in metrics of fixed
doubling dimension was a QPTAS. This was also the case for
slightly simpler problems such as Uniform Facility Location.
Moreover, as pointed out in [12], the classic approach of
Arora et al. [4] cannot work for the k-Means problem.
Thus no efficient algorithms were known for the k-Means
problem, even in the plane.

Recently, Friggstad et al. [19] and Cohen-Addad et al. [13]
showed that the classic local search algorithm for the prob-
lems gives a (1 + ε)-approximation in time n1/εO(d)

in
Euclidean space, in time nO(1/ε2) for planar graphs (which
also extends to minor-free graphs), and in time n(d/ε)O(d)

in metrics of doubling dimension d [19]. More recently
Cohen-Addad [12] showed how to speed up the local search
algorithm for Euclidean space to obtain a PTAS with running
time nk(log n)(d/ε)

O(d)

.
Nonetheless, obtaining an efficient approximation scheme

(namely an algorithm running in time f(ε, d)poly(n)) for k-
Median and k-Means in metrics of doubling dimension d has
remained a major challenge.

The versatility of the techniques we develop to tackle
these problems allows us to consider a broader setting, where
the clients do not necessarily have to be served. In the prize-
collecting version of the problems, every client has a penalty
cost that can be paid instead of its serving cost. In the k-
Median (resp. k-Means) with outliers problems, the goal
is to serve all but z clients, and the cost is measured on
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the remaining ones with the k-Median (resp. k-Means) cost.
These objectives can help to handle some noise from the
input: the k-Median objective can be dramatically perturbed
by the addition of a few distant clients, which must then be
discarded.

A. Our Results

We solve this open problem by proposing the first near-
linear time algorithms for the k-Median and k-Means
problems in metrics of fixed doubling dimension. More
precisely, we show the following theorems, where we let
f(ε) = (1/ε)1/ε.

Theorem I.1. For any 0 < ε < 1/3, there exists a
randomized (1 + ε)-approximation algorithm for k-Median
in metrics of doubling dimension d with running time

f(ε)2
O(d2)

n log4 n + 2O(d)n log9 n and success probability
at least 1− ε.
Theorem I.2. For any 0 < ε < 1/3, there exists a
randomized (1 + ε)-approximation algorithm for k-Means
in metrics of doubling dimension d with running time

f(ε)2
O(d2)

n log5 n + 2O(d)n log9 n and success probability
at least 1− ε.

Our results also extend to the Facility Location problem,
in which no bound on the number of opened centers is given,
but each center comes with an opening cost. The aim is to
minimize the sum of the (1st power) of the distances from
each point of the metric to its closest center, in addition to
the total opening costs of all used centers.

Theorem I.3. For any 0 < ε < 1/3, there exists a
randomized (1 + ε)-approximation algorithm for Facility
Location in metrics of doubling dimension d with running

time f(ε)2
O(d2) ·n+2O(d)n log n and success probability at

least 1− ε.
In all these theorems, we make the common assumption

to have access to the distances of the metric in constant time,
as, e.g., in [22], [15], [20]. This assumption is discussed in
Bartal et al. [7].

Note that the double-exponential dependence on d is
unavoidable unless P = NP, since the problems are APX-
hard in Euclidean space of dimension d = O(log n). For
Euclidean inputs, our algorithms for the k-Means and k-
Median problems outperform the ones of Cohen-Addad [12],
removing in particular the dependence on k, and the one of
Kolliopoulos and Rao [25] when d > 3, by removing the
dependence on logd+6 n. Interestingly, for k = ω(log9 n)
our algorithm for the k-Means problem is faster than popular
heuristics like k-Means++ which runs in time O(nk) in
Euclidean space.

We note that the success probability can be boosted to
1−εδ by repeating the algorithm log δ times and outputting
the best solution encountered.

After proving the three theorems above, we will apply the
techniques to prove the following ones. We say an algorithm
is an (α, β)-approximation for k-Medians or k-Means with
outliers if its cost is within an α factor of the optimal one
and the solution drops βz outliers. Similarly, an algorithm
is an (α, β)-approximation for k-Center if its cost is within
an α factor of the optimal one and the solution opens βk
centers.

Theorem I.4. For any 0 < ε < 1/3, there exists a random-
ized (1 + ε)-approximation algorithm for Prize-Collecting
k-Median (resp. k-Means) in metrics of doubling dimension

d with running time f(ε)2
O(d2)

n log4 n+2O(d)n log9 n and
success probability at least 1− ε.
Theorem I.5. For any 0 < ε < 1/3, there exists a
randomized (1+ε, 1+O(ε))-approximation algorithm for k-
Median (resp. k-Means) with outliers in metrics of doubling

dimension d with running time f(ε)2
O(d2)

n log6 n + T (n)
and success probability at least 1 − ε, where T (n) is the
running time to construct a constant-factor approximation.

We note as an aside that our proof of Theorem I.5 could
give an approximation where at most z outliers are dropped,
but (1 + O(ε))k centers are opened. For simplicity, we
focused on the previous case.

Theorem I.6. For any 0 < ε < 1/3, there exists a
randomized (1 + ε, 1 + O(ε))-approximation algorithm for
k-Center in metrics of doubling dimension d, with running

time f(ε)2
O(d2)

n log6 n+n log k and success probability at
least 1− ε.

As explained above, this bicriteria is necessary in order
to get an efficient algorithm: it is APX-hard to approximate
the cost [17], and achieving the optimal cost with (1 + ε)k
centers requires a complexity Ω(n1/

√
ε) [30].

B. Techniques

To give a detailed insight on our techniques and our
contribution we first need to quickly review previous ap-
proaches for obtaining approximation schemes on bounded
doubling metrics. The general approach, due to Arora [3]
and Mitchell [36], which was generalized to doubling met-
rics by Talwar [37], is the following.

1) Previous Techniques: The approach consists in ran-
domly partitioning the metric into a constant number of
regions, and applying this recursively to each region. The
recursion stops when the regions contain only a constant
number of input points. This leads to what is called a split-
tree decomposition: a partition of the space into a finer and
finer level of granularity. The reader who is not familiar
with the split-tree decomposition of Talwar may refer to
Section II-B for a more formal introduction.

Portals: The approach then identifies a specific set of
points for each region, called portals, which allows to show
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that there exists a near-optimal solution such that different
regions “interplay” only through portals. For example, in
the case of the Traveling Salesperson (TSP) problem, it is
possible to show that there exists a near-optimal tour that
enters and leaves a region only through its portals. In the
case of the k-Median problem a client located in a specific
region can be assigned to a facility in a different region only
through a path that goes to a portal of the region. In other
words, clients can “leave” a region only through the portals.

Proving the existence of such a structured near-optimal
solution relies on the fact that the probability that two very
close points end up in different regions of large diameter
is very unlikely. Hence the expected detour paid by going
through a portal of the region is small compared to the
original distance between the two points, if the portals are
dense enough.

For the sake of argument, we provide a proof sketch of the
standard proof of Arora [3]. We will use a refined version of
this idea in later sections. The split-tree recursively divides
the input metric (V, dist) into parts of smaller and smaller
diameter. The root part consists of the entire point set and
the parts at level i are of diameter roughly 2i. The set of
portals of a part of level i is an ε02i-net for some ε0, which
is a small set such that every point of the metric is at distance
at most ε02i to it. Consider two points u, v and let us bound
the expected detour incurred by connecting u to v through
portals. This detour is determined by a path that starting
from u at the lowest level, in each step connects a vertex
w to its closest net point of the part containing w on the
next higher level. This is done until the lowest-level part
Ru,v (i.e., the part of smallest diameter) is reached, which
contains both u and v, from where a similar procedure leads
from this level through portals of smaller and smaller levels
all the way down to v. If the level of Ru,v is i then the
detour, i.e., the difference between dist(u, v) and the length
of the path connecting u and v through portals, is O(ε02

i)
by the definition of the net. Moreover, the proof shows that
the probability that u and v are not in the same part on
level i is at most dist(u, v)/2i. Thus, the expected detour for
connecting u to v is

∑
level i Pr[Ru,v is at level i]·O(ε02

i) =∑
level iO(ε0dist(u, v)). Hence, setting ε0 to be some ε

divided by the number of levels yields that the expected
detour is O(εdist(u, v)).

Dynamic programming: The portals now act as separa-
tors between different parts and allows to apply a dynamic
programming (DP) approach for solving the problems. The
DP consists of a DP-table entry for each part and for each
configuration of the portals of the part. Here a configuration
is a potential way the near-optimal solution interacts with
the part. For example, in the case of TSP, a configuration
is the information at which portal the near-optimal tour
enters and leaves and how it connects the portals on the
outside and inside of the part. For the k-Median problem, a
configuration stores how many clients outside (respectively

inside) the part connect through each portal and are served
by a center located inside (respectively outside). Then the
dynamic program proceeds in a bottom-up fashion along
the split-tree to fill up the DP table. The running time of the
dynamic program depends exponentially on the number of
portals.

How many portals?: The challenges that need to be
overcome when applying this approach, and in particular to
clustering problems, are two-fold. First the “standard” use of
the split-tree requires O(( log nε )d) portals per part in order
to obtain a (1 + ε)-approximation, coming from the fact
that the number of levels can be assumed to be logarithmic
in the number of input points. This often implies quasi-
polynomial time approximation schemes since the running
time of the dynamic program has exponential dependence on
the number of portals. This is indeed the case in the original
paper by Talwar [37] and in the first result on clustering
in Euclidean space by Arora et al. [4]. However, in some
cases, one can lower the number of portals per part needed.
In Euclidean space for example, the celebrated “patching
lemma” [2] shows that only a constant number (depending
on ε) of portals are needed for TSP. Similarly, Kolliopoulos
and Rao [25] showed that for k-Median in Euclidean space
only a constant number of portal are needed, if one uses a
slightly different decomposition of the metric.

Surprisingly, obtaining such a result for doubling metrics
is much more challenging. To the best of our knowledge,
this work is the first one to reduce the number of portals to
a constant.

A second challenge when working with split-tree decom-
positions and the k-Means problem is that because the cost
of assigning a point to a center is the squared distance, the
analysis of Arora, Mitchell, and Talwar does not apply. If
two points are separated at a high level of the split-tree, then
making a detour to the closest portal may incur an expected
cost much higher than the cost of the optimal solution.

2) Our Contributions: Our contribution can be viewed as
a “patching lemma” for clustering problems in doubling met-
rics. Namely, an approach that allows to solve the problems
mentioned above: (1) it shows how to reduce the number of
portals to a constant, similar to the one given by the patching
lemma for TSP, (2) it works for any clustering objective
which is defined as the sum of distances to some constant
p (with k-Median and k-Means as prominent special cases),
and (3) it works not only for Euclidean but also for doubling
metrics.

Our starting point is the notion of badly cut vertices
of Cohen-Addad [11] for the capacitated version of the
above clustering problems. To provide some intuition on
the definition, let us start with the following observation:
consider a center f of the optimal solution and a client
c assigned to f . If the diameter of the lowest-level part
containing both f and c is of order dist(c, f) (say at most
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Figure 1: Illustration of badly cut. The black point is c
(resp. l), the gray one is L(c) (resp. f0), and the blue point
is q. The dashed line is the boundary of a part with “large”
diameter.

dist(c, f)/ε2), then by taking a large enough but constant
size net as a set of portals in each part (say an ε32i-net for
a part of level i), the total detour for the two points is at
most O(εdist(c, f)), which is acceptable.

The problematic scenario is when the lowest-level part
containing f and c is of diameter much larger than dist(c, f).
In this case, it is impossible to afford a detour proportional
to the diameter of the part in the case of the k-Medians and
k-Means objective. To handle this case we first compute a
constant approximation L (via some known algorithm) and
use it to guide us towards a (1 + ε)-approximation.

Badly cut clients and facilities: Consider a client c and
the center L(c) serving c in L (i.e., L(c) is closest to c
among the centers in L), and call OPT(c) the facility of an
optimum solution OPT that serves c in OPT. We say that
c is badly cut if there is a point q in the ball centered at
c of radius dist(c, L(c))/ε such that the highest-level part
containing c and not q is of diameter much larger than
dist(c, L(c))/ε (say greater than dist(c, L(c))/ε3). In other
words, there is a point q in this ball such that paying a detour
through the portal to connect c to q yields a detour larger
than εdist(c, q) (see Fig. 1).

Similarly, we say that a center l is badly cut if there is a
point q in the ball centered at l of radius dist(l, f0) (where
f0 is the facility of OPT that is the closest to l) such that
the highest-level part containing l and not q is of diameter
dist(l, f0)/ε2. The crucial property here is that any client c
or any facility l is badly cut with probability O(ε3), as we
will show.

Using the notion of badly cut: We now illustrate how
this notion can help us. Assume for simplicity that OPT(c)
is in the ball centered at a client c of radius dist(c, L(c))/ε
(if this is not the case then dist(c,OPT(c)) is much larger
than dist(c, L(c)), so this is a less problematic scenario
and a simple idea can handle it). If c is not badly cut,
then the lowest-level part containing both c and OPT(c) is
of diameter not much larger than dist(c, L(c))/ε. Taking a

sufficiently fine net for each part (independent of the number
of levels) allows to bound the detour through the portals to
reach OPT(c) from c by at most εdist(c, L(c)). Since L is
an O(1)-approximation, this is fine.

If c is badly cut, then we modify the instance by relocating
c to L(c). That is, we will work with the instance where
there is no more client at c and there is an additional client
at L(c). We claim that any solution in the modified instance
can be lifted to the original instance at an expected additional
cost of O(ε3OPT). This comes from the fact that the cost
increase for a solution is, by the triangle inequality, at most
the sum of distances of the badly cut clients to their closest
facility in the local solution. This is at most O(ε3OPT) in
expectation since each client is badly cut with probability at
most O(ε3) and L is an O(1)-approximation.

Here we should ask, what did we achieve by moving c
to L(c)? Note that c should now be assigned to facility f
of OPT that is the closest to L(c). So we can make the
following observation: If L(c) is not badly cut, then the
detour through the portals when assigning c to f is fine
(namely at most ε times the distance from L(c) to its closest
facility in OPT). Otherwise, if L(c) is also badly cut, then we
simply argue that there exists a near-optimal solution which
contains L(c), in which case c is now served optimally at a
cost of 0 (in the new instance).

From bicriteria to opening exactly k centers: Since
L(c) is badly cut with probability O(ε3), this leads to a
solution opening (1 + O(ε3))k centers. At first, it looks
difficult to then reduce the number of centers to k without
increasing the cost of the solution by a factor larger than
(1 + ε). However, and perhaps surprisingly, we show in
Lemma IV.6 that this can be avoided: we show that there
exists a near-optimal solution that contains the badly cut
centers of L(c).

We can then conclude that a near-optimal solution can be
computed by a simple dynamic-programming procedure on
the split-tree decomposition to identify the best solution in
the modified instance.

Our result on Facility Location in Section III provides a
simple illustration of these ideas — avoiding the bicriteria
issue due to the hard bound on the number of opened
facilities for the k-Median and k-Means problems. Our main
result on k-Median and k-Means is described in Section IV.
We discuss some extensions of the framework in Section V.

C. Related work

On clustering problems: The clustering problems con-
sidered in this paper are known to be NP-hard, even re-
stricted to inputs lying in the Euclidean plane (see Mahajan
et al. [29] or Dasgupta and Freund [16] for k-Means,
Megiddo and Supowit [34] for the problems with outliers,
and Masuyama et al. [31] for k-Center). The problems of
Facility Location and k-Median have been studied since
a long time in graphs, see e.g. [24]. The current best
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approximation ratio for metric Facility Location is 1.488,
due to Li [27], whereas it is 2.67 for k-Median, due to Byrka
et al. [8].

The problem of k-Means in general graphs also received
a lot of attention (see e.g., Kanungo et al. [24]) and the best
approximation ratio is 6.357, due to Ahmadian et al. [1].

Clustering problems with outliers where first studied by
Charikar et al. [10], who devised an (O(1), (1 + O(ε))-
approximation for k-Median with outliers and a constant
factor approximation for prize-collecting k-Median. More
recently, Friggstad et al. [18] showed that local search
provides a bicriteria approximation, where the number of
centers is approximate instead of the number of outliers.
However, the runtime is nf(ε,d), and thus we provide a much
faster algorithm. To the best of our knowledge, we present
the first approximation scheme that preserves the number of
centers.

The k-Center problem is known to be NP-hard to ap-
proximate within any factor better than 2, a bound that can
be achieved by a greedy algorithm [17]. This is related to
the problem of covering points with a minimum number of
disks (see e.g. [28], [30]). Marx and Pilipczuk [30] proposed
an exact algorithm running in time n

√
k+O(1) to find the

maximum number of points covered by k disks and showed
a matching lower bound, whereas Liao et al. [28] presented
an algorithm running in time O(mnO(1/ε2 log2 1/ε)) to find
a (1 + ε)-approximation to the minimal number of disks
necessary to cover all the points (where m is the total
number of disks and n the number of points). This problem
is closely related to k-Center: the optimal value of k-Center
on a set V is the minimal number L such that there exist
k disks of radius L centered on points of V covering all
points of V . Hence, the algorithm from [28] can be directly
extended to find a solution to k-Center with (1+ε)k centers
and optimal cost. Loosing on the approximation allows us
to present a much faster algorithm.

On doubling dimension: Despite their hardness in gen-
eral metrics, these problems admit a PTAS when the input
is restricted to a low dimensional metric space: Friggstad
et al. [19] showed that local search gives a (1 + ε)-
approximation. However, the running time of their algorithm
is n(d/ε)O(d)

in metrics with doubling dimension d.
A long line of research exists on filling the gap between

results for Euclidean spaces and metrics with bounded dou-
bling dimension. This started with the work of Talwar [37],
who gave QPTASs for a long list of problems. The com-
plexity for some of these problems was improved later on:
for the Traveling Salesperson problem, Gottlieb [20] gave a
near-linear time approximation scheme, Chan et al. [9] gave
a PTAS for Steiner Forest, and Gottlieb [20] described an
efficient spanner construction.

II. PRELIMINARIES

A. Definitions

Consider a metric space (V, dist). For a vertex v ∈ V and
an integer r ≥ 0, we let β(v, r) = {w ∈ V | dist(v, w) ≤ r}
be the ball around v with radius r. The doubling dimension
of a metric is the smallest integer d such that any ball of
radius 2r can be covered by 2d balls of radius r. We call
Δ the aspect-ratio (sometimes referred to as spread in the
literature) of the metric, i.e., the ratio between the largest
and the smallest distance.

Given a set of points called clients and a set of points
called candidate centers in a metric space, the goal of the k-
Median problem is to output a set of k centers (or facilities)
chosen among the candidate centers that minimizes the sum
of the distances from each client to its closest center. More
formally, an instance to the k-Median problem is a 4-tuple
(C,F, dist, k), where (C∪F, dist) is a metric space and k is
a positive integer. The goal is to find a set S ⊆ F such that
|S| ≤ k and

∑
c∈C minf∈S(dist(c, f)) is minimized. Let

n = |C∪F |. The k-Means problem is identical except from
the objective function which is

∑
c∈C minf∈S(dist(c, f))2.

In the Facility Location problem, the number of centers
in the solution is not limited but there is a cost wf for
each candidate center f and the goal is to find a solution S
minimizing

∑
c∈C minf∈S(dist(c, f)) +

∑
f∈S wf .

For those clustering problems, it is convenient to name the
center serving a client. For a client c and a solution S, we
denote S(c) the center closest to c, and Sc := dist(c, S(c))
the distance to it.

In this paper, we consider the case where the set of
candidate centers is part of the input. A variant of the k-
Median and k-Means problems in Euclidean metrics allows
to place centers anywhere in the space and specifies the
input size as simply the number of clients. We note that up
to losing a polylogarithmic factor in the running time, it is
possible to reduce this variant to our setting by computing
a set of candidate centers that approximate the best set of
centers in R

d [32].
A δ-net of V is a set of points X ⊆ V such that for all

v ∈ V there is an x ∈ X such that dist(v, x) ≤ δ, and for
all x, y ∈ X we have dist(x, y) > δ. A net is therefore a set
of points not too close to each other, such that every point
of the metric is close to a net point. The following lemma
bounds the cardinality of a net in doubling metrics.

Lemma II.1 (from Gupta et. al [21]). Let (V, d) by a metric
space with doubling dimension d and diameter Δ, and let
X be a δ-net of V . Then |X| ≤ 2d·�log2(Δ/δ)�.

Another property of doubling metrics that will be useful
for our purpose is the existence of low-stretch spanners with
a linear number of edges. More precisely, Har-Peled and
Mendel [22] showed that one can find a graph (called a
spanner) in the input metric that has O(n) edges such that
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distances in the graph approximate the original distances up
to a constant factor. This construction takes time 2O(d)n.
We will make use of these spanners only for computing
constant-factor approximations of our problems: for this
purpose, we will therefore assume that the number of edges
is m = 2O(d)n.

We will also make use the following lemma.

Lemma II.2 ([14]). Let p ≥ 0 and 1/2 > ε > 0. For any
a, b, c ∈ A ∪ F , we have dist(a, b)p ≤ (1 + ε)pdist(a, c)p +
dist(c, b)p(1 + 1/ε)p.

B. Decomposition of Metric Spaces

As pointed out in our techniques section, we will make
use of hierarchical decompositions of the input metric.
We define a hierarchical decomposition (sometimes simply
a decomposition) of a metric (V, dist) as a collection of
partitions D = {B0, . . . ,B|D|} that satisfies the following:

• each Bi is a partition of V ,
• Bi is a refinement of Bi+1, namely for each part B ∈ Bi

there exists a part B′ ∈ Bi+1 that contains B,
• B0 contains a singleton set for each v ∈ V , while B|D|

is a trivial partition that contains only one set, namely
V .

We define the ith level of the decomposition to be the
partition Bi, and call B ∈ Bi a level-i part. If B′ ∈ Bi−1 is
such that B′ ⊂ B, we say that B′ is a subpart of B.

For a given decomposition D = {B0, . . . ,B|D|}, we say
that a vertex u is cut from v at level j if j is the maximum
integer such that v is in some B ∈ Bj and u is in some
B′ ∈ Bj with B 	= B′. For a vertex v ∈ F we say that the
ball β(v, 2i) is cut by D at level j if there is at least one
vertex of the ball that is cut from v at level j.

A key ingredient for our result is the following lemma,
that introduces some properties of the hierarchical decom-
position (sometimes referred to as split-tree) proposed by
Talwar [37] for low-doubling metrics.

Lemma II.3 (Reformulation of [37], [6]). For any metric
(V, dist) of doubling dimension d and any ρ > 0, there
is a randomized hierarchical decomposition D such that
the diameter of a part B ∈ Bi is at most 2i+1, |D| ≤

log2(diam(V ))�, and:

1) Scaling probability: for any v ∈ V , radius r, and level
i, we have

Pr[D cuts β(v, r) at a level i] ≤ 22d+2r/2i.

2) Concise and precise portal set: For any set B ∈ Bi
where Bi ∈ D, there is a set of portals PB such that,

a) concise: |PB | ≤ 1/ρd; and

b) precise: for any ball β(v, r) ⊆ B cut by CT at level
i and pair of distinct sets B1, B2 ∈ Bi−1 on level
i − 1, we have for any u ∈ B1 ∩ β(v, r), and w ∈
B2 ∩ β(v, r),
min
p∈PB

{dist(u, p)+dist(p, w)} ≤ dist(u,w)+O(ρ2i).

Moreover, this decomposition can be found in time
(1/ρ)O(d)n logΔ.

C. Formal Definition of Badly Cut Vertices

As sketched in the introduction, the notion of badly cut
lies at the heart of our analysis. We define it formally here.
We denote κ(ε, p) = εp+2

(p+1)p and τ(ε, d) = 2d + 2 +

log log(1/ε)+ log(1/κ(ε, p)), two parameters that are often
used throughout this paper.

Definition II.4. Let (V, dist) be a doubling metric, let D be
a hierarchical decomposition on (V, dist), and a ε > 0. A
client v is badly cut w.r.t. D if there exists an integer i such
that 2i ∈ [εLv, Lv/ε] and β(v, 2i) is cut at some level j
greater than i+ τ(ε, d).

Similarly, a center f of L is badly cut w.r.t D if there exists
an integer i such that 2i ∈ [εOPTf ,OPTf/ε] and β(f, 2i)
is cut at some level j greater than i+ τ(ε, d), where OPTf
is the distance from f to the closest facility of OPT.

In the following, when D is clear from the context we
simply say badly cut. The following lemma bounds the
probability of being badly cut.

Lemma II.5. Let (C∪F, dist) be a metric, and D a random
hierarchical decomposition given by Lemma II.3. Let v be
a vertex in C ∪ F . The probability that v is badly cut is at
most κ(ε, p).

Proof: Consider first a vertex v ∈ C. By Property 1, the
probability that a ball β(v, 2i) is cut at level at least j is at
most 22d+22i/2j . Hence the probability that a ball β(v, 2i),
where 2i ∈ [ε2Lv, Lv/ε

2], is cut at a level j greater than i+
ḑ+log log(1/ε)+log(1/κ(ε, p)) is at most κ(ε,p)

4 log(1/ε) . Taking
a union bound over all balls of radius 2i such that i is an
integer and 2i ∈ [ε2Lv, Lv/ε

2] we have that the probability
that v is badly cut is at most 4 log(1/ε) · κ(ε,p)

4 log(1/ε) = κ(ε, p).
The proof for v ∈ F is identical.

D. Preprocessing

In the following, we will work with the slightly more
general version of the clustering problems where there is
some demand on each vertex: there is a function χ :
C → {1, . . . , n} and the goal is to minimize

∑
c∈C χ(c) ·

minf∈S dist(c, f) +
∑
f∈S wf for the Facility Location

problem, or
∑
c∈C χ(c) ·minf∈S dist(c, f) and

∑
c∈C χ(c) ·

minf∈S dist(c, f)2 for k-Median and k-Means respectively.
This also extends to any

∑
c∈C χ(c)·minf∈S dist(c, f)p with

constant p.
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We will preprocess the input instance to transform it into
several instances of the more general clustering problem, en-
suring that the aspect-ratio Δ of each instance is polynomial.
We defer this construction to Appendix A.

III. A NEAR-LINEAR TIME APPROXIMATION SCHEME

FOR NON-UNIFORM FACILITY LOCATION

To demonstrate the utility of the notion of badly cut, we
show how to use it to get a near-linear time approximation
scheme for Facility Location in metrics of bounded doubling
dimension. In this context we refer to centers in the set F
of the input as facilities.

We first show a structural lemma that allows to focus on
instances that do not contain any badly cut client. Then, we
prove that these instance have portal-respecting solutions
that are nearly optimal, and that can be computed with a
dynamic program. We conclude by providing a fast dynamic
program, that takes advantage of all the structure provided
before.

A. Structural Lemma

Let ε > 0, and consider a metric space (V, dist) and an
instance I of the Facility Location problem on (V, dist).
Namely, an instance whose client and candidate center sets
are subsets of V . Our first step is to show that, given I, a
randomized decomposition D of (V, dist) and any solution
L for I on (V, dist), we can build an instance ID such
that any solution S has a similar cost in I and in ID, and
more importantly ID does not contain any badly cut client
with respect to D. The definition of ID depends on the
randomness of D. Define BD be the set of badly cut facilities
of L w.r.t D.

Let costI0 : V → R be a function that given a set of
centers in an instance I0 on (V, dist), returns the k-Median
cost induced by the set of centers in I0. For any instance
ID on (V, dist), we let

nuID = max
solution S

(costI(S)− (1 + 3ε)costID (S),

(1− 3ε)costID (S)− costI(S)).

We say that an instance ID has small distortion w.r.t. I if∑
f∈BD wf ≤ εcostI(L) and νID ≤ εcostI(L). When I

is clear from the context we simply say that ID has small
distortion.

In the following, we will always work with a particular ID
constructed from I and a precomputed approximate solution
L as follows: I is transformed such that every badly cut
client c is moved to L(c), namely, there is no more client
at c in ID but an extra client is added at L(c). All the other
clients stay as they are.

What we would like to prove is that the optimal solution
in I can be transformed to a solution in ID with a small
additional cost, and vice versa. The intuition behind this is
the following: a client of the solution L is badly cut with

probability κ(ε, p) (from Lemma II.5), hence every client
contributes with κ(ε, p)Lc to transform any solution S for
the instance I to a solution for the instance ID, and vice
versa.

However, we will need to convert a particular solution in
ID (think of it as OPTID ) to a solution in I: this particular
solution depends in the randomness of D, and this short
argument does not apply because of dependency issues. It is
nevertheless possible to prove that ID has a small distortion,
as done in the following lemma.

Lemma III.1. Given an instance I of Facility Location, a
randomized decomposition D and a solution L, let ID be the
instance obtained from I by moving every badly cut client
c to L(c) (as described above). The probability that ID has
small distortion is at least 1− ε.

Proof: To show the lemma, we will show that
E

[∑
f∈BD wf

]
≤ ε2cost(L)/2 and E [ νID ] ≤

ε2cost(L)/2. Then, by Markov’s inequality and tak-
ing a union bound over the probabilities of fail-
ure yields the lemma. Note that E

[∑
f∈BD wf

]
=∑

f∈L Pr[f badly cut] · wf ≤ ε2cost(L)/2 is immediate
from Lemma II.5.

We thus aim at showing that E [ νID ] ≤ ε2cost(L)/2. In
the sake of lightening equations, we will note

∑
bcc. c

the sum

over all badly cut clients c.
By definition, we have that for any solution S,

cost(S)− costID (S) ≤
∑
bcc. c

dist(c, S)p − dist(S,L(c))p

≤
∑
bcc. c

(
(1 + 3ε)dist(S,L(c))p

+
dist(c, L(c))p

(ε/(p+ 1))p
− dist(S,L(c))p

)
,

using Lemma II.2 with parameter ε/p. This is equal to∑
bcc. c

3ε · dist(S,L(c))p +
dist(c, L(c))p

(ε/(p+ 1))p
,

and so we have

cost(S)− (1 + 3ε)costID (S) ≤
∑
bcc. c

dist(c, L(c))p

(ε/(p+ 1))p

Similarly, we have that

costID (S)− cost(S) ≤
∑
bcc. c

dist(S,L(c))p − dist(c, S)p

≤
∑
bcc. c

(
(1 + 3ε)dist(c, S)p

+
dist(c, L(c))p

(ε/(p+ 1))p
− dist(c, S)p

)
≤

∑
bcc. c

3ε · dist(c, S)p +
dist(c, L(c))p

(ε/(p+ 1))p
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and we conclude

(1− 3ε)costID (S)− cost(S) ≤
∑
bcc. c

dist(c, L(c))p

(ε/(p+ 1))p

Therefore, the expected value of νID is

E[νID ] ≤
∑

client c

Pr[c badly cut] · dist(c, L(c))p

(ε/(p+ 1))p
.

Applying Lemma II.5 and using κ(ε, p) = εp+2

(p+1)p , we
conclude E[νID ] ≤ ε2 · cost(L). The lemma follows for
a sufficiently small ε.

B. Portal Respecting Solution

In the following, we fix an instance I, a decomposition D
and a solution L. By Lemma III.1, ID has small distortion
with probability at least 1 − ε and so we condition on this
event from now on.

We explore the structure that this conditioning gives to
the solution. We will show that there exists a solution OPT′

with small cost such that each client c is cut from its serving
facility f at a level at most log(5(Lc + OPTc)) + τ(ε, d).
This allows to consider portal-respecting solution, where
every client to facility path goes in and out parts of the
decomposition only at designated portals. Indeed, the detour
incurred by making a path portal respecting depends on the
level where its extremities are cut: more precisely, it is an
epsilon fraction of the diameter at that level. Hence, ensuring
that this level stays small implies that the detour made is
small (in our case, O(ε(Lc + OPTc)). Such a solution can
be computed by a dynamic program that we will present
afterwards.

In the following, we consider the solution OPT′ = OPT∪
BD (where OPT is the optimal solution for the instance I).
Recall that Lc and OPTc are the distances from the original
position of c to L and OPT, but c may have been moved to
L(c) and BD is the set of badly cut facilities of L w.r.t D.

Lemma III.2. Let I be an instance of Facility Location
with a randomized decomposition D, and L be a solution
for I, such that ID has small distortion. For any client
c in ID, let OPT′(c) be the closest facility to c in OPT′.
Then c and OPT′(c) are separated in D at level at most
log(5(Lc + OPTc)) + τ(ε, d).

Proof: Let c be a client. To find the level at which
c and OPT′(c) are separated, we distinguish between two
cases: either c in I is badly cut w.r.t. D, or not.

If c is badly cut, then it is now located at L(c) in the
instance ID. In that case, either:

1) L(c) is also badly cut, and therefore L(c) ∈ BD ⊂
OPT′ and so OPT′(c) = L(c). It follows that c and
OPT′(c) are never separated.

2) L(c) is not badly cut. Then dist(c,OPT′(c)) ≤
OPTL(c). We bound the level at which c and

OPT′(c) are separated. Since L(c) is not badly cut,
Definition II.4 implies that L(c) and OPT(L(c)) are cut
at a level at most log(OPTL(c)) + τ(ε, d). By triangle
inequality, OPTL(c) = dist(L(c),OPT(L(c))) ≤ Lc +
OPTc, and thus c and OPT′(c) are also separated at
level at most log

(
Lc + OPTc

)
+ τ(ε, d).

We now turn to the case where c is not badly cut. In
which case, c is not moved to Lc and the balls β(c, 2i)
with 2i ∈ [εLc, Lc/ε] are not badly cut. We make a case
distinction according to OPTc.

1) If Lc ≤ εOPTc, then we have the following. If L(c)
is badly cut, L(c) is open and therefore OPT′c = Lc.
Moreover, since c is not badly cut the ball β(c, Lc) is
cut at level at most log(Lc) + τ(ε, d). Therefore c and
OPT′(c) are separated at level at most log(Lc)+τ(ε, d).
In the case where L(c) is not badly cut, both c and
OPT′(c) lie in the ring centered at L(c) and of diameter
2OPTL(c). Indeed,

dist(c, L(c)) ≤ εdist(c,OPT(c)) ≤ εdist(c,OPT(L(c)))

≤ εdist(c, L(c)) + εdist
(
L(c),OPT(L(c))

)
And therefore, for any ε ≤ 2/3,
dist(c, L(c)) ≤ ε

1−εOPTL(c) ≤ 2OPTL(c). On the other
hand,

dist(OPT′(c), L(c)) ≤ dist(OPT′(c), c) + dist(c, L(c))

≤ dist(c,OPT(L(c))) + dist(c, L(c))

≤ 2dist(c, L(c)) + dist(L(c),OPT(L(c)))

≤
(
1 +

2ε

1− ε
)

OPTL(c),

which is smaller than 2OPTL(c) for any ε ≤ 1/3. Hence
we have c,OPT′(c) ∈ β(L(c), 2OPTL(c)). To apply
the definition of badly cut, we need to consider rings
with radius power of 2: let us therefore consider i such
that 2OPTL(c) ∈ (2i−1, 2i] (note that 2i ≤ 4OPTL(c)).
Since L(c) is not badly cut, this ring is not cut by a
too high level part either. Therefore c and OPT′(c) are
separated at level at most i+ τ(ε, d), which is at most
log(4OPTL(c)) + τ(ε, d).
Now, since OPTL(c) ≤ dist(L(c),OPT(c)) ≤
dist(L(c), c)+dist(c,OPT(c)) ≤ (1+ε)OPTc, we have
that log(4OPTL(c)) ≤ log(5OPTc), and hence c and
OPT′(c) are separated at level at most log(5OPTc) +
τ(ε, d).

2) If Lc ≥ OPTc/ε then, since c is not badly cut, the
ball centered at c and of radius εLc is not badly cut.
Since we have dist(c,OPT′(c)) ≤ OPTc ≤ εLc, c and
OPT′(c) lie in the ball β(c, εLc) and are thus cut at
level at most log(εLc) + τ(ε, d).

3) If εLc ≤ OPTc ≤ Lc/ε, then since c is not badly cut the
ball β(c,OPT(c)) is cut at level at most log(2OPTc)+
τ(ε, d). Moreover, OPT′(c) lies in this ball.
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This concludes the proof.
A path between two nodes u and v is a sequence of

nodes w1, . . . , wk with u = w1, v = wk, and its length is∑
dist(wj , wj+1). A solution to the problem can therefore

be seen as a set of facility, together with a path for each
client that connects it to a facility. We say a path is portal-
respecting if it enters and leaves parts of the decomposition
D only at portals. More precisely, for every pair wj , wj+1 of
the sequence, if wj and wj+1 lie in different parts of some
level i, then these nodes are also portals at this level (note
that such a path is guaranteed to exist, since we assume
that portals are nested; cf. Lemma II.3). We define a portal-
respecting solution to be a solutions such that each path
from a client to its closest facility in the solution is portal-
respecting.

The dynamic program will compute an optimal portal-
respecting solution. Therefore, we need to prove that the
optimal portal-respecting solution is close to the optimal
solution. Let u and v be two vertices separated at level
i by the decomposition D. We note a property of the
decomposition that will simplify our calculations. For the
path between u and v to be portal-respecting, there needs
to be a detour at every level below i, with an error of at
most

∑
j≤iO(ρ2j) ≤ O(ρ2i+2). This error comes from the

preciseness property in Lemma II.3. In the remainder of the
paper, we will thus bound the total error incurred across all
levels by O(ρ ·2i), where i is the level at which u and v are
separated. We let ρ = ε2−τ(ε,d), and for a solution S define
B(S) :=

∑
c, i : c and S(c) cut at level i

ε2i. One can see B(S) as

a budget, given by the fact that vertices are not badly cut.

Lemma III.3. Given an instance I and a solution L, it holds
with probability 1 − ε (over D) that there exists a portal-
respecting solution S in ID is such that costID (S)+B(S) =
(1 +O(ε))costI(OPT) +O(εcostI(L)).

Proof: From Lemma III.1, with probability 1−ε it holds
that the instance ID has small distortion. We condition now
on this event. Consider solution OPT′. Since ID has small
distortion, we have that the facility cost of OPT′ is at most
the facility cost of OPT plus εcost(L). Furthermore, again
since ID has small distortion we have that costID (OPT′) ≤
(1 +O(ε))costI(OPT) +O(εcostI(L)).

We now bound the cost of making OPT′ portal respect-
ing by applying Lemma III.2. Since each client c of ID
is separated from OPT′(c) at level at most log(5(Lc +
OPTc)) + τ(ε, d), we have that the detour for making the
assignment of c to OPT′(c) portal-respecting is at most
ρ2τ(ε,d)5(Lc+OPTc). Choosing ρ = ε2−τ(ε,d) ensures that
the detour is at most O(ε(Lc + OPTc)). This also bounds
B(OPT′) ≤ O(ε)(costI(L) + costI(OPT)).

Therefore, taking S = OPT′ ensures that

costID (S) ≤ costID (OPT′) + 20ε(costI(OPT) + costI(L))
≤ (1 +O(ε))costI(OPT) +O(εcostI(L))

C. The Algorithm

Using Lemmas A.1 and A.2, we can assume that the
aspect-ratio of the instance is O(n5/ε). Our algorithm starts
by computing a constant-factor approximation L, using
Meyerson’s algorithm [35]. It then computes a hierarchical
decomposition D, as explained in the Section II-B, with
parameter ρ = ε2−τ(ε,d).

Given L and the decomposition D, our algorithm finds
all the badly cut clients as follows. For each client c, to
determine whether c is badly cut or not, only O(log(1/ε))
balls have to be considered, namely the balls centered at
c and with exponentially growing radius in [εLc, Lc/ε].
For each such ball β, the algorithm checks whether the
decomposition cuts β at a level that is too high, making c
badly cut. This can be done efficiently by verifying whether
c is at distance smaller than Lc/ε to such a part of too high
level. Thus, the algorithm finds all the badly cut clients in
near-linear time.

The next step of the algorithm is to compute instance ID
by moving every badly cut client c to its facility in L. This
can also be done in linear time.

A first attempt at a dynamic program.: We now turn to
the description of the dynamic program (DP) for obtaining
the best portal-respecting solution of ID. This is the standard
dynamic program for Facility Location and we only describe
it for the sake of completeness, the reader familiar with this
can skip to the analysis.

There is a table entry for each part of the decomposition,
and two vectors of length np, where np is the number of por-
tals in the part (we call such a triplet a configuration). Each
configuration given by a part R and vectors 〈�1, . . . , �np

〉
and 〈s1, . . . , snp

〉 (called the portal parameters), encodes a
possible interface between part R and a solution for which
the ith portal has approximate distance �i to the closest
facility inside of R, and approximate distance si to its
closest facility outside of R. The value stored for such a
configuration in a table entry is the minimal cost for a
solution with facilities respecting the constraints induced by
the vectors on the distances between the solution and the
portals inside the part (as described below).

To fill the table, we use a dynamic program following the
lines of Arora et al. [4] or Kolliopoulos and Rao [25]. If a
part has no descendant (meaning the part contains a single
point), computing the solution given the configuration is
straightforward: either a center is opened on this point or not,
and it is easy to check the consistency with the configuration,
where only the distances to portals inside the part need
to be verified. At a higher level of the decomposition, a
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solution is simply obtained by going over all the sets of
parameter values for all the children parts. It is immediate
to see whether sets of parameter values for the children can
lead to a consistent solution:

• for each portal p1 of the parent part, there must be
one portal p2 of a child part such that the distance
from p1 to a center inside the part prescribed by
the configuration corresponds to dist(p1, p2) plus the
distance from p2 to a center inside the child part;

• for each portal p2 of a child part, there must exist either:

– a portal p1 of the parent part such that the distance
from p2 to a center outside its part prescribed by
the configuration is dist(p1, p2) plus the distance
from p1 to a center outside of the part,

– or a portal p1 of another child part such that this
distance is dist(p1, p2) plus the distance from p1
to a center inside the child part.

Recall that the aspect ratio is nO(1), and so this dynamic
program has a complexity polylogarithmic in n, since there
are O(log n) possible values for a rounded distance. How-
ever, using the budget given by Lemma III.3, one can shave
off the logarithmic factors.

A faster dynamic program.: We now describe a faster
dynamic program. Consider a level where the diameter of the
parts is say Δ. Each configuration is again given by a part
R and portal parameters 〈�1, . . . , �np

〉 and 〈s1, . . . , snp
〉, but

with the restriction that �i and si are multiples of εΔ in the
range [0,Δ/ε + Δ]. A flag is additionally attached to the
configuration (whose meaning will be explained shortly).

We sketch here the intuition behind this restriction. Since
the diameter of the part is Δ we can afford a detour of
εΔ, that is taken into account in the budget B(S). Hence,
distances can be rounded to the closest multiple of εΔ.

Now, suppose that the closest facility outside the part is
at distance greater than Δ/ε, and that there is no facility
inside the part. Then, since the diameter is Δ, up to losing
an additive εOPT in the cost of the solution computed, we
may assume that all the points of the part are assigned to
the same facility. So the algorithm is not required to have
the precise distance to the closest center outside the part,
and it uses the flag to reflect that it is in this regime. We
can then treat this whole part as a single client (weighted
by the number of clients inside the part) to be considered at
higher levels. Assuming that the closest facility is at distance
less than Δ/ε, we have that for any portal of the part the
closest facility is at distance at most Δ/ε +Δ (since Δ is
the diameter of the part).

On the other hand, if there is some facility inside the part
and the closest facility outside the part is at distance at least
Δ/ε, then each client of the part should be served by a
facility inside the part in any optimal assignment. Thus it is
not necessary that the algorithm iterates over configurations
where the distances outside the part are more than Δ/ε: it

is enough to do it once and use the answer for all other
queries.

Analysis – Proof of Theorem I.3.: The two following
lemmas show that the solution computed by this algorithm
is a near-optimal one, and that the complexity is near-linear:
this proves Theorem I.3.

Lemma III.4. Let S be as in Lemma III.3. The algorithm
computes a solution S∗ with cost at most costID (S

∗) ≤
(1 +O(ε))costID (S) +B(S).

Proof: We show that the solution S can be adapted to a
configuration of the DP with and extra cost B(S). For this,
let c be a client served by a facility S(c), and let p1, ...pk be
the portal-respecting path from c et S(c), pi being a portal
at level li, with p1 = c and pk = S(c). The cost of c in S
is therefore

∑
d(pi, pi+1).

The distance between c and S(c) is approximated at
several place of the DP:

• When d(pi, S(c)) ≤ 2li/ε + 2li , the distance between
pi and S(c) is rounded to the closest multiple of ε2li ,
incurring a cost difference of ε2li .

• When d(pi, S(c)) ≥ 2li/ε + 2li , the whole part is
contracted and served by a single facility at distance at
lest 2li/ε. The cost difference for client c is therefore
2li ≤ εd(pi, S(c)). Since the diameters of the parts are
geometrically increasing, the total cost difference for
such operations is bounded by 2εd(pj , S(c)), where lj
is the highest level where d(pj , S(c)) ≥ 2ji/ε + 2lj .
This cost verifies 2εd(pj , S(c)) ≤ 2ε

∑
d(pi, pi+1)

Hence, summing over all clients, the additional cost
incurred by the DP compared is at most B(S)+2εcostID (S).
Since it computes a solution with minimal cost, it holds that
costID (S

∗) ≤ (1 + 2ε)costID (S) +B(S).

Corollary III.5. Let S∗ be the solution computed by the
algorithm. With probability 1− ε, it holds that costI(S∗) =
(1 +O(ε))costI(OPT) +O(εcostI(L))

Proof: Lemma III.3 ensures that, with probability 1 −
ε, the cost of S is at most (1 + O(ε))costI(OPT) +
O(εcostI(L)). Since L is a constant-factor approximation,
this cost turns out to be (1 +O(ε))costI(OPT). Combining
this with Lemma III.4 concludes the proof:

costI(S∗) = (1 +O(ε))costID (S
∗)

= (1 +O(ε))(costID (S) +B(S))

≤ (1 +O(ε))costI(OPT) +O(εcostI(L))
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Lemma III.6. This algorithm has complexity(
1
ε

)2O(d log d)/ε · n+ 2O(d)n log n.

Proof: The preprocessing step (computing L, the hierar-
chical decomposition D, and the instance ID) has a running
time O(n log n), as all the steps can be done with this com-
plexity: a fast implementation of Meyerson’s algorithm [35]
tailored to graphs can compute L in time O(m log n).
Using it on the spanner computed with [22] gives a O(1)-
approximation in time O(n log n). As explained earlier, the
hierarchical decomposition D and the instance ID can also
be computed with this complexity.

The DP has a linear time complexity: in a part of diameter
Δ, the portal set is a ε2−τ(ε,d)Δ-net, and hence has size
2d log(2

τ(ε,d)/ε) by Lemma II.1. Since τ(ε, d) = O(log d) +

2 log (p+1)p

εp+2 , this number can be simplified to 2O(d log(d))/ε.
Since each portal stores a distance that can take only

1/ε2 values, there are at most E = (1/ε2)2
O(d2)/ε =

(1/ε)2
O(d2)/ε possible table entries for a given part.

To fill the table, notice that a part has at most 2O(d)

children, due to the properties of the hierarchical decompo-
sition. Going over all the sets of parameter values for all the

children parts therefore takes time E2O(d)

= (1/ε)2
O(d2)/ε.

This dominates the complexity of the dynamic program,

which is therefore n(1/ε)2
O(d2)/ε.

The total complexity of the algorithm is thus(
1

ε

)2O(d2)/ε

· n+ 2O(d)n log n

IV. THE k-MEDIAN AND k-MEANS PROBLEMS

We aim at using the same approach as for Facility
Location. We focus the presentation on k-Median, and only
later show how to adapt the proof for k-Means.

We will work with the more general version of k-Median
as defined in Section II-D, where the instance consists of
a set of clients C, a set of candidate centers F , an integer
k, and a function χ : C → {1, . . . , n} and the goal is to
minimize

∑
c∈C χ(c) ·minf∈S dist(c, f).

The road-map is as for Facility Location: we show in
Lemma IV.2 that an instance ID has a small distortion with
good probability, and then in Lemma IV.5 that if an instance
has small distortion then there exists a near-optimal portal-
respecting solution. We finally present a dynamic program
that compute such a solution.

A key ingredient of the proof for Facility Location was our
ability to add all badly-cut facilities to the solution OPT′. As
the number of facilities is fixed, this is not directly possible
in the case of k-Median and k-Means. Hence, the first step of
our proof is to show that one can make some room in OPT,
by removing a few centers without increasing too much the
cost.

A. Towards a Structured Near-Optimal Solution

Let OPT be an optimal solution to I. We consider the
mapping of the facilities of OPT to L defined as follows:
for any f ∈ OPT, let L(f) denote the facility of L that is
the closest to f . Recall that for a client c, L(c) is the facility
serving c in L.

For any facility � of L, define ψ(�) to be the set of
facilities of OPT that are mapped to �, namely, ψ(�) =
{f ∈ OPT | L(f) = �}. Define L1 to be the set of
facilities � of L for which there exists a unique f ∈ OPT
such that L(f) = �, namely L1 = {� | |ψ(�)| = 1}. Let
L0 = {� | |ψ(�)| = 0}, and L≥2 = L − (L1 ∪ L0).
Similarly, define OPT1 = {f ∈ OPT | L(f) ∈ L1}
and OPT≥2 = {f ∈ OPT | L(f) ∈ L≥2}. Note that
|OPT≥2| = |L0|+ |L≥2|, since |OPT1| = |L1| and, w.l.o.g.,
|OPT| = |L| = k.

The construction of a structured near-optimal solution is
made in 3 steps. The first one defines a solution OPT′ as
follows. Start with OPT′ = OPT.

• Step 1. Among the facilities of OPT≥2 that are not the
closest of their corresponding facility in L≥2, remove
from OPT′ the subset Ĥ of size �ε · |OPT≥2|/2� that
yields the smallest cost increase.

This step makes room to add the badly cut facilities without
violating the constraint on the maximum number of centers,
while at the same time ensures that S∗ has near-optimal cost,
as the following lemma shows.

Lemma IV.1. After step 1, OPT′ has cost (1 +
O(ε))cost(OPT) +O(ε)cost(L)

Proof: We show that the cost increase is at most
O(ε)(cost(OPT) + cost(L)).

Let H ⊆ OPT≥2 be the set of facility of OPT≥2 that are
not the closest to their corresponding facility in L≥2, i.e.,
f ∈ H if and only if f ∈ ψ(�) for some � ∈ L≥2 and
dist(f, �) > minf ′∈ψ(�) dist(f ′, �) (breaking ties arbitrarily).
The only elements in OPT≥2 − H are the ones closest to
their corresponding facilities. Hence for every facility of L≥2

such that |ψ(f)| ≥ 2 there is therefore exactly one facility in
OPT≥2 −H, and at least two in OPT≥2; and if |ψ(f)| = 0
then f does not correspond to any facility at all in OPT≥2.
Therefore |H| ≥ |OPT≥2|/2.

We claim that for a client c served by f ∈ H in the
optimum solution OPT, i.e., f = OPT(c), the detour entailed
by the deletion of f is O(OPTc + Lc). Indeed, let f ′ be
the facility of OPT that is closest to L(f), and recall that
L(c) is the facility that serves c in the solution L. Since
f ′ /∈ H, the cost to serve c after the removal of f is at
most dist(c, f ′), which can be bounded by dist(c, f ′) ≤
dist(c, f) + dist(f, L(f)) + dist(L(f), f ′). But by definition
of f ′, dist(f ′, L(f)) ≤ dist(L(f), f), and by definition
of the function L we have dist(L(f), f) ≤ dist(L(c), f),
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so that dist(c, f ′) ≤ dist(c, f) + 2dist(f, L(c)). Using the
triangle inequality finally gives dist(c, f ′) ≤ 3dist(c, f) +
2dist(c, L(c)) which is O(OPTc + Lc). For a facility f of
OPT, we denote C(f) the set of clients served by f , i.e.
C(f) = {c ∈ C | OPT(c) = f}. The total cost incurred by
the removal of f is then O(costOPT(C(f)) + costL(C(f))).

Recall that in Step 1 we remove the set Ĥ of size
�ε|OPT≥2|� from H, such that Ĥ minimizes the cost in-
crease. We use an averaging argument to bound the cost
increase: the sum among all facilities f ∈ H of the cost of
removing the facility f is less than O(cost(OPT)+cost(L)),
and |H| = O(1/ε) · �ε|OPT≥2|�. Therefore removing Ĥ
increases the cost by at most O(ε)(cost(OPT) + cost(L)),
so that Step 1 is not too expensive.

We can therefore use this solution as a proxy for the
optimal solution, and henceforth we will denote this solution
by OPT. In particular, the badly cut facilities are defined for
this solution and not the original OPT.

B. Structural Lemma

As in Section III, the algorithm computes a randomized
hierarchical decomposition D, and transforms the instance
of the problem. Every badly cut client c is moved to L(c),
namely, there is no more client at c and we add an extra
client at L(c). Again, we let ID denote the resulting instance
and note that ID is a random variable that depends on the
randomness of D.

Moreover, as for Facility Location, we let BD be the set
of badly cut centers of L. We call costI(S) the cost of
a solution S in the original instance I , and costID (S) its
cost in ID. We let νID = maxsolution S(costI(S) − (1 +
3ε)costID (S), (1 − 3ε)costID (S) − costI(S)). We say that
an instance ID has small distortion if νID ≤ εcost(L) and
there exists a solution S that contains BD with costI(S) ≤
(1 + ε)costI(OPT) + εcostI(L).

We go on with the next two steps of our construction,
defining a solution S∗. We start with S∗ = OPT (and recall
our convention OPT = OPT′).
• Step 2. For each badly-cut facility f ∈ L for which
ψ(f) 	= ∅, let f ′ ∈ ψ(f) be the closest to f . Replace
f ′ by f in S∗.

• Step 3. Add all badly cut facility f ′ of L0 to S∗.
We show next that S∗ satisfies the conditions for ID to have
small distortion with good probability.

Lemma IV.2. The probability that ID has small distortion
is at least 1− ε.

Proof: The proof that νID ≤ εcost(L) with probability
at least 1− ε/2 is identical to the one in Lemma III.1. We
thus turn to bound the probability that solution S∗ satisfies
the cardinality and cost requirements. Our goal is to show
that this happens with probability at least 1 − ε/2. Then,
taking a union bound over the probabilities of failure yields
the proposition.

By definition, we have that S∗ contains BD. We prove in
the two following claims some properties on S∗.

Claim IV.3. With probability at least 1− ε/4, the set S∗ is
an admissible solution, i.e., |S∗| ≤ k.

Proof: We let b be the number of facilities of L0 that are
badly cut. By Lemma II.5, we have that E [ b ] ≤ ε2|L|/4.
By Markov’s inequality, the probability that b is such that
b > ε|L0|/2 is at most ε/2. Now, condition on the event that
b ≤ ε|L0|/2. Since |L0| + |L≥2| = |OPT2|, we have that
b ≤ ε|OPT2|/2. Moreover, the three steps converting OPT
into S∗ ensure that |S∗| ≤ k+ b−ε�|OPT2|/2�. Combining
the two inequalities gives |S∗| ≤ k.

Claim IV.4. With probability at least 1 − ε/4, cost(S∗) ≤
(1 +O(ε))cost(OPT) +O(ε · cost(L))

Proof: We showed in Lemma IV.1 that the cost increase
due to Step 1 is at most O(ε)(cost(OPT) + cost(L)). We
show now that Step 2 leads to a cost increase of O(ε ·(
cost(OPT) + cost(L))

)
with good probability. For that, let

OPTclose := {f ∈ OPT : f is the closest facility to L(f)}.
We show that the cost of replacing all f ∈ OPTclose by
L(f) ∈ L is O(cost(OPT) + cost(L)). In order to prove
that, we call the mixed solution the solution with facilities
where every facility of f ∈ OPTclose is replaced by L(f).
Note that L(OPTclose) = L− L0.

For that, let c be a client that is served in OPT by a facility
f of OPTclose. If c is served in L by a facility of L−L0, then
the facility appears in the mixed solution and the serving
cost of c is dist(c, L). On the other hand, if c is served by
a facility f0 of L0 in L, then it is possible to serve it by
the L(f) that replaces f in the mixed solution. The serving
cost is therefore dist(c, L(f)) ≤ dist(c, f)+dist(f, L(f)) ≤
dist(c, f) + dist(f, f0), using the definition of L(f) for the
last inequality. Using again the triangle inequality, this cost is
at most 2dist(c, f)+dist(f, f0). Moreover, any client served
by a facility of OPT−OPTclose is served by its optimal facil-
ity in the mixed solution, with cost dist(c,OPT). Hence the
cost of the mixed solution is at most 2cost(OPT)+ cost(L).

Moreover, the probability of replacing f ∈ OPTclose by
L(f) ∈ L − L0 in Step 2 is the probability that L(f) is
badly cut, which is κ(ε, p) by Lemma II.5. Finally, with
linearity of expectation, the expected cost to add the badly
cut facilities f ∈ L − L0 instead of their closest facility of
OPT in Step 2 is O(κ(ε, p)(cost(OPT)+cost(L))). Markov’s
inequality thus implies that the cost of the first step is at most
O(ε·(cost(OPT)+cost(L))) with probability 1−O(κ(ε,p))

ε ≥
1− ε/4, since κ(ε, p) ≤ ε2/4 in the case of k-Median.

Lemma IV.2 follows from taking a union bound over the
probabilities of failure of Claim IV.3 and IV.4.

Condition now on ID having small distortion, and let
OPT′ be the solution containing BD with cost (1 +
ε)costI(OPT)+εcostI(L). We have to prove the same struc-
tural lemma as for Facility Location, to say that there exists
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a portal-respecting solution with cost close to cost(OPT′).
Recall that Lc and OPTc are the distances from the

original position of c to L and OPT; but c may have
been moved to L(c). Recall also that OPT is defined after
removing some centers in Step 1.

Lemma IV.5. Condition on ID having small distortion. For
any client c in ID, let OPT′(c) be the closest facility to c
in OPT′. Then c and OPT′(c) are separated in D at level
at most log(7(Lc + OPTc)) + τ(ε, d).

Proof: The proof of this lemma is very similar to the
one of Lemma III.2. However, since some facilities of OPT
were removed in Step 2, we need to adapt the proof carefully.

Let c be a client. If OPT(c) was removed in Step 2, it
was replaced by a facility f such that dist(OPT(c), f) ≤
dist(OPT(c), L(c)) (because L(OPT(c)) = f means that f
is the facility of L closest to OPT(c)). Therefore

dist(c, f) ≤ 2dist(c,OPT(c)) + dist(c, L(c)). (1)

To find the level at which c and OPT′(c) are separated,
we distinguish between two cases: either c is badly cut, or
not.

If c is badly cut, then it is now located at L(c) in the
instance ID. In that case, either:

1) L(c) is also badly cut, and therefore L(c) ∈ OPT′ and
so OPT′(c) = L(c). It follows that c and OPT′(c) are
never separated.

2) L(c) is not badly cut. Then dist(c,OPT′(c)) =
dist(L(c),OPT′(L(c)). OPT(L(c)) is not necessarily in
OPT′: in that case, it was replaced by a facility f that
verifies dist(c, f) ≤ 2dist(c,OPT(c))+dist(c, L(c)), by
Property (1). Since dist(c, L(c)) = 0, we have (either
if OPT(L(c)) ∈ OPT′ or not) that dist(c,OPT′(c)) ≤
2OPTL(c).
Since L(c) is not badly cut, the ball β(L(c), 2OPTL(c))
is cut at level at most log(4OPTL(c)) + τ(ε, d). By tri-
angle inequality, OPTL(c) = dist(L(c),OPT(L(c))) ≤
Lc +OPTc, and thus c and OPT′(c) are also separated
at level at most log

(
4Lc + 4OPTc

)
+ τ(ε, d).

In the other case where c is not badly cut, all of the balls
β(c, 2i) where 2i ∈ [εLc, Lc/ε] are not badly cut, and c is
not moved to Lc. We make a case distinction according to
OPTc.

1) If Lc ≤ εOPTc, then we have the following. If L(c) is
badly cut, L(c) is open and therefore OPT′(c) = Lc.
Moreover, since c is not badly cut the ball β(c, Lc) is
cut at level at most logLc + τ(ε, d). Therefore c and
OPT′(c) are separated at level at most logLc+ τ(ε, d).
In the case where L(c) is not badly cut, both c and
OPT′(c) lie in the ring centered at L(c) and of diameter

3OPTL(c). Indeed,

dist(c, L(c)) ≤ εdist(c,OPT(c)) ≤ εdist(c,OPT(L(c)))

≤ εdist(c, L(c)) + εd
(
L(c),OPT(L(c))

)
And therefore, for any ε ≤ 3/4,
dist(c, L(c)) ≤ ε

1−εOPTL(c) ≤ 3OPTL(c). On the other
hand,

dist(OPT′(c), L(c)) ≤ dist(OPT′(c), c) + dist(c, L(c))

≤ 2dist(c,OPT(c)) + 2dist(c, L(c))

(using Property (1))

≤ 2dist(c,OPT(L(c))) + 2dist(c, L(c))

≤ 4dist(c, L(c)) + 2dist(L(c),OPT(L(c)))

≤
(
2 +

4ε

1− ε
)

OPTL(c),

which is smaller than 3OPTL(c) for any ε ≤ 1/2. Hence
we have c,OPT′(c) ∈ β(L(c), 3OPTL(c)). To apply
the definition of badly cut, we need to consider rings
with radius power of 2: let us therefore pick i such
that 3OPTL(c) ∈ (2i−1, 2i] (note that 2i ≤ 6OPTL(c)).
Since L(c) is not badly cut, this ring is not badly cut
either and thus c and OPT′(c) are separated at level
at most i + τ(ε, d). Since dist(L(c),OPT(L(c))) ≤
dist(L(c),OPT(c)) ≤ dist(L(c), c) + dist(c,OPT(c)) ≤
(1 + ε)OPTc, we have that i ≤ log(6OPTL(c)) ≤
log(7OPTc), which is smaller that what we want.

2) If Lc ≥ OPTc/ε then, since c is not badly cut, the ball
centered at c and of radius εLc is not badly cut. Since
we have dist(c,OPT′(c)) ≤ 2OPTc + Lc ≤ 2Lc, c and
OPT′(c) lie in the ball β(c, 2Lc) and are thus cut at
level at most log(4Lc) + τ(ε, d).

3) If εLc ≤ OPTc ≤ Lc/ε then, since c is not badly
cut, the ball β(c, 2OPTc + Lc) is cut at level at most
log(4OPTc+2Lc)+τ(ε, d). Moreover, OPT′(c) lies in
this ball, which concludes the lemma.

Equipped with these two lemmas, we can prove the
following lemma, which concludes the section:

Lemma IV.6. Condition on ID having small distortion.
There exists a portal-respecting solution S in ID is such that
costI(S)+B(S) ≤ (1+O(ε))costI(OPT)+O(εcostI(L)).

Proof: The proof follows exactly the one of
Lemma III.3, using the definition of small distortion, OPT′,
Lemma IV.2, and Lemma IV.5.

Extension to k-Means: The adaptation to k-Means
can be essentially captured by the following inequality:
(x + y)2 ≤ 2(x2 + y2). Indeed, taking the example of
Claim IV.4, the detour dist(c, f ′) ≤ 3dist(c, f) + 2dist(c, l)
gives a cost dist(c, f ′)2 = O(dist(c, f)2 + dist(c, l)2 +
dist(c, f) · dist(c, l)) = O(dist(c, f)2 + dist(c, l)2). This
follows through all the other lemmas, and therefore the
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structural lemma holds also for k-Means.

C. The Algorithm

The algorithm follows the lines of the one for Facility
Location, in Section III-C. It first computes a constant-
factor approximation L, then the hierarchical decomposi-
tion D (with parameter ρ = ε2−τ(ε,d)) and constructs
instance ID. A dynamic program is then used to solve
efficiently the problem, providing a solution S of cost at
most (1+ ε)costI(OPT) – conditioned on the event that the
instance ID has small distortion.

Dynamic programming.: The algorithm proceeds bot-
tom up along the levels of the decomposition. We give
an overview of the dynamic program which is a slightly
refined version of the one presented for Facility Location in
Section III-C. We make use of two additional ideas.

To avoid the dependency on k we proceed as follows.
In the standard approach, a cell of the dynamic program is
defined by a part of the decomposition D, the portal parame-
ters (as defined in Section III-C), and a value k0 ∈ [k]. The
value of an entry in the table is then the cost of the best
solution that uses k0 centers, given the portal parameters.

For our dynamic program for the k-Median and k-Means
problems, we define a cell of the dynamic program by a
part B, the portal parameters 〈�1, . . . , �np

〉 and 〈s1, . . . , snp
〉

and a value c0 in [cost(L)/n; (1 + ε)cost(L)]. The entry of
the cell is equal to the minimum number k0 of centers that
need to be placed in part B in order to achieve cost at most
c0, given the portal parameters. Moreover, we only consider
values for c0 that are powers of (1 + ε/ log n). The output
of the algorithm is the minimum value c0 such that the root
cell has value at most k (i.e., the minimum value such that
at most k centers are needed to achieve it).

The DP table can be computed the following way. For
the parts that have no descendant, namely the base cases,
computing the best clustering given a set of parameters can
be done easily: there is at most one client in the part, and
verifying that the parameter values for the centers inside the
part are consistent can be done easily. At a higher level of
the decomposition, a solution is obtained by going over all
the sets of parameter values for all the children parts. It is
immediate to see whether sets of parameter values for the
children can lead to a consistent solution (similar to [25],
[4]). Since there are at most 2O(d) children parts, this gives
a running time of q2

O(d)

, where q is the total number of
parameter values.

This strategy would lead to a running time of
f(ε, d)n log2

O(d)

n. We can however treat the children in
order, instead of naively testing all parameter values for
them. We use a classical transformation of the dynamic
program, in which the first table is filled using an auxiliary
dynamic program. A cell of this auxiliary DP is a value c0
in [cost(L)/n; (1 + ε)cost(L)], a part C, one of its children
Ci, and the portal parameters for the portals of C and all

its children before Ci in the given order. The entry of the
cell is equal to the minimum number of centers k0 that need
to be placed in the children parts following Ci to achieve
a cost of c0 given the portal parameters. To fill this table,
one can try all possible sets of parameters for the following
children, see whether they can lead to a consistent solution,
and compute the minimum value among them.

Analysis – proof of Theorem I.1 and Theorem I.2.: We
first show that the solution computed by the algorithm gives
a (1 + O(ε))-approximation, and then prove the claim on
the complexity.

Lemma IV.7. Let S∗ be the solution computed by the
algorithm. With probability 1− ε, it holds that costI(S∗) =
(1 +O(ε))costI(OPT) +O(εcostI(L))

Proof: With probability 1− ε, ID has small distortion
(Lemma IV.2). Following Lemma IV.6, let S be a portal-
respecting solution such that costI(S) + B(S) ≤ (1 +
O(ε))costI(OPT) +O(εcostI(L)).

As in Lemma III.4, S can be adapted to a configuration
of the DP with a small extra cost. The cost incurred to the
rounding of distances can be charged either to B(S) or is a
O(ε)costID (S), as in Lemma III.4. The cost to round the
value c0 is a (1 + ε/ log n) factor at every level of the
decomposition. Since there are O(log n) of them, the total
factor is (1 + ε/ log n)O(logn) = 1+O(ε). Hence, we have
the following:

costI(S∗) = (1 +O(ε))costID (S
∗)

(Since ID has small distortion)

= (1 +O(ε))(costID (S) +B(S))

(Following the previous paragraph)

≤ (1 +O(ε))costI(OPT) +O(εcostI(L))
(By definition of S)

Lemma IV.8. The running time of the DP is

n · (1/ε)2O(d2)/ε · log4 n.

Proof: The number of cells in the auxiliary DP is given
by the number of parts (O(n)) , the number of children of a

part (2O(d)), the number of portal parameters ((1/ε)2
O(d2)/ε)

and the possible values for c0 (O(log2 n)): it is therefore

n · 2O(d) · (1/ε)2O(d2)/ε · log2 n.
The complexity to fill the table adds a factor

(1/ε)2
O(d2)/ε·log2 n, to try all possible combination of portal

parameters and value of c0 . Hence, the overall running time

of the DP is n · (1/ε)2O(d2)/ε · log4 n.
The proof of Theorem I.1 and Theorem I.2 are completed

by the following lemma, which bounds the running time of
the preprocessing steps.
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Lemma IV.9. For k-Median and k-Means, the total running
time of the algorithms are respectively 2O(d)n log9 n +
f(ε, d)n log4 n and 2O(d)n log10 n+ f(ε, d)n log5 n, where

f(ε, d) = (1/ε)2
O(d2)/ε.

Proof: We need to bound the running time of three
steps: computing an approximation, computing the hierar-
chical decomposition, and running the dynamic program.

For k-Median, a constant-factor approximation can be
computed in O(m log9 n) = 2O(d)n log9 n time with Tho-
rup’s algorithm [38]. The split-tree decomposition can be
found in 2O(d)n log n time as explained in Section II. More-
over, as explained in Lemma IV.8, the dynamic program runs
in time f(ε, d)n log4 n, ending the proof of the Theorem I.1.

Another step is required for k-Means. It is indeed not
known how to find a constant-factor approximation in near-
linear time. However, one can notice that a c-approximation
for k-Median is an nc-approximation for k-Means, using the
Cauchy-Schwarz inequality. Moreover, notice that starting
from a solution S, our algorithm finds a solution with cost
(1+O(ε))cost(OPT)+O(ε)cost(S) in time f(ε, d)n log4 n,
as for k-Median.

Repeating this algorithm N times, using in step i+1 the
solution given at step i, gives thus a solution of cost (1 +
O(ε))cost(OPT) + O(εN )cost(S). Starting with cost(S) =
O(n)cost(OPT) and taking N = O(log n) ensures to find a
solution for k-Means with cost (1 + O(ε))cost(OPT). The
complexity for k-Means is therefore the same as for k-
Median, with an additional log n factor. This concludes the
proof of Theorem I.2.

V. OTHER APPLICATIONS OF THE FRAMEWORK

Our techniques can be generalized to variants of the
clustering problems where outliers are taken into account.
We consider here two of them: k-Median with Outliers and
its Lagrangian relaxation, Prize-Collecting k-Median. It can
also be used to find a bicreteria approximation to k-Center.

A. Prize-Collecting k-Median

In the “prize-collecting” version of the problems, it is
possible not to serve a client c by paying a penalty pc (these
problems are also called clustering “with penalties”). For a
solution S, we call an outlier for S a client that is not served
by S. Formally, an instance is a quintuple (C,F, dist, p, k)
where (C ∪F, dist) is a metric, k is an integer and p : C →
R

+ the penalty function, and the goal is to find S ⊆ F and
O ⊆ C such that |S| = k and

∑
c∈C−O dist(c, F )+

∑
c∈O pc

is minimized.
Looking at the Prize-Collecting k-Median problem, we

aim at applying the framework from Section IV. Let L =
(LC , LO) be an approximate solution: LC is a set of center,
LO a set of outliers. We define badly cut for outliers as we
did for centers: an outlier c of LO is badly cut w.r.t. D if
there exists an integer i such that 2i ∈ [εOPTc,OPTc/ε]

and the ball β(v, 2i) is cut at some level j greater than
i+τ(ε, d), where OPTc is the distance from c to the closest
facility of the optimum solution OPT. Hence, Lemma II.5
extends directly, and the probability that an outlier in LO is
badly cut is κ(ε, p).

We now turn to the previous framework, showing how
to construct a near-optimal solution containing all badly-
cut centers of L. For that we transfer the definitions of
the mappings LC , φ (LC maps a client to its closest center
of L, and φ(l) = {f ∈ OPT | L(f) = l}) and of the
sets L0, L1, L≥2,OPT1, and OPT≥2. We will show that
this framework, with only a few modifications, leads to an
approximation scheme for Prize-Collecting k-Median. Let
S∗ = OPT. As in Section IV, we start by removing a few
centers from the optimal solution, without increasing the cost
too much:

• Step 1. Among the facilities of OPT≥2 that are not the
closest of their corresponding facility in L≥2, remove
from S∗ the subset Ĥ of size �ε·|OPT≥2|/2� that yields
the smallest cost increase, i.e. the smallest value of∑
c∈C−LO:OPT(c)∈ ̂H d(c, S

∗−Ĥ)+
∑
c∈LO:OPT(c)∈ ̂H pc.

The function minimized by Ĥ corresponds to redirecting
all clients served in the local solution to a center of S∗−Ĥ
and paying the penalty for clients c ∈ LO such that
OPT(c) ∈ Ĥ. Those clients are thus considered as outliers
in the constructed solution.

Lemma V.1. After step 1, S∗ has cost
(1 +O(ε))cost(OPT) +O(ε)cost(L)

Proof sketch: The proof is essentially the same as
Lemma IV.1, with an averaging argument: for a client c,
the cost of removing OPT(c) from S∗ is O(OPTc +Lc): if
c /∈ L0, the argument is the same as in Lemma IV.1, and if
c ∈ LO the cost is pc = Lc. Hence the proof follows.

Again, we denote now by OPT this solution S∗ and define
the instance ID according to this solution. Recall that BD
is the set of badly cut centers of L, and denote OD the
set of badly cut outliers of L. We say that an instance ID
has small distortion if νID ≤ εcost(L) and there exists a
solution S that contains BD as centers and OD as outliers
with costI(S) ≤ (1 + ε)costI(OPT) + εcostI(L).

To deal with the badly cut centers, there is only one hurdle
to be able to apply the proof of Lemma IV.6. Indeed, when
the algorithm deletes a center of OPT that serves a client
c, it is possible to bound the cost of reassigning c using
dist(c, S). However this is not possible to do when c is an
outlier for S: there is no control on the cost dist(c, S), and
hence one has to pay the penalty pc. It is thus necessary to
find a mechanism that ensures to pay this penalty only with
a probability ε for each client c. Similar to Section IV, this
is achieved with the following three steps:
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• Step 2. For each badly-cut facility f ∈ L for which
ψ(f) 	= ∅, let f ′ ∈ ψ(f) be the closest to f . Replace f ′

by f in S∗. For all clients c ∈ LO such that OPT(c) =
f ′, add c as outliers.

• Step 3. Add all badly cut facility f ′ of L0 to S∗

• Step 4. Add all badly cut outliers of L to the outliers
of S∗.

We show next that S∗ satisfies the conditions for ID to have
small distortion with good probability.

Lemma V.2. The probability that ID has small distortion
is at least 1− ε.

Proof: When bounding the cost increase due to Step 2,
it is necessary to add as outliers all clients served by f ′ that
are outliers in L. Since f ′ is deleted from S∗ with probability
κ(ε, p), the expected cost due to this is

∑
c∈LO

κ(ε, p)·pc ≤
κ(ε, p)costI(L). Using Markov’s inequality, this is at most
ε/3costI(L) with probability 1− ε/3.

Step 3 does not involve outliers at all. Hence, Claim IV.3
and IV.4 are still valid. Combined with the previous observa-
tion about Step 2, this proves that after Step 3, S∗ contains
at most k centers - including the ones in BD - and has cost
at most (1 + ε)costI(OPT) + ε/3costI(L) with probability
at least 1− ε/3.

Step 4 implies ensures that all outliers in OD are also out-
liers in the constructed solution. Moreover, since an outlier
of L is badly cut with probability κ(ε, p), the expected cost
increase due to this step is at most κ(ε, p)costI(L). Using
again Markov’s inequality, this cost is at most ε/3costI(L)
with probability 1− ε/3.

By union-bound, the solution S∗ has cost at most (1 +
ε)costI(OPT) + εcostI(L) with probability 1 − ε. Hence,
ID has small distortion with probability 1− ε.

Given an instance with low distortion, it is again possible
to prove that there exists a near optimal portal-respecting
solution, and the same DP as for k-Median can find it.

Therefore, using the polynomial time algorithm of
Charikar et al. [10] to compute a constant-factor approxima-
tion, the algorithm presented in Section IV can be straight-
forwardly adapted, concluding the proof of Theorem I.4.

B. k-Median with Outliers

In the k-Median with Outliers problem, the number of
outliers allowed is bounded by some given integer z. We
do not manage to respect this bound together with having
at most k facilities and a near-optimal solution: we need to
relax it a little bit, and achieve a bicriteria approximation,
with k facilities and (1 + O(ε))z outliers. For this, our
framework applies nearly without a change.

The first step in the previous construction does not apply
directly: the “cost” of removing a center is not well defined.
In order to fix this part, Step 1 is randomized: among
the facilities of OPT≥2 that are not the closest of their

corresponding facility in L≥2, remove from S∗ a random
subset Ĥ of size �ε · |OPT≥2|/2�.
Lemma V.3. After the randomized Step 1, S∗ has expected
cost (1 +O(ε))cost(OPT) +O(ε)cost(L)

Proof: Since there are at least |OPT≥2|/2 facilities of
OPT≥2 that are not the closest of their corresponding facility
in L≥2, the probability to remove one of them is O(ε).
Hence, every outlier of L that is served in OPT must be
added as an outlier in S∗ with probability O(ε) – when
its serving center in OPT is deleted. Hence, the expected
number of outliers added is O(εz).

Moreover, the proof of Lemma IV.1 shows that the sum
of the cost of deleting all possible facilities is at most
O(cost(OPT)+cost(L)) (adding a point as outlier whenever
it is necessary). Removing each one of them with probability
O(ε) ensures that the expected cost of S∗ after step 1 is
(1 +O(ε))cost(OPT) +O(ε)cost(L).

The three following steps are the same as in the previous
section, and the proof follows: with constant probability, the
instance ID has small distortion (defined as for k-Median
with penalties), and one can use a dynamic program to solve
the problem on it. The DP is very similar to the one for k-
Median. The only difference is the addition of a number x
to each table entry, which is a power of (1 + ε/ log n), and
represents the (rounded) number of outliers allowed in the
subproblem. This adds a factor log2 n/ε to the complexity.

It is possible to compute a constant factor approximation
S in polynomial time (using Krishnaswamy et al. [26]).
Hence, this algorithm is a polynomial time bicriteria ap-
proximation scheme for k-Median with outliers. As in
Section IV, this directly extends to k-Means with outliers.

This concludes the proof of Theorem I.5.

C. k-Center

In the k-Center problem, the goal is to place k centers
such as to minimize the largest distance from a point to
its serving center. We propose a bicriteria approximation,
allowing the algorithm to open (1 +O(ε))k centers.

For this, we change slightly the definition of badly-
cut. Given a solution L with cost γ and a hierarchical
decomposition D, a center f of L is badly cut w.r.t D if the
ball β(f, 2i) is cut at some level j greater than i+ τ(ε, d),
for i such that 2i−1 ≤ 2γ ≤ 2i.

Note that Lemma II.5 still holds with this definition : a
center f is badly cut with probability at most κ(ε, p). Let BD
be the set of badly cut centers. We assume in the following
that L is a 2-approximation, i.e. γ ≤ 2OPT.

We make the crucial following observation, using the
doubling property of the metric. Let f be a center of L.
By definition of doubling dimension, the ball β(f, γ) can
be covered by 2d balls of radius γ/2 ≤ OPT. Let Cc
be the set of centers of such balls, such that β(f, γ) ⊆⋃
f ′∈Cc

β(f ′, γ/2).
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Given an instance I , we construct ID the following way:
for each badly cut facility f , open all the facilities in Cf ,
and remove all the clients in β(f, γ) from the instance. We
let C =

⋃
f badly cut

Cf . The structural lemma of this section is

the following:

Lemma V.4. It holds that for all solution S:

• costID (S) ≤ costI(S)
• costI(S ∪ C) ≤ max(costID (S),OPT)

Proof: Since the instance ID contains a subset of clients
of I, it holds that costID (S) ≤ costI(S).

Let S be a solution in ID. It serves all client in I
but the one removed: these ones are served by C at a
cost γ/2 ≤ OPT. Hence, the cost of S ∪ C is at most
max(costID (S),OPT).

We now show, in a similar fashion as Lemma III.2, that
the clients in ID are cut from their serving facility of OPT
at a controlled level. Recall that OPT is defined for instance
I.

Lemma V.5. Let c be a client in ID and OPT(c) its serving
facility in OPT. C and OPT(c) are cut at level at most
log(2γ) + τ(ε, d).

Proof: Let c be a client, L(c) its serving center in L
and OPT(c) its serving center in OPT. If c is still a client
in ID, it means that L(c) is not badly cut. Observe that
dist(L(c),OPT(c)) ≤ dist(c, L(c)) + dist(c,OPT(c)) ≤ γ +
OPT ≤ 2γ

Let i such that 2i−1 ≤ 2γ ≤ 2i. Since L(c) is not badly
cut, the ball β(L(c), 2i) is not badly cut neither: hence, c
and OPT(c) (that are in this ball) are cut at level at most
i+ τ(ε, d) ≤ log(2γ) + τ(ε, d).

This lemma is stronger than Lemmas III.2 and IV.5: it
allows us to consider only levels of the decomposition with
diameter less than 21+τ(ε,d)γ.

Since the set C has expected size κ(ε, p)k, Markov’s
inequality ensures that with probability 1 − ε this set
has size O(ε)k. If every part with diameter Δ of the
hierarchical decomposition is equipped with a ρΔ-net (for
ρ = ε2−τ(ε,d)), Lemma V.5 ensure that there exists a portal-
respecting solution S with cost costID (S) ≤ OPT+O(ε)γ =
(1+O(ε))OPT. Lemma V.4 ensures that lifting this solution
back to I and adding C as centers gives a near-optimal
solution.

Using the same algorithm as for k-Medians to com-
pute a good portal-respecting solution, and computing a
2-approximation with a simple greedy algorithm (see e.g.
[17]), that runs in time O(n log k) concludes the proof of
Theorem I.6.
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APPENDIX

A. Proof of Section II

Proof of Lemma II.3: We present the algorithm con-
structing the hierarchical decomposition and proves the
lemma as a second step.
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Without loss of generality, assume that the smallest dis-
tance in the metric is 1: the aspect-ratio Δ is therefore the
diameter of the metric. Start from a hierarchy of nets Y0 :=
V, . . . , Ylog(Δ) such that Yi is a 2i−2-net of Yi−1. Moreover,
pick a random order on the points V and a random number
τ ∈ [1/2, 1). The hierarchical decomposition D is defined
inductively, starting from BlogΔ = V . To partition a part B
at level i into subpart at level i−1, do the following: for each
y ∈ Yi−1∩B taken in the random order, define B∩β(y, τ2i)
to be a part at level i − 1 and remove B ∩ β(y, τ2i) from
C.

When we assume access to the distances through an
oracle, it is possible to construct this hierarchy an augment it
with the set of portals in time (1/ρ)O(d)n log(Δ). Moreover,
these portals can be made nested, meaning that portals at
level i+ 1 are also portals at level i [22], [15].

We prove now that this hierarchical decomposition has the
required properties. The diameter of each part is bounded
by 2i+1 by construction; therefore to have Property 2 it is
enough to make Pi an (ε2i+1)-net of V . The Lemma II.1
ensures the conciseness, and the definition of a net ensures
that every point is at distance ε2i+1 of Pi, which implies
the preciseness. Proving the scaling property requires a bit
more work.

The two ingredients needed for this part stem from the
construction of the decomposition: the diameter of any part
at level i is at most 2i+1, and the minimum distance between
two points of Yi is bigger than 2i−2.

These two properties are enough in order to prove our
lemma. Let i be a level such that 2i ≤ r: then r/2i = Ω(1)
so there is nothing to prove. Otherwise, we proceed in two
steps. First, let us count the number of level i parts that could
possibly cut a ball β(x, r). A level i part is included in a ball
β(y, 2i) for some y ∈ Yi; therefore if dist(x, y) > r+2i then
y’s part cannot cut β(x, r). So it is required that dist(x, y) ≤
r+2i ≤ 2 ·2i. But since the minimum distance between two
points of Yi is 2i−2, and Yi has doubling dimension d, we
have |Yi ∩β(x, 2 · 2i)| = 2d log(2

i/2i−2) = 22d. Thus there is
only a bounded number of parts to consider.

We prove for each of them that the probability that it cuts
β(x, r) is O(r/2i). A union-bound on all the possible parts
is then enough to conclude. Let therefore y ∈ Yi∩β(x, 2·2i),
and xm and xM be the respective closest and farthest point
of β(x, r) from y. A necessary condition for y’s part to
cut β(x, r) is that the diameter of the part is in the open
interval (d(y, xm), d(y, xM )). Since xm, xM ∈ β(x, r) this
interval has size 2r, and the radius of the part is picked
uniformly in [2i/2, 2i). Therefore the probability that the
radius of the part falls in (d(y, xm), d(y, xM )) is at most
4r/2i. And finally, the probability that y’s part cuts β(x, r)
is indeed 4r/2i.

By a union-bound over all the parts that could pos-
sibly cut β(x, r) we obtain the claimed probability

Pr[C cuts β(x, r) at a level i] = 22d+2r/2i.

Lemma A.1. Let P be a problem among Facility Location,
k-Medians or k-Means. Given an instance (I, dist) with n
points, ε > 0 and a constant-factor approximation for P on
I, there exists a linear-time algorithm that outputs a set of
instances (I1, dist1), . . . , (Im, distm) such that
• I1, . . . , Im is a partition of I
• for all i, Ii has aspect-ratio O(n4/ε),
• if (

⋃ Ii,min disti) is the instance where distances
between points of the same part Ii are given by disti
and distances between points of different parts is set to
∞, then

– there exists a solution on
⋃ Ii with cost (1 +

ε/n)cost(OPT), and
– any solution on

⋃ Ii of cost X induces a solution
of cost at most X + εcost(OPT)/n on I .

Proof: The cost of the constant-factor approximation
is an estimate γ on the cost of the optimum solution
OPT: γ = Θ(cost(OPT)). It is then possible to replace
all distances longer than 2γ by ∞: distances longer than
γ will indeed never be used by solution with cost better
than γ, so the cost of these solutions is preserved after this
transformation. We say that two vertices are connected if
their distance is not ∞, and call a connected component
any maximal set of connected vertices. The transformation
ensured that any connected component has diameter at most
2OPT, and that every cluster of OPT is contained inside
a single connected component. Moreover, any connected
component has doubling dimension 2d: indeed, a subspace
of a metric with doubling dimension d has a doubling
dimension at most 2d. Note also that this transformation
can be made implicitly: every time the algorithm queries an
edge, it can replace the result by ∞ if necessary.

To identify the connected component, the algorithm builds
a spanner with the algorithm of [22]: the connected compo-
nents of the spanner are exactly the ones of our metric, and
can be found in linear time.

Then, for each connected component, the algorithm de-
fines an instance of the more general version of the clustering
problem by the following way. It first sets χ(v) = 1 for all
vertex v. Then, it iterates over all edges, it contracts every
edge (u, v) with length less than (ε · γ/n3) to form a new
vertex w and sets χ(w) = χ(u) + χ(v).

Now, we aim at reconstructing a metric from this graph.
We will do it in an approximate way: for all connected points
u, v of connected component i, we set disti(u, v) to be 0 if
u and v are merged in the graph, and otherwise dist(u, v).
This ensures that ε · γ/n3 ≤ disti(u, v) ≤ 2γ, hence the
aspect-ratio of Ii is O(n4/ε). Moreover, every distance is
preserved up to an additive O(ε · cost(OPT)/n2).

Since every cluster of OPT is contained inside a single
connected component, this ensures that OPT induces a
solution of cost (1 + ε/n)cost(OPT) on

⋃ Ii. Moreover,
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lifting a solution in
⋃ Ii to I costs at most εcost(OPT)/n2

per pair (client, center) and therefore εcost(OPT)/n in total.

If the problem considered is Facility Location, it is easy
to merge the solutions on subinstances: since there is no
cardinality constraint, the global solution is simply the union
of all the solutions. The hard constraint on k makes things
a bit harder. Note that the dynamic program presented in
Section IV naturally handles it without any increase in its
complexity: however, for completeness we present now a
direct reduction.

Lemma A.2. Given a problem P among k-Medians or
k-Means, a set of instances (I1, dist1), . . ., (Im, distm)
given by Lemma A.1 and an algorithm running in time
ni(log ni)

αt(Δ) to solve P on instances with ni points and
aspect-ratio Δ, there exists an algorithm that runs in time
O(n(log n)α+2t(O(n4/ε))) to solve P on

⋃ Ii.
Proof: First, note that the optimal solution in

⋃ Ii is
O(n5/ε), since the maximal distance in any of I1, . . . Im is
n4/ε. Using this fact, we build a simple dynamic program to
prove the lemma. For all i ≤ m and j ≤ log1+ε/ logn(n

5/ε),
let ki,j be the minimal k′ such that the cost of P with k′

centers in Ii is at most (1+ε/ log n)j . ki,j can be computed
with a simple binary search, using the fact that the cost of
a solution is decreasing with k′.

Given all the ki,j , a simple dynamic program can compute
k≥i,j , the minimal number of centers needed to have a cost
at most (1+ε)j on Ii, . . . Im (the ε/ log n becomes a simple
ε because of the accumulation of errors). The solution for
our problem is (1 + ε)j , where j is the minimal index such
that k≥1,j ≤ k.

The complexity of computing ki,j is O(log k ·
ni(log n)

αt(O(n4/ε))), hence the complexity of computing
all the ki,j is O(n(log n)α+2t(O(n4/ε)). The complexity
of the dynamic program computing k≥i,j is then simply
O(m log n) = O(n log n), which concludes the proof.

Hence, in the following, we only focus on solving prob-
lems on instances where the aspect-ratio is polynomial in
n.
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