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Abstract—Following the groundbreaking algorithm of
Moser and Tardos for the Lovász Local Lemma (LLL),
there has been a plethora of results analyzing local search
algorithms for various constraint satisfaction problems.
The algorithms considered fall into two broad categories:
resampling algorithms, analyzed via different algorithmic
LLL conditions; and backtracking algorithms, analyzed via
entropy compression arguments. This paper introduces
a new convergence condition that seamlessly handles
resampling, backtracking, and hybrid algorithms, i.e., al-
gorithms that perform both resampling and backtracking
steps. Unlike previous work on the LLL, our condition
replaces the notion of a dependency or causality graph by
quantifying point-to-set correlations between bad events.
As a result, our condition simultaneously: (i) captures
the most general algorithmic LLL condition known as
a special case; (ii) significantly simplifies the analysis of
entropy compression applications; (iii) relates backtrack-
ing algorithms, which are conceptually very different from
resampling algorithms, to the LLL; and most importantly
(iv) allows for the analysis of hybrid algorithms, which
were outside the scope of previous techniques. We give
several applications of our condition, including a new
hybrid vertex coloring algorithm that extends the recent
breakthrough result of Molloy for coloring triangle-free
graphs to arbitrary graphs.

Keywords-Lovasz Local Lemma; local search algo-
rithms; backtracking; graph coloring; random graphs

I. INTRODUCTION

Numerous problems in computer science and combi-

natorics can be formulated as searching for objects that

lack certain bad properties, or “flaws”. For example,

constraint satisfaction problems such as satisfiability

and graph coloring can be seen as searching for objects

(truth assignments, colorings) that are flawless, in the

sense that they do not violate any constraint.

The Lovász Local Lemma (LLL) [19] is a powerful

tool for proving the existence of flawless objects that
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has had far-reaching consequences in computer science

and combinatorics [8, 37]. Roughly speaking, it asserts

that, given a collection of a bad events in a probability

space, if all of them are individually not too likely,

and independent of most other bad events, then the

probability that none of them occurs is strictly positive;

hence a flawless object (i.e., an elementary event that

does not belong in any bad event) exists. For example,

the LLL implies that every k-CNF formula in which

each clause shares variables with fewer than 2k/e other

clauses is satisfiable. Remarkably, this is tight [21].

In seminal work, Moser [38] and Moser-Tardos [39]

showed that a simple local search algorithm can be

used to make the LLL constructive for product prob-

ability spaces, i.e., spaces where elementary events

correspond to sequences of independent coin-flips. For

example, the Moser-Tardos algorithm for satisfiability

starts at a uniformly random truth assignment and,

as long as violated clauses exist, selects any such

clause and resamples the values of all its variables

uniformly at random. Following this work, a large

amount of effort has been devoted to making different

variants of the LLL constructive [15, 32, 33, 42],

and to analyzing sophisticated resampling algorithms

that extend the Moser-Tardos techniques to non-product

probability spaces [2, 3, 27, 28, 30, 35]. Indeed, intimate

connections have been established between resampling

algorithms and the so-called “lopsided” versions of the

LLL: see [3, 28, 30] for more details.

In earlier groundbreaking work aimed at making the

LLL algorithmic for k-SAT, Moser [38] introduced

the entropy compression method. This method has

since been used to analyze backtracking algorithms,

e.g., [18, 20, 23, 24, 25, 41]. These natural and po-

tentially powerful local search algorithms have a very

different flavor from resampling algorithms: instead of

maintaining a complete value assignment (object) and

repeatedly modifying it until it becomes satisfying, they

operate on partial non-violating assignments, starting

with the empty assignment, and try to extend to a
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complete, satisfying assignment. To do this, at each step

they assign a (random) value to a currently unassigned

variable; if this leads to the violation of one or more

constraints, they backtrack to a partial non-violating as-

signment by unassigning some set of variables (typically

including the last assigned variable).

While there have been efforts to treat certain classes

of backtracking algorithms systematically [20, 24], the

analysis of such algorithms in general still requires ad
hoc technical machinery. Moreover, there is no known

connection between backtracking algorithms and any

known LLL condition, either existential or algorithmic.

The main reason for this is that backtracking steps

induce non-trivial correlations among bad events, which

typically result in very dense dependency graphs that are

not amenable to currently known LLL conditions.

The main contribution of this paper is to introduce

a new technique for analyzing hybrid algorithms, i.e.,

algorithms that (potentially) use both resampling and

backtracking steps. Such algorithms combine the advan-

tages of both approaches by using resampling to explore

the state space, while detecting and backing away

from unfavorable regions using backtracking steps. To

analyze these algorithms, we prove a new algorithmic

LLL condition which, unlike previous versions, replaces

the notion of a dependency or causality graph by quan-

tifying point-to-set correlations between bad events.

Notably, our new condition captures the most general

algorithmic LLL condition known so far and, more-

over, unifies the analysis of all entropy compression

applications, connecting backtracking algorithms to the

LLL in the same fashion that existing analyses connect

resampling algorithms to the LLL.
A new coloring algorithm: Our main application

is a new vertex coloring algorithm inspired by the

recent breakthrough result of Molloy [35], who proved

that any triangle-free graph of maximum degree Δ
can be colored using (1 + o(1))Δ/ ln Δ colors; this

improves the celebrated result of Johannson [31] while,

at the same time, dramatically simplifying its analysis.

We generalize Molloy’s result by establishing a bound

on the chromatic number of arbitrary graphs, as a

function of the maximum number of triangles in the

neighborhood of a vertex, and giving an algorithm that

produces such a coloring.

Theorem I.1 (Informal Statement). Let G be any graph
with maximum degree Δ in which the neighbors of every
vertex span at most T ≥ 0 edges between them. For
every ε > 0, if Δ ≥ Δε and T � Δ2ε then

χ(G) ≤ (1 + ε)
Δ

ln Δ− 1
2 ln(T + 1)

, (1)

and such a vertex coloring can be found efficiently.
(Here � hides logarithmic factors.) Moreover, the theo-

rem holds for any T ≥ 0 if the leading constant (1+ ε)
is replaced by (2 + ε).

Importantly, as explained in Section II-B, the bound (1)

matches the algorithmic barrier for random graphs [1].

This implies that any improvement on the guarantee of

our algorithm for T � Δ2ε would amount to an unex-

pected breakthrough in random graph theory. (Random

graphs are only informative in the regime T � Δ2ε.) For

arbitrary graphs our bound is within a factor of 4 of the

chromatic number, improving upon a classical result of

of Alon, Krivelevich and Sudakov [7] who showed (1)

with an unspecified (large) leading constant.

At the heart of Theorem I.1 is a hybrid local search

algorithm which we analyze using the techniques in-

troduced in this paper. Molloy’s result (and resampling

algorithms based on it) breaks down immediately in the

presence of triangles; the key to our algorithm is to

allow backtracking steps in order to avoid undesirable

portions of the search space. We discuss our coloring

result and its optimality further in Section II-B.

Applications to backtracking algorithms: Besides

our coloring application, we give three representative

applications of our techniques applied to pure back-

tracking algorithms.

Recently, Bissacot and Doin [14] showed that back-

tracking algorithms can make LLL applications in the

variable setting constructive, using the entropy com-

pression method. However, their result applies only to

the uniform measure and their algorithms are relatively

complicated. Our new algorithmic condition makes ap-

plications of the LLL in the variable setting [39], with

any measure, constructive via a single, simple back-

tracking algorithm, i.e., an algorithm of very different

flavor from the Moser-Tardos resampling algorithm. For

example, in the case of k-SAT the algorithm takes the

following form:

Randomized DPLL with single-clause backtracking
while unassigned variables exist do

Assign to the lowest indexed unassigned variable

x a value v ∈ {0, 1} with probability pvx
if one or more clauses become violated then

Unassign all k variables in the lowest indexed

violated clause

We then show that applying our condition to the

algorithm of Esperet and Parreau [20] for acyclic edge
coloring recovers, in a simple, black-box fashion, the

same bound of 4Δ as their highly non-trivial, problem-

specific analysis via entropy compression, while guar-

anteeing an improved running time bound.

Finally, we make constructive in an effortless manner

an existential result of Bernshteyn [11] showing im-
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proved bounds for the acyclic chromatic index of graphs

that do not contain an arbitrary bipartite graph H .
We present our results on backtracking algorithms in

Section V.

A. A new algorithmic LLL condition
To state our new algorithmic LLL condition, we need

some standard terminology. Let Ω be a finite set and

let F = {f1, f2, . . . , fm} be a collection of subsets

of Ω, each of which will be referred to as a “flaw.”

Let
⋃
i∈[m] fi = Ω∗. For example, for a given CNF

formula on n variables with clauses c1, . . . , cm, we

take Ω = {0, 1}n to be the set of all possible variable

assignments, and fi the set of assignments that fail to

satisfy clause ci. Our goal is to find an assignment in

Ω \Ω∗, i.e., a satisfying (“flawless”) assignment. Since

we will be interested in algorithms which traverse the

set Ω we will also refer to its elements as “states.”
We consider algorithms which, in each flawed

state σ ∈ Ω∗, choose a flaw fi present in σ, i.e.,

fi � σ, and attempt to leave (or “fix”) fi by moving

to a new state τ selected with probability ρi(σ, τ); we

refer to such an attempt as addressing fi. We make

minimal assumptions about how the algorithm choses

which flaw to address at each step; e.g., it will be

enough for the algorithm to choose the flaw with lowest

index according to some fixed permutation. We say that

a transition σ → τ , made to address flaw fi, introduces
flaw fj if τ ∈ fj , and either σ /∈ fj or j = i.

For an arbitrary state τ ∈ Ω, flaw fi, and set of flaws

S, let

InSi (τ) :={σ ∈ fi : the set of flaws introduced

by the transition σ → τ includes S}. (2)

For any fixed probability distribution μ > 0 on Ω
(either inherited from an application of the probabilistic

method, as in the classical LLL, or introduced by the

algorithm designer), we define the charge of the pair

(i, S) with respect to μ to be

γSi := max
τ∈Ω

⎧⎨
⎩ 1
μ(τ)

∑
σ∈InS

i (τ)

μ(σ)ρi(σ, τ)

⎫⎬
⎭ . (3)

That is, the charge γSi is an upper bound on the ratio

between the ergodic flow into a state via transitions that

introduce every flaw in S (and perhaps more), and the

probability of the state under μ.
Our condition may now be stated informally as fol-

lows:

Theorem I.2. If there exist positive real numbers
{ψi}mi=1 such that, for all i ∈ [m],

1
ψi

∑
S⊆[m]

γSi
∏
j∈S

ψj < 1 , (4)

then a local search algorithm as above reaches a
flawless object quickly with high probability.

The phrase “quickly with high probability” essentially

means that the running time has expectation linear in

the number of flaws and an exponential tail; we spell

this out more formally in Section II.

A key feature of Theorem I.2 is the absence of

a causality/dependency graph, present in all previous

LLL conditions. This is because considering point-to-
set correlations, i.e., how each flaw interacts with every

other set of flaws, frees us from the traditional view of

dependencies between individual events. In our condi-

tion, every flaw may interact with every other flaw, as

long as the interactions are sufficiently weak. Notably,

this is achieved without any loss when specialized to

the traditional setting of a causality/dependency graph.

To see this, note that if S contains any flaw that is never

introduced by addressing flaw fi, then γSi = 0. Thus, in

the presence of a causality/dependency graph, the only

terms contributing to the summation in (4) are those

that correspond to subsets of the graph neighborhood

of flaw fi, recovering the traditional setting.

Besides relaxing the traditional notion of dependence,

our condition is also quantitatively more powerful, even

in the traditional setting. To get a feeling for this, we

observe that the previously most powerful algorithmic

LLL condition, due to Achlioptas, Iliopoulos and Kol-

mogorov [3], can be derived from (4) by replacing γSi
by γ∅i for every S (and restricting S to subsets of the

neighborhood of flaw fi, as discussed in the previous

paragraph). Since the charges γSi are decreasing in

S, replacing γ∅i with γSi can lead to a significant

improvement. For example, if the flaws in S are never

introduced simultaneously when addressing flaw fi,
then γSi = 0 and S does not contribute to our sum in (4);

in contrast, S contributes γ∅i , i.e., the maximum possible

charge, to the corresponding sum in [3]. For a more

detailed discussion of how our new condition subsumes

existing versions of the LLL, see the full version of this

paper [4].

A natural question is whether Theorem I.2 can be

improved by replacing the word “includes” with the

word “equals” in (2), thus shrinking the sets InSi (τ).
The short answer is “No,” i.e., such a change in-

validates the theorem. The reason for this is that in

resampling algorithms we must allow for the possibility

that flaws introduced when addressing fi may later be

fixed “collaterally,” i.e., as the result of addressing other

flaws rather than by being specifically addressed by the

algorithm. While it may seem that such collateral fixes

cannot possibly be detrimental, they are problematic

from an analysis perspective as they can potentially

increase the intensity of correlations between flaw fi
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and S. Perhaps more convincingly, tracking collateral

fixes and taking them into account also appears to be a

bad idea in practice [9, 10, 43, 44]: for example, local

search satisfiability algorithms that select which variable

to flip (among those in the targeted violated clause)

based only on which clauses will become violated, fare

much better than algorithms that weigh this damage

against the benefit of the collaterally fixed clauses.

Motivated by the above considerations, we introduce

the notion of primary flaws. These are flaws which,

once present, can only be eradicated by being addressed

by the algorithm, i.e., they cannot be fixed collaterally.

Primary flaws allow us to change the definition of the

sets InSi (τ) in the desired direction. Specifically, say

that a set of flaws T covers a set of flaws S if:

1) the set of primary flaws in T equals the set of

primary flaws in S; and

2) the set of non-primary flaws in T includes the set

of non-primary flaws in S.

In other words, we demand equality at least for the

primary flaws.

Theorem I.3. Theorem I.2 continues to hold if InSi (τ)
is redefined by replacing “includes” by “covers” in
equation (2).

The notion of primary flaws is one of our main

conceptual contributions. Crucially for our applications,

backtracking steps always introduce only primary flaws

and thus, for such steps, we achieve an ideal level of

control. The full version of our new algorithmic LLL

condition, incorporating primary flaws, is spelled out

formally in Theorem II.4 in Section II.

B. Technical overview: the Lovász Local Lemma as a
spectral condition

We conclude this introduction by sketching the tech-

niques we use to prove our convergence criterion. The

main new insight is that LLL-inspired convergence

arguments for local search algorithms can be viewed

as methods for bounding the spectral radius of an

associated matrix.

As above, let Ω be a (large) finite set of states and

let Ω∗ ⊆ Ω be the “bad” part of Ω, comprising the

flawed states. Imagine a particle trying to escape Ω∗

by following a Markov chain on Ω with transition

matrix P . Our task is to develop conditions under

which the particle eventually escapes, thus establishing

in particular that Ω∗ �= Ω. Letting A be the |Ω∗| × |Ω∗|
submatrix of P that corresponds to transitions from

Ω∗ to Ω∗, and B the submatrix that corresponds to

transitions from Ω∗ to Ω \Ω∗, we may, after a suitable

permutation of its rows and columns, write P as:

P =
[
A B
0 I

]
.

Here I is the identity matrix, since we assume that the

particle stops after reaching a flawless state.

Let θ = [θ1 | θ2] be the row vector corresponding to

the probability distribution of the starting state, where

θ1 and θ2 are the vectors that correspond to states in

Ω∗ and Ω \ Ω∗, respectively. Then, the probability that

after t steps the particle is still inside Ω∗ is exactly

‖θ1At‖1. Therefore, for any initial distribution θ, the

particle escapes Ω∗ if and only if the spectral radius,

ρ(A), of A is strictly less than 1. Moreover, the rate

of convergence is dictated by 1− ρ(A). Unfortunately,

since A is huge and defined implicitly by an algorithm,

the magnitude of its largest eigenvalue, ρ(A), is not

readily available.

To sidestep the inaccessibility of the spectral radius

ρ(A), one can instead bound some operator norm ‖ · ‖
of A and appeal to the fact that ρ(A) ≤ ‖A‖ for any

such norm. Moreover, instead of bounding an operator

norm of A itself, one often first performs a “change of

basis” A′ = MAM−1 for some invertible matrix M
and then bounds ‖A′‖, justified by the fact that ρ(A) =
ρ(A′) ≤ ‖A′‖. The purpose of the change of basis is

to cast A “in a good light” in the eyes of the chosen

operator norm, in the hope of minimizing the cost of

replacing the spectral norm with the operator norm.

As we explain in Appendix B, essentially all known

analyses of LLL-inspired local search algorithms can be

recast in the above framework of matrix norms. More

significantly, this viewpoint allows the extension of such

analyses to a wider class of algorithms. In Section III,

we will use this linear-algebraic machinery to prove our

new convergence condition. The role of the measure μ
will be reflected in the change of basis M , while the

charges γSi will correspond to norms ‖MASi M
−1‖1,

where the ASi are submatrices of the transition matrix A.

II. STATEMENT OF RESULTS

A. A new algorithmic LLL condition

Below we state our main result, which is a formal

version of Theorem I.3 discussed in Section I-A.

Recall that Ω is a finite set, F = {f1, f2, . . . , fm}
is a collection of subsets of Ω which we refer to as

“flaws”, and
⋃
i∈[m] fi = Ω∗. Our goal is to find a

flawless object, i.e., an object in Ω \ Ω∗. For a state

σ, we denote by U(σ) = {j ∈ [m] : fj � σ} the set

of (indices of) flaws present in σ. (Here and elsewhere,

we shall blur the distinction between flaws and their

indices.) We consider algorithms which start in a state

sampled from a probability distribution θ and, in each

flawed state σ ∈ Ω∗, choose a flaw fi ∈ U(σ), and
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attempt to leave (“fix”) fi by moving to a new state τ
selected with probability ρi(σ, τ). We refer to an attempt

to fix a flaw, successful or not, as addressing it. We

say that a transition σ → τ , made to address flaw fi,
introduces flaw fj ∈ U(τ) if fj /∈ U(σ) or if j = i.
(Thus, a flaw (re)introduces itself when a transition fails

to address it.)

Recall that θ denotes the probability distribution of

the starting state. We denote by Span(θ) the set of

flaw indices that may be present in the initial state, i.e.,

Span(θ) =
⋃
σ∈Ω:θ(σ)>0 U(σ).

Let π be an arbitrary permutation over [m]. We say

that an algorithm follows the π-strategy if at each step

the flaw it chooses to address is the one corresponding

to the element of U(σ) of lowest index according to π.

We now formalize the definitions of primary flaws

and charges introduced informally in the introduction.

Definition II.1. A flaw fi is primary if for every σ ∈ fi
and every j �= i, addressing fj at σ always results in
some τ ∈ fi, i.e., fi is never eradicated collaterally.
For a given set S ⊆ [m], we write SP and SN to
denote the indices that correspond to primary and non-
primary flaws in S, respectively.

Definition II.2. We say that a set of flaws T covers a
set of flaws S if TP = SP and TN ⊇ SN .

Definition II.3. For a state τ ∈ Ω, flaw fi, and set of
flaws S, let

InSi (τ) ={σ ∈ fi : the set of flaws introduced

by the transition σ → τ covers S}.
Let μ > 0 be an arbitrary measure on Ω. For every
i ∈ [m] and S ⊆ [m], the charge of (i, S) with respect
to μ is,

γSi = max
τ∈Ω

⎧⎨
⎩ 1
μ(τ)

∑
σ∈InS

i (τ)

μ(σ)ρi(σ, τ)

⎫⎬
⎭ . (5)

We now state the formal version of our main result,

Theorem I.2 of the introduction.

Theorem II.4 (Main Result). If there exist positive real
numbers {ψi}i∈[m] such that, for every i ∈ [m],

ζi :=
1
ψi

∑
S⊆[m]

γSi
∏
j∈S

ψj < 1, (6)

then, for every permutation π over [m], the probability
that an algorithm following the π-strategy fails to reach
a flawless state within (T0 + s)/δ steps is 2−s, where
δ = 1−maxi∈[m] ζi, and

T0 = log2 μ
−1
min +m log2

(
1 + ψmax

ψmin

)
,

with μmin = minσ∈Ω μ(σ), ψmax = maxi∈[m] ψi and
ψmin = mini∈[m] ψi.

Remark II.1. In typical applications, μ and {ψi}i∈[m]

are such that T0 = O(log |Ω|+m) and the sum in (6)

is easily computable, as γSi = 0 for the vast majority
of subsets S.

Remark II.2. For any fixed permutation π, the charges
γSi can be reduced by removing from InSi (τ) every state
for which i is not the lowest indexed element of U(σ)
according to π.

Remark II.3. Theorem II.4 also holds for algorithms
that use flaw choice strategies other than π-strategies.
We discuss some such strategies in Section III-D. How-
ever, there is good reason to expect that it does not hold
for arbitrary flaw choice strategies (see [34]).

Finally, we state a refinement of our running time

bound that will be important in order to get the best

convergence guarantees in the applications of pure back-

tracking algorithms in Section V.

Remark II.4. The upper bound on T0 in Theorem II.4
can be replaced by the more refined bound:

T0 = log2

(
max
σ∈Ω

θ(σ)
μ(σ)

)
+ log2

( ∑
S⊆Span(θ)

∏
j∈S

ψj

)

+ log2

(
max
S⊆[m]

1∏
j∈S ψj

)
.

Moreover, if (as in pure backtracking algorithms) every
flaw is primary, and (as is typical in pure backtracking
algorithms) every flaw is present in the initial state, and
if ψi ∈ (0, 1] for all i, then T0 = log2 μ

−1
min.

B. Application to graph coloring

In graph coloring one is given a graph G = (V,E)
and the goal is to find a mapping of V to a set of

q colors so that no edge in E is monochromatic. The

chromatic number, χ(G), of G is the smallest integer

q for which this is possible. Given a set Lv of colors

for each vertex v (called a list), a list-coloring maps

each v ∈ V to a color in Lv so that no edge in E is

monochromatic. A graph is q-list-colorable if it has a

list-coloring no matter how one assigns a list of q colors

to each vertex. The list chromatic number, χ�(G), is

the smallest q for which G is q-list-colorable. Clearly

χ�(G) ≥ χ(G). A celebrated result of Johansson [31]

established that there exists a large constant C > 0 such

that every triangle-free graph with maximum degree

Δ ≥ Δ0 can be list-colored using CΔ/ ln Δ colors.

Very recently, using the entropy compression method,

Molloy [35] improved Johansson’s result, replacing C
with (1 + ε) for any ε > 0 and all Δ ≥ Δε. (Soon
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thereafter, Bernshteyn [12] established the same bound

for the list chromatic number, non-constructively, via

the Lopsided LLL, and Iliopoulos [29] showed that

the algorithm of Molloy can be analyzed using the

algorithmic LLL condition of [3], avoiding the need for

a problem-specific entropy compression argument.)

Our first result related to graph coloring is a general-

ization of Molloy’s result, bounding the list-chromatic

number as a function of the number of triangles in each

neighborhood. Specifically, in Section IV we establish

the following theorem which is a key ingredient in the

proof of Theorem I.1. Note that, in order to comply

with the standard notation used in results in the area, we

express the bound on the number of triangles as Δ2/f ;

the triangle-free case then corresponds to f = Δ2 + 1.

We stress that Molloy’s proof breaks in the presence of

even a single triangle per vertex.

Theorem II.5. Let G be any graph with maximum
degree Δ in which the neighbors of every vertex span
at most Δ2/f edges. For all ε > 0, there exists Δε such
that if Δ ≥ Δε and f ∈ [Δ

2+2ε
1+2ε (ln Δ)2,Δ2 + 1], then

χ�(G) ≤ (1 + ε)Δ/ ln
√
f .

Furthermore, if G is a graph on n vertices then, for
every c > 0, there exists an algorithm that constructs
such a coloring in polynomial time with probability at
least 1− 1

nc .

Theorem II.5 is interesting for several reasons. First,

random graphs suggest that it is sharp, i.e., that no

efficient algorithm can color graphs satisfying the condi-

tions of the theorem with (1−ε)Δ/ ln
√
f colors. More

precisely, Proposition II.1 below, proved in Appendix D,

implies that any such algorithm would entail coloring

random graphs using fewer than twice as many colors

as their chromatic number. This would be a major

(and unexpected) breakthrough in random graph theory,

where beating this factor of two has been an elusive

goal for over 30 years. Besides the lack of progress,

further evidence for the optimality of this factor of two

is that it corresponds precisely to a phase transition in

the geometry of the set of colorings [1], known as the

shattering threshold. Second, Theorem II.5 establishes

the existence of an algorithm that is robust enough

to apply to worst-case graphs, while at the same time

matching the performance of the best known (and highly

tuned) algorithms for random graphs:

Proposition II.1. For every ε > 0 and d ∈
(dε lnn, (n lnn)

1
3 ), there exist Δ = Δ(d, ε) and f =

f(d, ε) such that with probability tending to 1 as n →
∞, a random graph G = G(n, d/n) satisfies the con-
ditions of Theorem II.5 and χ(G) ≥ (1

2 − ε)Δ/ ln
√
f .

Third, armed with Theorem II.5, we are able to prove

the following result concerning the chromatic number

of arbitrary graphs, as a function of the maximum

degree and the maximum number of triangles in any

neighborhood:

Theorem II.6. Let G be a graph with maximum degree
Δ in which the neighbors of every vertex span at most
Δ2/f edges. For all ε > 0, there exist Δε, fε such that
if Δ ≥ Δε and f ∈ [fε,Δ2 + 1], then

χ(G) ≤ (2 + ε)Δ/ ln
√
f . (7)

Furthermore, if G is a graph on n vertices then, for
every c > 0, there exists an algorithm that constructs
such a coloring in polynomial time with probability at
least 1− 1

nc .

Theorem II.6 improves a classical result of Alon,

Krivelevich and Sudakov [7] which established (7) with

an unspecified (large) constant in place of 2 + ε. The

main idea in their analysis is to break down the input

graph into triangle-free subgraphs, and color each one of

them separately using distinct sets of colors by applying

the result of Johansson [31]. Note that even if one used

Molloy’s recent result [35] in place of Johansson’s in

this scheme, the corresponding constant would still be

in the thousands. Instead, we break down the graph

into subgraphs with few triangles per neighborhood,

and use Theorem II.5 to color the pieces. The proof

of Theorem II.6 can be found in the full version of this

paper [4].

As final remark, we note that Vu [45] proved the

analogue of the main result of [7] (again with a large

constant) for the list chromatic number. While we don’t

currently see how to sharpen Vu’s result to an analogue

of Theorem II.6 for the list chromatic number using

our techniques, we note that our Theorem II.5 improves

over [45] for all f ≥ Δ
2+2ε
1+2ε (ln Δ)2.

III. PROOF OF MAIN THEOREM

In Sections III-B and III-C we present the proof of

our main result, Theorem II.4. In Section III-D we

show how to extend the theorem to allow flaw choice

strategies other than following a fixed permutation over

flaws.

Throughout this section we use standard facts about

operator norms, summarized briefly in Appendix A.

A. Charges as norms of transition matrices

We will first show how charges can be seen as the

norms of certain transition matrices. For more concrete

examples of this connection, see Appendix B.

Recall that for any S ⊆ [m], we denote by SP and

SN the subsets of S that correspond to primary and

non-primary flaws, respectively.
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Definition III.1. For every i ∈ [m] and every set of flaw
indices S ⊆ [m], let ASi be the |Ω| × |Ω| matrix where
ASi [σ, τ ] = ρi(σ, τ) if the set of flaws introduced by
σ → τ covers S, i.e., the set of primary flaws introduced
by the transition σ → τ equals SP and the set of
non-primary flaws introduced by σ → τ contains SN ;
otherwise ASi [σ, τ ] = 0.

Let ‖ · ‖1 denote the matrix norm induced by the

L1-vector-norm, and recall that it is equal to the max

column sum. Let also M = diag(μ(σ)) denote the

|Ω| × |Ω| diagonal matrix whose entries correspond to

the probability measure μ. Our key observation is that

the charges γSi introduced in (5) can be expressed as

γSi = ‖MASi M
−1‖1 . (8)

The reader is encouraged to verify this equivalence,

which is an immediate consequence of the definitions.

Remark III.1. Although we are specializing here to the
‖ · ‖1 norm and matrix M = diag(μ(σ)), Theorem II.4
holds for any choice of matrix norm and invertible
matrix M . It is an interesting research direction whether
using other norms can be useful in applications.

B. Tracking the set of current flaws

We say that a trajectory Σ = (σ1, σ2, . . . , σt+1)
followed by the algorithm is a bad t-trajectory if every

state σi, i ∈ [t + 1], is flawed. Thus, our goal is to

bound the probability that the algorithm follows a bad

t-trajectory.

Given a bad trajectory, we will track the flaws in-

troduced into the state at each step, where a flaw is

said to “introduce itself” whenever addressing it fails

to remove it. Of the flaws introduced at each step, we

disregard those that later get eradicated collaterally, i.e.,

by an action addressing some other flaw. The rest form

the “witness sequence” of the trajectory, i.e., a sequence

of sets of flaws.

Fix any permutation π on [m]. For any S ⊆ [m],
let π(S) = minj∈S π(j), i.e., the lowest index in

S according to π. Recalling that U(σ) is the set of

indices of flaws present in σ, in the following we

assume that the index of the flaw addressed in state

σ is π(U(σ)), which we sometimes abbreviate as π(σ).
Also, to lighten notation, we will denote A \ {π(B)}
by A− π(B).

Definition III.2. Let Σ = (σ1, σ2, . . . , σt+1) be any
bad t-trajectory. Let B0 = U(σ1). For 1 ≤ i ≤ t, let

Bi = U(σi+1) \ [U(σi)− π(σi)] ,

i.e., Bi comprises the indices of the flaws introduced in

the i-th step. For 0 ≤ i ≤ t, let

Ci = {k ∈ Bi | ∃j ∈ [i+ 1, t] :
k /∈ U(σj+1) ∧ ∀ ∈ [i+ 1, j] : k �= π(σ�)} ,

i.e., Ci comprises the indices of the flaws introduced in
the i-th step that get eradicated collaterally. The witness

sequence of Σ is the sequence of sets

w(Σ) = (B0 \ C0, B1 \ C1, . . . , Bt \ Ct) .
A crucial feature of witness sequences is that they

allow us to recover the sequence of flaws addressed.

Definition III.3. Given an arbitrary sequence
S0, . . . , St of subsets of [m], let S∗1 = S0, while
for 1 ≤ i ≤ t, let

S∗i+1 =

{
[S∗i − π(S∗i )] ∪ Si if S∗i �= ∅ ;
∅ otherwise .

If S∗i �= ∅ for all 1 ≤ i ≤ t, then we say that (Si)ti=0 is
plausible and write π(S∗i ) = (i).

Lemma III.4. If Σ = (σ1, σ2, . . . , σt+1) is any bad
t-trajectory, then w(Σ) = (S0, . . . , St) is plausible,
π(σi) = π(S∗i ) = (i) for all 1 ≤ i ≤ t, and for every
flaw index z ∈ [m], the number of times z occurs in the
multiset

⋃t
i=0 Si minus the number of times it occurs

in the multiset
⋃t
i=1(i) equals 1z∈S∗

t+1
.

Proof: Recall that Si = Bi\Ci. For 1 ≤ i ≤ t+1, let Li
comprise the elements of U(σi) eradicated collaterally

during the i-th step, and let Hi comprise the elements

of U(σi) eradicated collaterally during any step j ≥ i.
Observe that Hi+1 = (Hi \Li)∪Ci. We will prove, by

induction, that for all 1 ≤ i ≤ t+ 1,

S∗i ⊆ U(σi); (9)

U(σi) \ S∗i = Hi. (10)

Observe that if (9) and (10) hold for a given i, then

π(σi) = π(S∗i ), since π(σi) �∈ Hi by the definition

of Hi, and π(A) = π(A \ B) whenever π(A) �∈ B.

Moreover, S∗i �= ∅, because otherwise U(σi) = Hi,

an impossibility. To complete the proof it suffices to

note that for any z ∈ [m], the difference in question

equals 1z∈U(σt+1) and that U(σt+1) = S∗t+1 since, by

definition, Ht+1 = ∅. The inductive proof is as follows.

For i = 1, (9) and (10) hold since S∗1 = B0 \ C0,

while U(σ1) = B0. If (9) and (10) hold for some i ≥ 1,

then S∗i+1 = [S∗i − π(σi)] ∪ Si while, by definition,

U(σi+1) = [(U(σi)− π(σi)) \ Li] ∪Bi. Thus, the fact

that S∗i ⊆ U(σi) trivially implies S∗i+1 ⊆ U(σi+1),
while

U(σi+1) \ S∗i+1 = ((U(σi) \ S∗i ) \ Li) ∪ (Bi \ Si)
= (Hi \ Li) ∪ Ci = Hi+1 .
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This concludes the proof.

The first step in our proof of Theorem II.4 is to

give an upper bound on the probability that a given

witness sequence occurs in terms of the charges γSi . In

particular, and in order to justify Remark III.1, we will

use an arbitrary norm ‖ · ‖ and invertible matrix M .

Recall that ‖ · ‖∗ denotes the dual of norm ‖ · ‖ and

let θ� ∈ [0, 1]|Ω| denote the row vector corresponding

to the probability distribution of the initial state σ1.

Moreover, for a state σ, let eσ denote the indicator

vector of σ, i.e., eσ[σ] = 1 and eσ[τ ] = 0 for all

τ ∈ Ω \ {σ}.
Lemma III.5. Fix any integer t ≥ 0 and let Σ be
the random variable (σ1, . . . , σt+1). Fix any arbitrary
invertible matrix M and operator norm ‖ · ‖, and
let λSi = ‖MASi M

−1‖. For any plausible sequence
φ = (S0, . . . , St),

Pr[w(Σ) = φ] ≤ ‖θ�M−1‖∗
(∑
τ∈Ω

‖Meτ‖
)

t∏
i=1

λSi

(i).

(11)

Proof: Recall that for any S ⊆ [m], we denote by SP

and SN the subsets of S that correspond to primary

and non-primary flaws, respectively. By Definition III.2

and Lemma III.4, a necessary condition for w(Σ) = φ
to occur is that (i) ∈ U(σi) and Si ⊆ Bi, for every

1 ≤ i ≤ t. Moreover, since primary flaws are never

eradicated collaterally, i.e., CPi = ∅ always, it must

also be that SPi = BPi for 1 ≤ i ≤ t. Fix any state

τ ∈ Ω. The probability that (1) ∈ U(σ1) ∧ SP1 =
BP1 (Σ) ∧ SN1 ⊆ BN1 (Σ) ∧ σ2 = τ equals the τ -column

(coordinate) of the row-vector θ�AS1
(1). More generally,

we see that for any t ≥ 1,

Pr

[
t∧
i=1

((i) ∈ U(σi))
t∧
i=1

(
SPi = BPi

)
t∧
i=1

(
SNi ⊆ BNi

)∧
σt+1 = τ

]
= θ�

t∏
i=1

ASi

(i)eτ .

(12)

Consider now any vector norm ‖·‖ and the correspond-

ing operator norm. By (29),

θ�
t∏
i=1

ASi

(i)eτ = θ�M−1

(
t∏
i=1

MASi

(i)M
−1

)
Meτ

≤
∣∣∣∣∣
∣∣∣∣∣θ�M−1

(
t∏
i=1

MASi

(i)M
−1

)∣∣∣∣∣
∣∣∣∣∣
∗
‖Meτ‖. (13)

Summing (13) over all τ ∈ Ω we conclude that

Pr[w(Σ) = φ] =
∑
τ∈Ω

Pr[w(Σ) = φ ∧ σt+1 = τ ]

≤
∣∣∣∣∣
∣∣∣∣∣θ�M−1

t∏
i=1

MASi

(i)M
−1

∣∣∣∣∣
∣∣∣∣∣
∗

∑
τ∈Ω

‖Meτ‖ . (14)

Applying (31) and then (30) to (14), and recalling the

definition of λSi

(i), we conclude that

Pr[w(Σ) = φ]

≤ ‖θ�M−1‖∗
(∑
τ∈Ω

‖Meτ‖
)

t∏
i=1

‖MASi

(i)M
−1‖

= ‖θ�M−1‖∗
(∑
τ∈Ω

‖Meτ‖
)

t∏
i=1

λSi

(i) ,

as claimed.

Now define the set

Ft = {w(Σ) : Σ is a bad t-trajectory of the algorithm}.
Since Ft contains only plausible sequences, an im-

mediate corollary of Lemma III.5 is a bound on the

probability that the algorithm fails in t steps.

Corollary III.6. The probability that the algorithm fails
to reach a flawless state within t steps is at most(

max
σ∈Ω

θ(σ)
μ(σ)

)
·
∑
φ∈Ft

t∏
i=1

γSi

(i) . (15)

Proof: We apply Lemma III.5 with M = diag(μ(σ))
and the ‖·‖1-norm. Since the dual norm of ‖·‖1 is ‖·‖∞,

we have ‖θ�M−1‖∗ = maxσ∈Ω
θ(σ)
μ(σ) . Combining this

with the fact that
∑
τ∈Ω ‖Meτ‖1 = 1 concludes the

proof.

Thus, to complete the proof of Theorem II.4 we are

left with the task of bounding the sum in (15).

C. Bounding the sum

Given ψ1, . . . , ψm > 0 and S ⊆ [m], let Ψ(S) =∏
j∈S ψj , with Ψ(∅) = 1. For each i ∈ [m], let

ζi =
1
ψi

∑
S⊆[m]

γSi Ψ(S) .

Finally, for each i ∈ [m] consider the distribution on

2[m] that assigns to each S ⊆ [m] the probability

p(i, S) :=
γSi Ψ(S)∑

S⊆[m] γ
S
i Ψ(S)

=
γSi Ψ(S)
ζiψi

.

For any S0 ⊆ [m], let Ft(S0) comprise the wit-

ness sequences in Ft whose first set is S0. Consider

the probability distribution on sequences of subsets of

[m] generated as follows: R1 = S0; for i ≥ 1, if
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Ri �= ∅, then Ri+1 = (Ri − π(Ri)) ∪ Si, where

Pr[Si = S] = p(π(Ri), S) for any S ⊆ [m]. Under this

distribution, by Lemma III.4, each φ = (S0, . . . , St) ∈
Ft(S0) receives probability pφ =

∏t
i=1 p((i), Si), while∑

φ∈Ft(S0)
pφ ≤ 1. At the same time, by the last claim

in Lemma III.4,

pφ =
t∏
i=1

p((i), Si) =

(
t∏
i=1

p((i), Si)
ψ(i)

Ψ(Si)

)
Ψ(S∗t+1)
Ψ(S0)

=
Ψ(S∗t+1)
Ψ(S0)

t∏
i=1

γSi

(i)

ζ(i)
. (16)

Combining (16) with the fact that
∑
φ∈Ft(S0)

pφ ≤ 1,

we obtain

∑
φ∈Ft(S0)

t∏
i=1

γSi

(i)

ζ(i)
≤ max
S⊆[m]

Ψ(S0)
Ψ(S)

. (17)

Let ζ = maxi∈[m] ζi. Then, summing equation (17)

over all possible sets S0 yields

∑
φ∈Ft

t∏
i=1

γSi

(i) =
∑

S0⊆Span(θ)

∑
φ∈Ft(S0)

t∏
i=1

γSi

(i)

≤ ζt
∑

S0⊆Span(θ)

∑
φ∈Ft(S0)

t∏
i=1

γSi

(i)

ζ(i)

≤ max
S⊆[m]

∑
S0⊆Span(θ)

Ψ(S0)
Ψ(S)

. (18)

Proofs of Theorem II.4 and Remark II.4 : Combin-

ing (18) with Corollary III.6, we see that the binary

logarithm of the probability that the algorithm does

not encounter a flawless state within t steps is at most

t log2 ζ + T0, where

T0 = log2

(
maxσ∈Ω

θ(σ)
μ(σ)

)
+

log2

(∑
S⊆Span(θ) Ψ(S)

)
+ log2

(
maxS⊆[m]

1
Ψ(S)

)
.

Therefore, if t = (T0 + s)/ log2(1/ζ) ≤ (T0 + s)/δ, the

probability that the algorithm does not reach a flawless

state within t steps is at most 2−s. This concludes the

proofs of the first part of Remark II.4 and Theorem II.4,

since maxσ∈Ω θ(σ) ≤ 1 and

log2

( ∑
S⊆Span(θ)

Ψ(S)
)

+ log2

(
max
S⊆[m]

1
Ψ(S)

)

≤ log2

∏m
i=1 (1 + ψi)
(ψmin)m

≤ m log2

(
1 + ψmax

ψmin

)
.

To see the second part of Remark II.4, let I(θ) denote

the set comprising the sets of flaw-indices that may be

present in a state selected according to θ. Recall now

that when every flaw is primary, the only equivalence

classes of Ft that contribute to the sum in (18) are those

for which S0 ∈ I(θ). Thus, for backtracking algorithms,

the sum over S ⊆ Span(θ) in the definition of T0 can be

restricted to S ∈ I(θ). Finally, if every flaw is always

present in the initial state and ψi ∈ (0, 1] for every i ∈
[m], then I(θ) = {F} and log

(
1

maxS⊆[m]
Q

j∈S ψj

)
=

− log2

∏
j∈[m] ψj . This implies that the second and third

term in the expression for T0 in Remark II.4 cancel out,

concluding its proof.

D. Other flaw choice strategies

The only place where we used the fact that the flaw

choice is based on a fixed permutation was to assert, in

Lemma III.4, that the witness sequence of a trajectory

determines the sequence of addressed flaws. Thus, our

analysis is in fact valid for every flaw choice strategy

that shares this property.

One example of such a strategy is “pick a random

occurring flaw and address it”. To implement this, we

can fix a priori an infinite sequence of uniformly random

permutations π1, π2, . . . and at the i-th step address

the lowest indexed flaw present according to πi. It is

straightforward to see that Lemma III.4 still holds if we

replace π by πi therein and in Definition III.3.

As a second example, consider the following recur-

sive way to chose which flaw to address at each step

(which makes the algorithm non-Markovian). The algo-

rithm now maintains a stack. The flaws present in σ1,

ordered according to some permutation π, comprise the

initial stack contents. The algorithm starts by addressing

the flaw at the top of the stack, i.e., π(σ1), as before.

Now, though, any flaws introduced in the i-th step, i.e.,

the elements of Bi, go on the top of the stack (ordered

by π), while all eradicated flaws are removed from the

stack. The algorithm terminates when the stack empties.

It is not hard to see that, by taking S0 to be the initial

stack contents, popping the flaw at the top of the stack at

each step, and adding Si to the top of the stack (ordered

by π), the sequence of popped flaws is the sequence of

addressed flaws.

IV. GRAPH COLORING PROOFS

A. The algorithm

To prove Theorem II.5 we will generalize the algo-

rithm of Molloy [35] for coloring triangle-free graphs.

The main issue we have to address is that in the presence

of triangles, the natural generalization of Molloy’s algo-

rithm introduces monochromatic edges when the neigh-

borhood of a vertex is recolored. As a result, the existing

analysis fails completely even if each vertex participates

in just one triangle. To get around this problem, we

introduce backtracking steps into the algorithm, whose

analysis is enabled by our new convergence condition,

Theorem II.4.
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For each vertex v ∈ V , let Nv denote the neighbors

of v and let Ev = {{u1, u2} : u1, u2 ∈ Nv} denote the

edges spanned by them. Recall that the color-list of v
is denoted by Lv . It will be convenient to treat Blank
also as a color. Indeed, the initial distribution θ of our

algorithm assigns all its probability mass to the state

where every vertex is colored Blank. Whenever assign-

ing a color to a vertex creates monochromatic edges, the

algorithm will immediately uncolor enough vertices so

that no monochromatic edge remains. Edges with two

Blank endpoints are not considered monochromatic. To

uncolor a vertex v, the algorithm picks a monochromatic

edge e incident to v and assigns e to v instead of a

color, thus also creating a record of the reason for the

uncoloring. Thus,

Ω ⊆
∏
v∈V

{Lv ∪ {Blank} ∪ Ev} .

Let L = (1+ε) Δ
ln f f

− 1
2+2ε and assume Δ is sufficiently

large so that L ≥ 10.

The flaws. We let Lv(σ) ⊆ (Lv∪{Blank}) be the set of

colors we can assign to v in state σ without creating any

monochromatic edge. We call these the available colors
for v in σ and note that Blank is always available. For

each v ∈ V , we define a flaw expressing the fact that

there are “too few available colors for v,” namely

Bv = {σ ∈ Ω : |Lv(σ)| < L} .

For each color c other than Blank, let Tv,c(σ) be the

set of Blank neighbors of v for which c is available in

σ, i.e., the vertices that may “compete” with v for color

c. For each v ∈ V , we define a flaw expressing the fact

that there is “too much competition for v’s available

(real) colors,” namely

Zv =

⎧⎨
⎩σ ∈ Ω :

∑
c∈Lv(σ)\Blank

|Tv,c(σ)| > L

10
|Lv(σ)|

⎫⎬
⎭ .

Finally, for each v ∈ V and e ∈ E we define a flaw

for the fact that v is uncolored (because of e), namely

fev = {σ ∈ Ω : σ(v) = e} .

Let Fv = Bv ∪ Zv ∪
⋃
e∈E f

e
v and let Ω+ = Ω −⋃

v∈V Fv; thus Ω+ denotes the partial colorings that

do not suffer from any of the above flaws.

Lemma IV.1 ([35]). Given σ ∈ Ω+, a complete list-
coloring of G can be found efficiently.

The proof of Lemma IV.1 is a fairly standard appli-

cation of the (algorithmic) LLL, showing that σ can

be extended to a complete list-coloring by coloring all

Blank vertices with actual colors. Thus, the heart of the

matter is reaching a state in Ω+ (i.e., a partial coloring

avoiding all the above flaws).

The flaw choice. The algorithm can use any π-strategy

in which every B-flaw has priority over every f -flaw.

The actions. To address fev at σ, i.e., to color v, the

algorithm simply chooses a color from Lv(σ) uniformly

at random and assigns it to v. The fact that B-flaws

have higher priority than f -flaws implies that there are

always at least L such choices.

Addressing B- and Z- flaws is significantly more

sophisticated. For each vertex v, for each vertex u ∈ Nv ,

let Rvu(σ) ⊇ Lu(σ) comprise those colors having the

property that assigning them to u in state σ creates no

monochromatic edge except, perhaps, in Ev . To address

either Bv or Zv in σ, the algorithm selects an action

according to the following procedure:

1: procedure RECOLOR(v, σ)

2: Assign to each colored vertex u in Nv a uni-

formly random color from Rvu(σ)
3: while monochromatic edges exist do
4: Let u be the lowest indexed vertex partici-

pating in a monochromatic edge

5: Let e be the lowest indexed monochromatic

edge with u as an endpoint

6: Uncolor u by assigning e to u

Lemma IV.2. Let S′(v, σ) be the set of colorings that
can be reached at the end of Step 2 of RECOLOR(v, σ)

and let S′′(v, σ) be the set of possible final colorings.
Then |S′(v, σ)| = |S′′(v, σ)|.
Proof: Since Steps 4–6 are deterministic, |S′′(v, σ)| ≤
|S′(v, σ)|. To prove that |S′′(v, σ)| ≥ |S′(v, σ)|, we

will prove that if u ∈ Nv has distinct colors in σ′1, σ
′
2 ∈

S′, then there exists z ∈ V such that σ′′1 (z) �= σ′′2 (z).
Imagine that in Step 6 we also oriented e to point away

from u. Then, in the resulting partial orientation, every

vertex would have outdegree at most 1 and there would

be no directed cycles. Consider the (potentially empty)

oriented paths starting at u in σ′′1 and σ′′2 , and let z
be their last common vertex. If z is uncolored, then

σ′′1 (z) = e1 and σ′′2 (z) = e2, where e1 �= e2; if z is

colored, then σ′′i (z) = σ′i(u).

B. Proving termination

Let Dv be the set of vertices at distance 1 or 2 from

v and let

Sv = {Bu}u∈Dv
∪ {Zu}u∈Dv

∪ {f{u,w}u }u,w∈Nv
.

To lighten notation, in the following we write γS(f)
instead of γSf . Let q = (1 + ε) Δ

ln
√
f
≥ 1.
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Lemma IV.3. For every vertex v ∈ V and edge e ∈ E:
(a) if S �⊆ Sv , then γS(Bv) = γS(Zv) = γS(fev ) = 0;
(b) if S ⊇ {f{u1,u2}

u1 , f
{u1,u2}
u2 }, then γS(Bv) =

γS(Zv) = γS(fev ) = 0;
(c) maxS⊆F γS(fev ) ≤ 1

L =: γ(fev );
(d) maxS⊆F γS(Bv) ≤ 2e−

L
6 =: γ(Bv);

(e) maxS⊆F γS(Zv) ≤ 3qe−
L
60 =: γ(Zv),

where the charges are computed with respect to the
uniform measure over Ω.

We note that, while we give uniform bounds on the

charges corresponding to each flaw, the analysis of our

algorithm cannot be captured by the algorithmic LLL

framework of [3]. This is because we will crucially

exploit the existence of primary flaws.

Before we give the proof of Lemma IV.3, we first use

it to derive Theorem II.5.

Proof of Theorem II.5: For every flaw f ∈ F , we will

take ψf = γ(f)ψ, where ψ > 0 will be chosen later.

For any vertex v ∈ V , flaw f ∈ {Bv, Zv, fev}, and set

of flaws S ⊆ F , Lemma IV.3 implies that γS(f) = 0
unless all B- and Z-flaws in S correspond to vertices

in Dv , per part (a), and every edge e ∈ Ev contributes

at most one flaw to S, per part (b). Therefore, for f ∈
{Bv, Zv, fev},

1
ψf

∑
S⊆F

γS(f)
∏
g∈S

ψg

≤ 1
ψ

∏
u∈Dv

(1 + γ(Bu)ψ)(1 + γ(Zu)ψ) ×
∏

e={u1,u2}∈Ev

(
1 + γ(feu1

)ψ + γ(feu2
)ψ
)
. (19)

To bound the right hand side of (19) we use parts (c)–

(e) of Lemma IV.3 along with the facts |Dv| ≤ Δ2 + 1
and |Ev| ≤ Δ2/f to derive (20) below. To derive (21),

we use the facts that 2e−
L
6 ≤ 3qe−

L
60 , since q ≥ 1, and

that 1 + x ≤ ex for all x. Thus, for f ∈ {Bv, Zv, fev},
we conclude

1
ψf

∑
S⊆F

γS(f)
∏
g∈S

ψg

≤ 1
ψ

(
1 + 2e−

L
6 ψ
)Δ2+1

×
(
1 + 3qe−

L
60ψ
)Δ2+1

(
1 +

2ψ
L

)Δ2
f

(20)

≤ 1
ψ

exp
(

2ψΔ2

fL
+ 6qe−

L
60ψ(Δ2 + 1)

)

:=
1
ψ

exp(Q) . (21)

Setting ψ = (1 + ε), we see that the right hand side

of (21) is strictly less than 1 for all Δ ≥ Δε, since

Q
Δ→∞−−−−→ 0 for all f ∈ [Δ

2+2ε
1+2ε (ln Δ)2,Δ2 + 1]. To

see this last claim, recall that L = (1 + ε) Δ
ln f f

− 1
2+2ε

and q = (1 + ε) Δ
ln
√
f

, and note that ln f < 3 ln Δ and

f
1+2ε
2+2ε ≥ Δ(lnΔ)

2+4ε
2+2ε . Thus,

2ψΔ2

fL
=

2Δ2

f Δ
ln f f

− 1
2+2ε

=
2Δ ln f

f
1+2ε
2+2ε

≤ 2 ln f

(ln Δ)
2+4ε
2+2ε

≤ 6 ln Δ

(ln Δ)
2+4ε
2+2ε

=
6

(ln Δ)
ε

1+ε

Δ→∞−−−−→ 0 , (22)

while the facts L = Ω(Δ
ε

1+2ε ) and q ≤ (1+ ε)Δ imply

that 6qe−
L
60ψ(Δ2 + 1) Δ→∞−−−−→ 0.

Proof of Lemma IV.3.
Proof of part (a): Addressing Bv or Zv by executing

RECOLOR(v, ·) only changes the color of vertices in Nv ,

with any resulting uncolorings being due to edges in Ev .

Thus, only flaws in Sv may be introduced. Addressing

fev by coloring v trivially can only introduce flaws

Bu, Zu, where u ∈ Nv .

Proof of part (b): Since addressing an f -flaw never

introduces another f -flaw, we only need to discuss

procedure RECOLOR. Therein, vertices are uncolored

serially in time, so that any time a vertex w is un-

colored there exists, at the time of w’s uncoloring, a

monochromatic edge e = {w, u}. Therefore, an edge

e = {u1, u2} can never be the reason for the uncoloring

of both its endpoints, i.e., feu1
∩ feu2

= ∅.
Proof of part (c): If addressing fev results in τ , then the

previous state σ must be the mutation of τ that results

from assigning e to v. Since π(σ) = fev implies σ �∈ Bv ,

it follows that |Lv(σ)| ≥ L. Since colors are chosen

uniformly from Lv(σ), it follows that γ(fev ) ≤ 1/L.

Proof of parts (d) and (e): Observe that every flaw

corresponding to an uncolored vertex is primary, since

procedure RECOLOR never colors an uncolored vertex

and addressing fev only colors v. Thus, when computing

γS(f), for f ∈ {Bv, Zv} and S ⊆ F , we can restrict to

pairs (σ, τ) such that the set of uncolored vertices in τ
is exactly the union of the set of uncolored vertices in σ
and the set {u ∈ Nv : feu ∈ S}. Fixing f ∈ {Bv, Zv},
S ⊆ F , and τ , let us denote by InSf (τ) the candidate

set of originating states, and by USf (τ) their common

set of uncolored vertices. Then, for any f ∈ {Bv, Zv}
and any S ⊆ F ,

γS(f) = max
τ∈Ω

∑
σ∈InS

f (τ)

ρf (σ, τ) . (23)

To bound ρf (σ, τ) in (23), we recall that RECOLOR

assigns to each colored vertex u ∈ Nv a random color

from Rvu(σ) and invoke Lemma IV.2 to derive the first

equality in (24). For the second equality we observe

that for every u ∈ Nv , the set Rvu is determined by

the colors of the vertices in V \ Nv . Since RECOLOR
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only changes the color of vertices in Nv , it follows that

Rvu(σ) = Rvu(τ), yielding

ρf (σ, τ) =
1∏

u∈Nv\US
f (τ) |Rvu(σ)|

=
1∏

u∈Nv\US
f (τ) |Rvu(τ)|

=:
1

ΛSf (τ)
. (24)

Next we bound |InSf (τ)| as follows. First we ob-

serve that if σ ∈ InSf (τ), then σ(u) �= τ(u) implies

u ∈ Nv \ USf (τ) and, therefore, σ(u) ∈ Rvu(τ) since

σ(u) ∈ Lu(σ) ⊆ Rvu(σ) = Rvu(τ). Thus, the set of

τ -mutations that result from recoloring each vertex in

Nv\USf (τ) with a color from Rvu(τ) so that the resulting

state belongs to f is a superset of InSf (τ). Denoting this

last set by Viol(f, τ), we conclude that

γS(f) = max
τ∈Ω

|InSf (τ)|
ΛSf (τ)

≤ max
τ∈Ω

|Viol(f, τ)|
ΛSf (τ)

= max
τ∈Ω

Pr[RECOLOR(v, τ) ∈ f ] , (25)

where for the last equality we use the definition of

ΛSf (τ).

Remark IV.1. We note that expressing the sum of the
transition probabilities into a state in terms of a random
experiment, as we do in (25), was the key technical
idea of [35] in order to apply the entropy compression
method. It is also the one that breaks down if we allow
our algorithm to go through improper colorings.

To conclude the proof of Lemma IV.3 we prove

the following bounds in Appendix C via fairly routine

calculations.

Lemma IV.4. For each vertex v and σ ∈ Ω:

(a) Pr[RECOLOR(v, σ) ∈ Bv] ≤ 2e−
L
6 .

(b) Pr[RECOLOR(v, σ) ∈ Zv] ≤ 3qe−
L
60 .

V. APPLICATIONS TO BACKTRACKING ALGORITHMS

An important class of algorithms naturally devoid

of “collateral fixes” are backtracking algorithms. In

particular, consider a Constraint Satisfaction Problem

(CSP) over a set of variables V = {v1, v2 . . . , vn},
each variable vi taking values in a domain Di, with

a set of constraints C = {c1, c2, . . . , cm} over these

variables. The backtracking algorithms we consider

operate as follows. (Note that in Step 1, we can always

take θ to be the distribution under which all variables

are unassigned; this does not affect the convergence

condition (6) but may have a mild effect on the running

time.)

Generic Backtracking Algorithm
1: Sample a partial non-violating assignment σ0 ac-

cording to a distribution θ and set i = 0
2: while unassigned variables exist do
3: Let v be the lowest indexed unassigned variable

in σi
4: Choose a new value for v according to a state-

dependent probability distribution

5: if one or more constraints are violated then
6: Remove the values from enough variables

so that no constraint is violated

7: Let σi+1 be the resulting assignment

8: i← i+ 1

Let Ω be the set of partial assignments to V that do

not violate any constraint in C. For each variable vi ∈ V ,

let flaw fi ⊆ Ω comprise the partial assignments in

which vi is unassigned. Clearly, each flaw fi can only

be removed by addressing it, as addressing any other

flaw can only unassign vi. Thus, every flaw is primary

and a flawless state is a complete satisfying assignment.

In this section we present applications of our main

theorem to analyze backtracking search algorithms.

First, we prove a useful corollary of Theorem II.4

that holds in the so-called variable setting. Second,

we analyze a backtracking algorithm of Esperet and

Parreau [20] for acyclic edge coloring that lies outside

the variable setting; in particular, we recover their 4Δ
bound on the acyclic chromatic index and, further, we

show how it can make constructive an existential result

of Bernshteyn [13]. We emphasize that these analyses

follow very easily from our framework.

A. The variable setting

In this section we show how we can use Theorem II.4

to employ backtracking algorithms in order to capture

applications in the variable setting, i.e., the setting con-

sidered by Moser and Tardos. In particular, we consider

a product measure over variables V and define a bad

event for each constraint c ∈ C being violated. We will

prove the following corollary of Theorem II.4.

Theorem V.1. Let P be any product measure over a set
of variables V and let Ac be the event that constraint c
is violated. If there exist positive real numbers {ψv}v∈V
such that for every variable v ∈ V ,

1
ψv

(
1 +
∑
c�v

P (Ac)
∏
u∈c

ψu

)
< 1 , (26)

then there exists a backtracking algorithm that finds
a satisfying assignment after an expected number of
O
(
log(P−1

min) + |V | log2

(
1+ψmax
ψmin

))
steps.
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Before proving Theorem V.1, we first use it to capture

a well-known application of the Lovász Local Lemma to

sparse k-SAT formulas when P is the uniform measure.

For a k-SAT formula Φ, we denote its maximum degree

by Δ ≡ Δ(Φ), i.e., each variable of Φ is contained in

at most Δ clauses.

Theorem V.2. Every k-SAT formula Φ with maximum
degree Δ < 2k

ek is satisfiable. Moreover, there exists a
backtracking algorithm that finds a satisfying assign-
ment of Φ efficiently.

Proof: Setting ψv = ψ = 2α > 0 we see that it suffices

to find a value α > 0 such that

1
ψ

+
1
2k

Δψk−1 =
1
2α

+
1
2
Δαk−1 < 1 ,

which is feasible whenever

Δ < max
α>0

2α− 1
αk

=
2k

k
·
(

1− 1
k

)k−1

≤ 2k

ek
.

Remark V.1. In [21] it is shown that using a non-
uniform product measure P one can improve the bound
of Theorem V.2 to Δ < 2k+1

e(k+1) and that this is asymp-
totically tight. We note that we can achieve the same
bound using Theorem V.1 with the same P , but since
this is a rather involved LLL application we will not
explicitly present it here.

Proof of Theorem V.1. We consider the following very

simple backtracking algorithm. Start with each variable

unassigned. Then, in each state σ, choose the lowest

indexed unassigned variable v and sample a value for it

according to the product measure P . If one or more

constraints become violated, remove the value from

every variable in the lowest indexed violated constraint.

Let Ω be the set of partial non-violating assign-

ments. Let μ : Ω → R be the probability measure

that assigns to each state σ ∈ Ω the value μ(σ) ∝∏
v∈V

v/∈U(σ)
P (σ(v)), where for brevity we abuse notation

by letting P (σ(v)) denote the event that variable v is

assigned value σ(v).
Theorem V.1 will follow immediately from the fol-

lowing lemma. (For brevity, we will index flaws with

variables instead of integers.)

Lemma V.3. For each vertex v and set of variables
S �= ∅,

γSv =

⎧⎪⎨
⎪⎩

1 if S = ∅;
P (Ac) if S = c, where c � v is a constraint;
0 otherwise.

Proof: Notice that the actions related to flaw fv can only

remove the value from sets of variables that correspond

to constraints that contain v. Thus, γSv = 0 for every

set S �= ∅ that does not correspond to a constraint

containing v. Recalling the definition of charges and

U(σ), we have

γSv = max
τ∈Ω

∑
σ∈fv

S=U(τ)\(U(σ)\{v})

μ(σ)
μ(τ)

ρv(σ, τ) . (27)

To see the claim for the case of the empty set, notice

that, given a state τ , there exists at most one state σ such

that ρv(σ, τ) > 0 and that U(τ) \ (U(σ) \ {v}) = ∅ .

This is because we can uniquely reconstruct σ from τ
by removing the value from v at τ . Then we have

μ(σ)
μ(τ)

ρv(σ, τ) =

∏
u∈V \U(σ) P (σ(u))∏
u∈V \U(τ) P (τ(u))

P (τ(v))

=
1

P (τ(v))
P (τ(v)) = 1 .

To see the claim for the case where S = c, consider

the set viol(c) consisting of the set of assignments of

the variables of c that violate c. Notice now that for

every state τ ∈ Ω there is an injection from the set of

states σ such that that ρv(σ, τ) > 0 and S = U(τ) \
(U(σ) \ {v}) to viol(c). This is because c should be

violated at each such state σ, and hence σ should be

of the form σ = τα for α ∈ viol(c), where τα is the

state induced by τ when assigning α to the variables

of c. Observe further that, for every state of the form

τα, α ∈ viol(c), we have

μ(τα)
μ(τ)

ρv(τα, τ) =
( ∏
u∈c\{v}

P
(
Xu = τα(u)

))

× P (Xv = τ(v)) = P (Aαc ) , (28)

where P (Aαc ) is the probability of the event that the

variables of c receive assignment α. Combining (28)

with (27) and the fact that P (Ac) =
∑
α∈viol(c) P (Aαc )

concludes the proof of Lemma V.3.

Finally, plugging Lemma V.3 into Theorem II.4 con-

cludes the proof of Theorem V.1.

B. Acyclic edge coloring

An edge-coloring of a graph is proper if all edges

incident to each vertex have distinct colors. A proper

edge coloring is acyclic if it has no bichromatic cycles,

i.e., no cycle receives exactly two (alternating) colors.

The smallest number of colors for which a graph G has

an acyclic edge-coloring is denoted by χ′a(G).
Acyclic Edge Coloring was originally motivated by

the work of Coleman et al. [16, 17] on the efficient

computation of Hessians and, since then, there has

been a series of papers [6, 20, 26, 32, 36, 40] that

upper bound χ′a(G) for graphs with bounded degree.

The current best result was given recently by Giotis et
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al. [22] who showed that χ′a(G) ≤ 3.74Δ in graphs

with maximum degree Δ.

A simple backtracking algorithm. We show how one

can apply Theorem II.4 to recover the main application

of the framework of Esperet and Parreau [20] with a

much simpler proof. This is a canonical application

of the entropy compression method to the analysis of

backtracking algorithms and has inspired many other

results in the area. (Indeed, the authors in [20] already

give several applications of their techniques to other

problems besides acyclic edge coloring.)

Let G be a graph with m edges E = {e1, . . . , em}
and suppose we have q available colors.

Definition V.4. Given a graph G = (V,E) and a
(possibly partial) edge-coloring of G, say that color
c is 4-forbidden for e ∈ E if assigning c to e would
result in either a violation of proper edge-coloration,
or a bichromatic 4-cycle containing e. Say that c is 4-

available if it is not 4-forbidden.

Lemma V.5 ([20]). In any proper edge-coloring of G,
at most 2(Δ−1) colors are 4-forbidden for any e ∈ E.

Proof: The 4-forbidden colors for e = {u, v} can be

enumerated as: (i) the colors on edges adjacent to u;

and (ii) for each edge ev adjacent to v, either the color

of ev (if no edge with that color is adjacent to u), or

the color of some edge e′ which together with e, ev and

an edge adjacent to u form a cycle of length 4.

Consider the following backtracking algorithm for

Acyclic Edge Coloring with q = 2(Δ− 1) +Q colors.

At each step, choose the lowest indexed uncolored edge

e and attempt to color it choosing uniformly at random

among the 4-available colors for e. If one or more

bichromatic cycles are created, then choose the lowest

indexed one of them, say C = {ei1 , ei2 , . . . , ei2�
= e},

and remove the colors from all its edges except for ei1
and ei2 .

The main result of [20] states that every graph G
admits an acyclic edge coloring with q > 4(Δ − 1)
colors. Moreover, such a coloring can be found in

O
(|E||V |Δ2 ln Δ

)
time with high probability.

We prove the following theorem, which achieves the

same bound on q and improves the running time bound

when the graph is dense.

Theorem V.6. Every graph G admits an acyclic edge
coloring with q > 4(Δ − 1) colors. Moreover, such a
coloring can be found in O (|E||V |Δ) time with high
probability.

Proof: Let Ω be the set of partial acyclic edge colorings

of G. For each edge e, let fe be the subset (flaw) of Ω
that contains the partial acyclic edge colorings of G in

which e is uncolored. We will apply Theorem II.4 using

the ‖ · ‖1 norm and M = diag(μ(σ)), where μ is the

uniform distribution over Ω.

We first compute the charges γSe for each edge e and

set of edges S. Notice that for γSe to be non-zero, it

should either be that S = ∅, or that S contains e and

there exists a cycle C = {ei1 , ei2} ∪ S so that, when a

recoloring of e makes C bichromatic, the backtracking

step uncolors precisely the edges in S. With that in

mind, for each edge e and each set S that contains e, let

Ce(S) denote the set of cycles with the latter property.

Lemma V.7. For each edge e, let

γSe =

⎧⎪⎨
⎪⎩

1
Q if S = ∅ ;
|Ce(S)|
Q if e ∈ S ;

0 otherwise .

Proof: Notice that

γSe = max
τ∈Ω

∑
σ∈fe

S=U(τ)\(U(σ)\{e})

ρe(σ, τ)

≤ max
τ∈Ω

∑
σ∈fe

S=U(τ)\(U(σ)\{e})

1
Q

,

since, according to Lemma V.5, ρe(σ, τ) ≤ 1
Q for each

pair (σ, τ) ∈ fe × Ω. The proof follows by observing

that, for each state τ :

• If S = ∅, then there exists at most one state σ such

that ρe(σ, τ) > 0 and U(τ)\(U(σ) \ {e}) = ∅ (we

can reconstruct σ from τ by uncoloring e).
• If S � e and |S| = 2 − 2, then there exist

at most |Ce(S)| states such that ρe(σ, τ) > 0
and S = U(τ) \ (U(σ) \ {e}). Given a cycle

C = S ∪ {ei1 , ei2} we reconstruct σ from τ
by finding the colors of edges in S \ {e} from

τ(ei1), τ(ei2), exploiting the facts that the back-

tracking step corresponds to an uncoloring of a

bichromatic cycle; e is uncolored; and every other

edge has the same color as in τ .

• For all other S, there exists no state σ such that

ρ(σ, τ) > 0 and S = U(τ) \ (U(σ) \ {e}).

Observe that there are at most (Δ− 1)2�−2 cycles of

length 2 containing a specific edge e. In other words,

there exist at most (Δ− 1)2�−3 sets of edges S of size

2 − 2 that contain e and such that γSe > 0 and, in

addition, note that we always have |Ce(S)| ≤ Δ− 1.

Thus, if Q = c(Δ − 1) for some constant c, setting

ψe = αγe∅ = α
Q , where α ∈ (1, c) is a constant,
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Lemma V.7 implies

1
ψe

⎛
⎝∑
S⊆E

γSe
∏
e∈S

ψj

⎞
⎠

≤ min
α∈(1,c)

(
1
α

+
∞∑
i=3

(
Δ− 1
Q

)2i−2

α2i−3

)

≤ min
α∈(1,c)

(
1
α

+
1
c

∞∑
i=3

(α
c

)2i−3
)

= min
α∈(1,c)

(
1
α

+
α3

c2(c2 − α2)

)
=

2
c
,

for α∗ = c
(√

5−1
2

)
. Thus, if c > 2 the probability

that the algorithm fails to find an acyclic edge coloring

within T0+s
δ steps is 2−s, where δ = 1 − 2

c , and,

according to Remark II.4,

T0 = log2 |Ω| = O(|E|) .
The proof is concluded by observing that each step can

be performed in time O(|V |Δ) (the time it takes to

find a 2-colored cycle containing a given edge, if such

a cycle exists, in a graph with a proper edge-coloring).

An application of the local cut lemma. In [13],

Bernshteyn introduced a non-constructive generalized

LLL condition, called the “Local Cut Lemma”, with

the aim of drawing connections between the LLL and

the entropy compression method. He later applied it

in [11] to the problem of Acyclic Edge Coloring giving

improved bounds assuming further constraints on the

graph besides sparsity. In particular, he proved the

following.

Theorem V.8 ([11]). Let G be a graph with maximum
degree Δ and let H be a fixed bipartite graph. If G
does not contain H as a subgraph, then there exists an
acyclic edge coloring of G using at most 3(Δ + o(1))
colors.

We now show how to use our framework to give a

constructive proof of Theorem V.8. This will follow im-

mediately from the following structural lemma in [11].

Lemma V.9 ([11]). There exist positive constants γ, δ
such that the following holds. Let G be a graph with
maximum degree Δ that does not contain H as a
subgraph. Then, for any edge e ∈ E(G) and for any
integer k ≥ 4, the number of cycles of length k in G
that contain e is at most γΔk−2−δ .

Constructive Proof of Theorem V.8: Notice that in this

case, making almost identical calculations to those in

the proof of Theorem V.6, invoking Lemma V.9 to upper

bound the number of cycles that contain e, and setting

α = c
β , we obtain

1
ψe

⎛
⎝∑
S⊆E

γSe
∏
h∈S

ψh

⎞
⎠ ≤ min

α∈(1,c)

(
1
α

+
(α)3γΔ−δ

c2(c2 − α2)

)

=
1
c

min
β>1

(
β +

βγΔ−δ

β(β2 − 1)

)
.

Thus, as Δ grows, the value of c required for the

algorithm to terminate approaches 1, concluding the

proof.
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proof of the Lovász local lemma via resampling oracles.
In Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science, pages 1327–1346.
IEEE Computer Society, 2015.

[29] Fotis Iliopoulos. Commutative algorithms approxi-
mate the LLL-distribution. In Proceedings of AP-
PROX/RANDOM, pages 44:1–44:20. Schloß Dagstuhl–
Leibniz-Zentrum für Informatik, 2018.

[30] Fotis Iliopoulos and Alistair Sinclair. Efficiently list-
edge coloring multigraphs asymptotically optimally. To
appear in Proceedings of the 31st Annual ACM-SIAM
Symposium on Discrete Algorithms, 2020. Preprint at
arXiv:1812:10309.

[31] A. Johansson. Asympotic choice number for triangle
free graphs. Unpublished manuscript, 1996.

[32] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A
sharper local lemma with improved applications. In
Proceedings of APPROX/RANDOM, pages 603–614.
Springer Berlin Heidelberg, 2012.

[33] Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser
and Tardos meet Lovász. In Proceedings of the 43rd
Annual ACM Symposium on the Theory of Computing,
pages 235–244. ACM, 2011.

[34] Vladimir Kolmogorov. Commutativity in the algorithmic
Lovász local lemma. In Proceedings of the 57th Annual
IEEE Symposium on Foundations of Computer Science,
pages 780–787. IEEE Computer Society, 2016.

[35] Michael Molloy. The list chromatic number of graphs
with small clique number. Journal of Combinatorial
Theory, Series B, 134:264–284, 2019.

[36] Michael Molloy and Bruce Reed. Further algorithmic
aspects of the local lemma. In Proceedings of the 30th
Annual ACM Symposium on the Theory of Computing,
pages 524–529. ACM, 1998.

[37] Michael Molloy and Bruce Reed. Graph Colouring and
the Probabilistic Method. Springer-Verlag, Berlin, 2002.

[38] Robin A. Moser. A constructive proof of the Lovász
local lemma. In Proceedings of the 41st Annual ACM
Symposium on the Theory of Computing, pages 343–350.
ACM, 2009.

740
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APPENDIX

A. Matrices and norms

Let ‖ · ‖ be any norm over vectors in R
n. The dual

norm, also over vectors in R
n, is defined as

‖z‖∗ = sup
‖x‖=1

|z�x| .

For example, the dual norm of ‖ · ‖∞ is ‖ · ‖1. It can be

seen that ‖ · ‖∗∗ = ‖ · ‖ and that for any vectors x, z,

z�x = ‖x‖
(
z�x
‖x‖

)
≤ ‖z‖∗‖x‖ . (29)

The corresponding operator norm, over n × n real

matrices, is defined as

‖A‖ ≡ sup
‖x‖=1

‖Ax‖ .

For example, if A is a matrix with non-negative entries

then ‖A‖∞ and ‖A‖1 can be seen to be the maximum

row and column sum of A, respectively. Operator norms

are submultiplicative, i.e., for every operator norm ‖ · ‖
and any two n× n matrices A,B,

‖AB‖ ≤ ‖A‖‖B‖ . (30)

Finally, for any vector norm ‖ · ‖, any row vector x�

and n× n matrix A, we have

‖x�A‖∗ ≤ ‖x�‖∗‖A‖ . (31)

B. The matrix norms framework in action

In this appendix we illustrate how the framework of

matrix norms captures a variety of convergence argu-

ments for local search algorithms, both LLL-inspired

ones and others. Following the same notation as in

Section I-B of the introduction, we let P denote the

stochastic transition matrix of the search algorithm

on Ω, and A its restriction to the flawed states Ω∗.
Recall from our discussion in the introduction that our

goal is to bound ρ(A), the spectral radius of A, using

an operator norm as a surrogate.

We begin with the classical potential function argu-

ment. Consider any function φ on Ω such that φ(σ) > 0
for σ ∈ Ω∗, while φ(σ) = 0 for σ /∈ Ω∗. The potential

argument asserts that eventually φ = 0 (i.e., the particle

escapes Ω∗) if φ is always reduced in expectation, i.e.,

if for every σ ∈ Ω∗,∑
τ∈Ω

P [σ, τ ]φ(τ) < φ(σ) . (32)

To express this argument via matrix norms, let A′ =
MAM−1 where M is the diagonal |Ω∗| × |Ω∗| ma-

trix diag(1/φ(σ)). Thus, A′[σ, τ ] = A[σ, τ ]φ(τ)/φ(σ).
Recalling that ‖ · ‖∞ is the maximum row sum of

a matrix, we see that condition (32) for the potential
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function is nothing other than ‖A′‖∞ < 1, implying

ρ(A) = ρ(A′) ≤ ‖A′‖∞ < 1.

Next we show how the same approach, using the

dual matrix norm ‖ · ‖1, captures the Moser-Tardos

algorithm for k-SAT. Given a k-SAT formula on n
variables with clauses ci, let Ω = {0, 1}n denote the

set of all assignments, and Ω∗ the set of non-satisfying

assignments. To simplify exposition, we assume that

in each step, the algorithm picks the lowest-indexed

unsatisfied clause ci and resamples all variables in ci.
Thus, the state-evolution is a Markov chain, and if we

denote its transition matrix by P , we are interested

in the submatrix A that is the projection of P onto

Ω∗. For each clause ci, let Ai be the |Ω∗| × |Ω∗|
submatrix of A comprising all rows (states) where the

resampled clause is ci. (All other rows of Ai are 0.) For

t ≥ 1, let Wt contain every t-sequence of (indices of)

clauses that has non-zero probability of being the first

t clauses resampled by the algorithm. In other words,

Wt is the set of all t-sequences of indices from [m]
corresponding to non-vanishing t-products of matrices

from {A1, . . . , Am}, i.e., Wt = {W = (wi) ∈ [m]t :∏t
i=1Awi �= 0}. For every operator norm ‖ · ‖ we get:

ρ(A)t = ρ(At) ≤ ∥∥At∥∥ =
∥∥∥∥
(∑
i∈[m]

Ai

)t∥∥∥∥
=
∥∥∥∥ ∑
W∈Wt

t∏
i=1

Awi

∥∥∥∥ ≤ ∑
W∈Wt

∥∥∥∥
t∏
i=1

Awi

∥∥∥∥
≤
∑

W∈Wt

t∏
i=1

‖Awi‖ . (33)

The first inequality here follows from the fact that

ρ(A) ≤ ‖A‖ for any operator norm ‖ · ‖, the second

inequality is the triangle inequality, and the third follows

by submultiplicativity of operator norms.
To get a favorable bound, we will apply (33) with

the norm ‖ · ‖1, i.e., the maximum column sum. We

see that for all j ∈ [m], every column of Aj has at

most one non-zero entry, since Aj(σ, τ) > 0 only if

σ is the (unique) mutation of τ so that cj is violated.

Recalling that all non-zero entries of A equal 2−k, we

conclude that ‖Aj‖1 = 2−k for all j ∈ [m]. Therefore,

‖At‖1 ≤ |Wt|2−kt. To bound |Wt| we use a simple

necessary condition for membership in Wt which, by a

standard counting argument, implies that if each clause

shares variables with at most Δ other clauses then

|Wt| ≤ 2m(eΔ)t. Therefore ρ(A)t ≤ 2m(eΔ2−k)t,
implying that if Δ < 2k/e then 1 > ‖A‖1 ≥ ρ(A)
and the algorithm terminates within O(m) steps with

high probability. This matches exactly the Moser-Tardos

condition (which is tight).
A very similar argument can be used to capture even

the most general existing versions of the algorithmic

LLL [2, 28, 3], which are described by arbitrary flaws

and, for each flaw fi, an arbitrary corresponding transi-

tion matrix Ai for addressing the flaw. Note that (33) is

in essence a weighted counting of witness sequences,

the weight of each sequence being the product of

the norms ‖Awi
‖1. Observe also that in our k-SAT

example above, the only probabilistic notion was the

transition matrix A and we did not make any implicit

or explicit reference to a probability measure μ. To cast

general algorithmic LLL arguments in this same form,

any measure μ is incorporated as a change of basis
for the transition matrix A, i.e., we bound ‖A′‖1 =
‖MAM−1‖1 as

∑
W∈Wt

∏t
i=1 ‖MAwi

M−1‖1, where

M is the diagonal |Ω∗| × |Ω∗| matrix diag(μ(σ)),
similarly to the potential function argument. We thus

see that the measure μ is nothing other than a tool for

analyzing the progress of the algorithm.

C. Proof of Lemma IV.4

Our computations are similar to the ones in [35]. The

following version of Chernoff Bounds will be useful:

Lemma A.1. Suppose {Xi}mi=1 ∈ {0, 1} are boolean
variables, and set Yi = 1 − Xi, X =

∑m
i=1Xi. If

{Yi}mi=1 are negatively correlated, then for any 0 <
t ≤ E[X]

Pr[|X − E[X]| > t] < 2 exp
(
− t2

3E[X]

)
.

Proof of part (a) of Lemma IV.4: Let v ∈ V and σ ∈ Ω
be arbitrary and let τ ∈ Ω be the (random) state output

by RECOLOR(v, σ). For each color c ∈ Lv , let P cv =
{u ∈ Nv : c ∈ Rvu(σ)} and define

ρ(c) =
∑
u∈P c

v

1
|Rvu(σ)| − 1

.

Since c ∈ Rvu(σ) implies |Rvu(σ)| ≥ 2, and since 1 −
1/x > exp(−1/(x− 1)) for x ≥ 2, we see that

E[|Lv(τ)|] = 1 +
∑
c∈Lv

∏
u∈P c

v

(
1− 1

|Rvu(σ)|
)

>
∑
c∈Lv

∏
u∈P c

v

exp
(
− 1
|Rvu(σ)| − 1

)

=
∑
c∈Lv

e−ρ(c) . (34)

Also, since each Rvu(σ) has |Rvu(σ)| − 1 non-Blank

colors, we see that

Zv :=
∑
c∈Lv

ρ(c)

≤
∑
u∈Nv

∑
c∈Rv

u(σ)\Blank

1
|Rvu(σ)| − 1

≤ Δ . (35)
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The fact that e−x is convex implies that the right hand

side of (34) is at least |Lv| exp(−Zv/|Lv|). Recalling

that |Lv| = q = (1 + ε) Δ
ln
√
f

, and combining (34)

with (35), yields

E[|Lv(τ)|] > qe−Zv/q ≥ (1 + ε)
Δ

ln
√
f

e−Δ/q

= 2(1 + ε)
Δ

ln f
f−

1
2(1+ε) = 2L . (36)

Let Xc be the indicator variable that c ∈ Lv(τ), so that

|Lv(τ)| = 1 +
∑
c∈Lv(τ)Xc. It is not hard to see that

the variables Yc = 1−Xc are negatively correlated, so

that applying Lemma A.1 with t = 1
2E[|Lv(τ)|] > L

yields

Pr
[|Lv(τ)| < 1

2E [|Lv(τ)|]
]

≤ 2e−E[|Lv(τ)|]/12 < 2e−L/6 .

This concludes the proof.

Proof of part (b) of Lemma IV.4: Let Ψ = {c ∈
Lv(σ) : ρ(c) ≥ L/20} \ Blank. The probability that

Lv(τ) contains at least one color from Ψ is at most

E [|Lv(τ) ∩Ψ|] =
∑
c∈Ψ

∏
u∈P c

v

(
1− 1

|Rvu(σ)|
)

<
∑
c∈Ψ

∏
u∈P c

v

exp
(
− 1

2(|Rvu(σ)| − 1)

)
<
∑
c∈Ψ

e−ρ(c)/2 ,

where we used the fact that c ∈ Rvu(σ) implies

|Rvu(σ)| ≥ 2, and that 1 − 1/x < exp(−1/(2(x− 1)))
for x ≥ 2. Finally note that

∑
c∈Ψ e−ρ(c)/2 ≤ qe−L/40

by the definition of the set Ψ.

Recall that Tv,c(τ) = {u ∈ Nv : τ(u) =
Blank and c ∈ Lu(τ)}. Since Lu(τ) ⊆ Ru(τ) =
Ru(σ), it follows that Tv,c(τ) ⊆ P cv and, there-

fore, E [|Tv,c(τ)|] ≤
∑
u∈P c

v
1/|Rvu(σ)| ≤ ρ(c). Since

the vertices in P cv are colored (and thus become

Blank) independently and since ρ(c) < L/20 for

c �∈ Ψ, applying Lemma A.1 with t = L/20 yields

Pr [|Tv,c(τ)| > E [|Tv,c(τ)|] + L/20] < 2e−L/60. Ap-

plying the union bound over all q colors, we see that

the probability there is at least one c /∈ Ψ for which

|Tv,c(τ)| > L/10 is at most 2qe−L/60. Thus, with

probability at least 1− 3qe−L/60,∑
c∈Lv(τ)\Blank

|Tv,c(τ)| =
∑

c∈Lv(τ)\(Ψ∪Blank)

|Tv,c(τ)|

<
L

10
|Lv(τ)| .

D. Proof of Proposition II.1

We use the term “with high probability” to refer

to probabilities that tend to 1 as n goes to infinity.

Corollary II.1 follows in a straightforward way from

the following lemma.

Lemma A.2. For any δ ∈ (0, 1) there exists a constant
d0 such that, for any d ∈

(
d0 lnn, (n lnn)

1
3

)
, each

vertex of the random graph G = G(n, d/n) is contained
in at most Δδ triangles with high probability, where Δ
is the maximum degree of G.

Proof of Corollary II.1: According to [5], for a graph

G ∈ G(n, d/n) we know that with high probability

χ(G) =
1
2
d

ln d
(1 + o(1)) . (37)

Fix ζ ∈ (0, 1) and δ ∈ (0, 2ζ
1+2ζ ). According to

Lemma A.2, there exists a constant d0 such that for any

d ∈
(
d0 lnn, (n lnn)

1
3

)
each vertex of G = G(n, d/n)

is contained in at most Δδ triangles with probability

that tends to 1 as n goes to infinity. Thus, we can apply

Theorem II.5 with parameter ζ > 0 since

f =
Δ2

Δδ
> Δ2− 2ζ

1+2ζ (ln Δ)2,

for large enough Δ. This yields an upper bound q on

the chromatic number of G that is at most

q = (1 + ζ)
Δ

ln
√
f

≤ (1 + ζ)
Δ

1+ζ
1+2ζ ln Δ + ln ln Δ

≤ (1 + 2ζ)
Δ

ln Δ
. (38)

Moreover, since the expected degree of every vertex of

G is d, and its distribution is binomial with parameter
d
n , standard Chernoff bounds and the union bound imply

that, for any η ∈ (0, 1), Δ ≤ (1 + η)d with high

probability, for large enough d0.

Combining the latter fact with (37) and (38), we

deduce that we can find an arbitrarily small constant

η′ ∈ (0, 1) such that

q ≤ (2 + η′)χ(G)

by choosing ζ and η sufficiently small. Picking η′ =
4ε

1−2ε we obtain χ(G) ≥ q
2+η′ ≥ q( 1

2 − ε), concluding

the proof of Proposition II.1.

Finally, we go back and prove Lemma A.2.

Proof of Lemma A.2: Let Δv be the random variable

that equals the degree of vertex v of G. Observe that

Δv ∼ Binom(n−1, dn ) and, therefore, using a standard

Chernoff bound and the fact that d ≥ d0 logn we get

that

Pr
[
Δv /∈ (1± 1

10
)d
]
≤ 1
n2

,
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for large enough d0. Thus, by a union bound we get

that Pr[Δ ∈ (1± 1
10 )d] ≤ 1

n .

Let Tv be the number of triangles that contain vertex

v and B be the event that Δ /∈ (1± 1
10 )d. Then,

Pr[Tv > Δδ] ≤ Pr[Tv > Δδ | B] + Pr[B]

≤ Pr[
(
Tv > Δδ

) ∩B]
1− 1

n

+
1
n
.

Observe that Tv ∼ Binom
((
n−1

2

)
,
(
d
n

)3)
and E[Tv] ≤

d3

2n . Thus, for any fixed value of Δ ∈ (1± 1
10 )d, setting

1+β = Δδ

d3/2n and using a standard Chernoff bound we

obtain

Pr[Tv > Δδ] ≤ e−
β2d3/2n

3 ≤ 1
n2
,

since

β ≥
(
(1− 1

10 )d
)δ − d3/2n

d3/2n
> 0 ,

1
3
β2 d

3

2n
≥ 1

3

((
(1− 1

10 )d
)δ − d3/2n

)2

d3/2n
≥ 2 lnn

whenever d ∈ [d0 lnn, (n lnn)
1
3 ] and for large enough

n and d0. Taking a union bound over v concludes the

proof of the lemma.
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