
(Nearly) Sample-Optimal Sparse Fourier Transform in Any Dimension; RIPless and
Filterless

Vasileios Nakos, Zhao Song, Zhengyu Wang

School Of Engineering And Applied Sciences
Harvard University

Cambridge, Massachusetts, USA
{vasileiosnakos,zhaos,zhengyuwang}@g.harvard.edu

Abstract—In this paper, we consider the extensively studied
problem of computing a k-sparse approximation to the d-
dimensional Fourier transform of a length n signal. Our
algorithm uses O(k log k log n) samples, is dimension-free,
operates for any universe size, and achieves the strongest �∞/�2
guarantee, while running in a time comparable to the Fast
Fourier Transform. In contrast to previous algorithms which
proceed either via the Restricted Isometry Property or via filter
functions, our approach offers a fresh perspective to the sparse
Fourier Transform problem.
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I. INTRODUCTION

Initiated in discrete signal processing, compressed sens-

ing/sparse recovery is an extensively studied branch of

mathematics and algorithms, which postulates that a small

number of linear measurements suffice to approximately

reconstruct the best k-sparse approximation of a vector

x ∈ C
n [CT06], [CRT06b], [Don06]. Besides substantial

literature on the subject, compressed sensing has wide real-

world applications in imaging, astronomy, seismology, etc.

One of the initial papers in the field, Candes, Romberg and

Tao [CRT06a], has almost 15, 000 references.

Probably the most important subtopic is sparse Fourier

transform, which aims to reconstruct a k-sparse vector

from Fourier measurements. In other words, measurements

are confined to the so-called Fourier ensemble. In Optics

imaging [Goo05], [Voe11] and Magnetic resonance imaging

(MRI) [ASSN08], the physics [Rey89] of the underlying

device restricts us to the Fourier ensemble, where the sparse

Fourier problem becomes highly relevant. In fact, these

applications became one of the inspirations for Candes,

Romberg and Tao. The number of samples plays a crucial

role: they determine the amount of radiation a patient

receives in CT scans and taking fewer samples can reduce

the amount of time the patient needs to spend in the machine.

The framework has found its way in life-changing appli-

cations, including COMPRESSED SENSING GRAB-VIBE,

CS SPACE, CS SEMAC and CS TOF by Siemens [Sie],

and Compressed Sense by Phillips [Phi]. Its incorporation

into the MRI technology allows faster acquisition rates,

depiction of dynamic processes or moving organs, as well

as acceleration of MRI scanning up to a factor of 40. In the

words of SIEMENS Healthineers:

This allows bringing the advantages of Compressed
Sensing GRASP-VIBE to daily clinical routine.

• Perform push-button, free-breathing liver dynamics.
• Overcome timing challenges in dynamic imaging and

respiratory artifacts.
• Expand the patient population eligible for abdominal

MRI.

On the other hand, Fourier transform is ubiquitous: image

processing, audio processing, telecommunications, seismol-

ogy, polynomial multiplication, SUBSET SUM and other text-

book algorithms are some of the best-known applications of

Fast Fourier Transform. The Fast Fourier Transform (FFT)

by Cooley and Tukey [CT65] runs in O(n log n) time and

has far-reaching impact on all of the aforementioned cases.

We can thus expect that algorithms which exploit sparsity

assumptions about the input and can outperform FFT in

applications are of high practical value. Generally, the two

most important parameters one would like to optimize are

sample complexity, i.e. the numbers needed to obtain from

the time domain, as well as the time needed to approximate

the Fourier Transform.

Two different lines of research exist for the problem:

one focuses solely on sample complexity, while the other

tries to achieve sublinear time while keeping the sample

complexity as low as possible. The first line of research op-

erates via the renowned Restricted Isometry Property (RIP),

which proceeds by taking random samples and solving a

linear/convex program, or an iterative thresholding proce-

dure [CT06], [DDTS06], [TG07], [BD08], [DM08], [RV08],

[BD09b], [BD09a], [NT09], [NV09], [GK09], [BD10],

[NV10], [Fou11], [Bou14], [HR16]. Such algorithms are

analyzed in two steps as follows: The first step ensures that,

after sampling an appropriate number of points from the

time domain, the inverse DFT matrix restricted on the rows

indexed by those points acts as a near isometry on the space

of k-sparse vectors. All of the state-of-the-art results [CT06],

[RV08], [Bou14], [HR16] employ chaining arguments to
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make the analysis of this sampling procedure as tight as

possible. The second part is to exploit the aforementioned

near-isometry property to find the best k-sparse approx-

imation to the signal. There, existing approaches either

follow an iterative procedure which gradually denoise the

signal [BD08], [NT09], [NV09], or perform �1 minimization

[CT06], a method that promotes sparsity of solutions.

The second line of research tries to implement arbitrary

linear measurements via sampling Fourier coefficients

[GL89], [Man92], [KM93], [GGI+02], [AGS03], [GMS05],

[Iwe08], [Iwe10], [HIKP12a], [HIKP12b], [LWC13],

[Iwe13], [PR14], [IKP14], [IK14], [Kap16], [Kap17],

[CI17], [BZI17], [MZIC17], [LN19] and use sparse

functions (in the time domain) which behave like bandpass

filters in the frequency domain. The seminal work of

Kapralov [Kap17] achieves O(k log n) samples and running

time that is some log factors away from the sample

complexity. This would be the end of the story, if not

for the fact that this algorithm does not scale well with

dimension, since it has an exponential dependence on d.

Indeed, in many applications, one is interested in higher

dimensions, rather than the one-dimensional case. The

main reason1 why this curse of dimensionality appears

is the lack of dimension-independent ways to construct

functions that approximate the �∞ ball and are sufficiently

sparse in the time domain. A very nice work of Kapralov,

Velingker and Zandieh [KVZ19] tries to remedy that by

combining the standard execution of FFT with careful

aliasing, but their algorithm works in a noiseless setting,

and has a polynomial, rather than linear, dependence on

k; the running time is polynomial in k, log n and the

exponential dependence is avoided. It is an important and

challenging question whether a robust and more efficient

algorithm can be found.

We note that in many applications, such as MRI or com-

puted tomography (CT), the main focus is the sample com-

plexity; the algorithms that have found their way to industry

are, to the best of our knowledge, not concerned with sub-

linear running time, but with the number of measurements,

which determine the acquisition time, or in CT the radiation

dose the patient receives. Additionally, it is worth noting

some recent works on sparse Fourier transform in the con-

tinuous setting, see [Iwe10], [Iwe13], [Iwe13], [BCG+14],

[PS15], [CKPS16], [Son17], [AKM+19], [CP19b], [CP19a],

[Son19].

Our Contribution.: We give a new algorithm

for the sparse Fourier transform problem, which has

O(k log n log k) sample complexity for any dimension, and

achieves the �∞/�2 guarantee2, while running in time Õ(n).

1But not the only one: pseudorandom permutations for sparse FT in high
dimensions also incur an exponential loss, and it is not known whether this
can be avoided.

2This is the strongest guarantee in the sparse recovery literature. See also
the caption of the table in Section 1.2

The previous state-of-the-art algorithm that achieved such a

guarantee is the work of Indyk and Kapralov [IK14], which

has 2O(d log d)k log n sample complexity; an exponentially

worse dependence on d. The work of [HR16] obtains

O(k log n log2 k) samples in any dimension, but has a

much weaker error guarantee3, while their approach requires

Ω(k log n log k) samples in high dimensions [Rao19]. More-

over, the algorithm in [IK14] operates when the universe

size in each dimension is a power of 2, whereas there is no

restriction in our work. To obtain our result, we introduce a

set of new techniques, deviating from previous work, which

used the Restricted Isometry Property and/or filter functions.

A. Preliminaries

For any positive integer n, we use [n] to denote

{1, 2, · · · , n}. We assume that the universe size n = pd for

any positive integer p. Our algorithm facilitates n = Πd
j=1pj

for any positive integers p1, . . . , pd, but we decide to present

the case n = pd for ease of exposition; the proof is exactly

the same in the more general case. Let ω = e2πi/p where

i =
√
−1. We will work with the normalized d-dimensional

Fourier transform

x̂f =
1√
n

∑
t∈[p]d

xt · ωf�t, ∀f ∈ [p]d

and the inverse Fourier transform is

xt =
1√
n

∑
f∈[p]d

x̂f · ω−f�t, ∀t ∈ [p]d.

For any vector x and integer k, we denote x−k to be the

vector obtained by zeroing out the largest (in absolute value)

k coordinates from x.

B. Our result

Apart from being dimension-independent and working

for any universe size, our algorithm satisfies �∞/�2, which

is the strongest guarantee out of the standard guarantees

considered in compressed sensing tasks. A guarantee G1

is stronger than guarantee G2 if for any k-sparse recovery

algorithm that satisfies G1 we can obtain a O(k)-sparse

recovery algorithm that satisfies G2. See also below for a

comparison between �∞/�2 and �2/�2, the second stronger

guarantee.

Previous work is summarized in Table I. Our result is the

following.

Theorem I.1 (main result, informal version). Let n = pd

where both p and d are positive integers. Let x ∈ C
[p]d .

Let k ∈ {1, . . . , n}. Assume that R∗ ≥ ‖x̂‖∞/‖x̂−k‖2
where logR∗ = O(log n) (signal-to-noise ratio). There is an

3They achieve �2/�1 instead of �∞/�2, see next Section for comparison.
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algorithm that takes O(k log k log n) samples from x, runs
in Õ(n) time, and outputs a O(k)-sparse vector y such that

‖x̂− y‖∞ ≤
1√
k
‖x̂−k‖2

holds with probability at least 1− 1/ poly(n).

Comparison between �∞/�2 and �2/�2 (or �2/�1).:
For the sake of argument, we will consider only the �2/�2
guarantee which is stronger than �2/�1. The �2/�2 guarantee

is the following: for x̂ ∈ C
n one should output a z such that

‖x̂ − z‖2 ≤ C‖x̂−k‖2, where C > 1 is the approximation

factor. The �2/�2 guarantee can be immediatelly obtained

by �∞/�2 guarantee by truncating z to its top k coordinates.

Consider C = 1.1 4, and think of the following signal: for

a set S of size 0.05k we have |x̂i| = 2√
k
‖x̂S‖2. Then the

all zeros vectors is a valid solution for the �2/�2 guarantee,

since

‖�0− x̂‖22 = ‖x̂S‖22 + ‖x̂S‖22
= 0.05k · 4

k
‖x̂S‖22 + ‖x̂S‖22

= 1.2‖x̂S‖22
< 1.12‖x̂S‖22.

It is clear that since �0 is a possible output, we may

not recover any of the coordinates in S, which is the set

of “interesting” coordinates. On the other hand, the �∞/�2
guarantee does allow the recovery of every coordinate in S.

This is a difference between recovering all 0.05k versus 0
coordinates. From the above discussion, one can conclude

in the case where there is too much noise, �2/�2 becomes

much weaker than �∞/�2, and can be even meaningless.

Thus, �∞/�2 is highly desirable, whenever it is possible.

The same exact argument holds for �2/�1.

Remark I.2. We note that [CT06], [RV08], [CGV13],
[Bou14], [HR16] obtain a uniform guarantee, i.e. with
1 − 1/poly(n) they allow reconstruction of all vectors;
�∞/�2 and �2/�2 are impossible in the uniform case, see
[CDD09]. We note that our comparison between the guaran-
tees is in terms of the quality of approximation. With respect
to that, �∞/�2 is the strongest one.

C. Summary of previous Filter function based technique

One of the two ways to perform Fourier sparse recovery

is by trying to implement arbitrary linear measurements,

with algorithms similar to the ubiquitous COUNTSKETCH

[CCF02]. In the general setting COUNTSKETCH hashes

every coordinate to one of the O(k) buckets, and repeats

4This is the case with the RIP based approaches, which obtain �2/�1. In
fact, many filter-based algorithms facilitate (1 + ε) on the right-hand side,
with the number of measurements being multiplied by ε−1. By enabling
the same dependence on ε−1 our algorithm facilitates a multiplicative ε
factor on the right-hand side of the �∞/�2, which makes it much stronger.
Thus, a similar argument can go through.

O(log n) times with fresh randomness. Then, it is guaranteed

that every heavy coordinate will be isolated, and the con-

tribution from non-heavy elements is small. To implement

this in the Fourier setting becomes a highly non-trivial task

however: one gets access only to the time-domain but not

the frequency domain. One natural way to do this is to

exploit the convolution theorem and find a function which

is sparse in the time domain and approximates the indicator

of an interval (rectangular pulse) in the frequency domain;

these functions are called (bandpass) filters. Appropriate

filters were designed in [HIKP12a], [HIKP12b]: they were

very good approximations of the rectangular pulse, i.e.

the contribution from elements outside the passband zone

contributed only by 1/ poly(n) their mass. These filters had

an additional log n factor (in one dimension) in the sparsity

of the time domain and they are sufficient for the purposes

of [HIKP12a], but in high dimensions this factor becomes

logd n. Filters based on the Dirichlet kernel give a better

dependence in terms of sparsity and dimension (although

still an exponential dependence on the latter), but the leak

to subsequent buckets, i.e. coordinates outside the passband

zone contribute a constant fraction of their mass, in contrast

to the filter used in [HIKP12a]. Thus one should perform

additional denoising, which is a non-trivial task. The seminal

work of Indyk and Kapralov [IK14] was the first that showed

how to perform sparse recovery with these filters, and then

Kapralov [Kap16], [Kap17] extended this result to run in

sublinear time. Note that any filter-based approach with

filters which approximate the �∞ box suffers from the curse

of dimensionality. [KVZ19] devised an algorithm which

avoids the curse of dimensionality by using careful aliasing,

but it works in the noiseless case and has a cubic dependence

on k.

D. RIP property-based algorithms: a quick overview
We say the matrix A ∈ C

m×n satisfies RIP (Restricted

Isometry Property [CT05]) of order k if for all k-sparse

vectors x ∈ C
n we have ‖Ax‖22 ≈ ‖x‖22. A celebrated

result of Candes and Tao [CT06] shows that Basis Pursuit

(�1 minimization) suffices for sparse recovery, as long as the

samples from the time domain satisfy RIP.
In [CT06] it was also proved using generic chaining that

random sampling with oversampling factor O(log6 n) gives

RIP property for any orthonormal matrix with bounded

entries by 1/
√
n. Then [RV08] improved the bound to

O(k ·log2 k ·log(k log n)·log n) and [CGV13] improved it to

O(k · log3 k · log n). Subsequent improvement by Bourgain

[Bou14] has lead to O(k log k ·log2 n) samples, improved by

Haviv and Regev to O(k log2 k·log n)[HR16]. The fastest set

of algorithms are iterative ones: for example Iterative Hard

Thresholding [BD09a] or CoSaMP [NT09] run in O(log n)
iterations5 and each iteration takes Õ(n) time.

5To be precise, their running time is logarithmic in the signal-to-noise
ratio.
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Reference Samples Time Filter RIP Guarantee
[GMS05] k logO(d) n k logO(d) n Yes No �2/�2
[CT06] k log6 n poly(n) No Yes �2/�1
[RV08] k log2 k log(k logn) logn ˜O(n) No Yes �2/�1
[HIKP12a] k logd n log(n/k) k logd n log(n/k) Yes No �2/�2
[CGV13] k log3 k logn ˜O(n) No Yes �2/�1
[IK14] 2d log dk logn ˜O(n) Yes No �∞/�2
[Bou14] k log k log2 n ˜O(n) No Yes �2/�1
[HR16] k log2 k logn ˜O(n) No Yes �2/�1

[Kap16], [Kap17] 2d
2
k logn 2d

2
k logd+O(1) n Yes No �2/�2

[KVZ19] k3 log2 k log2 n k3 log2 k log2 n Yes Yes Exactly k-sparse

Theorem I.1 k log k logn ˜O(n) No No �∞/�2

Table I: n = pd. We ignore the O for simplicity. The �∞/�2 is the strongest possible guarantee, with �2/�2 coming second,

�2/�1 third and exactly k-sparse being the weaker. We also note that all [RV08], [CGV13], [Bou14], [HR16] obtain improved

analyses of the Restricted Isometry property; the algorithm is suggested and analyzed (modulo the RIP property) in [BD08].

The work in [HIKP12a] does not explicitly state the extension to the d-dimensional case, but can easily be inferred from

the arguments. [HIKP12a], [IK14], [Kap16], [KVZ19] work when the universe size in each dimension are powers of 2. We

also assume that the signal-to-noise ratio is bounded by a polynomial of n, which is a standard assumption in the sparse

Fourier transform literature [HIKP12a], [IK14], [Kap16], [Kap17], [LN19].

We note the recent lower bound of [Rao19]: a subsampled

Fourier matrix that satisfies the RIP properties should have

Ω(k log k · d) rows6. This bound is particularly useful in

high dimensions, since it deteriorates to a trivial bound in

low dimensions. We still believe though that a bound of

Ω(k log k log n) should hold in all dimensions. Thus, what

remains is to obtain the �2/�2 guarantee by giving a tighter

analysis, and removing the one log k factor to match the

lower bound, but our algorithm already allows Fourier sparse

recovery with these number of samples, even with a stronger

guarantee.

E. Overview of our technique

Let x ∈ C
[p]d denote our input signal in the time

domain. In the following we assume the knowledge of μ =
1√
k
‖x̂−k‖2 and R∗ which is an upper bound of ‖x̂‖∞/μ,

and bounded by poly(n). These are standard assumption

[HIKP12a], [IK14], [Kap16], [Kap17], [LN19] in the sparse

Fourier transform literature. The bound on R∗ is useful for

bounding the running time (or the number of measurements

in [HIKP12a]) and in any of [HIKP12a], [IK14], [Kap16],

[Kap17], [LN19] a log n can be substituted by logR∗ in

the general case, which is also the case for our algorithm.

We note that our algorithm will be correct with probability

1− 1/ poly(n) whenever R∗ < 2n
100

; this is fine for every

reasonable application. It might seem counter-intuitive that

we need this upper bound on R∗, since intuitively larger

signal to noise ratio should only help. However, this is

an artifact of the techniques of Sparse Fourier Transform

in general, either they are iterative or not. We assumed

the rounding errors in FFT computation to be negligible,

similarly to Remark 3.4 in [IK14].

6[BLLM19] independently gives a similar bound for d = logn.

1) Estimators and random shifts: Consider the simplest

scenario: d = 1, p is a prime number and a 1-sparse signal

x̂ which is 1 on some frequency f∗. From a sample xt in

the time-domain what would be the most reasonable way to

find f∗? For every f ∈ [p] we would compute

√
nωftxt =

√
nωft · 1√

n

∑
f ′∈[p]

ω−f ′tx̂f ′ = ω(f−f∗)t,

and keep, for t 	= 0, the frequency that gives a real number.

Since (f − f∗)t will be zero only for f = f∗, we are guar-

anteed correct recovery. In the noisy and multi-dimensional

case or p is an arbitrary integer, however, this argument will

not work, because of the presence of contribution from other

elements and the fact that (f − f∗)�t can be zero modulo

p for other frequencies apart from f . However, we can take

a number of samples t and average
√
nωf�t, and hope that

this will make the contribution from other frequencies small

enough, so that we can infer whether f corresponds to a

heavy coordinate or not. More specifically, we pick a set T
of frequencies uniformly at random from [p]d and compute

√
n

|T |
∑
t∈T

ωf�txt

for all frequencies f . We show that if |T | = O(k) our

estimator is good on average (and later we will maintain

O(log n) independent instances and take the median to make

sure with probability 1−1/ poly(n) the estimators for all the

frequencies are good), and in fact behaves like a crude filter,

similarly to the ones used in [IK14], in the sense that every

coordinate contributes a non-trivial amount to every other

coordinate. However, these estimators do not suffer from the

curse of dimensionality and our case is a little bit different,

requiring a quite different handling. The main reason is that
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in contrast to the filters used in [IK14], there is not an easy

way to formulate an isolation argument from heavy elements

that would allow easy measurement re-use, like Definition

5.2 and Lemma 5.4 from [IK14]. Buckets induced by filter

functions have a property of locality, since they correspond

to approximate �∞ boxes (with a polynomial decay outside

of the box) in [p]d: the closer two buckets are the more

contribute the elements of one into the other. Our estimators

on the other side do not enjoy such a property. Thus, one

has to proceed via a different argument.

In what follows, we will discuss how to combine the

above estimators with an iterative loop that performs denois-

ing, i.e. removes the contribution of every heavy element to

other heavy elements.

Random shifts.: Our approach for performing denoising

is quite general, and is clean on a high-level. Let S be the

set of the large coordinates of x̂, i.e. those with magnitude

at least (1/
√
k)‖x̂−k‖2. We are going to estimate x̂f for

f ∈ [p]d using the estimators introduced in the previous

paragraphs. Then, for those frequencies f for which the

values obtained are sufficiently large (larger than ‖x‖∞ ·2−�)

, we are going to implicitly subtract that value from x̂f ;

this corresponds to updating the signal, a common trick

in the Sparse Fourier literature. Then we shall iterate, re-

using the same samples again till the signal to noise ratio

becomes small enough. It can be shown that only coordinates

in S are ever updated. The trick for sample reuse in our

case is the following: in the �th iteration we approximate

C
[p]d by an appropriate grid of side length β‖x‖∞ · 2−�,

where β is an absolute constant, and then keep O(log n)
random shifts of it. Keeping O(log n) randomly shifted

grids one can show that in every iteration a nice property

is satisfied: we can guarantee that there exists a grid such

that for all f ∈ S, x̂f and its estimator round to the same

point. Projecting onto that grid, what our algorithm shows is

that the signal under update follows a predictable trajectory,

something that allows us to argue about the correctness

of the algorithm without taking an intractable union-bound

over all possible trajectories the algorithm could evolve. In

essence, our algorithm shows that we can at �th step compute

every x̂f up to ‖x̂‖∞2−� error.

A high-level explanation.: Let us try to combine

the previous two ideas. Assume that at iteration � we

have an approximation of x̂f for all f ∈ S up to

‖x‖∞ · 2−�. If we were to pick O(k log n log k) fresh

samples, we could, using our estimators, approximate x̂f up

to (1/k)‖x‖∞ · 2−�. Let that approximation be y. We then

round y to O(log n) randomly shifted grids of diameter

‖x‖∞ ·2−�. A probabilistic argument shows that, due to our

choice of parameters, with high probability there exists a

grid such that x̂f and yf are rounded to the same grid point

(the additional O(log k) factor in the sample complexity is

what makes this argument go through); and we can also

decide which grid this is! Thus, we safely project y and

be sure that what we now have at our hands is x̂ projected

onto that grid. Thus, in the next iteration �+1 we only need

to argue correctness for at most O(log n) vectors, that is,

vectors x̂ rounded on one of the aforementioned O(log n)
grids. This dramatically decreases the number of events we

have to analyze, and we can set up an inductive argument

that guarantees the correctness of the algorithm. Note

that there is no independence issue, since the randomness

between the samples taken (used for the estimators) and the

projection onto the randomly shifted grids is not shared.

We first implement a procedure which takes O(k log n)
uniform random measurements from x and has the guarantee

that for any ν ≥ μ any y ∈ C
[p]d where ‖x̂−y‖∞ ≤ 2ν and

y is independent from the randomness of the measurements,

the procedure outputs a O(k)-sparse z ∈ C
[p]d such that

‖x̂− y − z‖∞ ≤ ν with probability 1− 1/ poly(n).

Lemma I.3 (LINFINITYREDUCE procedure, informal). Let
μ = 1√

k
‖x̂−k‖2, and ν ≥ μ. Let T (0) be a list of O(k log n)

i.i.d. elements in [p]d. Let S be top O(k) coordinates in x̂.
There is a procedure that takes {xt}t∈T , y ∈ C

[p]d and
ν as input, runs in Õ(n) time, and outputs z ∈ C

[p]d so
that if ‖x̂− y‖∞ ≤ 2ν, supp(y) ⊆ S and y is independent
from the randomness of T (0), then ‖x̂− y − z‖∞ ≤ ν and
supp(z) ⊆ S with probability 1 − 1/ poly(n) under the
randomness of T (0).

Namely, we can take O(k log n) measurements and run

the procedure in Lemma I.3 to reduce (the upper bound of)

the �∞ norm of the residual signal by half. We call the pro-

cedure in Lemma I.3 LINFINITYREDUCE procedure. More

generally, we can take O(H · k log n) measurements and

run the LINFINITYREDUCE procedure H times to reduce

the �∞ norm of the residual signal to 1/2H of its original

magnitude, with failure probability at most 1/ poly(n). Note

that if we set H = logR∗, we have already obtained a

m taking O(k log n logR∗) measurements, because we can

drive down (the upper bound of) the �∞ norm of the residual

signal from ‖x̂‖∞ to μ in logR∗ iterations.

2) O(k log n) samples for k = O(log n): We first dis-

cuss a measurement reuse idea that leads us to a sparse

recovery algorithm (Algorithm 1) taking O(k log n) mea-

surements for k = O(log n). We set H = 5, and let

T = {T (1), . . . , T (H)}, where each T (h) is a list of

O(k log n) i.i.d. elements in [p]d. Note that T (1), . . . , T (H)

are independent. In our sparse Fourier recovery algorithm,

we will measure xt for all t ∈ T .

In a nutshell, our approach finely discretizes the space

of possible trajectories the algorithm could evolve, and

carefully argues about the correctness of the algorithm by

avoiding the intractable union-bound over all trajectories.

Recovery algorithm.: The recovery algorithm proceeds

in logR∗ − H + 1 iterations, where each iteration (except
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the last iteration) the goal is to reduce the upper bound

of �∞ norm of the residual signal by half. Initially, the

upper bound is R∗. It is important to note that we use the

same measurements T = {T (1), . . . , T (H)} in all of these

logR∗ −H + 1 iterations.

In the following, we will describe one iteration of the

recovery algorithm. Let y ∈ C
[p]d denote the sparse vector

recovered so far, and let the upper bound of ‖x̂−y‖∞ be 2ν.

Running the LINFINITYREDUCE procedure H times where

in the h-th time we use measurements in T (h), we obtain

a O(k)-sparse z such that with probability 1− 1/ poly(n),
‖x̂− y− z‖∞ ≤ 21−Hν ≤ 0.1ν (we call such z a desirable

output by the LINFINITYREDUCE procedure). Instead of

taking y + z as our newly recovered sparse signal, for each

f ∈ supp(y + z), we project yf + zf to the nearst points

in G0.6ν := {0.6ν(x + yi) : x, y ∈ Z} and assign to y′f ,

where y′ denotes our newly recovered sparse signal. For all

f 	∈ supp(y + z), we let y′f = 0.

To simplify our exposition, here we introduce some no-

tations. We call G0.6ν a grid of side length 0.6ν, and we

generalize the definition to any side length. Namely, for any

rg > 0, let grid Grg := {rg(x + yi) : x, y ∈ Z}. Moreover,

we define Πrg : C→ Grg to be the mapping that maps any

element in C to the nearest element in Grg . Now we can

write y′ as

y′f =

{
Π0.6ν(yf + zf ), if f ∈ supp(y + z);

0, if f 	∈ supp(y + z).

At the end of each iteration, we assign y′ to y, and

shrink ν by half. In the last iteration, we will not compute

y′, instead we output y + z. We present the algorithm in

Algorithm 1.

Analysis.: We analyze y′ conditioned on the event

that ‖x̂ − y − z‖∞ ≤ 0.1ν (i.e. z is a desirable output

by the LINFINITYREDUCE procedure, which happens with

probability 1 − 1/ poly(n)). We will prove that y′ has two

desirable properties: (1) ‖x̂ − y′‖∞ ≤ ν; (2) the depen-

dence between y′ and our measurements T is under control

so that after taking y′ as newly recovered sparse signal,

subsequent executions of the LINFINITYREDUCE procedure

with measurements T still work with good probability.

Property (1) follows from triangle inequality and the fact

that ‖x̂− (y + z)‖∞ ≤ 0.1ν and ‖(y + z)− y′‖∞ ≤ 0.6ν.

We now elaborate on property (2). We can prove that for

any f ∈ [p]d,

y′f ∈
{
Π0.6ν(x̂f + 0.1ν(α+ βi)) : α, β ∈ {−1, 1}

}
.

Let S denote top 26k coordinates (in absolute value) of x̂.

We can further prove that for any f ∈ S, y′f = 0. Therefore,

the total number of possible y′ is upper bounded by 4|S| =
4O(k). If k = O(log n), we can afford union bounding all

4O(k) = poly(n) possible y′, and prove that with probability

1−1/ poly(n) for all possible value of y′ if we take y′ as our

Algorithm 1 Fourier sparse recovery by projection,

O(k log n) measurements when k = O(log n)

1: procedure FOURIERSPARSERECOVERYBYPROJEC-

TION(x, n, k, μ,R∗) �
Section I-E2

2: Require that μ = 1√
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /μ

3: H ← 5, ν ← μR∗/2, y ← �0 � y ∈ C
[p]d refers to

the sparse vector recovered so far

4: Let T = {T (1), · · · , T (H)} where each T (h) is a

list of i.i.d. uniform samples in [p]d

5: while true do
6: ν′ ← 21−Hν
7: Use {xt}t∈T to run the LINFINITYREDUCE pro-

cedure (in Lemma I.3) H times (use samples in T (h)

for each h ∈ [H] ), and finally it finds z so that

‖x̂− y − z‖∞ ≤ ν′

8: if ν′ ≤ μ then return y + z � We found the

solution

9: y′ ← �0
10: for f ∈ supp(y + z) do
11: y′f ← Π0.6ν(yf + zf ) � We want

‖x̂− y′‖∞ ≤ ν and the depend-

12: end for � ence between y′ and T is under

control

13: y ← y′, ν ← ν/2
14: end while
15: end procedure

newly recovered sparse signal then in the next iteration the

LINFINITYREDUCE procedure with measurements T gives

us a desirable output.

Sufficient event.: More rigorously, we formulate the

event that guarantees successful execution of Algorithm 1.

Let E1 be the event that for all O(logR∗) possible values

of ν ∈ {μR∗
2 , μR∗

4 , . . . , μ2H−1}, for all possible vector y
where yf = 0 for f ∈ S and yf ∈ {Π0.6ν(x̂f + 0.1ν(α +
βi)) : α, β ∈ {−1, 1}} for f ∈ S (we also need to include

the case that y = �0 for the success of the first iteration),

running the LINFINITYREDUCE procedure (in Lemma I.3)

H times (where in the h-th time measurements {xt}t∈T (h)

are used to reduce the error from 22−hν to 21−hν) finally

gives z so that ‖x̂− y− z‖∞ ≤ 21−Hν. The randomness of

E1 comes from T = {T (1), . . . , T (H)}.
First, event E1 happens with probability 1 − 1/ poly(n).

This is because there are 4O(k) logR∗ possible combinations

of ν and y to union bound, and each has failure probability

at most 1/ poly(n). For k = O(log n), and any R∗ < 2n
100

this gives the desired result. Second, conditioned on event

E1 happens, Algorithm 1 gives correct output. This can be

proved by a mathematical induction that in the t-th iteration

of the while-true loop in Algorithm 1, ‖x̂−y‖∞ ≤ 2−tμR∗.
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3) O(k log k log n) samples suffice: We first introduce

some notations. For any rg > 0, define the grid Grg :=
{rg(x+yi) : x, y ∈ Z}. Moreover, we define Πrg : C→ Grg
to be the mapping that maps any element in C to the nearest

element in Grg .

Using random shift to reduce projection size.: We intro-

duce the random shift trick, the property of which is captured

by Lemma I.4. To simplify notation, for any rb > 0 and

c ∈ C we define box B∞(c, rb) := {c+ rb(x+ yi) : x, y ∈
[−1, 1]}. For any S ⊆ C, let Πrg (S) = {Πrg (c) : c ∈ S}.

Lemma I.4 (property of a randomly shifted box, informal).
Take a box of side length 2rb and shift it randomly by an
offset in B∞(0, rs) (or equivalently, [−rs, rs] × [−rs, rs])
where rs ≥ rb. Next round every point inside that shifted
box to the closest point in Grg where rg ≥ 2rs. Then, with
probability at least (1 − rb/rs)

2 everyone will be rounded
to the same point.

In the following, we present a sparse Fourier recovery

algorithm that incorporates the random shift idea. The al-

gorithm takes O(k log k log n) measurements. We set H =
O(log k) and take measurements of T = {T (1), . . . , T (H)}
, where T (h) is a list of O(k log n) i.i.d elements in [p]d.

In a nutshell, our approach finely discretizes the space of

possible trajectories the algorithm could evolve. After we

find estimates for x̂f we shift them randomly and project

them onto a coarse grid (which is the same as projecting

onto one of randomly shifted grids). We shall show that then

the number of trajectories is pruned, and we need to argue

for a much smaller collection of events. We note that we

make the decoding algorithm randomized: the randomness in

previous algorithms was present only when taking samples,

and the rest of the algorithm was deterministic. However,

here we need randomness in both cases, and that helps us

prune the number of possible trajectories. To the best of

our knowledge, this is a novel argument and approach, and

might be helpful for future progress in the field.

Recovery algorithm.: We assume that we have already

obtained a O(k)-sparse y ∈ C
[p]d such that ‖x̂− y‖∞ ≤ 2ν

and y is “almost” independent from T . We show how

to obtain y′ ∈ C
[p]d such that ‖x̂ − y′‖∞ ≤ ν with

probability 1 − 1/ poly(n) and y′ is “almost” indepen-

dent from T . The idea is the following. We first run the

LINFINITYREDUCE procedure H = O(log k) times to get

an O(k)-sparse z ∈ C
[p]d such that ‖x̂ − y − z‖∞ ≤

1
220kν. Then we repeatedly sample a uniform random shift

s ∈ [−10−3ν, 10−3ν] + i[−10−3ν, 10−3ν] until for every

f ∈ supp(y + z), all the points (or complex numbers) of

the form yf + zf + s + a + bi with a, b ∈ [− ν
220k ,

ν
220k ]

round to the same grid point in G0.04ν . Finally, for every

f ∈ supp(y + z), we assign Π0.04ν(yf + zf + s) to y′f ; all

remaining coordinates in y′ will be assigned 0. We present

an informal version of our algorithm in Algorithm 2, and

Algorithm 2 Fourier sparse recovery by random shift and

projection (informal version)

1: procedure FOURIERSPARSERECOVERY(x, n, k, μ,R∗)
� Theorem I.1, n = pd

2: Require that μ = 1√
k
‖x̂−k‖2 and R∗ ≥ ‖x̂‖∞ /μ

3: H ← O(log k), ν ← μR∗/2, y ← �0 � y ∈ C
[p]d

refers to the sparse vector recovered so far

4: Let T = {T (1), · · · , T (H)} where each T (h) is a

list of i.i.d. uniform samples in [p]d

5: while true do
6: ν′ ← 1

220kν
7: Use {xt}t∈T to run the LINFINITYREDUCE pro-

cedure (in Lemma I.3) H times (use samples in T h

for each h ∈ [H] ), and finally it finds z so that

‖x̂− y − z‖∞ ≤ ν′

8: if ν′ ≤ μ then return y + z � We found the

solution

9: repeat
10: Pick s ∈ B∞(0, 10−3ν) uniformly at random

11: until ∀f ∈ supp(y + z), |Π0.04ν(B∞(yf + zf +
s, ν′))| = 1

12: y′ ← �0
13: for f ∈ supp(y + z) do
14: y′f ← Π0.04ν(yf + zf + s) � We want

‖x̂− y′‖∞ ≤ ν and the depend-

15: end for � ence between y′ and T is under

control

16: y ← y′, ν ← ν/2
17: end while
18: end procedure

defer its formal version to the full version [NSW19].

Informal Analysis.: We analyze the above approach.

At every iteration, our algorithm holds a vector y, and

computes a vector z. Instead of setting y to y + z and

iterating, as would be the natural thing to do, we set y to y′

(lines 12 to 16) where

y′f =

{
Π0.6ν(yf + zf ), if f ∈ supp(y + z);

0, if f 	∈ supp(y + z).

First, we have the guarantee that ‖x̂ − y′‖∞ ≤ ν.

Moreover, by our choice of s, for every f ∈ supp(y + z),
yf + zf + s and x̂f + s round to the same grid point in

G0.04ν . Therefore, for the new vector y′ we have recovered,

we “hide” the randomness in T , and the randomness only

leaks from failed attempts of the shifts. In the following, we

show that each attempt of shift succeeds with probability 1
2 .
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We can restate the procedure of choosing s to be:

repeatedly sample s ∼ B∞(0, 10−3ν),

until for all f ∈ supp(y + z),∣∣∣Π0.04ν

(
B∞

(
yf + zf + s,

ν

220k

))∣∣∣ = 1.

Note that | supp(y + z)| = O(k). Let us say that we can
always guarantee that | supp(y + z)| ≤ 50k. By Lemma I.4
where we let rb = ν

220k , rs = 10−3ν and rg = 0.04ν, for
f ∈ supp(y + z),

Pr

[∣∣∣Π0.04ν

(
B∞

(
yf + zf + s,

ν

220k

)) ∣∣∣ = 1

]
≥

(
1− rb

rs

)2

≥ 1− 1

100k
.

By a union bound over f ∈ supp(y+ z), the probability is

at least 1
2 that for all f ∈ supp(y + z), |Π0.04ν(B∞(yf +

zf + s, ν
220k ))| = 1.

Therefore, with probability 1− 1/ poly(n), we will only

try O(log n) shifts. We can apply a union bound over

O(log n) possible shifts, and prove that with probability

1 − 1/ poly(n) if taking y′ as our new y, and shrinking

ν by half, the LINFINITYREDUCE procedure will work as

desired as if there is no dependence issue.

Sufficient event.: Let S be top O(k) coordinates in x̂
which are also larger than (1/

√
k)‖x−k‖2 in magnitude.

Let L = O(logR∗) denote the number of iterations in

Algorithm 2. For � ∈ [L], let ν� = 2−�μR∗. For � ∈ [L−1],

let s
(a)
� be the a-th sample from B∞(0, 10−3ν�) as appeared

on Line 10 in Algorithm 2. For the sake of analysis,

we assume that Algorithm 2 actually produces an infinite

sequence of shifts s
(1)
� , s

(2)
� , . . .. We formulate the event that

guarantees successful execution of Algorithm 2. We define

event E2 to be the union of all the following events.

1. For all � ∈ [L− 1], there exists a ∈ [10 logn] so that for

all f ∈ S,∣∣∣∣Π0.04ν�

(
B∞(x̂f + s

(a)
� ,

1

100k
ν�)

)∣∣∣∣ = 1.

2. For � = 1, if we run the LINFINITYREDUCE procedure

H times with y = �0 and measurements in T , we get z such

that ‖x̂− z‖∞ ≤ 21−Hν1 and supp(z) ⊆ S.

3. For all � ∈ {2, . . . , L}, for all a ∈ [10 logn], if we run the

LINFINITYREDUCE procedure H times with y = ξ where

ξf =

{
Π0.04ν�

(x̂f + s
(a)
�−1), if f ∈ S;

0, if f ∈ S.

then we get z such that ‖x̂ − y − z‖∞ ≤ 21−Hν� and

supp(y + z) ⊆ S.

We can prove that event E2 happens with probability

1−1/ poly(n). Moreover, we can prove that conditioned on

event E2 Algorithm 2 gives correct output. We defer both

proofs in the full version [NSW19].
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