
Adversarial Bandits with Knapsacks

Nicole Immorlica

Microsoft Research, New York, NY.

nicimm@microsoft.com.

Robert Schapire

Microsoft Research, New York, NY.

schapire@microsoft.com.

Karthik Abinav Sankararaman

Facebook Research.

karthikabinavs@gmail.com.

Aleksandrs Slivkins

Microsoft Research, New York, NY.

slivkins@microsoft.com.

Abstract—We consider Bandits with Knapsacks (henceforth,
BwK), a general model for multi-armed bandits under sup-
ply/budget constraints. In particular, a bandit algorithm needs
to solve a well-known knapsack problem: find an optimal
packing of items into a limited-size knapsack. The BwK
problem is a common generalization of numerous motivating
examples, which range from dynamic pricing to repeated
auctions to dynamic ad allocation to network routing and
scheduling. While the prior work on BwK focused on the
stochastic version, we pioneer the other extreme in which the
outcomes can be chosen adversarially. This is a considerably
harder problem, compared to both the stochastic version and
the “classic” adversarial bandits, in that regret minimization
is no longer feasible. Instead, the objective is to minimize
the competitive ratio: the ratio of the benchmark reward to
algorithm’s reward.

We design an algorithm with competitive ratio O(log T) rel-
ative to the best fixed distribution over actions, where T is the
time horizon; we also prove a matching lower bound. The key
conceptual contribution is a new perspective on the stochastic
version of the problem. We suggest a new algorithm for the
stochastic version, which builds on the framework of regret
minimization in repeated games and admits a substantially
simpler analysis compared to prior work. We then analyze this
algorithm for the adversarial version, and use it as a subroutine
to solve the latter.

Our algorithm is the first “black-box reduction” from
bandits to BwK: it takes an arbitrary bandit algorithm and
uses it as a subroutine. We use this reduction to derive several
extensions.

Keywords-Multi-armed bandits; Online Packing; Adversarial
Online Learning;

I. INTRODUCTION

Multi-armed bandits is a simple abstraction for the trade-

off between exploration and exploitation, i.e., between mak-

ing potentially suboptimal decisions for the sake of acquiring

new information and using this information for making

better decisions. Studied over many decades, multi-armed

Full version of this paper is available at arxiv.org [53].
Throughout this research project, K.A. Sankararaman has been a student
at University of Maryland, College Park supported in part by NSF Awards
CNS 1010789, CCF 1422569, CCF-1749864 and research awards from
Adobe, Amazon, and Google. Most of the results were obtained in the
course of his internship at Microsoft Research NYC.

bandits is a very active research area spanning computer

science, operations research, and economics [30, 22, 46, 25].

In this paper, we focus on bandit problems which feature

supply or budget constraints, as is the case in many real-

istic applications. For example, a seller who experiments

with prices may have a limited inventory, and a website

optimizing ad placement may be constrained by the adver-

tisers’ budgets. This general problem is called Bandits with

Knapsacks (BwK) since, in this model, a bandit algorithm

needs effectively to solve a knapsack problem (find an

optimal packing of items into a limited-size knapsack) or

generalization thereof. The BwK model was introduced in

[18] as a common generalization of numerous motivating

examples, ranging from dynamic pricing to ad allocation

to repeated auctions to network routing/scheduling. Various

special cases with budget/supply constraints were studied

previously, e.g., [23, 16, 17, 79, 35].

In BwK, the algorithm is endowed with d ≥ 1 limited

resources that are consumed by the algorithm. In each round,

the algorithm chooses an action (arm) from a fixed set of K
actions. The outcome consists of a reward and consumption

of each resource; all lie in [0, 1]. The algorithm observes

bandit feedback, i.e., only the outcome of the chosen arm.

The algorithm stops at time horizon T , or when the total

consumption of some resource exceeds its budget. The goal

is to maximize the total reward, denoted REW.

For a concrete example, consider dynamic pricing.1 The

algorithm is a seller with limited supply of some product. In

each round, a new customer arrives, the algorithm chooses

a price, and the customer either buys one item at this

price or leaves. A sale at price p implies reward of p and

consumption of 1. This example easily extends to d > 1
products/resources. Now the algorithm chooses the per-unit

price for each resource, and the customer decides how much

of each resource to buy at this price.

Prior work on BwK focused on the stochastic version of

the problem, called Stochastic BwK, where the outcome of

each action is drawn from a fixed distribution. This problem

1See [18] for a more detailed discussion of the motivating examples.

202

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00022

has been solved optimally using three different techniques

[18, 4], and extended in various directions in subsequent

work [4, 19, 6, 5].

We go beyond the stochastic version, and instead study

the most “pessimistic”, adversarial version where the re-

wards and resource consumptions can be arbitrary. We call

it adversarial bandits with knapsacks (Adversarial BwK),

as it extends the classic model of “adversarial bandits”

[12]. Bandits aside, this problem subsumes online packing

problems [64, 28], where algorithm observes full feedback

(the outcomes of all possible actions) in each round, and

observes it before choosing an action.

Hardness of the problem. Adversarial BwK is a much

harder problem compared to Stochastic BwK. The new

challenge is that the algorithm needs to decide how much

budget to save for the future, without being able to predict

it. (It is also the essential challenge in online packing

problems, and it drives our lower bounds.) This challenge

compounds the ones already present in Stochastic BwK: that

exploitation may be severely limited by the resource con-

sumption during exploration, that optimal per-round reward

no longer guarantees optimal total reward, and that the best

fixed distribution over arms may perform much better than

the best fixed arm. Jointly, these challenges amount to the

following. An algorithm for Adversarial BwK must compete,

during any given time segment [1, τ], with a distribution over

arms that maximizes the total reward on this time segment.

However, this distribution may behave very differently, in

terms of expected per-round outcomes, compared to the

optimal distribution for some other time segment [1, τ ′].

In more concrete terms, let OPTFD be the total expected

reward of the best fixed distribution over arms. In Stochastic

BwK (as well as in adversarial bandits) an algorithm can

achieve sublinear regret: OPTFD − E[REW] = o(T).2 In

contrast, in Adversarial BwK regret minimization is no

longer possible, and we therefore are primarily interested

in the competitive ratio OPTFD/E[REW].

It is instructive to consider a simple example in which the

competitive ratio is at least 5
4−o(1) for any algorithm. There

are two arms and one resource with budget T
2 . Arm 1 has

zero rewards and zero consumption. Arm 2 has consumption

1 in each round, and offers reward 1
2 in each round of the first

half-time (T2 rounds). In the second half-time, it offers either

reward 1 in all rounds, or reward 0 in all rounds. Thus, there

are two problem instances that coincide for the first half-time

and differ in the second half-time. The algorithm needs to

choose how much budget to invest in the first half-time,

without knowing what comes in the second. Any choice

leads to competitive ratio at least 5
4 on one of the instances.

2More specifically, one can achieve regret Õ(
√
KT) for adversarial

bandits [12], as well as for Stochastic BwK if all budgets are Ω(T) [18].
One can achieve sublinear regret for Stochastic BwK if all budgets are
Ω(Tα), α ∈ (0, 1) [18].

Extending this idea, we prove an even stronger lower

bound on the competitive ratio:

OPTFD/E[REW] ≥ Ω(log T). (I.1)

Like the simple example above, the lower-bounding con-

struction involves only two arms and only one resource, and

forces the algorithm to make a huge commitment without

knowing the future.

Algorithmic contributions. Our main result is an algorithm

which nearly matches (I.1), achieving

E[REW] ≥ 1
O(log T) (OPTFD − o(OPTFD)) . (I.2)

We put forward a new algorithm for BwK, called

LagrangeBwK, that unifies the stochastic and adversar-

ial versions. It has a natural game-theoretic interpretation

for Stochastic BwK, and admits a simpler analysis com-

pared to the prior work. For Adversarial BwK, we use

LagrangeBwK as a subroutine, though with a different

parameter and a different analysis, to derive two algorithms:

a simple one that achieves (I.2), and a more involved

one that achieves the same competitive ratio with high

probability. Absent resource consumption, we recover the

optimal Õ(
√
KT) regret for adversarial bandits.

LagrangeBwK is based on a new perspective on

Stochastic BwK. We reframe a standard linear relaxation

for Stochastic BwK in a way that gives rise to a repeated

zero-sum game, where the two players choose among arms

and resources, respectively, and the payoffs are given by the

Lagrange function of the linear relaxation. Our algorithm

consists of two online learning algorithms playing this

repeated game. We analyze LagrangeBwK for Stochastic

BwK, building on the tools from regret minimization in

stochastic games, and achieve a near-optimal regret bound

when the optimal value and the budgets are Ω(T).3

Extensions. We obtain several extensions, where we derive

improved performance guarantees for some scenarios. These

extensions showcase the modularity of LagrangeBwK, in

the sense that the two players can be implemented as arbi-

trary algorithms for adversarial online learning that admit a

given regret bound. Each extension follows from the main

results, with a different choice of the players’ algorithms.

We tackle four well-known scenarios: full feedback [59,

44, 9], where the algorithm observes the outcomes of all pos-

sible actions after each round; combinatorial semi-bandits

[50, 55, 11], where actions are feasible subsets of “atoms”

whose individual outcomes are observed and add up to the

action’s total outcome; contextual bandits [58, 39, 3], where

a context is observed before each round, and the algorithm

competes against the best policy in a given policy class;

bandit convex optimization [57, 42, 26], where the rewards

are convex functions from arms to reals.

3This regime is of primary importance in prior work, e.g., [23, 86].

203

Discussion. LagrangeBwK has numerous favorable prop-

erties. As just discussed, it is simple, unifying, modular, and

yields strong performance guarantees in multiple settings.

It is the first “black-box reduction” from bandits to BwK:

we take a bandit algorithm and use it as a subroutine for

BwK. This is a very natural algorithm for the stochastic

version once the single-shot game is set up; indeed, it is

immediate from prior work that the repeated game converges

to the optimal distribution over arms. Its regret analysis for

Stochastic BwK is extremely clean. Compared to prior work

[18, 4], we side-step the intricate analysis of sensitivity of

the linear program to non-uniform stochastic deviations that

arise from adaptive exploration.

LagrangeBwK has a primal-dual interpretation, as arms

and resources correspond respectively to primal and dual

variables in the linear relaxation. Two players in the repeated

game can be seen as the respective primal algorithm and

dual algorithm. Compared to the rich literature on primal-

dual algorithms [88, 28, 64] (including the more recent

literature on stochastic online packing problems [36, 7, 37,

40, 66]) LagrangeBwK has a very specific and modular

structure dictated by the repeated game.

Logarithmic competitive ratios are common and well-

accepted in the area of approximation algorithms, and partic-

ularly in online algorithms (see Related Work for citations).

Benchmarks. We argue that the best fixed distribution over

arms is an appropriate benchmark for Adversarial BwK.

First, consider the total expected reward of the best dynamic

policy, denote it OPTDP. (The best dynamic policy is the

best algorithm, in hindsight, that is allowed to switch arms

arbitrarily across time-steps.) This is the strongest possible

benchmark, but it is too strong for Adversarial BwK. Indeed,

we show a simple example with just one resource (with

budget B), where competitive ratio against this benchmark

is at least T
B2 for any algorithm. Second, consider the total

expected reward of the best fixed arm, denote it OPTFA.

It is a traditional benchmark in multi-armed bandits, but

is uninteresting for Adversarial BwK. We show that the

competitive ratio is at least Ω(K) in the worst case, and

this is matched, in expectation, by a trivial algorithm that

samples one arm at random and sticks with it forever.

For Stochastic BwK, these three benchmarks are related

as follows. The best fixed distribution is still the main object

of interest, as far as the design and analysis of algorithms is

concerned. However, all results – both ours and prior work

– are almost automatically extended to compete against the

best dynamic policy. The best fixed arm is a much weaker

benchmark than the best fixed distribution: there are simple

examples when their expected reward differs by a factor of

two, in multiple special cases of interest [18].

Map of the paper. After “related work” and “preliminaries”,

we present our results in the following order. We develop al-

gorithm LagrangeBwK and analyze it for Stochastic BwK

in Section IV. We analyze this algorithm for the adversarial

setting in Section V, and derive a simple algorithm that

achieves (I.2). We develop the high-probability algorithm

in Section VI. Lower bounds are presented in Section VII.

Open questions are presented in Section VIII.

The detailed analysis of the high-probability algorithm,

the proofs for the lower bounds, and the discussion of the

extensions can be found in the full version [53].

II. RELATED WORK

The literature on regret-minimizing online learning algo-

rithms is vast; see [30, 25, 51] for background. Most relevant

are two algorithms for adversarial rewards/costs: Hedge for

full feedback [45], and EXP3 for bandit feedback [12]; both

are based on the weighted majority algorithm from [59].

Stochastic BwK was introduced and optimally solved

in [18]. Subsequent work extended these results to soft

supply/budget constraints [4], a more general notion of re-

wards4 [4], combinatorial semi-bandits [75], and contextual

bandits [19, 6, 5]. Several special cases with budget/supply

constraints were studied previously: dynamic pricing [23,

16, 24, 86], dynamic procurement [17, 79] (a version of

dynamic pricing where the algorithm is a buyer rather than

a seller), dynamic ad allocation [80, 35], and a version with a

single resource and unlimited time [49, 82, 83, 38]. While all

this work is on regret minimization, [47, 48] studied closely

related Bayesian formulations.

Stochastic BwK was optimally solved using three different

algorithms [18, 4], with extremely technical and delicate

analyses. All three algorithms involve inherently ‘stochastic’

techniques such as “successive elimination” and “optimism

under uncertainty”, and do not appear to extend to the

adversarial version. One of them, PrimalDualBwK from

[18], is a primal-dual algorithm superficially similar to ours.

Indeed, it decouples into two online learning algorithms:

a “primal” algorithm which chooses among arms, and a

“dual” algorithm similar to ours, which chooses among

resources. However, the two algorithms are not playing a

repeated game in any meaningful sense, let alone a zero-

sum game. The primal algorithm operates under a much

richer input: it takes the entire outcome vector for the chosen

arm, as well as the “dual distribution” – the distribution

over resources chosen by the dual algorithm. Further, the

primal algorithm is very problem-specific: it interprets the

dual distribution as a vector of costs over resources, and

chooses arms with largest reward-to-cost ratios, estimated

using “optimism under uncertainty”.

Our approach to using regret minimization in games can

be traced to [43, 45] (see Ch. 6 in [76]), who showed how

a repeated zero-sum game played by two agents yields an

approximate Nash equilibrium. This approach has been used

4The total reward is determined by the time-averaged outcome vector,
but can be an arbitrary Lischitz-concave function thereof.

204

as a unifying algorithmic framework for several problems:

boosting [43], linear programs [9], maximum flow [34], and

convex optimization [1, 85]. While we use a result with

the 1/
√
t convergence rate for the equilibrium property,

recent literature obtains faster convergence for cumulative

payoffs (but not for the equilibrium property) under various

assumptions (e.g., [69, 81, 87]).

Repeated Lagrangian games, in conjunction with regret

minimization in games, have been used in a series of recent

papers [72, 52, 74, 56, 2, 73], as an algorithmic tool to solve

convex optimization problems; application domains range

from differential privacy to algorithmic fairness to learning

from revealed preferences. All these papers deal with de-

terministic games (i.e., same game matrix in all rounds).

Reframing the problem in terms of repeated Lagrangian

games is a key technical insight in this work. Most related

to our paper are [74, 73], where a repeated Lagrangian

game is used as a subroutine (the “inner loop”) in an online

algorithm; the other papers solve an offline problem. We

depart from this prior work in several respects: we use a

stochastic game, we deal with some subtleties specific to

Stochastic BwK, and we provide a very different analysis

for our main results on Adversarial BwK, where we cannot

rely on the standard machinery.

Online packing problems (e.g., [29, 37], see [28] for a

survey) can be seen as a special case of Adversarial BwK

with a much more permissive feedback model: the algorithm

observes full feedback (the outcomes for all actions) before

choosing an action. Online packing subsumes various online

matching problems, including the AdWords problem [65]

motivated by ad allocation (see [64] for a survey). While

we derive O(log T) competitive ratio against OPTFD, online

packing admits a similar result against OPTDP.

Another related line of work concerns online convex

optimization with constraints [62, 63, 33, 68, 32]. Their

setting differs from ours in several important respects. First,

the action set is a convex subset of RK (and the algorithms

rely on the power to choose arbitrary actions in this set).

In particular, there is no immediate way to handle discrete

action sets.5 Second, convexity/concavity is assumed on the

rewards and resource consumption. Third, in addition to

bandit feedback, full feedback is observed for the resource

consumption, and (in all papers except [32]) one also

observes either full feedback on rewards or the rewards

gradient around the chosen action. Fourth, their algorithm

only needs to satisfy the budget constraints at the time

horizon (whereas in BwK the budget constraints hold for all

rounds). Fifth, their fixed-distribution benchmark is weaker

than ours: essentially, its time-averaged consumption must

be small enough at each round t. Due to these differences,

their setting admits sublinear regret in the adversarial setting.

5Unless there is full feedback, in which case one can use a standard
reduction whereby actions in online convex optimization correspond to
distributions over actions in a K-armed bandit problem.

Logarithmic competitive ratios are quite common in prior

work on approximation algorithms and online algorithms,

e.g., in the context of the set cover problem [60, 54], buy-

at-bulk network design [14], sparsest cut [10], and dial-a-

ride problem [31], the online k-server problem [20], online

packing/covering problems [15], online set cover [8], online

network design [84], and online paging [41].

Simultaneous work. Two very recent papers came to

our attention after the initial publication of this paper on

arxiv.org. Rivera et al. [71] consider online convex

optimization with knapsacks (essentially, the full-feedback

version of our extension to bandit convex optimization).

Focusing on the stochastic version, they design an algorithm

similar to LagrangeBwK, with a similar regret bound and

analysis. They also claim an extension to bandit feedback,

without providing any details (such as a precise statement

of Lemma III.1 in terms of the regret property (III.2)).

Rangi et al. [70] consider Adversarial BwK in the special

case when there is only one constrained resource, includ-

ing time. They attain sublinear regret, i.e., a regret bound

that is sublinear in T . They also assume a known lower

bound cmin > 0 on realized per-round consumption of

each resource, and their regret bound scales as 1/cmin.

They also achieve polylog(T) instance-dependent regret for

the stochastic version using the same algorithm (matching

results from prior work on the stochastic version). BwK with

only one constrained resource (including time) is a much

easier problem, compared to the general case with multiple

resources studied in this paper, in the following sense. First,

the single-resource version admits much stronger perfor-

mance guarantees (polylog(T) vs.
√
T regret bounds for

Stochastic BwK, and sublinear regret vs. approximation

ratio for Adversarial BwK). Second, the optimal all-knowing

time-invariant policy is the best fixed arm, rather than the

best fixed distribution over arms.

III. PRELIMINARIES

We use bold fonts to represent vectors and matrices. We

use standard notation whereby, for a positive integer K ,

[K] stands for {1, 2 , . . . , K}, and ΔK denotes the set

of all probability distributions on [K]. Some of the notation

introduced further is summarized in Appendix D.

Bandits with Knapsacks (BwK). There are T rounds, K
possible actions and d resources, indexed as [T], [K], [d],
respectively. In each round t ∈ [T], the algorithm chooses

an action at ∈ [K] and receives an outcome vector ot =
(rt; ct,1 , . . . , ct,d) ∈ [0, 1]d+1, where rt is a reward and

ct,i is consumption of each resource i ∈ [d]. Each resource

i is endowed with budget Bi ≤ T . The game stops early,

at some round τalg < T , when/if the total consumption of

any resource exceeds its budget. The algorithm’s objective

is to maximize its total reward. Without loss of generality

205

all budgets are the same: B1 = B2 = . . . = Bd = B.6

The outcome vectors are chosen as follows. In each

round t, the adversary chooses the outcome matrix M t ∈
[0, 1]K×(d+1), where rows correspond to actions. The out-

come vector ot is defined as the at-th row of this ma-

trix, denoted M t(at). Only this row is revealed to the

algorithm. The adversary is deterministic and oblivious,

meaning that the entire sequence M1 , . . . ,MT is chosen

before round 1. A problem instance of BwK consists of

(known) parameters (d,K, T,B), and the (unknown) se-

quence M1 , . . . ,MT .

In the stochastic version of BwK, henceforth termed

Stochastic BwK, each outcome matrix M t is chosen from

some fixed but unknown distribution DBwK over the outcome

matrices. A problem instance consists of (known) parameters

(d,K, T,B), and the (unknown) distribution DBwK.

Following prior work [18, 4], we assume, w.l.o.g., that

one of the resources is a dummy resource similar to time;

formally, each action consumes B/T units of this resource

per round (we only need this for Stochastic BwK). Further,

we posit that one of the actions is a null action, which lets

the algorithm skips a round: it has 0 reward and consumes

0 amount of each resource other than the dummy resource.

Benchmarks. Let REW(ALG) =
∑

t∈[τalg]
rt be the to-

tal reward of algorithm ALG in the BwK problem. Our

benchmark is the best fixed distribution, a distribution over

actions which maximizes E[REW(·)] for a particular problem

instance. The expected total reward of this distribution is

denoted OPTFD.

For Stochastic BwK, one can compete with the best

dynamic policy: an algorithm that maximizes E[REW(·)] for

a particular problem instance. Essentially, this algorithm

knows the latent distribution DBwK over outcome matrices.

Its expected total reward is denoted OPTDP.

Adversarial online learning. To state the framework of

“regret minimization in games” below, we need to introduce

the protocol of adversarial online learning, see Figure 1.

In this protocol, the adversary can use previously chosen

arms to choose the payoff vector f t, but not the algorithm’s

random seed. The distribution f t is chosen as a deterministic

function of history. (The history at round t consists, for each

round s < t, of the chosen action as and the observed

feedback in this round.) We focus on two feedback models:

bandit feedback (no auxiliary feedback) and full feedback

(the entire payoff vector f t). The version for costs can be

defined similarly, by setting the payoffs to be the negative

of costs.

We are interested in adversarial online learning algorithms

6To see that this is indeed w.l.o.g., for each resource i, divide all per-
round consumptions ct,i by Bi/B, where B := mini∈[d] Bi is the
smallest budget. In the modified problem instance, all consumptions still
lie in [0, 1], and all the budgets are equal to B.

Given: action set A, payoff range [bmin, bmax].
In each round t ∈ [T],

1. the adversary chooses a payoff vector f t ∈
[bmin, bmax]

K ;

2. the algorithm chooses a distribution pt over A,

without observing f t,

3. algorithm’s chosen action at ∈ A is drawn

independently from pt;

4. payoff ft(at) is received by the algorithm.

Figure 1: Adversarial online learning

with known upper bounds on regret,

RAOL(T) :=

⎡
⎣max

a∈A

∑
t∈[T]

ft(a)

⎤
⎦ −

⎡
⎣∑
t∈[T]

ft(at)

⎤
⎦ . (III.1)

The benchmark here is the total payoff of the best arm,

according to the payoff vectors actually chosen by the

adversary. More precisely, we assume high-probability regret

bounds of the following form:

∀δ > 0

Pr [RAOL(T) ≤ (bmax − bmin)Rδ(T)] ≥ 1− δ, (III.2)

for some function Rδ(·). We will actually use a stronger

version implied by (III.2),7

Pr
[∀τ ∈ [T] RAOL(τ) ≤ (bmax − bmin)Rδ/T (T)

]
≥ 1− δ ∀δ > 0. (III.3)

Algorithms EXP3.P [12] for bandit feedback, and Hedge

[44] for full feedback, satisfy (III.2) with, resp.,

Rδ(T) = O
(√

|A|T log(T/δ)
)

and

Rδ(T) = O
(√

T log(|A|/δ)
)

. (III.4)

Regret minimization in games. We build on the frame-

work of regret minimization in games. A zero-sum game

(A1, A2,G) is a game between two players i ∈ {1, 2} with

action sets A1 and A2 and payoff matrix G ∈ R
A1×A2 . If

each player i chooses an action ai ∈ Ai, the outcome is a

number G(a1, a2). Player 1 receives this number as reward,

and player 2 receives it as cost. A repeated zero-sum game

G with action sets A1 and A2, time horizon T and game

matrices G1 , . . . ,GT ∈ R
A1×A2 is a game between two

algorithms, ALG1 and ALG2, which proceeds over T rounds

such that each round t is a zero-sum game (A1, A2,Gt).

7Regret bound (III.3) follows from (III.2) using a simple “zeroing-out”
trick: for a given round τ ∈ [T], the adversary can set all future payoffs to
some fixed value x ∈ [bmin, bmax], in which case RAOL(τ) = RAOL(T).

206

The goal of ALG1 is to maximize the total reward, and the

goal of ALG2 is to minimize the total cost.

The game G is called stochastic if the game matrix

Gt in each round t is drawn independently from some

fixed distribution. For such games, we are interested in

the expected game, defined by the expected game matrix

G = E[Gt]. We can relate the algorithms’ performance to

the minimax value of G.

Lemma III.1. Consider a stochastic repeated zero-sum

game between algorithms ALG1 and ALG2, with payoff range

[bmin, bmax]. Assume that each ALGj , j ∈ {1, 2} is an

algorithm for adversarial online learning, as per Figure 1,

which satisfies regret bound (III.2) with Rδ(T) = Rj,δ(T).
Let τ be some fixed round in the repeated game. For each

algorithm ALGj , j ∈ {1, 2}, let Aj be its action set, let

pt,j ∈ ΔAj
be the distribution chosen in each round t, and

let p̄j = 1
τ

∑
t∈[τ] pt,j be the average play distribution at

round τ . Let v∗ be the minimax value for the expected game

G = E[Gt].
Then for each δ > 0, with probability at least 1− 2δ,

∀p2 ∈ ΔA2
p̄T
1 Gp2 ≥ v∗ − 1

τ (bmax − bmin) ·(
R1, δ/T (T) +R2, δ/T (T) + 4

√
2T log(T/δ)

)
. (III.5)

Eq. (III.5) states that the average play of player 1 is

approximately optimal against any distribution chosen by

player 2.8 This lemma is well-known for the deterministic

case (i.e., when Gt = G for each round t), and folklore for

the stochastic case. We provide a proof in Appendix D for

the sake of completeness.

IV. A NEW ALGORITHM FOR STOCHASTIC BWK

We present a new algorithm for Stochastic BwK, based

on the framework of regret minimization in games. This is

a very natural algorithm once the single-shot game is set

up, and it allows for a very clean regret analysis. We will

also use this algorithm as a subroutine for the adversarial

version.

On a high level, we define a stochastic zero-sum game for

which a mixed Nash equilibrium corresponds to an optimal

solution for a linear relaxation of the original problem.

Our algorithm consists of two regret-minimizing algorithms

playing this game. The framework of regret minimization

in games guarantees that the average primal and dual play

distributions (p̄1 and p̄2 in Lemma III.1) approximate the

mixed Nash equilibrium in the expected game, which cor-

respondingly approximates the optimal solution.

A. Linear relaxation and Lagrange functions

We start with a linear relaxation of the problem that all

prior work relies on. This relaxation is stated in terms of

8If each player j chooses distribution pj ∈ ΔAj
, and the game matrix

is G, then expected reward/cost is pT
1 Gp2.

expected rewards/consumptions, i.e., implicitly, in terms of

the expected outcome matrix M = E[M t]. We explicitly

formulate the relaxation in terms of M , and this is essential

for the subsequent developments. For ease of notation, we

write the a-th row of M , for each action a ∈ [K], as

M(a) = (rM (a); cM1 (a) , . . . , cMd (a)),

so that rM (a) is the expected reward and cMi (a) is the

expected consumption of each resource i.
Essentially, the relaxation assumes that each instantaneous

outcome matrix M t is equal to the expected outcome matrix

M = E[M t]. The relaxation seeks the best distribution over

actions, focusing on a single round with budgets rescaled as

B/T . This leads to the following linear program (LP):

maximize
∑

a∈[K]X(a) rM (a)

such that ∑
a∈[K]X(a) = 1

∀i ∈ [d]
∑

a∈[K]X(a) cMi (a) ≤ B/T

∀a ∈ [K] 0 ≤ X(a) ≤ 1.

(IV.1)

We denote this LP by LPM ,B,T . The solution X is the best

fixed distribution over actions, according to the relaxation.

The value of this LP, denoted OPTLP(M , B, T), is the

expected per-round reward of this distribution. It is also the

total reward of X in the relaxation, divided by T . We know

from [18] that

T · OPTLP(M , B, T) ≥ OPTDP ≥ OPTFD, (IV.2)

where OPTDP and OPTFD are the total expected rewards

of, respectively, the best dynamic policy and the best fixed

distribution. In words, OPTDP is sandwiched between the

total expected reward of the best fixed distribution and that

of its linear relaxation.

Associated with the linear program LPM ,B,T is the

Lagrange function L = LM ,B,T . It is a function L :
ΔK × R

d
≥0 → R defined as

L(X ,λ) :=
∑
a∈[K]

X(a) rM (a)+

∑
i∈[d]

λi

⎡
⎣1− T

B

∑
a∈[K]

X(a) cMi (a)

⎤
⎦ . (IV.3)

The values λ1 , . . . , λd in Eq. (IV.3) are called the dual

variables, as they correspond to the variables in the dual

LP. Lagrange functions are meaningful due to their max-

min property (e.g., Theorem D.2.2 in [21]):

min
λ≥0

max
X∈ΔK

L(X,λ) = max
X∈ΔK

min
λ≥0

L(X ,λ)

= OPTLP(M , B, T). (IV.4)

This property holds for our setting because LPM ,B,T has at

least one feasible solution (namely, one that puts probability

207

one on the null action), and the optimal value of the LP is

bounded.

Remark IV.1. We use the linear program LPM ,B,T and the

associated Lagrange function LM ,B,T throughout the paper.

Both are parameterized by an outcome matrix M , budget

B and time horizon T . In particular, we can plug in an

arbitrary M , and we heavily use this ability throughout. For

the adversarial version, it is essential to plug in parameter

T0 ≤ T instead of the time horizon T . For the analysis of

the high-probability result in Adversarial BwK, we use a

rescaled budget B0 ≤ B instead of budget B.

B. Our algorithm: repeated Lagrangian game

The Lagrange function L = LM ,B,T from (IV.3) defines

the following zero-sum game: the primal player chooses an

arm a, the dual player chooses a resource i, and the payoff

is a number

L(a, i) = rM (a) + 1− T
B cMi (a). (IV.5)

The primal player receives this number as a reward, and

the dual player receives it as cost. This game is termed the

Lagrangian game induced by LM ,B,T . This game will be

crucial throughout the paper.

The Lagrangian game is related to the original linear

program as follows:

Lemma IV.2. Assume one resource is the dummy resource.

Consider the linear program LPM ,B,T , for some outcome

matrix M . Then the value of this LP equals the minimax

value v∗ of the Lagrangian game induced by LM ,B,T .

Further, if (X ,λ) is a mixed Nash equilibrium in the

Lagrangian game, then X is an optimal solution to the LP.

The proof can be found in Appendix B. The idea is that

because of the special structure of the LP, the second equality

in (IV.4) also holds when the dual vector λ is restricted to

distributions.

Consider a repeated version of the Lagrangian game.

Formally, the repeated Lagrangian game with parameters

B0 ≤ B and T0 ≤ T is a repeated zero-sum game between

the primal algorithm that chooses among arms and the

dual algorithm that chooses among resources. Each round

t of this game is the Lagrangian game induced by the

Lagrange function Lt := LMt,B0,T0
, where M t is the

round-t outcome matrix. Note that we use parameters B0, T0

instead of budget B and time horizon T .9

Remark IV.3. Consider repeated Lagrangian game for

Stochastic BwK (with B0 = B and T0 = T). The payoffs

in the expected game are defined by the expected Lagrange

function L := E[Lt]. By linearity, L is the Lagrange function

9These parameters are needed only for the adversarial version. For
Stochastic BwK we use B0 = B and T0 = T .

for the expected outcome matrix M = E[M t]:

L := E[Lt] = LM ,B,T . (IV.6)

Our algorithm, called LagrangeBwK, is very simple: it

is a repeated Lagrangian game in which the primal algorithm

receives bandit feedback, and the dual algorithm receives full

feedback.

To set up the notation, let at and it be, respectively,

the chosen arm and resource in round t. The payoff is

therefore Lt(at, it). It can be rewritten in terms of the

observed outcome vector ot = (rt; ct,1 , . . . , ct,d) (which

corresponds to the at-th row of the instantaneous outcome

matrix M t):

Lt(at, it) = rt + 1− T0

B0

ct,it ∈ [− T0

B0

+ 1, 2]. (IV.7)

Note that the payoff range is [bmin, bmax] = [− T0

B0

+ 1].
With this notation, the pseudocode for LagrangeBwK

is summarized in Algorithm 1. The pseudocode is simple

and self-contained, without referring to the formalism of

repeated games and Lagrangian functions. Note that the

algorithm is implementable, in the sense that the outcome

vector ot revealed in each round t of the BwK problem

suffices to generate full feedback for the dual algorithm.

Algorithm 1: Algorithm LagrangeBwK.

input: parameters B0, T0, primal algorithm ALG1, dual

algorithm ALG2.

// ALG1, ALG2 are adversarial

// online learning algorithms

// with bandit feedback

// and full feedback, resp.

for round t = 1, 2, 3, . . . do
1) ALG1 returns arm at ∈ [K], algorithm ALG2

returns resource it ∈ [d].
2) arm at is chosen, outcome vector

ot = (rt(at); ct,1(at) , . . . , ct,d(at)) ∈
[0, 1]d+1 is observed.

3) The payoff Lt(at, it) from (IV.7) is reported

to ALG1 as reward, and to ALG2 as cost.

4) The payoff Lt(at, i) is reported to ALG2 for

each resource i ∈ [d].

C. Performance guarantees

We consider algorithm LagrangeBwK with parameter

T0 = T . We assume the existence of the dummy resource;

this is to ensure that the crucial step, Eq. (IV.13), works out

even if the algorithm stops at time T , without exhausting any

actual resources. We obtain a regret bound that is non-trivial

whenever B > Ω(
√
T), and is optimal, up to log factors, in

the regime when min(OPTDP, B) > Ω(T).

208

Theorem IV.4. Consider Stochastic BwK with K arms,

d resources, time horizon T , and budget B. Assume that

one resource is a dummy resource (with deterministic con-

sumption B
T for each arm). Fix the failure probability

parameter δ ∈ (0, 1). Consider algorithm LagrangeBwK

with parameters B0 = B and T0 = T .

If EXP3.P and Hedge are used as the primal and the

dual algorithms, respectively, then the algorithm achieves

the following regret bound, with probability at least 1− δ:

OPTDP − REW(LagrangeBwK) ≤
O

(
T

B

√
TK log(dT/δ)

)
. (IV.8)

In general, suppose each algorithm ALGj satisfies a regret

bound (III.2) with Rδ(T) = Rj,δ(T) and payoff range

[bmin, bmax] = [− T
B + 1, 2]. Then with probability at least

1−O(δT) it holds that

OPTDP − REW(LagrangeBwK) ≤
O

(
T
B

)(
R

1,
δ
T

(T) +R
2,

δ
T

(T) +
√
T log dT

δ

)
. (IV.9)

Remark IV.5. To obtain (IV.8) from the “black-box” result

(IV.9), we use regret bounds in Eq. (III.4).

Remark IV.6. From [18], the optimal regret bound for

Stochastic BwK is

OPTDP − E[REW] ≤ Õ
(√

KOPTDP (1 +
√
OPTDP/B)

)
.

Thus, the regret bound (IV.8) is near-optimal if

min(OPTDP, B) > Ω(T), and non-trivial if B > Ω(
√
T).

We next prove the “black-box” regret bound (IV.9). For

the sake of analysis, consider a version of the repeated

Lagrangian game that continues up to the time horizon T .

In what follows, we separate the “easy steps” from what we

believe is the crux of the proof.

Notation. Let Xt be the distribution chosen in round t by

the primal algorithm ALG1. Let Xτ := 1
τ

∑
t∈[τ]Xt be the

distribution of average play up to round τ . Let M = E[M t]
be the expected outcome matrix. Let r = (rM (a) : a ∈
[K]) be the vector of expected rewards over the actions.

Likewise, ci = (cMi (a) : a ∈ [K]) be the vector of expected

consumption of each resource i ∈ [d].

Using Azuma-Hoeffding inequality. Consider the first τ
rounds, for some τ ∈ [T]. The average reward and resource-

i consumption over these rounds are close to Xτ · r and

Xτ · ci, respectively, with high probability. Specifically, a

simple usage of Azuma-Hoeffding inequality (Lemma A.1)

implies that

1
τ

∑
t∈[τ] rt ≥Xτ · r −R0(τ)/τ, (IV.10)

1
τ

∑
t∈[τ] ci,t ≤Xτ · ci +R0(τ)/τ, ∀i ∈ [d], (IV.11)

hold with probability at least 1 − δ, where R0(τ) =
O(

√
τ log(d/δ)).

Regret minimization in games. Let us apply the machinery

from regret minimization in games to the repeated La-

grangian game. Consider the game matrix G of the expected

game. Using Eq. (IV.6) and Lemma IV.2, we conclude that

the minimax value of G is v∗ = OPTLP(M , B, T).

We apply Lemma III.1, with a fixed stopping time τ ∈ [T].
Recall that the payoff range is bmax− bmin = T

B +1. Thus,

with probability at least 1− 2δ it holds that

λ ∈ Δd : X
T

τ Gλ ≥ v∗ − 1
τ (

T
B + 1) · reg(T), (IV.12)

where the regret term is reg(T) := R1, δ/T (T) +

R2, δ/T (T) + 4
√
2T log(T/δ).

Crux of the proof. Let us condition on the event that

(IV.10), (IV.11), and (IV.12) hold for each τ ∈ [T]. By

the union bound, this event holds with probability at least

1− 3δT .

Let τ denote the stopping time of the algorithm, the first

round when the total consumption of some resource exceeds

its budget. Let i be the resource for which this happens;

hence, ∑
t∈[τ] ci,t > B. (IV.13)

Let us use Eq. (IV.12) with λ = λ(i), the point distribution

for this resource. Then by Eq. (IV.6) we have,

X
T

τ Gλ(i) = LM ,B,T (Xτ ,λ
(i))

By definition of Lagrange function this equals,

= Xτ · r + 1− T
B Xτ · ci

Plugging in (IV.10) and (IV.11), this is upper-bounded by

≤ 1
τ

((∑
t∈[τ] rt

)
−

(
T
B

∑
t∈[τ] ci,t

)
+ τ − (1 + T

B)R0(τ)
)

Plugging in Eq. (IV.13), it can further be upper-bounded by,

≤ 1
τ

((∑
t∈[τ] rt

)
+ τ − T − (1 + T

B)R0(τ)
)
.

Plugging this into Eq. (IV.12) and rearranging, we obtain∑
t∈[τ] rt ≥ τ v∗ + T − τ − (1 + T

B) · reg(T).

Since v∗ ≤ 1 (because v∗ = OPTLP, as we’ve proved),

REW(LagrangeBwK)

=
∑
t∈[τ]

rt ≥ T v∗ − (1 + T
B) · reg(T).

The claimed regret bound (IV.9) follows by Eq. (IV.2),

completing the proof of Theorem IV.4.

209

Algorithm 2: simple algorithm for Adversarial BwK.

input: scale parameter κ > 0,

guess range [gmin, gmax],
algorithms ALG1, ALG2 as in Algorithm 1

Choose u uniformly at random from

{0, 1 , . . . , umax}, where umax =
⌈
logκ

gmax

gmin

⌉
.

Guess the value of OPTFD as ĝ = gmin · κu.

Run LagrangeBwK with algorithms ALG1, ALG2 and

parameters B0 = B and T0 = ĝ/κ.

V. A SIMPLE ALGORITHM FOR ADVERSARIAL BWK

We present and analyze an algorithm for Adversarial BwK

which achieves O(d2 logT) competitive ratio, in expecta-

tion, up to a low-order additive term. Our algorithm is very

simple: we randomly guess the value of OPTFD and run

LagrangeBwK with parameter T0 driven by this guess. The

analysis is very different, however, since we cannot rely on

the machinery from regret minimization in stochastic games.

The crux of the analysis (Lemma V.5) is re-used to analyze

the high-probability algorithm in the next section.

The intuition for our algorithm can be explained as

follows. LagrangeBwK builds on adversarial online learn-

ing algorithms ALGj , and appears plausibly applicable to

Adversarial BwK. We analyze it for Adversarial BwK, with

an arbitrary parameter T0 (see Lemma V.5, the crux of our

analysis), and find that it performs best when T0 is tailored

to OPTFD up to a constant multiplicative factor. This is

precisely what our algorithm achieves via the random guess.

Our algorithm is presented as Algorithm 2. We randomly

guess the value of OPTFD from within a specified range

[gmin, gmax], up to the specified multiplicative factor of

κ > 0. We consider multiplicative scales [κu, κu+1], u ∈ N,

and we guess uniformly at random among all possible u.

Our analysis works as long as OPTFD ∈ [gmin, gmax] and

κ ≥ d + 1; then we obtain competitive ratio κ2 �log gmax

gmin

	
up to a low-order additive term. As a corollary, we obtain

competitive ratio κ2 �logT 	 with no assumptions.

Theorem V.1. Consider Adversarial BwK with K arms,

d resources, time horizon T , and budget B. Assume that

one of the arms is a null arm that has zero reward and

zero resource consumption. Consider Algorithm 2 with scale

parameter κ ≥ d+1. Suppose algorithms ALGj that satisfy

the regret bound (III.2) with δ = T−2 and regret term

Rδ(T) = Rj,δ(T), for any known payoff range [bmin, bmax].

If OPTFD ∈ [gmin, gmax] then the expected reward of

Algorithm 2 satisfies

E[REW] ≥ (OPTFD − reg)/
(
κ2

⌈
logκ

gmax

gmin

⌉)
, (V.1)

where reg = (1 + OPTFD
κB)

(
R1, δ/T (T) +R2, δ/T (T)

)
.

Taking [gmin, gmax] = [1, T], we obtain

E[REW] ≥ (OPTFD − reg)/
(
κ2 �logκ T 	

)
. (V.2)

Remark V.2. One can use algorithms EXP3.P for

ALG1 and Hedge for ALG2, with regret bounds given

by (III.4), and achieve the regret term reg =
O

(
1 + OPTFD

κB

) √
TK log(Td/δ). We obtain a meaningful

performance guarantee as long as, say, reg < OPTFD/2;

this requires OPTFD and B to be at least Ω̃(
√
TK).

Remark V.3. We define the outcome matrices slightly dif-

ferently compared to Section IV in that we do not posit a

dummy resource. Formally, we assume that the null arm has

zero consumption in every resource. This is essential for case

1 (i.e., when τalg ≤ σ) in the analysis of Lemma V.5.

If a problem instance of Adversarial BwK is actually an

instance of adversarial bandits, then we recover the optimal

Õ(
√
KT) regret. (This easily follows by examining the

proof of Lemma V.5.)

Lemma V.4. Consider LagrangeBwK, with algorithms

EXP3.P for ALG1 and Hedge for ALG2, for an instance

of Adversarial BwK with zero resource consumption. This

algorithm obtains Õ(
√
KT) regret, for any parameters

B0, T0 > 0. Accordingly, so does Algorithm 2 with any scale

parameter κ > 0.

A. Analysis: proof of Theorem V.1 and Lemma V.4

Stopped linear program. Let us set up a linear relaxation

that is suitable to the adversarial setting. The expected

outcome matrix is no longer available. Instead, we use

average outcome matrices:

M τ = 1
τ

∑
t∈[τ] M t, (V.3)

the average up to a given intermediate round τ ∈ [T].
Similar to the stochastic case, the relaxation assumes that

each instantaneous outcome matrix M t is equal to the

average outcome matrix M τ . What is different now is that

the relaxation depends on τ : using M τ is tantamount to

stopping precisely at this round.

With this intuition in mind, for a particular end-time τ
we consider the linear program (IV.1), parameterized by the

time horizon τ and the average outcome matrix M τ . Its

value, OPTLP(M τ , B, τ), represents the per-round expected

reward, so it needs to be scaled by the factor of τ to obtain

the total expected reward. Finally, we maximize over τ .

Thus, our linear relaxation for Adversarial BwK is defined

as follows:

OPT
[T]
LP := max

τ∈[T]
τ · OPTLP(M τ , B, τ) ≥ OPTFD. (V.4)

The inequality in (V.4) is proved in the appendix (Section C).

Regret bounds for ALGj . Since each algorithm ALGj ,

j ∈ {1, 2} satisfies regret bound (III.2) with δ = T−2 and

210

Rδ(T) = Rj,δ(T), it also satisfies a stronger version (III.3)

with the same parameters. Recall from (IV.7) that the payoff

range is [bmin, bmax] = [−T0

B + 1, 2]. For succinctness, let

Uj(T |T0) = (1+ T0

B)Rj, δ/T (T) denote the respective regret

term in (III.3).

Let us apply these regret bounds to our setting. Let

at ∈ [K] and it ∈ [d] be, resp., the chosen arm and

resource in round t. We represent the outcomes as vectors

over arms: rt, ct,i ∈ [0, 1]K denote, resp., reward vector and

resource-i consumption vector for a given round t. Recall

that the round-t payoffs in LagrangeBwK are given by the

Lagrange function Lt := LMt,B,T0
such that

Lt(a, i) = rt(a) + 1− T0

B ct,i(a) (V.5)

for each arm a and resource i. Consider the total Lagrangian

payoff at a given round τ ∈ [T]:

∑
t∈[τ] Lt(at, it) = REWτ + τ −Wτ , (V.6)

where REWτ =
∑

t∈[τ] rt(at) is the total reward up to round

τ , and Wτ = T0

B

∑
t∈[τ] ct,it(at) is the consumption term.

The regret bounds sandwich (V.6) from above and below:⎛
⎝max

a∈[K]

∑
t∈[τ]

Lt(a, it)

⎞
⎠− U1(T |T0)

≤ REWτ + τ −Wτ

≤
⎛
⎝min

i∈[d]

∑
t∈[τ]

Lt(at, i)

⎞
⎠+ U2(T |T0). (V.7)

This holds for all τ ∈ [T], with probability at least 1 − 2δ.

The first inequality in (V.7) is due to the primal algorithm,

and the second is due to the dual algorithm. Call them primal

and dual inequality, respectively.

Crux of the proof. We condition on the event that (V.7)

holds for all τ ∈ [T], which we call the clean event. The

crux of the analysis is encapsulated in the following lemma,

which analyzes an execution of LagrangeBwK with an

arbitrary parameter T0 under the clean event.

Lemma V.5. Consider an execution of LagrangeBwK with

B0 = B and an arbitrary parameter T0 such that the clean

event holds. Fix an arbitrary round σ ∈ [T], and consider

the LP value relative to this round:

f(σ) := OPTLP(Mσ, B, σ). (V.8)

The algorithm’s reward up to round σ satisfies

REWσ ≥ min(T0, σ · f(σ)− dT0)−
(U1(T |T0) + U2(T |T0)) . (V.9)

Taking σ to be the maximizer in (V.4), algorithm’s reward

satisfies

REW ≥ min(T0,OPTFD − dT0)−
(U1(T |T0) + U2(T |T0)) . (V.10)

Proof: Let τalg be the stopping time of the algorithm.

We consider two cases, depending on whether some resource

is exhausted at time σ. In both cases, we focus on the round

min(τalg, σ).
Case 1: τalg ≤ σ and some resource is exhausted. Let

us focus on round τ = τalg. If i is the exhausted resource,

then
∑

t∈[τ] ct,i(at) > B. Let us apply the dual inequality

in (V.7) for this resource:

REWτ + τ −Wτ − U2(T |T0)

≤∑
t∈[τ] Lt(at, i)

= REWτ + τ − T0

B

∑
t∈[τ] ct,i(at)

≤ REWτ + τ − T0.

It follows that Wτ ≥ T0 − U2(T |T0).
Now, let us apply the primal inequality in (V.7) for the

null arm. Recall that the reward and consumption for this

arm is 0, so Lt(null, it) = 1 for each round t. Therefore,

REWτ + τ −Wτ + U1(T |T0) ≥
∑

t∈[τ]Lt(null, it) = τ.

We conclude that REWτ ≥ Wτ − U1(T |T0) ≥ T0 −
U1(T |T0)− U2(T |T0).

Case 2: τalg ≥ σ. Let us focus on round σ. Consider the

linear program LPMσ,B,σ, and let X∗ ∈ ΔK be an optimal

solution to this LP. The primal inequality in (V.7) implies

REWσ + σ −Wσ + U1(σ)

≥ max
a∈[K]

∑
t∈[σ]

Lt(a, it)

≥∑
t∈[σ]

∑
a∈[K]X

∗(a) Lt(a, it)

= σ +
∑
t∈[σ]

X∗ · rt − T0

B

∑
t∈[σ]

X∗ · ct,it

Rearranging and using the fact that
∑

t∈[σ] X
∗ ·rt = σ·f(σ)

(by optimality of X∗) we get,

REWσ ≥ σ · f(σ)− T0

B

∑
t∈[σ]

X∗ · ct,it − U1(T |T0).

(V.11)∑
t∈[σ] X

∗ · ct,i ≤ B for each resource i, since X∗ is a

feasible solution for OPTLP(Mσ, B, σ). Then,∑
t∈[σ]

X∗ · ct,it ≤
∑
i∈[d]

∑
t∈[σ]

X∗ · ct,i ≤ dB. (V.12)

Plugging (V.12) into (V.11), we conclude that REWσ ≥ σ ·
f(σ)− dT0 − U1(T |T0).

Conclusions from the two cases imply (V.10).

211

Wrapping up. If OPTFD lies in the guess range [gmin, gmax],
then some guess ĝ is approximately correct:

OPTFD/κ ≤ ĝ ≤ OPTFD.

With such a guess ĝ, and provided that κ ≥ d+ 1, we have

T0 = ĝ/κ ≥ OPTFD/κ
2, and

OPTFD − dT0 ≥ OPTFD(1− d
κ) ≥ OPTFD/κ.

So, by Lemma V.5, the algorithm’s execution with this

guess, assuming the clean event, satisfies (V.10) with

min(T0,OPTFD − dT0) ≥ OPTFD/κ
2 and T0 ≤ OPTFD/κ.

The regret term for this guess is

U1(T |T0) + U2(T |T0) ≤
(1 + OPTFD

κB) (R1, δ/T (T) +R2, δ/T (T)).

To complete the proof of Theorem V.1, we obtain a suitable

guess ĝ with probability 1/
⌈
logκ

gmax

gmin

⌉
.

Proof Sketch of Lemma V.4. Recall that in the adversarial

bandit setting we have ci,t = 0 for every i ∈ [d] and every

t ∈ [T]. We re-analyze Lemma V.5 with σ = T . Notice that

case 1 never occurs. Thus we obtain obtain Eq. (V.11) in

case 2. Note that T0

B

∑
t∈[σ]X

∗ · ct,it = 0 since ci,t = 0.

Therefore, we obtain

REWT ≥ T · f(T)− U1(T |T0).

We now argue that T · f(T) = maxa∈[K]

∑
t∈[T] rt(a).

Let X∗ be the optimal distribution over the arms. Thus∑
t∈[T]X

∗ · rt = T · f(T). Note that since ci,t = 0 the

only constraint on X∗ is that it lies in ΔK . Therefore the

maximizer is a point distribution on maxa∈[K]

∑
t∈[T] rt(a).

This proof does not rely on any specific value for B0, T0.

The payoff range is [bmax, bmin] = [1, 2], which implies that

U1(T |T0) = Õ
(√

KT
)

.

VI. HIGH-PROBABILITY ALGORITHM FOR

ADVERSARIAL BWK

We recover the O(log T) approximation ratio for Adver-

sarial BwK, but with high probability rather than merely

in expectation. Our algorithm uses LagrangeBwK as a

subroutine, and re-uses the adversarial analysis thereof

(Lemma V.5). We do not attempt to optimize the regret term.

The algorithm is considerably more complicated com-

pared to Algorithm 2. Instead of making one random guess ĝ

for the value of OPT
[T]
LP , we iteratively refine this guess over

time. The algorithm proceeds in phases. In the beginning

of each phase, we start a fresh instance of LagrangeBwK

with parameter T0 defined by the current value of ĝ.10 We

update the guess ĝ in each round (in a way specified later),

and stop the phase once ĝ becomes too large compared to its

10The idea of restarting the algorithm in each phase is similar to the
standard “doubling trick” in the online machine learning literature, but much
more delicate in our setting.

initial value in this phase. We invoke LagrangeBwK with

a rescaled budget B0 = B/Θ (logT). Within each phase,

we simulate the BwK problem with budget B0: we stop

LagrangeBwK once the consumption of some resource in

this phase exceeds B0. For the remainder of the phase, we

play the null arm with probability 1 − γ0 and do uniform

exploration with the remaining probability, for some param-

eter γ0 ∈ (0, 1) (here and elsewhere, uniform exploration

refers to choosing each action with equal probability). The

pseudocode is summarized in Algorithm 3.

Algorithm 3: High-probability algorithm for Adversarial

BwK.

input: scale parameter κ, exploration parameter γ0,

algorithms ALG1, ALG2 as in Algorithm 1

Initialize ĝ = 1.

for each phase do

Start a fresh instance ALG of LagrangeBwK

with parameters B0 = B/2�logκ T 	 and

T0 = ĝ/(�logκ T 	κ2).
for each round in this phase do

Recompute the global estimate ĝ
if ĝ > T0/κ then start a new phase

if consumption of all resources in this phase

does not exceed B0 then
Play the action chosen by ALG, observe the

outcome and report it back to ALG.
else

Choose the null arm with probability

1− γ0, do uniform exploration otherwise

To complete algorithm’s specification, let us define how

to update the guess ĝ in each round t. The guess, denoted

ĝt, is an estimate for OPT
[t]
LP, as defined in (V.4). We form

this estimate using a standard inverse propensity scoring

(IPS) technique. Let pt and at be, resp., the distribution

and the arm chosen by the primal algorithm in round t. The

instantaneous outcome matrix M t is estimated by matrix

M
ips
t ∈ [0,∞)K×d such that each row M

ips
t (a) is defined

as follows:

M
ips
t (a) := 1{at=a}

1
ft(at)

M t(a).

For a given end-time τ , the average outcome matrix M τ

from (V.3) is estimated as

M
ips

τ := 1
τ

∑
t∈[τ]M

ips
t .

Finally, we plug this estimate into (V.3) and define

ĝt := maxτ∈[T] τ · OPTLP(Mips

τ , B, τ). (VI.1)

For the analysis, we will assume that the primal algorithm

212

does some uniform exploration:

pt(a) ≥ γ > 0

for each arm a ∈ [K] and each round t ∈ [T]. (VI.2)

Theorem VI.1. Consider Adversarial BwK with K arms,

d resources, time horizon T , and budget B; assume B >
4T 3/4. Suppose that one of the arms is a null arm that has

zero reward and zero resource consumption. Let δ > 0 be

the failure probability parameter.

Consider Algorithm 3 with parameters κ ≥ d + 1 and

γ0 = T−1/4. Assume that each algorithm ALGj , j ∈
{1, 2}, satisfies the regret bound (III.2) with payoff range

[bmin, bmax] = [− T
B + 1, 2] and regret term Rδ(T) =

Rj,δ(T). Assume that the primal algorithm ALG1 satisfies

(VI.2) with parameter γ ≥ T−1/4.

Then the total reward REW collected by Algorithm 3

satisfies

Pr

[
REW ≥ OPTFD − reg

2κ4 �logκ T 	
]
≥ 1 − O(δT), (VI.3)

where the regret term is

reg = T
B

(
K T 3/4 log1/2(1δ) +R1, δ/T (T) +R2, δ/T (T)

)
.

Remark VI.2. Using algorithms EXP3.P for ALG1 and

Hedge for ALG2, we can achieve (VI.3) with

reg = O
(
TK
B

)
T 3/4

√
log(T/δ).

This is because EXP3.P, with appropriately modified uniform

exploration term γ = T−1/4, satisfies the regret bound

(III.2) with Rδ(τ) = O(T 3/4)
√

K log T
δ , and for Hedge

we can (still) use Eq. (III.4). The theorem is meaning-

ful whenever, say, reg < OPTFD/2. The latter requires

OPTFD · B
K > Ω̃(T 7/4).

Remark VI.3. Like in Theorem V.1, we posit that the null

arm does not consume any resources.

We provide a proof sketch below. The detailed proof, quite

lengthy and technical, can be found in the full version [53].

Proof Sketch:

The proof consists of several steps. First, we argue that the

guess ĝt is close to OPT
[t]
LP with high probability. This argu-

ment only relies on the uniform exploration property (VI.1)

and the definition of IPS estimators, not on any properties

of the algorithm. We immediately obtain concentration for

the average outcome matrices; a somewhat subtle point is to

derive concentration on the respective LP-values.

Next, we focus on a particular phase in the execution of

the algorithm. We say that a phase is full if the stopping

condition ĝt > T0/κ has fired. We focus on the last full

phase. We prove there is enough reward to be collected

in this phase. Essentially, letting τ1, τ2 be, resp., the start

and end time of this phase, we consider the BwK problem

restricted to time interval [τ1, τ2], and lower-bound the LP-

value of this problem in terms of the LP-value of the

original problem. Finally, we use the adversarial analysis

of LagrangeBwK (Lemma V.5) to guarantee that our

algorithm actually collects that value.

Because of the stopping condition ĝt > T0/κ, there can

be at most �logκ T 	 phases. Therefore, rescaling the budget

to B0/2�logκ T 	 guarantees that the algorithm consumes

at most B/2 of the budget. We then argue that, with high-

probability, the additional uniform exploration in each phase,

consumes a budget of at most B/2 with high-probability.

Thus, the algorithm never runs out of budget.

VII. LOWER BOUNDS

We provide the theorem statements and the construc-

tions for the lower bounds on the competitive ratio that

we have claimed in Section I: the Ω(logT) lower bound

w.r.t. the best fixed distribution benchmark (OPTFD), the

Ω(T) lower bound w.r.t. the best dynamic policy benchmark

(OPTDP), and the Ω(K) lower bound w.r.t. the best fixed arm

benchmark (OPTFA). All lower-bounds are for a randomized

algorithm against an oblivious adversary. The proofs are

deferred to the full version [53].

Theorem VII.1. Consider Adversarial BwK with a single

resource (d = 1) and K arms. Consider any randomized

algorithm for this problem, and let REW denote its reward.

Then:

(a) OPTFD/E[REW] ≥ 5
4 − o(1) for some problem instance

(warmup: the example in the Introduction).

(b) OPTFD/E[REW] ≥ Ω(logT)
for some problem instance.

(c) OPTDP/E[REW] ≥ T/B2

for some problem instance, for any given budget B.

(d) OPTFA/E[REW] ≥ Ω(K) for some problem instance.

Remark VII.2. The lower bounds for parts (a,b,c) hold

(even) for problem instances with K = 2 arms. The lower

bounds in parts (a,b) hold even for a much more permissive

feedback model from the online packing literature, namely,

when the algorithm observes the outcome vector for all

actions in a given round, and moreover does it before it

chooses an arm in this round.

The constructions (for the respective parts of the theorem)

are as follows:

(a) There are two arms and one resource with budget B =
T
2 . Arm 1 has zero rewards and zero consumption. Arm

2 has consumption 1 in each round, and offers reward
1
2 in each round of the first half-time (T2 rounds). In

the second half-time, arm 1 offers either reward 1 in all

rounds, or reward 0 in all rounds. More formally, there

are two problem instances, call them I1 and I2, that

coincide for the first half-time and differ in the second

half-time.

213

The intuition is that given a random instance as input

the algorithm needs to choose how much budget to

invest in the first half-time, without knowing what

comes in the second, and any choice (in expectation)

leads to the claimed competitive ratio.

(b) There is one resource with budget B, and two arms,

denoted A0, A1. Arm A0 is the “null arm” that has zero

reward and zero consumption. The consumption of arm

A1 is 1 in all rounds. The rewards of A1 are defined

as follows. We partition the time into T
B phases of

duration B each (for simplicity, assume that B divides

T). We consider T
B problem instances; for each instance

Iτ , τ ∈ [
T
B

]
arm A1 has positive rewards up to and

including phase τ ; after that all rewards are 0. In each

phase σ ∈ [τ], arm A1 has reward σ/T in each round.

The lower bound holds for any B in the interval

[Ω(log3 T), O(T 1−α)], for some constant α ∈ (0, 1).
(c) There is one resource with budget B, and two arms,

denoted A0, A1. Arm A0 is the ‘null arm’ that has zero

reward and zero consumption. The consumption of arm

A1 is 1 in all rounds. The rewards of A1 are defined as

follows. We partition the time into T
B phases of duration

B each (for simplicity, assume that B divides T). We

consider T
B problem instances; for each instance Iτ ,

τ ∈ [T/B] arm A1 has 0 reward in all phases except

phase τ ; in phase τ it has a reward of 1 in each round.

(d) There is one resource with budget B, and K arms

denoted by A1, A2 , . . . , AK . Arm AK is the ‘null

arm’ that has zero reward and zero consumption. There

are K instances in the family. In instance Ij , all arms

Aj′ where j′ > j have 0 reward and 0 consumption

in all time-steps. Consider an instance Ij for some

j ∈ [K−1] and an arm j′ ≤ j. Arm Aj′ has a reward of
1

KK−j′ and consumption of 1 in all time-steps in phase

j′ and has a reward of 0 and consumption of 0 in every

other time-step. Thus the rewards and consumption are

bounded in the interval [0, 1] for every arm and every

time-step in all instances in this family.

VIII. OPEN QUESTIONS

We use essentially the same algorithm, LagrangeBwK,

to solve both stochastic and adversarial version of bandits

with knapsacks. Yet, we use it with different parameter T0

and a slightly different definition of the outcome matrices.

Indeed, recall that in the stochastic setting there a ‘dummy

resource’ with strictly positive consumption for all arms,

whereas in the adversarial version the null arm must have

zero consumption for all resources. Can we solve both

versions with exactly the same algorithm? One concrete

goal would be to achieve O(log T) competitive ratio in

the adversarial version, and o(T) regret for the stochastic

version in the regime min(B,OPTFD) ≥ Ω(T). A similar

“best of both worlds” result has been obtained for ban-

dits without budget/supply constraints: one algorithm that

achieves optimal regret rates for both adversarial bandits and

stochastic bandits, without knowing which environment it is

in [27, 78, 13]. Further developments focused on mostly

stochastic environments with a small amount of adversarial

behavior [78, 77, 61, 87]; similar questions are relevant to

BwK as well, once the basic “best-of-both-worlds” question

is resolved.

ACKNOWLEDGEMENTS

The authors are grateful to Robert Kleinberg, Akshay

Krishnamurthy, Steven Wu, and Chicheng Zhang for many

insightful conversations on online machine learning and

related subjects.

REFERENCES

[1] Jacob D Abernethy and Jun-Kun Wang. On frank-

wolfe and equilibrium computation. In Advances in

Neural Information Processing Systems (NIPS), pages

6584–6593, 2017.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k,

John Langford, and Hanna Wallach. A reductions

approach to fair classification. Fairness, Accountabil-

ity, and Transparency in Machine Learning (FATML),

2017.

[3] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Lang-

ford, Lihong Li, and Robert Schapire. Taming the

monster: A fast and simple algorithm for contextual

bandits. In 31st Intl. Conf. on Machine Learning

(ICML), 2014.

[4] Shipra Agrawal and Nikhil R. Devanur. Bandits with

concave rewards and convex knapsacks. In 15th ACM

Conf. on Economics and Computation (ACM EC),

2014.

[5] Shipra Agrawal and Nikhil R. Devanur. Linear con-

textual bandits with knapsacks. In 29th Advances in

Neural Information Processing Systems (NIPS), 2016.

[6] Shipra Agrawal, Nikhil R. Devanur, and Lihong Li. An

efficient algorithm for contextual bandits with knap-

sacks, and an extension to concave objectives. In 29th

Conf. on Learning Theory (COLT), 2016.

[7] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A

dynamic near-optimal algorithm for online linear pro-

gramming. Operations Research, 62(4):876–890, 2014.

[8] Noga Alon, Baruch Awerbuch, and Yossi Azar. The

online set cover problem. In Proceedings of the thirty-

fifth annual ACM symposium on Theory of computing,

pages 100–105. ACM, 2003.

[9] Sanjeev Arora, Elad Hazan, and Satyen Kale. The mul-

tiplicative weights update method: a meta-algorithm

and applications. Theory of Computing, 8(1):121–164,

2012.

[10] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Ex-

pander flows, geometric embeddings and graph parti-

tioning. Journal of the ACM (JACM), 56(2):5, 2009.

214

[11] Jean-Yves Audibert, Sébastien Bubeck, and Gábor

Lugosi. Minimax policies for combinatorial prediction

games. In 24th Conf. on Learning Theory (COLT),

pages 107–132, 2011.

[12] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and

Robert E. Schapire. The nonstochastic multiarmed

bandit problem. SIAM J. Comput., 32(1):48–77, 2002.

Preliminary version in 36th IEEE FOCS, 1995.

[13] Peter Auer and Chao-Kai Chiang. An algorithm with

nearly optimal pseudo-regret for both stochastic and

adversarial bandits. In 29th Conf. on Learning Theory

(COLT), 2016.

[14] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network

design. In Proceedings 38th Annual Symposium on

Foundations of Computer Science, pages 542–547.

IEEE, 1997.

[15] Yossi Azar, Niv Buchbinder, TH Hubert Chan, Sha-

har Chen, Ilan Reuven Cohen, Anupam Gupta, Zhiyi

Huang, Ning Kang, Viswanath Nagarajan, and Joseph

Naor. Online algorithms for covering and packing

problems with convex objectives. In 2016 IEEE 57th

Annual Symposium on Foundations of Computer Sci-

ence (FOCS), pages 148–157. IEEE, 2016.

[16] Moshe Babaioff, Shaddin Dughmi, Robert D. Klein-

berg, and Aleksandrs Slivkins. Dynamic pricing with

limited supply. ACM Trans. on Economics and Com-

putation, 3(1):4, 2015. Special issue for 13th ACM EC,

2012.

[17] Ashwinkumar Badanidiyuru, Robert Kleinberg, and

Yaron Singer. Learning on a budget: posted price

mechanisms for online procurement. In 13th ACM

Conf. on Electronic Commerce (EC), pages 128–145,

2012.

[18] Ashwinkumar Badanidiyuru, Robert Kleinberg, and

Aleksandrs Slivkins. Bandits with knapsacks. J. of

the ACM, 65(3), 2018. Preliminary version in FOCS

2013.

[19] Ashwinkumar Badanidiyuru, John Langford, and Alek-

sandrs Slivkins. Resourceful contextual bandits. In

27th Conf. on Learning Theory (COLT), 2014.

[20] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and

Joseph Naor. A polylogarithmic-competitive algorithm

for the k-server problem. In 2011 IEEE 52nd An-

nual Symposium on Foundations of Computer Science,

pages 267–276. IEEE, 2011.

[21] Ahron Ben-Tal and Arkadi Nemirovski. Lectures on

modern convex optimization: analysis, algorithms, and

engineering applications, volume 2. Siam, 2001.

[22] Dirk Bergemann and Juuso Välimäki. Bandit Prob-

lems. In Steven Durlauf and Larry Blume, editors,

The New Palgrave Dictionary of Economics, 2nd ed.

Macmillan Press, 2006.

[23] Omar Besbes and Assaf Zeevi. Dynamic pricing

without knowing the demand function: Risk bounds

and near-optimal algorithms. Operations Research,

57:1407–1420, 2009.

[24] Omar Besbes and Assaf J. Zeevi. Blind network rev-

enue management. Operations Research, 60(6):1537–

1550, 2012.

[25] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret

Analysis of Stochastic and Nonstochastic Multi-armed

Bandit Problems. Foundations and Trends in Machine

Learning, 5(1), 2012.

[26] Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan.

Kernel-based methods for bandit convex optimization.

In 49th ACM Symp. on Theory of Computing (STOC),

pages 72–85. ACM, 2017.

[27] Sébastien Bubeck and Aleksandrs Slivkins. The best

of both worlds: stochastic and adversarial bandits. In

25th Conf. on Learning Theory (COLT), 2012.

[28] Niv Buchbinder and Joseph Seffi Naor. The design

of competitive online algorithms via a primal–dual

approach. Foundations and Trends R© in Theoretical

Computer Science, 3(2–3):93–263, 2009.

[29] Niv Buchbinder and Joseph (Seffi) Naor. Online

primal-dual algorithms for covering and packing. Math.

Oper. Res., 34(2):270–286, May 2009.

[30] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,

learning, and games. Cambridge Univ. Press, 2006.

[31] Moses Charikar and Balaji Raghavachari. The finite

capacity dial-a-ride problem. In Proceedings 39th An-

nual Symposium on Foundations of Computer Science,

pages 458–467. IEEE, 1998.

[32] Tianyi Chen and Georgios B Giannakis. Bandit convex

optimization for scalable and dynamic iot management.

IEEE Internet of Things Journal, 2018.

[33] Tianyi Chen, Qing Ling, and Georgios B Giannakis.

An online convex optimization approach to proactive

network resource allocation. IEEE Transactions on

Signal Processing, 65(24):6350–6364, 2017.

[34] Paul Christiano, Jonathan A. Kelner, Aleksander

Madry, Daniel A. Spielman, and Shang-Hua Teng.

Electrical flows, laplacian systems, and faster approxi-

mation of maximum flow in undirected graphs. In 43rd

ACM Symp. on Theory of Computing (STOC), pages

273–282. ACM, 2011.

[35] Richard Combes, Chong Jiang, and Rayadurgam

Srikant. Bandits with budgets: Regret lower bounds

and optimal algorithms. ACM SIGMETRICS Perfor-

mance Evaluation Review, 43(1):245–257, 2015.

[36] Nikhil R. Devanur and Thomas P. Hayes. The AdWords

problem: Online keyword matching with budgeted bid-

ders under random permutations. In 10th ACM Conf.

on Electronic Commerce (EC), pages 71–78, 2009.

[37] Nikhil R. Devanur, Kamal Jain, Balasubramanian

Sivan, and Christopher A. Wilkens. Near optimal

online algorithms and fast approximation algorithms

for resource allocation problems. In 12th ACM Conf.

215

on Electronic Commerce (EC), pages 29–38, 2011.

[38] Wenkui Ding, Tao Qin, Xu-Dong Zhang, and Tie-Yan

Liu. Multi-armed bandit with budget constraint and

variable costs. In 27th AAAI Conference on Artificial

Intelligence (AAAI), 2013.

[39] Miroslav Dudı́k, Daniel Hsu, Satyen Kale, Nikos

Karampatziakis, John Langford, Lev Reyzin, and Tong

Zhang. Efficient optimal leanring for contextual ban-

dits. In 27th Conf. on Uncertainty in Artificial Intelli-

gence (UAI), 2011.

[40] Jon Feldman, Monika Henzinger, Nitish Korula, Va-

hab S. Mirrokni, and Clifford Stein. Online stochastic

packing applied to display ad allocation. In 18th

Annual European Symp. on Algorithms (ESA), pages

182–194, 2010.

[41] Amos Fiat, Richard M Karp, Michael Luby, Lyle A

McGeoch, Daniel D Sleator, and Neal E Young. Com-

petitive paging algorithms. Journal of Algorithms,

12(4):685–699, 1991.

[42] Abraham Flaxman, Adam Kalai, and H. Brendan

McMahan. Online Convex Optimization in the Bandit

Setting: Gradient Descent without a Gradient. In 16th

ACM-SIAM Symp. on Discrete Algorithms (SODA),

pages 385–394, 2005.

[43] Yoav Freund and Robert E Schapire. Game theory, on-

line prediction and boosting. In 9th Conf. on Learning

Theory (COLT), pages 325–332, 1996.

[44] Yoav Freund and Robert E. Schapire. A decision-

theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and

System Sciences, 55(1):119–139, 1997.

[45] Yoav Freund and Robert E Schapire. Adaptive game

playing using multiplicative weights. Games and

Economic Behavior, 29(1-2):79–103, 1999.

[46] John Gittins, Kevin Glazebrook, and Richard Weber.

Multi-Armed Bandit Allocation Indices. John Wiley &

Sons, 2011.

[47] Sudipta Guha and Kamesh Munagala. Multi-armed

Bandits with Metric Switching Costs. In 36th Intl. Col-

loquium on Automata, Languages and Programming

(ICALP), pages 496–507, 2007.

[48] Anupam Gupta, Ravishankar Krishnaswamy, Marco

Molinaro, and R. Ravi. Approximation algorithms for

correlated knapsacks and non-martingale bandits. In

52nd IEEE Symp. on Foundations of Computer Science

(FOCS), pages 827–836, 2011.

[49] András György, Levente Kocsis, Ivett Szabó, and

Csaba Szepesvári. Continuous time associative ban-

dit problems. In 20th Intl. Joint Conf. on Artificial

Intelligence (IJCAI), pages 830–835, 2007.

[50] András György, Tamás Linder, Gábor Lugosi, and

György Ottucsák. The on-line shortest path problem

under partial monitoring. J. of Machine Learning

Research (JMLR), 8:2369–2403, 2007.

[51] Elad Hazan. Introduction to Online Convex Optimiza-

tion. Foundations and Trends R© in Optimization, 2(3-

4):157–325, 2015.

[52] Justin Hsu, Zhiyi Huang, Aaron Roth, and Zhi-

wei Steven Wu. Jointly private convex programming.

In 27th ACM-SIAM Symp. on Discrete Algorithms

(SODA), pages 580–599, 2016.

[53] Nicole Immorlica, Karthik Abinav Sankarara-

man, Robert Schapire, and Aleksandrs

Slivkins. Adversarial bandits with knap-

sacks, 2018. Working paper. Available at

https://arxiv.org/abs/1811.11881.

[54] David S Johnson. Approximation algorithms for com-

binatorial problems. Journal of computer and system

sciences, 9(3):256–278, 1974.

[55] Satyen Kale, Lev Reyzin, and Robert E. Schapire. Non-

stochastic bandit slate problems. In 24th Advances in

Neural Information Processing Systems (NIPS), pages

1054–1062, 2010.

[56] Michael Kearns, Seth Neel, Aaron Roth, and Zhi-

wei Steven Wu. Preventing fairness gerrymandering:

Auditing and learning for subgroup fairness. In 35th

Intl. Conf. on Machine Learning (ICML), pages 2564–

2572, 2018.

[57] Robert Kleinberg. Nearly tight bounds for the

continuum-armed bandit problem. In 18th Advances in

Neural Information Processing Systems (NIPS), 2004.

[58] John Langford and Tong Zhang. The Epoch-Greedy

Algorithm for Contextual Multi-armed Bandits. In 21st

Advances in Neural Information Processing Systems

(NIPS), 2007.

[59] Nick Littlestone and Manfred K. Warmuth. The

weighted majority algorithm. Information and Com-

putation, 108(2):212–260, 1994.

[60] László Lovász. On the ratio of optimal integral and

fractional covers. Discrete mathematics, 13(4):383–

390, 1975.

[61] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes-

Leme. Stochastic bandits robust to adversarial corrup-

tions. In 50th ACM Symp. on Theory of Computing

(STOC), 2018.

[62] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trad-

ing regret for efficiency: online convex optimization

with long term constraints. J. of Machine Learning

Research (JMLR), 13(Sep):2503–2528, 2012.

[63] Mehrdad Mahdavi, Tianbao Yang, and Rong Jin.

Stochastic convex optimization with multiple objec-

tives. In Advances in Neural Information Processing

Systems (NIPS), pages 1115–1123, 2013.

[64] Aranyak Mehta. Online matching and ad allocation.

Foundations and Trends in Theoretical Computer Sci-

ence, 8 (4):265–368, 2013.

[65] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and

Vijay Vazirani. Adwords and generalized online match-

216

ing. J. ACM, 54(5):22, 2007.

[66] Marco Molinaro and R. Ravi. Geometry of online

packing linear programs. In 39th Intl. Colloquium

on Automata, Languages and Programming (ICALP),

pages 701–713, 2012.

[67] Rajeev Motwani and Prabhakar Raghavan. Randomized

algorithms. Cambridge University Press, Cambridge,

1995.

[68] Michael J Neely and Hao Yu. Online convex opti-

mization with time-varying constraints. arXiv preprint

arXiv:1702.04783, 2017.

[69] Alexander Rakhlin and Karthik Sridharan. Online

learning with predictable sequences. In 26th Conf. on

Learning Theory (COLT), pages 993–1019, 2013.

[70] Anshuka Rangi, Massimo Franceschetti, and Long

Tran-Thanh. Unifying the stochastic and the adversar-

ial bandits with knapsack. In 28th Intl. Joint Conf. on

Artificial Intelligence (IJCAI), pages 3311–3317, 2019.

[71] Adrian Rivera, He Wang, and Huan Xu. Online saddle

point problem with applications to constrained online

convex optimization. arXiv preprint arXiv:1806.08301,

2018.

[72] Ryan Rogers, Aaron Roth, Jonathan Ullman, and Zhi-

wei Steven Wu. Inducing approximately optimal flow

using truthful mediators. In 16th ACM Conf. on

Electronic Commerce (EC), pages 471–488, 2015.

[73] Aaron Roth, Aleksandrs Slivkins, Jonathan Ullman,

and Zhiwei Steven Wu. Multidimensional dynamic

pricing for welfare maximization. In 18th ACM Conf.

on Electronic Commerce (EC), pages 519–536, 2017.

[74] Aaron Roth, Jonathan Ullman, and Zhiwei Steven Wu.

Watch and learn: Optimizing from revealed preferences

feedback. In 48th ACM Symp. on Theory of Computing

(STOC), pages 949–962, 2016.

[75] Karthik Abinav Sankararaman and Aleksandrs

Slivkins. Combinatorial semi-bandits with knapsacks.

In Intl. Conf. on Artificial Intelligence and Statistics

(AISTATS), pages 1760–1770, 2018.

[76] Robert E. Schapire and Yoav Freund. Boosting: Foun-

dations and Algorithms. The MIT Press, 2012.

[77] Yevgeny Seldin and Gábor Lugosi. An improved

parametrization and analysis of the EXP3++ algorithm

for stochastic and adversarial bandits. In 30th Conf. on

Learning Theory (COLT), 2017.

[78] Yevgeny Seldin and Aleksandrs Slivkins. One practical

algorithm for both stochastic and adversarial bandits.

In 31th Intl. Conf. on Machine Learning (ICML), 2014.

[79] Adish Singla and Andreas Krause. Truthful incen-

tives in crowdsourcing tasks using regret minimization

mechanisms. In 22nd Intl. World Wide Web Conf.

(WWW), pages 1167–1178, 2013.

[80] Aleksandrs Slivkins. Dynamic ad allocation:

Bandits with budgets. A technical report on

arxiv.org/abs/1306.0155, June 2013.

[81] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and

Robert E. Schapire. Fast convergence of regularized

learning in games. In 28th Advances in Neural Infor-

mation Processing Systems (NIPS), pages 2989–2997,

2015.

[82] Long Tran-Thanh, Archie Chapman, Enrique Munoz

de Cote, Alex Rogers, and Nicholas R. Jennings. ε-
first policies for budget-limited multi-armed bandits.

In 24th AAAI Conference on Artificial Intelligence

(AAAI), pages 1211–1216, 2010.

[83] Long Tran-Thanh, Archie Chapman, Alex Rogers, and

Nicholas R. Jennings. Knapsack based optimal policies

for budget-limited multi-armed bandits. In 26th AAAI

Conference on Artificial Intelligence (AAAI), pages

1134–1140, 2012.

[84] Seeun Umboh. Online network design algorithms via

hierarchical decompositions. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 1373–1387. Society for Indus-

trial and Applied Mathematics, 2015.

[85] Jun-Kun Wang and Jacob D. Abernethy. Accelera-

tion through optimistic no-regret dynamics. In 31st

Advances in Neural Information Processing Systems

(NIPS), pages 3828–3838, 2018.

[86] Zizhuo Wang, Shiming Deng, and Yinyu Ye. Close

the gaps: A learning-while-doing algorithm for single-

product revenue management problems. Operations

Research, 62(2):318–331, 2014.

[87] Chen-Yu Wei and Haipeng Luo. More adaptive al-

gorithms for adversarial bandits. In 31st Conf. on

Learning Theory (COLT), 2018.

[88] David P Williamson and David B Shmoys. The design

of approximation algorithms. Cambridge university

press, 2011.

217

APPENDIX

Our exposition in the body of the paper relies on some

tools that are either known or can easily be derived using

standard techniques. We state (and sometimes derive) these

tools in this appendix.

A. Concentration Inequalities

Lemma A.1 (Azuma-Hoeffding inequality [67]). Let

Y1, Y2, . . . , YT be a martingale difference sequence (i.e.,

E[Yt | Y1, Y2 , . . . , Yt−1] = 0). Suppose |Yt| ≤ c for all

t ∈ {1, 2, . . . , T}. Let R0,δ(T) :=
√

2Tc2 ln(1/δ). Then for

every δ > 0,

Pr
[∑

t∈[T] Yt > R0,δ(T)
]
≤ δ.

Lemma A.2 (Chernoff-Hoeffding bounds [67]). Let

X1, X2, . . . , XT be a sequence of independent random

variables such that |Xt| ≤ c for all t ∈ {1, 2, . . . , T}. Let

Zt := E[Xt]. Then for every δ > 0,

Pr

[∣∣∣∑t∈[T] Xt − Zt

∣∣∣ > 3

√(∑
t∈[T] Zt

)
c2 ln(1/δ)

]
≤ δ.

B. Lagrangians: proof of Lemma IV.2

Assume one of the resources is the dummy resource, and

one of the arms is the null arm. Consider the linear program

LPM ,B,T , for some outcome matrix M . Let L = LM ,B,T

denote the Lagrange function.

Lemma A.3 (Lemma IV.2, restated). Suppose (X∗,λ∗) is

a mixed Nash equilibrium for the Lagrangian game. Then

X∗ is an optimal solution for the linear program (IV.1).

Moreover, the minimax value of the Lagrangian game equals

the LP value: L(X∗,λ∗) = OPTLP.

In what follows we prove Lemma A.3. Writing out the

definition of the mixed Nash equilibrium,

L(X∗,λ) ≥ L(X∗,λ∗) ≥ L(X ,λ∗) ∀X ∈ ΔK ,λ ∈ Δd.

(A.1)

For brevity, denote r(X∗) =
∑

a∈[K]X
∗(a) r(a) and

ci(X
∗) =

∑
a∈[K]X

∗(a) ci(a).
We first state and prove the complementary slackness

condition for the Nash equilibrium.

Claim A.4. For every resource i ∈ [d] we have,

(a) 1− T
B ci(X

∗) ≥ 0,

(b) λ∗
i > 0 =⇒ 1− T

B ci(X
∗) = 0.

Proof: Part (a). For contradiction, consider resource i
that minimizes the left-hand side in (a), and assume that the

said left-hand side is strictly negative. We have two cases:

either λ∗
i < 1 or λ∗

i = 1. When λ∗
i < 1, consider another

distribution λ̃ ∈ Δd such that λ̃i = 1 and λ̃i′ = 0 for every

i′
= i. Note that we have, L(X∗, λ̃) < L(X∗,λ∗). This

contradicts the first inequality in (A.1).

Consider the second case, when λ∗
i = 1. Then

L(X∗,λ∗) = r(X∗) + 1 − T
B ci(X

∗). Consider any arm

a ∈ [K] such that X∗(a)
= 0. Let X̃ ∈ ΔK be another

distribution such that X̃(a) := 0 and X̃(null) := X∗(null)+
X∗(a) and X̃(a′) = X∗(a′) for every a′
∈ {a, null}. Note

that X̃(null) ≤ 1. Since (X∗,λ∗) is a Nash equilibrium,

we have that L(X̃,λ∗) ≤ L(X∗,λ∗). This implies that

−X∗(a)r(a) +X∗(a) TB ci(a) ≤ 0. Re-arranging we obtain,
T
B ci(a) ≤ r(a) ≤ 1. Thus, we have 1− T

B ci(a) ≥ 0.

Since this holds for every a ∈ [K] with X∗(a)
= 0, we

obtain a contradiction:

1− T
B ci(X

∗) =
∑

a∈[K]X
∗(a)

(
1− T

B ci(a)
) ≥ 0.

Part (b). For contradiction, assume the statement is false

for some resource i. Then, by part (a), λ∗
i > 0 and

1− T
B ci(X

∗) > 0, and consequently L(X∗,λ∗) > r(X∗).

Now, consider distribution λ̃ which puts probability 1 on

the dummy resource. We then have L(X∗, λ̃) = r(X∗) <
L(X∗,λ∗), contradicting the first inequality in Eq. (A.1).

Let X̃ be some feasible solution for the linear pro-

gram (IV.1). Plugging the feasibility constraints into the

definition of the Lagrangian function, L(X̃ ,λ∗) ≥ r(X̃).
Claim A.4(a) implies that X∗ is a feasible solution to the lin-

ear program (IV.1). Claim A.4(b) implies that L(X∗,λ∗) =
r(X∗). Thus,

r(X∗) = L(X∗,λ∗) ≥ L(X̃ ,λ∗) ≥ r(X̃).

So, X∗ is an optimal solution to the LP. In particular,

OPTLP = r(X∗) = L(X∗,λ∗).

C. The stopped LP for Adversarial BwK: proof of Eq. (V.4)

The proof is similar to prior work [18, 37]. Denote Dτ

to be the set of all distributions over the arms such that for

every p ∈ Dτ we have the following: for every i ∈ [d]
we have

∑
t∈[τ] p · ct,i ≤ B. In other words, Dτ denotes

the set of distributions whose expected stopping time is

at least τ . Thus it immediately follows that OPTLP(τ) ≥
maxp∈Dτ

∑
t∈[τ] p · rt since for any given p ∈ Dτ it is

feasible to LP(τ). Thus OPTLP(τ) is at least the value of

any feasible solution p ∈ Dτ . Note that for every fixed

distribution p ∈ ΔK , there exists a τ such that either

p ∈ Dτ and p
∈ Dτ+1 or p ∈ DT . Moreover the total

expected reward we can obtain using p is
∑

t∈[τ] p · rt.

Thus max1≤τ≤T OPTLP(τ) ≥ OPTFD.

D. Regret minimization in games: proof of Lemma III.1

Let us revisit adversarial online learning, as per Figure 1.

Denote the benchmark in Eq. (III.2) as

OPTAOL(T) := maxa∈A

∑
t∈[T] ft(a).

Recall that [bmin, bmax] is the payoff range, and denote σ =
bmax − bmin.

218

Lemma A.5. Suppose an algorithm for adversarial online

learning satisfies (III.2) for some δ > 0. Then

Pr
[
∀τ ∈ [T] OPTAOL(τ) −

∑
t∈[τ] f t · pt

≤ σ ·
(
Rδ/T (T) +

√
2T log(T/δ)

)]
≥ 1− 2δ. (A.2)

Proof: Let us use the stronger regret bound (III.3)

implied by (III.2). Note that

E[ft(at) | a1, a2 , . . . , at−1] = f t · pt.

Applying the Azuma-Hoeffding inequality for each τ ∈ [T],
and taking a union bound, we have

Pr
[
∀τ ∈ [T]

∑
t∈[τ] ft(at)−

∑
t∈[τ] f t · pt

≤ σ ·
√
2T log(T/δ)

]
≥ 1− δ. (A.3)

Taking a union bound over Eq. (A.3) and Eq. (III.3) and

adding the equations we get Eq. (A.2).

Remark A.6. For Hedge algorithm, regret bound Eq. (A.2)

is already proved in [44].

Let W =
√
2T log(T/δ) denote the term from

Lemma A.5 in what follows.

We now prove Lemma III.1, similar to the proof in [43]

for the deterministic game. Recall that we take averages up

to some fixed round τ ∈ [T]. We prove that the following

two inequalities hold, each with probability at least 1− δ.

1

τ

∑
t∈[τ]

pT
t,1 Gt pt,2 ≥ v∗ − σ · R1, δ/T (T) + 2W

τ
.

(A.4)

1

τ

∑
t∈[τ]

pT
t,1 Gt pt,2 ≤ pT

1 Gp2

+ σ · R2, δ/T (T) + 2W

τ
∀p2 ∈ ΔA2

. (A.5)

Eq. (III.5) in Lemma III.1 follows by adding Eq. (A.4) and

Eq. (A.5).

First we prove Eq. (A.4). Following the set of inequal-

ities in Section 2.5 of [43] we have the following. From

Lemma A.5 we have,

1

τ

∑
t∈[τ]

pT
t,1Gtpt,2

≥whp
1

τ

∑
t∈[τ]

p∗
1
T
Gt pt,2 − σ · R1, δ/T (T) +W

τ

From Lemma A.1 this can be lower-bounded by,

≥whp
1

τ

∑
t∈[τ]

p∗
1
T
Gpt,2 − σ · R1, δ/T (T) + 2W

τ

From Definition of p∗
1, this equals,

= max
p
1
∈ΔA1

1

τ

∑
t∈[τ]

p1
T Gpt,2 − σ · R1, δ/T (T) + 2W

τ

From Definition of p2, this equals,

= max
p
1
∈ΔA1

p1
T Gp2 − σ · R1, δ/T (T) + 2W

τ

≥ min
p
2
∈ΔA2

max
p
1
∈ΔA1

pT
1 Gp2 − σ · R1, δ/T (T) + 2W

τ

Here ≤whp denotes statements that hold with probability at

least 1− δ.

Now let us prove (A.5). Fix distribution p2 ∈ ΔA2
. Then

from Lemma A.5 we have,

1

τ

∑
t∈[τ]

pT
t,1 Gt pt,2

≤whp
1

τ

∑
t∈[τ]

pt,1
TGt p2 + σ · R2, δ/T (T) +W

τ

From Lemma A.1 this is upper-bounded by

≤whp
1

τ

∑
t∈[τ]

pt,1
T Gp2 + σ · R2, δ/T (T) + 2W

τ

From Definition of p1, this equals

= p1
T Gp2 + σ · R2, δ/T (T) + 2W

τ

Taking a union bound over all the four high-probability

inequalities, we get the lemma.

219

