2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

Adversarial Bandits with Knapsacks

Nicole Immorlica
Microsoft Research, New York, NY.
nicimm@microsoft.com.

Robert Schapire
Microsoft Research, New York, NY.
schapire @microsoft.com.

Abstract—We consider Bandits with Knapsacks (henceforth,
BwK), a general model for multi-armed bandits under sup-
ply/budget constraints. In particular, a bandit algorithm needs
to solve a well-known knapsack problem: find an optimal
packing of items into a limited-size knapsack. The BwK
problem is a common generalization of numerous motivating
examples, which range from dynamic pricing to repeated
auctions to dynamic ad allocation to network routing and
scheduling. While the prior work on BwK focused on the
stochastic version, we pioneer the other extreme in which the
outcomes can be chosen adversarially. This is a considerably
harder problem, compared to both the stochastic version and
the “classic” adversarial bandits, in that regret minimization
is no longer feasible. Instead, the objective is to minimize
the competitive ratio: the ratio of the benchmark reward to
algorithm’s reward.

We design an algorithm with competitive ratio O(log T') rel-
ative to the best fixed distribution over actions, where 7" is the
time horizon; we also prove a matching lower bound. The key
conceptual contribution is a new perspective on the stochastic
version of the problem. We suggest a new algorithm for the
stochastic version, which builds on the framework of regret
minimization in repeated games and admits a substantially
simpler analysis compared to prior work. We then analyze this
algorithm for the adversarial version, and use it as a subroutine
to solve the latter.

Our algorithm is the first “black-box reduction” from
bandits to BwK: it takes an arbitrary bandit algorithm and
uses it as a subroutine. We use this reduction to derive several
extensions.

Keywords-Multi-armed bandits; Online Packing; Adversarial
Online Learning;

I. INTRODUCTION

Multi-armed bandits is a simple abstraction for the trade-
off between exploration and exploitation, i.e., between mak-
ing potentially suboptimal decisions for the sake of acquiring
new information and using this information for making
better decisions. Studied over many decades, multi-armed

Full version of this paper is available at arxiv.org [53].
Throughout this research project, K.A. Sankararaman has been a student
at University of Maryland, College Park supported in part by NSF Awards
CNS 1010789, CCF 1422569, CCF-1749864 and research awards from
Adobe, Amazon, and Google. Most of the results were obtained in the
course of his internship at Microsoft Research NYC.

Karthik Abinav Sankararaman
Facebook Research.
karthikabinavs @ gmail.com.

Aleksandrs Slivkins
Microsoft Research, New York, NY.
slivkins @microsoft.com.

bandits is a very active research area spanning computer
science, operations research, and economics [30, 22, 46, 25].

In this paper, we focus on bandit problems which feature
supply or budget constraints, as is the case in many real-
istic applications. For example, a seller who experiments
with prices may have a limited inventory, and a website
optimizing ad placement may be constrained by the adver-
tisers’ budgets. This general problem is called Bandits with
Knapsacks (BwK) since, in this model, a bandit algorithm
needs effectively to solve a knapsack problem (find an
optimal packing of items into a limited-size knapsack) or
generalization thereof. The BWK model was introduced in
[18] as a common generalization of numerous motivating
examples, ranging from dynamic pricing to ad allocation
to repeated auctions to network routing/scheduling. Various
special cases with budget/supply constraints were studied
previously, e.g., [23, 16, 17, 79, 35].

In BwK, the algorithm is endowed with d > 1 limited
resources that are consumed by the algorithm. In each round,
the algorithm chooses an action (arm) from a fixed set of K
actions. The outcome consists of a reward and consumption
of each resource; all lie in [0,1]. The algorithm observes
bandit feedback, i.e., only the outcome of the chosen arm.
The algorithm stops at time horizon 7', or when the total
consumption of some resource exceeds its budget. The goal
is to maximize the total reward, denoted REW.

For a concrete example, consider dynamic pricing.! The
algorithm is a seller with limited supply of some product. In
each round, a new customer arrives, the algorithm chooses
a price, and the customer either buys one item at this
price or leaves. A sale at price p implies reward of p and
consumption of 1. This example easily extends to d > 1
products/resources. Now the algorithm chooses the per-unit
price for each resource, and the customer decides how much
of each resource to buy at this price.

Prior work on BwK focused on the stochastic version of
the problem, called Stochastic BwK, where the outcome of
each action is drawn from a fixed distribution. This problem

ISee [18] for a more detailed discussion of the motivating examples.

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00022

202 IEEE
(@ computer
soclety

has been solved optimally using three different techniques
[18, 4], and extended in various directions in subsequent
work [4, 19, 6, 5].

We go beyond the stochastic version, and instead study
the most “pessimistic”, adversarial version where the re-
wards and resource consumptions can be arbitrary. We call
it adversarial bandits with knapsacks (Adversarial BwK),
as it extends the classic model of “adversarial bandits”
[12]. Bandits aside, this problem subsumes online packing
problems [64, 28], where algorithm observes full feedback
(the outcomes of all possible actions) in each round, and
observes it before choosing an action.

Hardness of the problem. Adversarial BWK is a much
harder problem compared to Stochastic BwK. The new
challenge is that the algorithm needs to decide how much
budget to save for the future, without being able to predict
it. (It is also the essential challenge in online packing
problems, and it drives our lower bounds.) This challenge
compounds the ones already present in Stochastic BwK: that
exploitation may be severely limited by the resource con-
sumption during exploration, that optimal per-round reward
no longer guarantees optimal total reward, and that the best
fixed distribution over arms may perform much better than
the best fixed arm. Jointly, these challenges amount to the
following. An algorithm for Adversarial BWK must compete,
during any given time segment [1, 7], with a distribution over
arms that maximizes the total reward on this time segment.
However, this distribution may behave very differently, in
terms of expected per-round outcomes, compared to the
optimal distribution for some other time segment [1,7'].

In more concrete terms, let OPTrp be the total expected
reward of the best fixed distribution over arms. In Stochastic
BwK (as well as in adversarial bandits) an algorithm can
achieve sublinear regret: OPTy, — E[REW] = o(T).2 In
contrast, in Adversarial BWK regret minimization is no
longer possible, and we therefore are primarily interested
in the competitive ratio OPT¢p/ E[REW].

It is instructive to consider a simple example in which the
competitive ratio is at least %—0(1) for any algorithm. There
are two arms and one resource with budget % Arm 1 has
zero rewards and zero consumption. Arm 2 has consumption
1 in each round, and offers reward % in each round of the first
half-time (% rounds). In the second half-time, it offers either
reward 1 in all rounds, or reward O in all rounds. Thus, there
are two problem instances that coincide for the first half-time
and differ in the second half-time. The algorithm needs to
choose how much budget to invest in the first half-time,
without knowing what comes in the second. Any choice
leads to competitive ratio at least % on one of the instances.

2More specifically, one can achieve regret O(v/KT) for adversarial
bandits [12], as well as for Stochastic BWK if all budgets are Q(7") [18].
One can achieve sublinear regret for Stochastic BwK if all budgets are
Q(T%), a € (0,1) [18].

203

Extending this idea, we prove an even stronger lower
bound on the competitive ratio:

OPTyp/ E[REW] > Q(log T). (LD)

Like the simple example above, the lower-bounding con-
struction involves only two arms and only one resource, and
forces the algorithm to make a huge commitment without
knowing the future.

Algorithmic contributions. Our main result is an algorithm
which nearly matches (I.1), achieving

E[REW] > 52

W (OPTFD — O(OPTFD)) .

1.2)

We put forward a new algorithm for BwK, called
LagrangeBwK, that unifies the stochastic and adversar-
ial versions. It has a natural game-theoretic interpretation
for Stochastic BwWK, and admits a simpler analysis com-
pared to the prior work. For Adversarial BWK, we use
LagrangeBwK as a subroutine, though with a different
parameter and a different analysis, to derive two algorithms:
a simple one that achieves (I.2), and a more involved
one that achieves the same competitive ratio with high
probability. Absent resource consumption, we recover the
optimal O(v/KT) regret for adversarial bandits.

LagrangeBwK is based on a new perspective on
Stochastic BWK. We reframe a standard linear relaxation
for Stochastic BwWK in a way that gives rise to a repeated
zero-sum game, where the two players choose among arms
and resources, respectively, and the payoffs are given by the
Lagrange function of the linear relaxation. Our algorithm
consists of two online learning algorithms playing this
repeated game. We analyze LagrangeBwK for Stochastic
BwK, building on the tools from regret minimization in
stochastic games, and achieve a near-optimal regret bound
when the optimal value and the budgets are Q(7T).?

Extensions. We obtain several extensions, where we derive
improved performance guarantees for some scenarios. These
extensions showcase the modularity of LagrangeBwK, in
the sense that the two players can be implemented as arbi-
trary algorithms for adversarial online learning that admit a
given regret bound. Each extension follows from the main
results, with a different choice of the players’ algorithms.

We tackle four well-known scenarios: full feedback [59,
44, 9], where the algorithm observes the outcomes of all pos-
sible actions after each round; combinatorial semi-bandits
[50, 55, 11], where actions are feasible subsets of “atoms”
whose individual outcomes are observed and add up to the
action’s total outcome; contextual bandits [58, 39, 3], where
a context is observed before each round, and the algorithm
competes against the best policy in a given policy class;
bandit convex optimization [57, 42, 26], where the rewards
are convex functions from arms to reals.

3This regime is of primary importance in prior work, e.g., [23, 86].

Discussion. LagrangeBwK has numerous favorable prop-
erties. As just discussed, it is simple, unifying, modular, and
yields strong performance guarantees in multiple settings.
It is the first “black-box reduction” from bandits to BwK:
we take a bandit algorithm and use it as a subroutine for
BwK. This is a very natural algorithm for the stochastic
version once the single-shot game is set up; indeed, it is
immediate from prior work that the repeated game converges
to the optimal distribution over arms. Its regret analysis for
Stochastic BwK is extremely clean. Compared to prior work
[18, 4], we side-step the intricate analysis of sensitivity of
the linear program to non-uniform stochastic deviations that
arise from adaptive exploration.

LagrangeBwK has a primal-dual interpretation, as arms
and resources correspond respectively to primal and dual
variables in the linear relaxation. Two players in the repeated
game can be seen as the respective primal algorithm and
dual algorithm. Compared to the rich literature on primal-
dual algorithms [88, 28, 64] (including the more recent
literature on stochastic online packing problems [36, 7, 37,
40, 66]) LagrangeBwK has a very specific and modular
structure dictated by the repeated game.

Logarithmic competitive ratios are common and well-
accepted in the area of approximation algorithms, and partic-
ularly in online algorithms (see Related Work for citations).

Benchmarks. We argue that the best fixed distribution over
arms is an appropriate benchmark for Adversarial BwK.
First, consider the total expected reward of the best dynamic
policy, denote it OPTpp. (The best dynamic policy is the
best algorithm, in hindsight, that is allowed to switch arms
arbitrarily across time-steps.) This is the strongest possible
benchmark, but it is foo strong for Adversarial BwK. Indeed,
we show a simple example with just one resource (with
budget B), where competitive ratio against this benchmark
is at least % for any algorithm. Second, consider the total
expected reward of the best fixed arm, denote it OPTga.
It is a traditional benchmark in multi-armed bandits, but
is uninteresting for Adversarial BwWK. We show that the
competitive ratio is at least Q(K) in the worst case, and
this is matched, in expectation, by a trivial algorithm that
samples one arm at random and sticks with it forever.

For Stochastic BWK, these three benchmarks are related
as follows. The best fixed distribution is still the main object
of interest, as far as the design and analysis of algorithms is
concerned. However, all results — both ours and prior work
— are almost automatically extended to compete against the
best dynamic policy. The best fixed arm is a much weaker
benchmark than the best fixed distribution: there are simple
examples when their expected reward differs by a factor of
two, in multiple special cases of interest [18].

Map of the paper. After “related work™ and “preliminaries”,
we present our results in the following order. We develop al-
gorithm LagrangeBwK and analyze it for Stochastic BWK

204

in Section IV. We analyze this algorithm for the adversarial
setting in Section V, and derive a simple algorithm that
achieves (I.2). We develop the high-probability algorithm
in Section VI. Lower bounds are presented in Section VIIL.
Open questions are presented in Section VIIL

The detailed analysis of the high-probability algorithm,
the proofs for the lower bounds, and the discussion of the
extensions can be found in the full version [53].

II. RELATED WORK

The literature on regret-minimizing online learning algo-
rithms is vast; see [30, 25, 51] for background. Most relevant
are two algorithms for adversarial rewards/costs: Hedge for
full feedback [45], and EXP3 for bandit feedback [12]; both
are based on the weighted majority algorithm from [59].

Stochastic BWK was introduced and optimally solved
in [18]. Subsequent work extended these results to soft
supply/budget constraints [4], a more general notion of re-
wards* [4], combinatorial semi-bandits [75], and contextual
bandits [19, 6, 5]. Several special cases with budget/supply
constraints were studied previously: dynamic pricing [23,
16, 24, 86], dynamic procurement [17, 79] (a version of
dynamic pricing where the algorithm is a buyer rather than
a seller), dynamic ad allocation [80, 35], and a version with a
single resource and unlimited time [49, 82, 83, 38]. While all
this work is on regret minimization, [47, 48] studied closely
related Bayesian formulations.

Stochastic BwWK was optimally solved using three different
algorithms [18, 4], with extremely technical and delicate
analyses. All three algorithms involve inherently ‘stochastic’
techniques such as “successive elimination” and “optimism
under uncertainty”, and do not appear to extend to the
adversarial version. One of them, PrimalDualBwK from
[18], is a primal-dual algorithm superficially similar to ours.
Indeed, it decouples into two online learning algorithms:
a “primal” algorithm which chooses among arms, and a
“dual” algorithm similar to ours, which chooses among
resources. However, the two algorithms are not playing a
repeated game in any meaningful sense, let alone a zero-
sum game. The primal algorithm operates under a much
richer input: it takes the entire outcome vector for the chosen
arm, as well as the “dual distribution” — the distribution
over resources chosen by the dual algorithm. Further, the
primal algorithm is very problem-specific: it interprets the
dual distribution as a vector of costs over resources, and
chooses arms with largest reward-to-cost ratios, estimated
using “optimism under uncertainty”.

Our approach to using regret minimization in games can
be traced to [43, 45] (see Ch. 6 in [76]), who showed how
a repeated zero-sum game played by two agents yields an
approximate Nash equilibrium. This approach has been used

4The total reward is determined by the time-averaged outcome vector,
but can be an arbitrary Lischitz-concave function thereof.

as a unifying algorithmic framework for several problems:
boosting [43], linear programs [9], maximum flow [34], and
convex optimization [1, 85]. While we use a result with
the 1/ V/t convergence rate for the equilibrium property,
recent literature obtains faster convergence for cumulative
payoffs (but not for the equilibrium property) under various
assumptions (e.g., [69, 81, 87]).

Repeated Lagrangian games, in conjunction with regret
minimization in games, have been used in a series of recent
papers [72, 52, 74, 56, 2, 73], as an algorithmic tool to solve
convex optimization problems; application domains range
from differential privacy to algorithmic fairness to learning
from revealed preferences. All these papers deal with de-
terministic games (i.e., same game matrix in all rounds).
Reframing the problem in terms of repeated Lagrangian
games is a key technical insight in this work. Most related
to our paper are [74, 73], where a repeated Lagrangian
game is used as a subroutine (the “inner loop”) in an online
algorithm; the other papers solve an offline problem. We
depart from this prior work in several respects: we use a
stochastic game, we deal with some subtleties specific to
Stochastic BWK, and we provide a very different analysis
for our main results on Adversarial BwK, where we cannot
rely on the standard machinery.

Online packing problems (e.g., [29, 37], see [28] for a
survey) can be seen as a special case of Adversarial BwK
with a much more permissive feedback model: the algorithm
observes full feedback (the outcomes for all actions) before
choosing an action. Online packing subsumes various online
matching problems, including the AdWords problem [65]
motivated by ad allocation (see [64] for a survey). While
we derive O(logT') competitive ratio against OP Tgp, online
packing admits a similar result against OPTpp.

Another related line of work concerns online convex
optimization with constraints [62, 63, 33, 68, 32]. Their
setting differs from ours in several important respects. First,
the action set is a convex subset of R¥ (and the algorithms
rely on the power to choose arbitrary actions in this set).
In particular, there is no immediate way to handle discrete
action sets.> Second, convexity/concavity is assumed on the
rewards and resource consumption. Third, in addition to
bandit feedback, full feedback is observed for the resource
consumption, and (in all papers except [32]) one also
observes either full feedback on rewards or the rewards
gradient around the chosen action. Fourth, their algorithm
only needs to satisfy the budget constraints at the time
horizon (whereas in BwK the budget constraints hold for all
rounds). Fifth, their fixed-distribution benchmark is weaker
than ours: essentially, its time-averaged consumption must
be small enough at each round ¢. Due to these differences,
their setting admits sublinear regret in the adversarial setting.

SUnless there is full feedback, in which case one can use a standard
reduction whereby actions in online convex optimization correspond to
distributions over actions in a K-armed bandit problem.

205

Logarithmic competitive ratios are quite common in prior
work on approximation algorithms and online algorithms,
e.g., in the context of the set cover problem [60, 54], buy-
at-bulk network design [14], sparsest cut [10], and dial-a-
ride problem [31], the online k-server problem [20], online
packing/covering problems [15], online set cover [8], online
network design [84], and online paging [41].

Simultaneous work. Two very recent papers came to
our attention after the initial publication of this paper on
arxiv.orqg. Rivera et al. [71] consider online convex
optimization with knapsacks (essentially, the full-feedback
version of our extension to bandit convex optimization).
Focusing on the stochastic version, they design an algorithm
similar to LagrangeBwK, with a similar regret bound and
analysis. They also claim an extension to bandit feedback,
without providing any details (such as a precise statement
of Lemma III.1 in terms of the regret property (II1.2)).

Rangi et al. [70] consider Adversarial BwK in the special
case when there is only one constrained resource, includ-
ing time. They attain sublinear regret, i.e., a regret bound
that is sublinear in 7. They also assume a known lower
bound cpin > 0 on realized per-round consumption of
each resource, and their regret bound scales as 1/cmin.
They also achieve polylog(7') instance-dependent regret for
the stochastic version using the same algorithm (matching
results from prior work on the stochastic version). BwK with
only one constrained resource (including time) is a much
easier problem, compared to the general case with multiple
resources studied in this paper, in the following sense. First,
the single-resource version admits much stronger perfor-
mance guarantees (polylog(T") vs. VT regret bounds for
Stochastic BWK, and sublinear regret vs. approximation
ratio for Adversarial BwK). Second, the optimal all-knowing
time-invariant policy is the best fixed arm, rather than the
best fixed distribution over arms.

III. PRELIMINARIES

We use bold fonts to represent vectors and matrices. We
use standard notation whereby, for a positive integer K,
[K] stands for {1,2, ,K}, and Ak denotes the set
of all probability distributions on [K]. Some of the notation
introduced further is summarized in Appendix D.

Bandits with Knapsacks (BwK). There are 7" rounds, K
possible actions and d resources, indexed as [T, [K],[d],
respectively. In each round ¢t € [T, the algorithm chooses
an action a; € [K| and receives an outcome vector o, =
(re; ceny - scea) € 0,19, where 7y is a reward and
¢, is consumption of each resource i € [d]. Each resource
1 is endowed with budget B; < T'. The game stops early,
at some round 7,y < 7T, when/if the total consumption of
any resource exceeds its budget. The algorithm’s objective
is to maximize its total reward. Without loss of generality

all budgets are the same: By = By = ... = By = B

The outcome vectors are chosen as follows. In each
round ¢, the adversary chooses the outcome matrix M; €
[0, 1]5%(4+1) " where rows correspond to actions. The out-
come vector o; is defined as the a;-th row of this ma-
trix, denoted M (a;). Only this row is revealed to the
algorithm. The adversary is deterministic and oblivious,
meaning that the entire sequence My, ... , M r is chosen
before round 1. A problem instance of BwK consists of
(known) parameters (d, K,T,B), and the (unknown) se-
quence My, ... ,Mr.

In the stochastic version of BwK, henceforth termed
Stochastic BwK, each outcome matrix M, is chosen from
some fixed but unknown distribution Dg,x over the outcome
matrices. A problem instance consists of (known) parameters
(d, K, T, B), and the (unknown) distribution Dgyx.

Following prior work [18, 4], we assume, w.l.o.g., that
one of the resources is a dummy resource similar to time;
formally, each action consumes B/T units of this resource
per round (we only need this for Stochastic BwK). Further,
we posit that one of the actions is a null action, which lets
the algorithm skips a round: it has 0 reward and consumes
0 amount of each resource other than the dummy resource.

Benchmarks. Let REW(ALG) = } ., 7t be the to-
tal reward of algorithm ALG in the BwK problem. Our
benchmark is the best fixed distribution, a distribution over
actions which maximizes E[REW(-)] for a particular problem
instance. The expected total reward of this distribution is
denoted OP Tgp.

For Stochastic BWK, one can compete with the best
dynamic policy: an algorithm that maximizes E[REW(-)] for
a particular problem instance. Essentially, this algorithm
knows the latent distribution Dg,x over outcome matrices.
Its expected total reward is denoted OP Tpp.

Adversarial online learning. To state the framework of
“regret minimization in games” below, we need to introduce
the protocol of adversarial online learning, see Figure 1.

In this protocol, the adversary can use previously chosen
arms to choose the payoff vector f,, but not the algorithm’s
random seed. The distribution f, is chosen as a deterministic
function of history. (The history at round ¢ consists, for each
round s < t, of the chosen action as and the observed
feedback in this round.) We focus on two feedback models:
bandit feedback (no auxiliary feedback) and full feedback
(the entire payoff vector f,). The version for costs can be
defined similarly, by setting the payoffs to be the negative
of costs.

We are interested in adversarial online learning algorithms

9To see that this is indeed w.l.o.g., for each resource i, divide all per-
round consumptions ¢;; by B;/B, where B := min;e (g B; is the
smallest budget. In the modified problem instance, all consumptions still
lie in [0, 1], and all the budgets are equal to B.

206

Given: action set A, payoff range [bmin, bmax]-
In each round ¢ € [T,
1. the adversary chooses a payoff vector f, €
[bmina bmax]K;
2. the algorithm chooses a distribution p, over A,
without observing f,,
3. algorithm’s chosen action a;
independently from p,;

€ A is drawn

4. payoff fi(a;) is received by the algorithm.

Figure 1: Adversarial online learning

with known upper bounds on regret,

Raor(T) = ?eai(z fela)| = | > felay)| . @ILD)
]

te[T) te[T

The benchmark here is the total payoff of the best arm,
according to the payoff vectors actually chosen by the
adversary. More precisely, we assume high-probability regret
bounds of the following form:

Vo >0

Pr [RAOL(T) S (bmax - bmin) R(S(T)] 2 1—- 6a (IIIZ)

for some function Rs(-). We will actually use a stronger
version implied by (I11.2),”

Pr [VT € [T] RAOL <T) < (bmax - bmin) R«S/T(T) }
>1-90 Vo > 0. (IIL3)

Algorithms EXP3.P [12] for bandit feedback, and Hedge
[44] for full feedback, satisfy (II1.2) with, resp.,

R(;(T):O(\A|Tlog(T/5)) and

Rs(T) =0 («/T log([A] /5)). (IIL4)

Regret minimization in games. We build on the frame-
work of regret minimization in games. A zero-sum game
(A1, Az, G) is a game between two players i € {1,2} with
action sets A; and A, and payoff matrix G € RA1x A2 [f
each player ¢ chooses an action a; € A;, the outcome is a
number G(a1, az2). Player 1 receives this number as reward,
and player 2 receives it as cost. A repeated zero-sum game
G with action sets A; and As, time horizon 7" and game
matrices G, ... ,Gr € R41*42 is a game between two
algorithms, ALG; and ALGs, which proceeds over 7' rounds
such that each round ¢ is a zero-sum game (A;, A2, Gy).

"Regret bound (II1.3) follows from (II1.2) using a simple “zeroing-out”
trick: for a given round 7 € [T, the adversary can set all future payoffs to
some fixed value = € [bmin, bmax|, in Which case Raor(7) = Raor(T).

The goal of ALG; is to maximize the total reward, and the
goal of ALG, is to minimize the total cost.

The game G is called stochastic if the game matrix
G, in each round ¢ is drawn independently from some
fixed distribution. For such games, we are interested in
the expected game, defined by the expected game matrix
G = E[G¢]. We can relate the algorithms’ performance to
the minimax value of G.

Lemma III.1. Consider a stochastic repeated zero-sum
game between algorithms ALG; and ALGo, with payoff range
[bmin, bmax]- Assume that each ALG;, j € {1,2} is an
algorithm for adversarial online learning, as per Figure 1,
which satisfies regret bound (I1L.2) with Rs(T) = R, 5(T).
Let T be some fixed round in the repeated game. For each
algorithm ALG;, j € {1,2}, let Aj be its action set, let
Pt,j € Aa; be the distribution chosen in each round t, and
let p; = %Zte[r] Py ; be the average play distribution at
round 7. Let v* be the minimax value for the expected game
Then for each § > 0, with probability at least 1 — 26,

va € AAQ prl[‘ Gp2 > vt — %(bmax - bmin) .

(Ry, s7(T) + Ro. 57 (T) + 4y/2T1og(T /)) . (IL5)

Eq. (IIL5) states that the average play of player 1 is
approximately optimal against any distribution chosen by
player 2.8 This lemma is well-known for the deterministic
case (i.e., when G; = G for each round ¢), and folklore for
the stochastic case. We provide a proof in Appendix D for
the sake of completeness.

IV. A NEW ALGORITHM FOR STOCHASTIC BWK

We present a new algorithm for Stochastic BWK, based
on the framework of regret minimization in games. This is
a very natural algorithm once the single-shot game is set
up, and it allows for a very clean regret analysis. We will
also use this algorithm as a subroutine for the adversarial
version.

On a high level, we define a stochastic zero-sum game for
which a mixed Nash equilibrium corresponds to an optimal
solution for a linear relaxation of the original problem.
Our algorithm consists of two regret-minimizing algorithms
playing this game. The framework of regret minimization
in games guarantees that the average primal and dual play
distributions (p; and p, in Lemma III.1) approximate the
mixed Nash equilibrium in the expected game, which cor-
respondingly approximates the optimal solution.

A. Linear relaxation and Lagrange functions

We start with a linear relaxation of the problem that all
prior work relies on. This relaxation is stated in terms of

STf each player j chooses distribution pj €A A;»> and the game matrix
is G, then expected reward/cost is perp2.

207

expected rewards/consumptions, i.e., implicitly, in terms of
the expected outcome matrix M = E[M.]. We explicitly
formulate the relaxation in terms of M, and this is essential
for the subsequent developments. For ease of notation, we
write the a-th row of M, for each action a € [K], as

M(a) = (r™(a); e (a), ... ,cq"(a)),

so that 7™ (a) is the expected reward and cM(a) is the
expected consumption of each resource i.

Essentially, the relaxation assumes that each instantaneous
outcome matrix M is equal to the expected outcome matrix
M = E[M]. The relaxation seeks the best distribution over
actions, focusing on a single round with budgets rescaled as
B/T. This leads to the following linear program (LP):

maximize 2acpr) X (a) rM(a)
such that
S eerr) X(a) =1 (IV.1)
Vi € [d] aei) X (a) ¢ (a) < B/T
Va € [K] 0<X(a)<1.

We denote this LP by LP az, g, 7. The solution X is the best
fixed distribution over actions, according to the relaxation.
The value of this LP, denoted OPT.»(M,B,T), is the
expected per-round reward of this distribution. It is also the
total reward of X in the relaxation, divided by 7". We know
from [18] that

T:-0PTs(M,B,T) > OPTpp > OPTyp, av.2)

where OPTpr and OPTyp are the total expected rewards
of, respectively, the best dynamic policy and the best fixed
distribution. In words, OPTpp is sandwiched between the
total expected reward of the best fixed distribution and that
of its linear relaxation.

Associated with the linear program LPas pr is the
Lagrange function L = Lpr p 7. It is a function £ :
Ak xR%; — R defined as

LX,N) = > X(a)r™(a)+

a€[K]

av.3)

Safi-5 Y X@eM

i€[d] a€[K)

The values A1, ... ,Aq in Eq. (IV.3) are called the dual
variables, as they correspond to the variables in the dual
LP. Lagrange functions are meaningful due to their max-
min property (e.g., Theorem D.2.2 in [21]):

min max L£(X,A) = max minL(X,A)

A>0 XE€Ag XEAK A>0

= 0PT (M, B, T). (IV.4)

This property holds for our setting because LP ps 5,7 has at
least one feasible solution (namely, one that puts probability

one on the null action), and the optimal value of the LP is
bounded.

Remark IV.1. We use the linear program LPng g 1 and the
associated Lagrange function Ly g 1 throughout the paper.
Both are parameterized by an outcome matrix M, budget
B and time horizon T. In particular, we can plug in an
arbitrary M, and we heavily use this ability throughout. For
the adversarial version, it is essential to plug in parameter
To < T instead of the time horizon T'. For the analysis of
the high-probability result in Adversarial BWK, we use a
rescaled budget By < B instead of budget B.

B. Our algorithm: repeated Lagrangian game

The Lagrange function £ = Lpg g, from (IV.3) defines
the following zero-sum game: the primal player chooses an
arm a, the dual player chooses a resource 4, and the payoff
is a number

E(a,i):rM(a)—l—l—%clM

(a).

The primal player receives this number as a reward, and
the dual player receives it as cost. This game is termed the
Lagrangian game induced by Lz p 7. This game will be
crucial throughout the paper.

The Lagrangian game is related to the original linear
program as follows:

(IV.5)

Lemma IV.2. Assume one resource is the dummy resource.
Consider the linear program LPnr BT, for some outcome
matrix M. Then the value of this LP equals the minimax
value v* of the Lagrangian game induced by Lnr B 1.
Further, if (X,\) is a mixed Nash equilibrium in the
Lagrangian game, then X is an optimal solution to the LP.

The proof can be found in Appendix B. The idea is that
because of the special structure of the LP, the second equality
in (IV.4) also holds when the dual vector X is restricted to
distributions.

Consider a repeated version of the Lagrangian game.
Formally, the repeated Lagrangian game with parameters
By < B and Ty < T is a repeated zero-sum game between
the primal algorithm that chooses among arms and the
dual algorithm that chooses among resources. Each round
t of this game is the Lagrangian game induced by the
Lagrange function £; := L, B, 1,» Where M, is the
round-t outcome matrix. Note that we use parameters By, Ty
instead of budget B and time horizon T'.°

Remark IV.3. Consider repeated Lagrangian game for
Stochastic BWK (with By = B and Ty = T). The payoffs
in the expected game are defined by the expected Lagrange
function L := E[L;]. By linearity, L is the Lagrange function

9These parameters are needed only for the adversarial version. For
Stochastic BWK we use Bg = B and Ty = T.

208

for the expected outcome matrix M = E[M]:

L= E[ﬁt] = EM,B,T- (IV.6)

Our algorithm, called LagrangeBwK, is very simple: it
is a repeated Lagrangian game in which the primal algorithm
receives bandit feedback, and the dual algorithm receives full
feedback.

To set up the notation, let a; and i; be, respectively,
the chosen arm and resource in round ¢. The payoff is
therefore L:(at,it). It can be rewritten in terms of the
observed outcome vector o; = (r4;¢t1, ... ,¢rq) (Which
corresponds to the a;-th row of the instantaneous outcome
matrix M;):

Li(ag, i) =re+1— 4 cry € [-F +1,2. AV
Note that the payoff range is [bmin, bmax] = [—g—g + 1].
With this notation, the pseudocode for LagrangeBwK
is summarized in Algorithm 1. The pseudocode is simple
and self-contained, without referring to the formalism of
repeated games and Lagrangian functions. Note that the
algorithm is implementable, in the sense that the outcome
vector o; revealed in each round ¢ of the BwK problem

suffices to generate full feedback for the dual algorithm.

Algorithm 1: Algorithm LagrangeBwK.

input: parameters By, Ty, primal algorithm ALG;, dual
algorithm ALG,.

// ALGy, ALGy are adversarial

// online learning algorithms
// with bandit feedback

// and full feedback, resp.

for round t =1,2,3, ... do

1) ALGy returns arm a; € [K], algorithm ALGo
returns resource i; € [d].

arm a; is chosen, outcome vector

o = (ri(as);cei(ar), seralar)) €
[0, 1]4+1 is observed.

The payoff L (ay, i¢) from (IV.7) is reported
to ALG; as reward, and to ALGs as cost.
The payoff L;(a+,) is reported to ALGy for
each resource i € [d].

2)

3)

4)

C. Performance guarantees

We consider algorithm LagrangeBwK with parameter
Ty = T'. We assume the existence of the dummy resource;
this is to ensure that the crucial step, Eq. (IV.13), works out
even if the algorithm stops at time 7", without exhausting any
actual resources. We obtain a regret bound that is non-trivial
whenever B > Q(\/T), and is optimal, up to log factors, in
the regime when min(OPTpp, B) > Q(T).

Theorem IV.4. Consider Stochastic BwK with K arms,
d resources, time horizon T, and budget B. Assume that
one resource is a dummy resource (with deterministic con-
sumption % for each arm). Fix the failure probability
parameter 6 € (0,1). Consider algorithm LagrangeBwK
with parameters Bo = B and Ty = T.

If EXP3.P and Hedge are used as the primal and the
dual algorithms, respectively, then the algorithm achieves
the following regret bound, with probability at least 1 — §:

OPTpp — REW(LagrangeBwK) <
0 <£ TKlog(dT/5)> . (V.8)

In general, suppose each algorithm ALG; satisfies a regret
bound (IIL2) with Rs(T) = R;;(T) and payoff range
[Brmin, Omax] = [—% + 1,2]. Then with probability at least
1 —O0(T) it holds that

OPTpp — REW(LagrangeBwK) <

O(3) (RL%(T) + R, 5 (T)+/Tlog dTT) . (IV.9)

Remark IV.5. To obtain (IV.8) from the “black-box” result
(IV.9), we use regret bounds in Eq. (II1.4).

Remark IV.6. From [I8], the optimal regret bound for
Stochastic BwK is

OPTpr — E[REW] < O (\/KOPTDP (1+ \/OPTDP/B)) .

Thus, the regret bound (IV.8) is near-optimal if
min(OPTpp, B) > QT), and non-trivial if B > Q(\/T).

We next prove the “black-box” regret bound (IV.9). For
the sake of analysis, consider a version of the repeated
Lagrangian game that continues up to the time horizon 7T'.
In what follows, we separate the “easy steps” from what we
believe is the crux of the proof.

Notation. Let X; be the distribution chosen in round ¢ by
the primal algorithm ALG;. Let X, := % ZtE[T] X, be the
distribution of average play up to round 7. Let M = E[M]
be the expected outcome matrix. Let 7 = (rM(a) : a €
[K]) be the vector of expected rewards over the actions.
Likewise, ¢; = (cM(a) : a € [K]) be the vector of expected
consumption of each resource ¢ € [d].

Using Azuma-Hoeffding inequality. Consider the first 7
rounds, for some 7 € [T']. The average reward and resource-
i consumption over these rounds are close to X, - r and
X, - ¢;, respectively, with high probability. Specifically, a
simple usage of Azuma-Hoeffding inequality (Lemma A.1)
implies that

T Yiep Tt = X or— Ro(T)/T, (IV.10)
LS e Cit < X e+ Ro(7)/7, Viel[d, (V1)

hold with probability at least 1 — 0, where Ry(7) =
O(y/7log(d/9)).

Regret minimization in games. Let us apply the machinery
from regret minimization in games to the repeated La-
grangian game. Consider the game matrix G of the expected
game. Using Eq. (IV.6) and Lemma IV.2, we conclude that
the minimax value of G is v* = OPTx (M, B, T).

We apply Lemma III.1, with a fixed stopping time 7 € [T7].
Recall that the payoff range is bax — bmin = % + 1. Thus,
with probability at least 1 — 24 it holds that

AeAs: XrGA>v —L(Z 41):reg(T), (IV.12)

where the regret term is reg(T) :=
R275/T(T) + 4\/ 2T 10g(T/(S)

Crux of the proof. Let us condition on the event that
(IV.10), (IV.11), and (IV.12) hold for each 7 € [T]. By
the union bound, this event holds with probability at least
1—34T.

Let 7 denote the stopping time of the algorithm, the first
round when the total consumption of some resource exceeds
its budget. Let ¢ be the resource for which this happens;
hence,

Ry s5/7(T) +

Diepr) it > B (IV.13)

Let us use Eq. (IV.12) with A = A@ . the point distribution
for this resource. Then by Eq. (IV.6) we have,

X, GAD = Lo p (X, AD)
By definition of Lagrange function this equals,
sz-r—Q—l—%YT-ci
Plugging in (IV.10) and (IV.11), this is upper-bounded by
= % ((ZtG[T] Tt) o (% Zte[r] Ci,t) +7—(1+ %) RO(T))
Plugging in Eq. (IV.13), it can further be upper-bounded by,
<2 ((Siepm) +7-T =+ H) Ro(m).
Plugging this into Eq. (IV.12) and rearranging, we obtain
Siert =TV +T -7 —(1+ L) reg(T).
Since v* < 1 (because v* = OPT1p, as we’ve proved),

REW(LagrangeBwK)
= Z re >To" —(1+ %) -reg(T).
te[r]

The claimed regret bound (IV.9) follows by Eq. (IV.2),
completing the proof of Theorem IV.4.

Algorithm 2: simple algorithm for Adversarial BwK.

input: scale parameter x > 0,

guess range [gmins Gmax)s

algorithms ALG;, ALGy as in Algorithm 1
Choose v uniformly at random from]

{0,1,
Guess the value of OPTyp as § = Gmin - K%

Run LagrangeBwK with algorithms ALG;, ALGs and
parameters By = B and Ty = g/k.

umax}’ where y™Max — ’VIOg,{ Ymax

9min

V. A SIMPLE ALGORITHM FOR ADVERSARIAL BWK

We present and analyze an algorithm for Adversarial BwK
which achieves O(d?logT') competitive ratio, in expecta-
tion, up to a low-order additive term. Our algorithm is very
simple: we randomly guess the value of OPTyp and run
LagrangeBwK with parameter T driven by this guess. The
analysis is very different, however, since we cannot rely on
the machinery from regret minimization in stochastic games.
The crux of the analysis (Lemma V.5) is re-used to analyze
the high-probability algorithm in the next section.

The intuition for our algorithm can be explained as
follows. LagrangeBwK builds on adversarial online learn-
ing algorithms ALG;, and appears plausibly applicable to
Adversarial BWK. We analyze it for Adversarial BwK, with
an arbitrary parameter 7j (see Lemma V.5, the crux of our
analysis), and find that it performs best when Tj is tailored
to OPTrp up to a constant multiplicative factor. This is
precisely what our algorithm achieves via the random guess.

Our algorithm is presented as Algorithm 2. We randomly
guess the value of OPTyp from within a specified range
[gmins gmax), up to the specified multiplicative factor of
x > 0. We consider multiplicative scales [k%, k*T!], u € N,
and we guess uniformly at random among all possible w.
Our analysis works as long as OPTep € [gmin, Ymax] and
k > d + 1; then we obtain competitive ratio x> [log Jmax]
up to a low-order additive term. As a corollary, we obtain
competitive ratio k2 [log7T"] with no assumptions.

Theorem V.1. Consider Adversarial BwK with K arms,
d resources, time horizon T, and budget B. Assume that
one of the arms is a null arm that has zero reward and
zero resource consumption. Consider Algorithm 2 with scale
parameter k > d + 1. Suppose algorithms ALG; that satisfy
the regret bound (IIL2) with § = T~2 and regret term
Rs(T) = R;s(T), for any known payoff range [bmin, bmax|-
If OPTrp € [Gmins Gmax] then the expected reward of

Algorithm 2 satisfies
D VD)

(R, 5/7(T) + R, 5/7(T)).

Ymax

E[REW] > (OPTrp — reg)/ ([IOgK Jmin

OPTFU

where reg= (1+

210

Taking [gmin, gmax) = [1,T], we obtain
(OPTwp — reg)/ (k* [log, T1) - (V.2)

Remark V.2. One can use algorithms EXP3.P for
ALGy and Hedge for ALGy, with regret bounds given

E[REW] >

by (IIL.4), and achieve the regret term reg =
O (1+ %=2) /TKlog(Td/5). We obtain a meaningful

performance guarantee as long as, say, reg < OPTypp/2;
this requires OPTyp and B to be at least Q(VTK).

Remark V.3. We define the outcome matrices slightly dif-
ferently compared to Section IV in that we do not posit a
dummy resource. Formally, we assume that the null arm has
zero consumption in every resource. This is essential for case
1 (i.e., when T4, < o) in the analysis of Lemma V.5.

If a problem instance of Adversarial BwK is actually an
instance of adversarial bandits, then we recover the optimal
O(VKT) regret. (This easily follows by examining the
proof of Lemma V.5.)

Lemma V4. Consider LagrangeBwK, with algorithms
EXP3.P for ALGy and Hedge for ALGs, for an instance
of Adversarial BwK with zero resource consumption. This
algorithm obtains O(\/ KT) regret, for any parameters
By, Ty > 0. Accordingly, so does Algorithm 2 with any scale
parameter K > 0.

A. Analysis: proof of Theorem V.I and Lemma V.4

Stopped linear program. Let us set up a linear relaxation
that is suitable to the adversarial setting. The expected
outcome matrix is no longer available. Instead, we use
average outcome matrices:

M, = % ZtG[T] M,

the average up to a given intermediate round 7 € [T7.
Similar to the stochastic case, the relaxation assumes that
each instantaneous outcome matrix M is equal to the
average outcome matrix M .. What is different now is that
the relaxation depends on 7: using M, is tantamount to
stopping precisely at this round.

With this intuition in mind, for a particular end-time 7
we consider the linear program (IV.1), parameterized by the
time horizon 7 and the average outcome matrix M. Its
value, OPT1»(M ,, B, T), represents the per-round expected
reward, so it needs to be scaled by the factor of 7 to obtain
the total expected reward. Finally, we maximize over 7.
Thus, our linear relaxation for Adversarial BwK is defined
as follows:

(V.3)

opTiH) .= max 7 OPTr (M.,B,7) > OPTys. (VA)
Te[T
The inequality in (V.4) is proved in the appendix (Section C).

Regret bounds for ALG,. Since each algorlthm ALG,,
j € {1,2} satisfies regret bound (TIL.2) with § = T2 and

Rs(T) = Rjs(T), it also satisfies a stronger version (II1.3)
with the same parameters. Recall from (IV.7) that the payoff
range is [bmin, bmax] = [—% + 1,2]. For succinctness, let
U;(T|Ty) = (14+22) R; 5,7(T') denote the respective regret
term in (I11.3).

Let us apply these regret bounds to our setting. Let
ar € [K] and iy € [d] be, resp., the chosen arm and
resource in round ¢t. We represent the outcomes as vectors
over arms: 7¢, ¢ ; € [0, l]K denote, resp., reward vector and
resource-¢ consumption vector for a given round ¢. Recall
that the round-t payoffs in LagrangeBwK are given by the
Lagrange function £; := Lz, 7, such that

Et(a,i):rt()+1 TO

ci(a) (V.5)
for each arm a and resource . Consider the total Lagrangian
payoff at a given round 7 € [T]:

W,

Zte[r] Et(at, Zf) =REW, +7 — (V6)

where REW; = >, 7¢(a¢) is the total reward up to round
r,and W, = & >telr) Cric(ar) is the consumption term.
The regret bounds sandwich (V.6) from above and below:

c — U(T|Ty
max > Li(ayiy) (T Ty)
telr]
< REW, +7 — W,
< | mi Lilar,i) | + Us(T|T0). V.7
_gf52t(atl)+2(|o) (V.7)

te[r]

This holds for all 7 € [T, with probability at least 1 — 2.
The first inequality in (V.7) is due to the primal algorithm,
and the second is due to the dual algorithm. Call them primal
and dual inequality, respectively.

Crux of the proof. We condition on the event that (V.7)
holds for all 7 € [T, which we call the clean event. The
crux of the analysis is encapsulated in the following lemma,
which analyzes an execution of LagrangeBwK with an
arbitrary parameter 7y under the clean event.

Lemma V.5. Consider an execution of LagrangeBwK with
By = B and an arbitrary parameter Ty such that the clean
event holds. Fix an arbitrary round o € [T, and consider
the LP value relative to this round:

f(o) :=oPTx(M,, B, o). (V.8)
The algorithm’s reward up to round o satisfies
REW, > min(Ty, o - f(o) —dTp)—
(U1(T|T0) + UQ(T‘TO)) (V.9)

211

Taking o to be the maximizer in (V.4), algorithm’s reward
satisfies

REW > min(Ty, OPTrp — d1p)—

(UW(T[To) + U2(T|Tp)). (V.10)

Proof: Let 7y, be the stopping time of the algorithm.
We consider two cases, depending on whether some resource
is exhausted at time o. In both cases, we focus on the round
min(7ag, o).

Case 1: 7,3 < 0 and some resource is exhausted. Let
us focus on round 7 = 7y,. If 7 is the exhausted resource,
then 3,1 cri(ar) > B. Let us apply the dual inequality
in (V.7) for this resource:

REW, + 7 — W, — Uz(T|Tp)
< Dtepr Lelar, i)
= REW, + 7 — 3 ;e () Cri(ar)
< REW, + 7 — Tp.
It follows that W, > Ty — Us(T'|Tp).
Now, let us apply the primal inequality in (V.7) for the

null arm. Recall that the reward and consumption for this
arm is 0, so £;(null,i;) = 1 for each round ¢. Therefore,

REW, + 7 — Wr + Ur(T[T0) = > ey Le(null,iy) =7

We conclude that REW, > W, — Uy(T|Ty) > To —
Ui (T|To) — Ua(T|Tp).

Case 2: Ty > 0. Let us focus on round o. Consider the
linear program LPy; p ., and let X* € Ag be an optimal
solution to this LP. Tfle’primal inequality in (V.7) implies

REW, + 0 — W, + U1 (o)

Z ﬁt (CL, ’Lt)

te(o]
2 2 telo] 2oaclK] X*(a) Li(a, i)

:U+ZX* Ty — 22 ZX* Cti,

tefo] telo]

> max
ac[K]

Rearranging and using the fact that Zte[a] X*ry=0f(0)
(by optimality of X™*) we get

ZX* Ct“*Ul

REW, > 0 - f(o (T