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Abstract—We consider the problem of approximately
solving constraint satisfaction problems with arity k > 2 (k-
CSPs) on instances satisfying certain expansion properties,
when viewed as hypergraphs. Random instances of k-CSPs,
which are also highly expanding, are well-known to be
hard to approximate using known algorithmic techniques
(and are widely believed to be hard to approximate in
polynomial time). However, we show that this is not
necessarily the case for instances where the hypergraph
is a high-dimensional expander.

We consider the spectral definition of high-
dimensional expansion used by Dinur and Kaufman
[FOCS 2017] to construct certain primitives related to
PCPs. They measure the expansion in terms of a parameter
γ which is the analogue of the second singular value
for expanding graphs. Extending the results by Barak,
Raghavendra and Steurer [FOCS 2011] for 2-CSPs, we
show that if an instance of MAX k-CSP over alphabet
[q] is a high-dimensional expander with parameter γ,
then it is possible to approximate the maximum fraction
of satisfiable constraints up to an additive error ε using
qO(k) · (k/ε)O(1) levels of the sum-of-squares SDP hierarchy,
provided γ ≤ εO(1) · (1/(kq))O(k).

Based on our analysis, we also suggest a notion
of threshold-rank for hypergraphs, which can be used
to extend the results for approximating 2-CSPs on low
threshold-rank graphs. We show that if an instance of MAX
k-CSP has threshold rank r for a threshold τ = (ε/k)O(1) ·
(1/q)O(k), then it is possible to approximately solve the
instance up to additive error ε, using r · qO(k) · (k/ε)O(1)

levels of the sum-of-squares hierarchy. As in the case
of graphs, high-dimensional expanders (with sufficiently
small γ) have threshold rank 1 according to our definition.
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I. INTRODUCTION

We consider the problem of approximately solving
constraint satisfaction problems (CSPs) on instances
satisfying certain expansion properties. The role of
expansion in understanding the approximability of
CSPs with two variables in each constraint (2-CSPs)
has been extensively studied and has led to several

results, which can also be viewed as no-go results
for PCP constructions (since PCPs are hard instances
of CSPs). It was shown by Arora et al. [AKK+08]
(and strengthened by Makarychev and Makarychev
[MM11]) that the Unique Games problem is easily
approximable on expanding instances, thus proving
that the Unique Games Conjecture of Khot [Kho02]
cannot be true for expanding instances. Their results
were extended to all 2-CSPs and several partitioning
problems in works by Barak, Raghavendra and Steurer
[BRS11], Guruswami and Sinop [GS11], and Oveis
Gharan and Trevisan [OGT15] under much weaker
notions of expansion.

We consider the following question:

When are expanding instances of k-CSPs easy for k > 2?

At first glance, the question does not make much
sense, since random instances of k-CSPs (which are
also highly expanding) are known to be hard for
various models of computation (see [KMOW17] for an
excellent survey). However, while the kind of expan-
sion exhibited by random instances of CSPs is useful
for constructing codes, it is not sufficient for con-
structing primitives for PCPs, such as locally testable
codes [BSHR05]. On the other hand, objects such as
high-dimensional expanders, which possess a form of
“structured multi-scale expansion” have been useful in
constructing derandomized direct-product and direct-
sum tests (which can be viewed as locally testable dis-
tance amplification codes) [DK17], lattices with large
distance [KM18], list-decodable direct product codes
[DHK+18], and are thought to be intimately connected
with PCPs [DK17]. Thus, from the PCP perspective, it
is more relevant to ask if this form of expansion can be
used to efficiently approximate constraint satisfaction
problems.

Connections to coding theory. Algorithmic results
related to expanding CSPs are also relevant for the
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problem of decoding locally testable codes. Consider
a code C constructed via k-local operations (such as
k-fold direct-sum) on a base code C0 with smaller
distance. Then, a codeword in C is simply an instance
of a CSP, where each bit places a constraint on k bits
(which is k-XOR in case of direct sum) of the relevant
codeword in C0. The task of decoding a noisy code-
word is then equivalent to finding an assignment in C0,
satisfying the maximum number of constraints for the
above instance. Thus, algorithms for solving CSPs on
expanding instances may lead to new decoding algo-
rithms for codes obtained by applying local operations
to a base code. In fact, the list decoding algorithm
for direct-product codes by Dinur et al. [DHK+18]
also relied on algorithmic results for expanding unique
games. Since all constructions of locally testable codes
need to have at least some weak expansion [DK12], it
is interesting to understand what notions of expansion
are amenable to algorithmic techniques.

High-dimensional expanders and our results. A
d-dimensional expander is a downward-closed hyper-
graph (simplicial complex), say X, with edges of size at
most d + 1, such that for every hyperedge a ∈ X (with
|a| ≤ d− 1), a certain “neighborhood graph” G(Xa) is a
spectral expander1. Here, the graph G(Xa) is defined
to have the vertex set {i | a ∪ {i} ∈ X} and edge-
set {i, j | a ∪ {i, j} ∈ X}. If the (normalized) second
singular value of each of the neighborhood graph is
bounded by γ, X is said to be a γ-high-dimensional
expander (γ-HDX).

Note that (the downward closure of) a random
sparse (d + 1)-uniform hypergraph, say with n ver-
tices and c · n edges, is very unlikely to be a d-
dimensional expander. With high probability, no two
hyperedges share more than one vertex and thus for
any i ∈ [n], the neighborhood graph Gi is simply
a disjoint union of cliques of size d, which is very
far from an expander. While random hypergraphs do
not yield high-dimensional expanders, such objects are
indeed known to exists via (surprising) algebraic con-
structions [LSV05b], [LSV05a], [KO18a], [CTZ18] and
are known to have several interesting properties and
applications [KKL16], [DHK+18], [KM17], [KO18b],
[DDFH18], [DK17], [PRT16].

Expander graphs can simply be thought of as
the one-dimensional case of the above definition. The
results of Barak, Raghavendra and Steurer [BRS11] for

1While there are several definitions of high-dimensional ex-
panders, we consider the one by Dinur and Kaufman [DK17], which
is most closely related to spectral expansion, and was also the one
shown to be related to PCP applications. Our results also work for
a weaker but more technical definition by Dikstein et al. [DDFH18],
which we defer till later.

2-CSPs yield that if the constraint graph of a 2-CSP in-
stance (with size n and alphabet size q) is a sufficiently
good (one dimensional) spectral expander, then one
can efficiently find solutions satisfying OPT− ε frac-
tion of constraints, where OPT denotes the maximum
fraction of constraints satisfiable by any assignment.
Their algorithm is based on (q/ε)O(1) levels of the
Sum-of-Squares (SoS) SDP hierarchy, and the expan-
sion requirement on the constraint graph is that the
(normalized) second singular value should be at most
(ε/q)O(1). We show a similar result for k-CSPs when
the corresponding simplicial complex XI, which is ob-
tained by including one hyperedge for each constraint
and taking a downward closure, is a sufficiently good
(k− 1)-dimensional expander.

Theorem I.1 (Informal). Let I be an instance of MAX
k-CSP on n variables taking values over an alphabet of
size q, and let ε > 0. Let the simplicial complex XI be a
γ-HDX with γ = εO(1) · (1/(kq))O(k). Then, there is an
algorithm based on (k/ε)O(1) · qO(k) levels of the Sum-of-
Squares hierarchy, which produces an assignment satisfying
OPT− ε fraction of the constraints.

Remark I.2. While the level-t relaxation for MAX k-
CSP can be solved in time (nq)O(t) [RW17], the rounding
algorithms used by [BRS11] and our work do not need
the full power of this relaxation. Instead, they are captured
by the “local rounding” framework of Guruswami and
Sinop [GS12] who show how to implement a local rounding
algorithm based on t levels of the SoS hierarchy, in time
qO(t) · nO(1) (where q denotes the alphabet size).

A complete version of our results with detailed
proofs is given in [AJT19].

Our techniques. We start by using essentially
the same argument for analyzing the SoS hierarchy
as was used by [BRS11] (specialized to the case of
expanders). They viewed the SoS solution as giving
a joint distribution on each pair of variables forming a
constraint, and proved that for sufficiently expanding
graphs, these distributions can be made close to prod-
uct distributions, by conditioning on a small number
of variables (which governs the number of levels re-
quired). Similarly, we consider the conditions under
which joint distributions on k-tuples corresponding to
constraints can be made close to product distributions.
Since the [BRS11] argument shows how to split a
joint distribution into two marginals, we can use it to
recursively split a set of size k into two smaller ones
(one can think of all splitting operations as forming a
binary tree with k leaves).

However, our arguments differ in the kind of
expansion required to perform the above splitting op-
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erations. In the case of 2-CSPs, one splits along the
edges of the constraint graph, and thus we only need
the expansion of the contraint graph (which is part of
the assumption). However, in the case of k-CSPs, we
may split a set of size (�1 + �2) into disjoint sets of size
�1 and �2. This requires understanding the expansion
of the following family of (weighted) bipartite graphs
arising from the complex XI: The vertices in the graph
are sets of variables of size �1 and �2 that occur in
some constraint, and the weight of an edge {a1, a2}
for a1 ∩ a2 = ∅, is proportional to the probability that
a random constraint contains a1 � a2. Note that this
graph may be weighted even if the k-CSP instance I
is unweighted.

We view the above graphs as random walks, which
we call “swap walks” on the hyperedges (faces) in
the complex X. While several random walks on high-
dimensional expanders have been shown to have rapid
mixing [KM17], [KO18b], [DK17], [LLP17], we need
a stronger condition. To apply the argument from
[BRS11], we not only need that the second singular
value is bounded away from one, but require it to be an
arbitrarily small constant (as a function of ε, k and q).
We show that this is indeed ensured by the condition
that a1 ∩ a2 = ∅, and obtain a bound of kO(k) · γ on the
second singular value. This bound, which constitutes
much of the technical work in the paper, is obtained by
first expressing these walks in terms of more canonical
walks, and then using the beautiful machinery of
harmonic analysis on expanding posets by Dikstein et
al. [DDFH18] to understand their spectra.

The swap walks analyzed above represent natu-
ral random walks on simplicial complexes, and their
properties may be of independent interest for other ap-
plications. Just as the high-dimensional expanders are
viewed as “derandomized” versions of the complete
complex (containing all sets of size at most k), one
can view the swap walks as derandomized versions of
(bipartite) Kneser graphs, which have vertex sets ([n]�1

)

and ([n]�2
), and edges (a, b) iff a ∩ b = ∅. We provide

a more detailed and technical overview in Section III
after discussing the relevant preliminaries in Section II.

High-dimensional threshold rank. The correlation
breaking method in [BRS11] can be applied as long
as the graph has low threshold rank i.e., the number
of singular values above a threshold τ = (ε/q)O(1)

is bounded. Similarly, the analysis described above
can be applied, as long as all the swap walks which
arise when splitting the k-tuples have bounded thresh-
old rank. This suggests a notion of high-dimensional
threshold rank for hypergraphs (discussed in Sec-
tion VII), which can be defined in terms of the thresh-

old ranks of the relevant swap walks. We remark
that it is easy to show that dense hypergraphs (with
Ω(nk) hyperedges) have small-threshold rank accord-
ing to this notion, and thus it can be used to recover
known algorithms for approximating k-CSPs on dense
instances [FK96] (as was true for threshold rank in
graphs).

Other related work. While we extend the approach
taken by [BRS11] for 2-CSPs, somewhat different ap-
proaches were considered by Guruswami and Sinop
[GS11], and Oveis-Gharan and Trevisan [OGT15]. The
work by Guruswami and Sinop relied on the ex-
pansion of the label extended graph, and used an
analysis based on low-dimensional approximations of
the SDP solution. Oveis-Gharan and Trevisan used
low-threshold rank assumptions to obtain a regularity
lemma, which was then used to approximate the CSP.
For the case of k-CSPs, the Sherali-Adams hierarchy
can be used to solve instances with bounded treewidth
[WJ04] and approximately dense instances [YZ14],
[MR17]. Brandao and Harrow [BH13] also extended
the results by [BRS11] for 2-CSPs to the case of 2-local
Hamiltonians. We show that their ideas can also be
used to prove a similar extension of our results to k-
local Hamiltonians on high-dimensional expanders.

In case of high-dimensional expanders, in addi-
tion to canonical walks described here, a “non-lazy”
version of these walks (moving from s to t only if
s �= t) was also considered by Kaufman and Oppen-
heim [KO18b], Anari et al. [ALGV18] and Dikstein et
al. [DDFH18]. The swap walks studied in this paper
were also considered independently in a very recent
work of Dikstein and Dinur [DD19] (under the name
"complement walks").

In a recent follow-up work [AJQ+19], the algo-
rithms developed here were also used to obtain new
unique and list decoding algorithms for direct sum and
direct product codes, obtained by “lifting" a base code
C0 via k-local operations to amplify distance. This work
also showed that the hypergraphs obtained by consid-
ering collections of length-k walks on an expanding
graph also satisfy (a slight variant of) splittability, and
admit similar algorithms.

II. PRELIMINARIES AND NOTATION

A. Linear Algebra

Recall that for an operator A : V → W between
two finite-dimensional inner product spaces V and W,
the operator norm can be written as

‖A‖op = sup
f ,g �=0

〈A f , g〉
‖ f ‖ ‖g‖ .
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Also, for such an A the adjoint A† : W → V is defined
as the (unique) operator satisfying 〈A f , g〉 = 〈 f ,A†g〉
for all f ∈ V, g ∈ W. For A : V → W, we take ‖A‖op =

σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) > 0 to be its singular
values in descending order. Note that for A : V → V,
σ2(A) denotes its second largest eigenvalue in absolute
value.

B. High-Dimensional Expanders

A high-dimensional expander (HDX) is a partic-
ular kind of downward-closed hypergraph (simpli-
cial complex) satisfying an expansion requirement. We
elaborate on these properties and define well known
natural walks on HDXs below.

1) Simplicial Complexes:

Definition II.1. A simplicial complex X with ground set
[n] is a downward-closed collection of subsets of [n] i.e., for
all sets s ∈ X and t ⊆ s, we also have t ∈ X. The sets in
X are also referred to as faces of X.

We use the notation X(i) to denote the collection of all
faces s in X with |s| = i. When faces are of cardinality at
most d, we also use the notation X(≤ d) to denote all the
faces of X. By convention, we take X(0) := {∅}.

A simplicial complex X(≤ d) is said to be a pure
simplicial complex if every face of X is contained in some
face of size d. Note that in a pure simplicial complex
X(≤ d), the top slice X(d) completely determines the
complex.

Note that it is more common to associate a ge-
ometric representation to simplicial complexes, with
faces of cardinality i being referred to as faces of
dimension i − 1 (and the collection being denoted by
X(i− 1) instead of X(i)). However, since we will only
be treating these as hypergraphs, we prefer to index
faces by their cardinality, to improve readability of
related expressions.

An important simplicial complex is the complete
complex.

Definition II.2 (Complete Complex Δd(n)). We denote
by Δd(n) the complete complex with faces of size at most d
i.e., Δd(n) := {s ⊆ [n] | |s| ≤ d}.

2) Walks and Measures on Simplicial Complexes: Let
Ck denote the space of real valued functions on X(k)
i.e.,

Ck := { f | f : X(k)→ R} ∼= RX(k).

We describe natural walks on simplicial complexes
considered in [DK17], [DDFH18], [KO18b], as stochas-
tic operators, which map functions in Ci to Ci+1 and
vice-versa.

To define the stochastic operators associated with
the walks, we first need to describe a set of probability
measures which serve as the stationary measures for
these random walks. For a pure simplicial complex
X(≤ d), we define a collection of probability measures
(Π1, . . . Πd), with Πi giving a distribution on faces in
the slice X(i).

Definition II.3 (Probability measures (Π1, . . . ,Πd)).
Let X(≤ d) be a pure simplicial complex and let Πd be an
arbitrary probability measure on X(d). We define a coupled
array of random variables (s(d), . . . , s(1)) as follows: sample
s(d) ∼ Πd and (recursively) for each i ∈ [d], take s(i−1) to
be a uniformly random subset of s(i), of size i− 1.

The distributions Πd−1, . . . ,Π1 are then defined to
be the marginal distributions of the random variables
s(d−1), . . . , s(1) as defined above.

The following is immediate from the definition
above.

Proposition II.4. Let a ∈ X(�) be an arbitrary face. For
all j ≥ 0, one has

∑
b∈X(�+j):

b⊇a

Π�+j(b) =

(
�+ j

j

)
·Π�(a).

For all k, we define the inner product of functions
f , g ∈ Ck, according to associated measure Πk

〈 f , g〉 = E
s∼Πk

[ f (s)g(s)] = ∑
s∈X(k)

f (s)g(s) ·Πk(s) .

We now define the up and down operators Ui : Ci →
Ci+1 and Di+1 : Ci+1 → Ci as

[Uig](s) = E
s′∈X(i),
s′⊆s

[
g(s′)

]
=

1
i + 1

· ∑
x∈s

g(s\{x})

[Di+1g](s) = E
s′∼Πi+1|s′⊃s

[
g(s′)

]
,

=
1

i + 1
· ∑

x/∈s
g(s� {x}) · Πi+1(s� {x})

Πi(s)
.

An important consequence of the above definition is
that Ui and Di+1 are adjoints with respect to the inner
products of Ci and Ci+1.

Fact II.5. Ui = D†
i+1, i.e., 〈Ui f , g〉 = 〈 f ,Di+1g〉 for every

f ∈ Ci and g ∈ Ci+1.

Note that the operators can be thought of as defin-
ing random walks in a simplicial complex X(≤ d). The
operator Ui moves down from a face s ∈ X(i + 1) to
a face s′ ∈ X(i), but lifts a function g ∈ Ci up to a
function Ug ∈ Ci+1. Similarly, the operator Di+1 can be
thought of as defining a random walk which moves up
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from s ∈ X(i) to s′ ∈ X(i + 1). It is easy to verify that
these walks respectively map the measure Πi+1 to Πi,
and Πi to Πi+1.

3) High-Dimensional Expansion: We recall the no-
tion of high-dimensional expansion (defined via local
spectral expansion) considered by [DK17]. We first
need a few pieces of notation.

For a complex X(≤ d) and s ∈ X(i) for some i ∈
[d], we denote by Xs the link complex

Xs := {t\s | s ⊆ t ∈ X} .

When |s| ≤ d− 2, we also associate a natural weighted
graph G(Xs) to a link Xs, with vertex set Xs(1) and
edge-set Xs(2). The edge-weights are taken to be pro-
portional to the measure Π2 on the complex Xs, which
is in turn proportional to the measure Π|s|+2 on X. The
graph G(Xs) is referred to as the skeleton of Xs. Dinur
and Kaufman [DK17] define high-dimensional expan-
sion in terms of spectral expansion of the skeletons of
the links.

Definition II.6 (γ-HDX from [DK17]). A simplicial com-
plex X(≤ d) is said to be γ-High Dimensional Expander
(γ-HDX) if for every 0 ≤ i ≤ d − 2 and for every
s ∈ X(i), the graph G(Xs) satisfies σ2(G(Xs)) ≤ γ,
where σ2(G(Xs)) denotes the second singular value of the
(normalized) adjacency matrix of G(Xs).

C. Constraint Satisfaction Problems (CSPs)

A k-CSP instance I = (H, C,w) with alphabet
size q consists of a k-uniform hypergraph, a set of
constraints

C = {Ca ⊆ [q]a : a ∈ H},

and a non-negative weight function w ∈ RH
+ on the

constraints, satisfying ∑a∈H w(a) = 1.

A constraint Ca is said to be satisfied by an as-
signment η if we have η|a ∈ Ca i.e., the restriction of
η on a is contained in Ca. We write, SATI(η) for the
(weighted fraction of the constraints) satisfied by the
assignment η i.e.,

SATI(η) = ∑
a∈H

w(a) · 1[η|a ∈ Ca] = E
a∼w

1[η|a ∈ Ca] .

We denote by OPT(I) the maximum of SATI(η) over
all η ∈ [q]V(H).

Any k-uniform hypergraph H can be associated
with a pure simplicial complex in a canonical way
by just setting XI = {b : ∃ a ∈ H and a ⊇ b} – notice
that XI(k) = H. We will refer to this complex as the
constraint complex of the instance I. The probability

distribution Πk on XI will be derived from the weights
function w of the constraint, i.e

Πk(a) = w(a) ∀a ∈ XI(k) = H.

D. Sum-of-Squares Relaxations and t-local PSD Ensembles

The Sum-of-Squares (SoS) hierarchy gives a se-
quence of increasingly tight semidefinite programming
relaxations for several optimization problems, includ-
ing CSPs. Since we will use relatively few facts about
the SoS hierarchy, already developed in the analysis
of Barak, Raghavendra and Steurer [BRS11], we will
adapt their notation of t-local distributions to describe
the relaxations. For a k-CSP instance I = (H, C,w)
on n variables, we consider the following semidefinite
relaxation given by t-levels of the SoS hierarchy, with
vectors v(S,α) for all S ⊆ [n] with |S| ≤ t, and all
α ∈ [q]S. Here, for α1 ∈ [q]S1 and α2 ∈ [q]S2 , α1 ◦ α2 ∈
[q]S1∪S2 denotes the partial assignment obtained by
concatenating α1 and α2.

maximize E
a∼w

[
∑

α∈Ca

‖v(a,α)‖2
]

=: SDP(I)

subject to
〈

v(S1,α1), v(S2,α2)

〉
= 0 ∀ α1|S1∩S2 �= α2|S1∩S2〈

v(S1,α1), v(S2,α2)

〉
=
〈

v(S3,α3), v(S4,α4)

〉
∀ S1 ∪ S2 = S3 ∪ S4,

α1 ◦ α2 = α3 ◦ α4

∑
j∈[q]

‖v({i},j)‖2 = 1 ∀i ∈ [n]

‖v(∅,∅)‖ = 1

For any set S with |S| ≤ t, the vectors v(S,α) induce
a probability distribution μS over [q]S such that the
assignment α ∈ [q]S appears with probability ‖v(S,α)‖2.
Moreover, these distributions are consistent on inter-
sections i.e., for T ⊆ S ⊆ [n], we have μS|T = μT ,
where μS|T denotes the restriction of the distribution
μS to the set T. We use these distributions to define a
collection of random variables Y1, . . . ,Yn taking values
in [q], such that for any set S with |S| ≤ t, the collection
of variables {Yi}i∈S have a joint distribution μS. Note
that the entire collection (Y1, . . . ,Yn) may not have a
joint distribution: this property is only true for sub-
collections of size t. We will refer to the collection
(Y1, . . . ,Yn) as a t-local ensemble of random variables.

We also have that that for any T ⊆ [n] with
|T| ≤ t − 2, and any β ∈ [q]T , we can define a
(t− |T|)-local ensemble (Y′1, . . . ,Y

′
n) by “conditioning”

the local distributions on the event YT = β, where
YT is shorthand for the collection {Yi}i∈T . For any S
with |S| ≤ t − |T|, we define the distribution of Y′S
as μ′S := μS∪T |{YT = β}. Finally, the semidefinite
program also ensures that for any such conditioning,

184



the conditional covariance matrix

M(S1,α1)(S2,α2) = Cov
(

1[Y′S1
= α1], 1[Y′S2

= α2]
)

is positive semidefinite, where |S1| , |S2| ≤ (t− |T|)/2.
Here, for each pair S1, S2 the covariance is computed
using the joint distribution μ′S1∪S2

. The PSD-ness be
easily verified by noticing that the above matrix can
be written as the Gram matrix of the vectors

w(S,α) :=
1

‖v(T,β)‖
· v(T∪S,β◦α) −

‖v(T∪S,β◦α)‖2
‖v(T,β)‖3

· v(T,β)

In this paper, we will only consider t-local ensembles
such that for every conditioning on a set of size at most
t− 2, the conditional covariance matrix is PSD. We will
refer to these as t-local PSD ensembles. We will also
need a simple corollary of the above definitions.

Fact II.7. Let (Y1, . . . ,Yn) be a t-local PSD ensemble, and
let X be any simplicial complex with X(1) = [n]. Then,
for all s ≤ t/2, the collection {Ya}a∈X(≤s) is a (t/s)-local
PSD ensemble, where X(≤ s) =

⋃s
i=1 X(i).

For random variables YS in a t-local PSD ensemble,
we use the notation {YS} to denote the distribution of
YS (which exists when |S| ≤ t). We also define Var[YS]
as ∑α∈[q]S Var[1 [YS = α]].

III. PROOF OVERVIEW: APPROXIMATING MAX
4-XOR

We consider a simple example of a specific k-
CSP, which captures most of the key ideas in our
proof. Let I be an unweighted instance of 4-XOR on n
Boolean variables. Let H be a 4-uniform hypergraph on
vertex set [n], with a hyperedge corresponding to each
constraint i.e., each a = {i1, i2, i3, i4} ∈ H corresponds
to a constraint in I of the form

xi1 + xi2 + xi3 + xi4 = ba (mod 2) ,

for some ba ∈ {0, 1}. Let X denote the constraint com-
plex for the instance I such that X(1) = [n], X(4) = H
and let Π1, . . . ,Π4 be the associated distributions (with
Π4 being uniform on H).

Local vs global correlation: the BRS strategy. We
first recall the strategy used by [BRS11], which also
suggests a natural first step for our proof. Given a
2-CSP instance with an associated graph G, and a t-
local PSD ensemble Y1, . . . ,Yn obtained from the SoS
relaxation, they consider if the “local correlation" of
the ensemble is small across the edges of G (which
correspond to constraints) i.e.,

E
{i,j}∼G

∥∥{YiYj
}
− {Yi}

{
Yj
}∥∥

1 ≤ ε .

If the local correlation is indeed small, we easily
produce an assignment achieving a value SDP − ε
in expectation, simply by rounding each variable xi
independently according to the distribution {Yi}. On
the other hand, if this is not satisfied, they show (as a
special case of their proof) that if G is an expander with
second eigenvalue λ ≤ c · (ε2/q2), then variables also
have a high “global correlation", between a typical pair
(i, j) ∈ [n]2. Here, q is the alphabet size and c is a fixed
constant. They use this to show that for (Y′1, . . . ,Y

′
n)

obtained by conditioning on the value of a randomly
chosen Yi0 , we have

E
i
[Var [Yi]]− E

i0,Yi0

E
i

[
Var
[
Y′i
]]

≥ Ω(ε2/q2) ,

where the expectations over i and i0 are both according
to the stationary distribution on the vertices of G.
Since the variance is bounded between 0 and 1, this
essentially shows that the local correlation must be
at most ε after conditioning on a set of size O(q2/ε2)
(although the actual argument requires a bit more care
and needs to condition on a somewhat larger set).

Extension to 4-XOR. As in [BRS11], we check if
the t-local PSD ensemble (Y1, . . . ,Yn) obtained from
the SDP solution satisfies

E
{i1,i2,i3,i4}∈H

∥∥{Yi1Yi2Yi3Yi4
}
−
{

Yi1
} {

Yi2
} {

Yi3
} {

Yi4
}∥∥

1 ≤ ε .

As before, independently sampling each xi from {Yi}
gives an expected value at least SDP− ε in this case.
If the above inequality is not satisfied, an application
of triangle inequality gives

E
{i1,i2,i3,i4}∈H

⎡
⎢⎢⎢⎢⎣

∥∥∥{Yi1 Yi2 Yi3 Yi4

}
−
{

Yi1 Yi2

}{
Yi3 Yi4

}∥∥∥
1

+∥∥∥{Yi1 Yi2

}
−
{

Yi1

} {
Yi2

}∥∥∥
1

+∥∥∥{Yi3 Yi4

}
−
{

Yi3

}{
Yi4

}∥∥∥
1

⎤
⎥⎥⎥⎥⎦ > ε .

Symmetrizing over all orderings of {i1, i2, i3, i4}, we
can write the above as

ε2 + 2 · ε1 > ε ,

which gives max {ε1, ε2} ≥ ε/3. Here,

ε1 := E
{i1,i2}∼Π2

∥∥{Yi1Yi2
}
−
{

Yi1
} {

Yi2
}∥∥

1 , and

ε2 := E
{i1,i2,i3,i4}∼Π4

∥∥{Yi1Yi2Yi3Yi4
}
−
{

Yi1Yi2
} {

Yi3Yi4
}∥∥

1

= E
{i1,i2,i3,i4}∼Π4

∥∥∥{Y{i1,i2}Y{i3,i4}
}
−
{

Y{i1,i2}
}{

Y{i3,i4}
}∥∥∥

1
.

As before, ε1 measures the local correlation across
edges of a weighted graph G1 with vertex set X(1) =
[n] and edge-weights given by Π2. Also, ε2 measures
the analogous quantity for a graph G2 with vertex set
X(2) (pairs of variables occurring in constraints) and
edge-weights given by Π4.
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Recall that the result from [BRS11] can be applied
to any graph G over variables in a 2-local PSD en-
semble, as long as the σ2(G) is small. Since {Yi}i∈[n]
and {Ys}s∈X(2) are both (t/2)-local PSD ensembles (by
Fact II.7), we will apply the result to the graph G1 on
the first ensemble and G2 on the second ensemble. We
consider the potential

Φ(Y1, . . . ,Yn) := E
i∼Π1

Var [Yi] + E
s∼Π2

Var [Ys] .

Since local correlation is large along at least one of the
graphs G1 and G2, using the above arguments (and the
non-decreasing nature of variance under conditioning)
it is easy to show that in expectation over the choice
of {i0, j0} ∼ Π2 and β ∈ [q]2 chosen from

{
Y{i0,j0}

}
,

the conditional ensemble (Y′1, . . . ,Y
′
n) satisfies

Φ(Y1, . . . ,Yn)− E
i0,j0,β

Φ(Y′1, . . . ,Y
′
n) = Ω(ε2) ,

provided G1 and G2 satisfy σ2(G1), σ2(G2) ≤ c · ε2 for
an appropriate constant c.

The bound on the eigenvalue of G1 follows simply
from the fact that it is the skeleton of X, which is
a γ-HDX. Obtaining bounds on the eigenvalues of
G2 and similar higher-order graphs, constitutes much
of the technical part of this paper. Note that for a
random sparse instance of MAX 4-XOR, the graph
G2 will be a matching with high probability (since
{i1, i2} in a constraint will only be connected to {i3, i4}
in the same constraint). However, we show that in
case of a γ-HDX, this graph has second eigenvalue
O(γ). We analyze these graphs in terms of modified
high-dimensional random walks, which we call “swap
walks”.

We remark that our potential and choice of a “seed
set” of variables to condition on, is slightly different
from [BRS11]. To decrease the potential function above,
we need that for each level X(i) (i = 1, 2 in the example
above) the seed set must contain sufficiently many
independent samples from X(i) sampled according
to Πi. This can be ensured by drawing independent
samples from the top level X(k) (though X(2) suffices
in the above example). In contrast, the seed set in
[BRS11] consists of random samples from Π1. The
graph G2 defined above can be thought of as a random
walk on X(2), which starts at a face s ∈ X(2), moves
up to a face (constraint) s′ ∈ X(4) containing it, and
then descends to a face t ∈ X(2) such that t ⊂ s′ and
s ∩ t = ∅ i.e., the walk “swaps out” the elements in s
for other elements in s′. Several walks considered on
simplicial complexes allow for the possibility of a non-
trivial intersection, and hence have second eigenvalue
lower bounded by a constant. On the other hand, swap

walks completely avoid any laziness and thus turn
out to have eigenvalues which can be made arbitrarily
small. To understand the eigenvalues for this walk,
we will express it in terms of other canonical walks
defined on simplicial complexes.

Recall that the up and down operators can be used
to define random walks on simplicial complexes. The
up operator Ui : Ci → Ci+1 defines a walk that moves
down from a face s ∈ X(i + 1) to a random face t ∈
X(i), t ⊂ s (the operator thus “lifts” a function in Ci

to a function in Ci+1). Similarly, the down operator
Di : Ci → Ci−1 moves up from a face s ∈ X(i − 1)
to t ∈ X(i), t ⊃ s, with probability Πi(t)/(i ·Πi−1(s)).
These can be used to define a canonical random walk

N
(u)
2,2 := D3 · · ·Du+2Uu+1 · · ·U2 , N

(u)
2,2 : C2 → C2 ,

which moves from up for u steps s ∈ X(2) to s′ ∈
X(u + 2), and then descends back to t ∈ X(2). Such
walks were analyzed optimally by Dinur and Kaufman
[DK17], who proved that λ2

(
N
(u)
2,2

)
= 2/(u + 2) ±

Ou(γ) when X is a γ-HDX. Thus, while this walk
gives an expanding graph with vertex set X(2), the
second eigenvalue cannot be made arbitrarily small
for a fixed u (recall that we are interested in showing
that σ2(G2) ≤ c · ε2). However, note that we are only
interested in N

(2)
2,2 conditioned on the event that the two

elements from s are “swapped out” with new elements
in the final set t i.e., s∩ t = ∅. We define

S
(u,j)
2,2 (s, t) :=

⎧⎨
⎩

(u+2
2 )

(u
j)·( 2

2−j)
·N(u)

2,2 if |t \ s| = j

0 otherwise
,

where the normalization is to ensure stochasticity of
the matrix. In this notation, the graph G2 corresponds
to the random-walk matrix S

(2,2)
2,2 . We show that while

σ2(N
(2)
2,2 ) ≈ 1/2, we have that σ2(S

(2,2)
2,2 ) = O(γ). We

first write the canonical walks in terms of the swap
walks. Note that

N
(2)
2,2 =

1
6
· I +

2
3
· S(2,1)2,2 +

1
6
· S(2,2)2,2 ,

since the “descent” step from s′ ∈ X(4) containing
s ∈ X(2), produces a t ∈ X(2) which “swaps out”
0, 1 and 2 elements with probabilities 1/6, 2/3 and 1/6
respectively. Similarly,

N
(1)
2,2 =

1
3
· I +

2
3
· S(1,1)2,2 .

Finally, we use the fact (proved in Section IV) that
while the canonical walks do depend on the “height” u
(i.e., N(u)

2,2 �= N
(u′)
2,2 ) the swap walks (for a fixed number
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of swaps j) are independent of the height to which they
ascend! In particular, we have

S
(2,1)
2,2 = S

(1,1)
2,2 .

Using these, we can derive an expression for the swap
walk S

(2,2)
2,2 as

S
(2,2)
2,2 = I + 6 ·N(2)

2,2 − 6 ·N(1)
2,2 = I + 6 · (D3D4U3U2 −D3U2)

To understand the spectrum of operators such as
the ones given by the above expression, we use the
beautiful machinery for harmonic analysis over HDXs
(and more generally over expanding posets) developed
by Dikstein et al. [DDFH18]. They show how to decom-
pose the spaces Ck into approximate eigenfunctions for
operators of the form DU. Using these decompositions
and the properties of expanding posets, we can show
that distinct eigenvalues of the above operator are
approximately the same (up to O(γ) errors) when
analyzing the walks on the complete complex. Finally,
we use the fact that swap walks in a complete complex
correspond to Kneser graphs (for which the eigenvec-
tors and eigenvalues are well-known) to show that
λ2(S

(2,2)
2,2 ) = O(γ).

Splittable CSPs and high-dimensional thresh-
old rank. We note that the ideas used above can be
generalized (at least) in two ways. In the analysis
of distance from product distribution for a 4-tuple
of random variables forming a contraint, we split it
in 2-tuples. In general, we can choose to split tuples
in a k-CSP instance along any binary tree T with
k leaves, with each parent node corresponding to a
swap walk between tuples forming its children. Finally,
the analysis from [BRS11] also works if the each of
the swap walks in some T have a bounded number
(say r) of eigenvalues above some threshold τ, which
provide a notion of high-dimensional threshold rank
for hypergraphs. We refer to such an instance as a
(T , τ, r)-splittable.

The arguments sketched above show that high-
dimensional expanders are (T ,O(γ), 1)-splittable for
all T . Since the knowledge of T is only required in
our analysis and not in the algorithm, we say that
rankτ(I) ≤ r (or that I is (τ, r)-splittable) if I is
(T , τ, r)-splittable for any T . We defer the precise
statement of results for (τ, r)-splittable instances to
Section VII.

IV. WALKS

It is important to note that both Ui and Di+1 are
row-stochastic matrices, i.e. we can think of them as
the probability matrices describing the movement of a

walk from X(i + 1) to X(i); and from X(i) to X(i + 1)
respectively.

Concretely, we will think [D�i+1es](t) as the prob-
abliity of the walk moving up from s ∈ X(i) to
t ∈ X(i + 1). Similarly, we will think of [U�i et](s) as
the walk moving down from t ∈ X(i + 1) to s ∈ X(i).

By referring to the definition of the up and down
operators in Section II, we observe

[D�i+1es](t) =
1[t ⊇ s]

i + 1
Πi+1(t)

Πi(s)
and [U�i et](s) =

1[s ⊆ t]

i + 1
.

With this observation it is easy to see that our notion
of random walk respects the probability distributions
Πj, i.e. we have

U�i Πi+1 = Πi and D�i+1Πi = Πi+1,

i.e., randomly moving up from a sample of Πj gives
a sample of Πj+1 and similarly, moving down from a
sample of Πj+1 results in a sample of Πj.

Instead of going up and down by one dimension,
one can try going up or down by multiple dimensions
since (Di+1 · · ·Di+�) and (Ui+� · · ·Ui) are still row-
stochastic matrices. Further, the corresponding proba-
bility vectors still have intuitive explanations in terms
of the distributions Πj. For a face s ∈ X(k), we
introduce the notation

p(u)s = (Dk+1 · · ·Dk+u)
�es

where we take p(0)s = es. This notation will be used
to denote the probability distribution of the up-walk
starting from s ∈ X(k) and ending in a random face
t ∈ X(k + u) satisfying t ⊇ s.

Note that the following Lemma together with
Proposition II.4 implies that p(u)s is indeed a probability
distribution.

Proposition IV.1. For s ∈ X(k) and a ∈ X(k + u) one
has,

p(u)s (a) = 1[a ⊇ s] · 1

(k+u
u )

· Πk+u(a)

Πk(s)
.

Similarly, we introduce the notation q(u)a , as

q(u)a (s) = (Uk+u−1 · · ·Uk)
�es,

i.e. for the probability distribution of the down-walk
starting from a ∈ X(k + u) and ending in a ran-
dom face of X(k) contained in a. The following can
be verified using Proposition IV.1, and the fact that
(Uk+u−1 · · ·Uk)

† = Dk+u · · ·Dk+1.
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Corollary IV.2. Let X(≤ d) be a simplicial complex, and
k, u ≥ 0 be parameters satisfying k + u ≤ d. For a ∈
X(k + u) and s ∈ X(k), one has

q(u)a (s) =
1

(k+u
u )

· 1[s ⊆ a].

In the remainder of this section, we will try to
construct more intricate walks on X from X(k) to X(l).

A. The Canonical and the Swap Walks on a Simplicial
Complex

Definition IV.3 (Canonical and Swap u-Walks). Let
d ≥ 0, X(≤ d) be a simplicial complex, and k, l, u ≥ 0
be parameters satisfying l ≤ k, u ≤ l and d ≥ k + u;
where the constraints on these parameters are to ensure well-
definedness. We will define the following random walks,

- canonical u-walk from X(k) to X(l). Let N(u)
k,l be the

(row-stochastic) Markov operator that represents the
following random walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up a
face s′′ ∈ X(k + u) that contains s, where s′′ is
picked with probability

p(u)s (s′′) = [(Dk+1 · · ·Dk+u)
�es](s′′).

– (random descent/down-walk) go to a face s′ ∈
X(l) picked uniformly among all the l-dimensional
faces that are contained in s′′, i.e., the set s′ is
picked with probability

qs′′(s
′) =

1[s′ ⊆ s′′]

(k+u
l )

= [(Uk+u−1 · · ·Ul)
�es′′ ](s

′).

The operator N
(u)
k,l : Cl → Ck satisfies the following

equation,

N
(u)
k,l = Dk+1 · · ·Dk+uUk+u−1 · Uk · · ·Ul .

Notice that we have N(0)
k,k = I, and N

(0)
k,l = (Uk−1 . . .Ul)

for l < k.
- swapping walk from X(k) to X(l). Let Sk,l be the

Markov operator that represents the following random
walk: Starting from a face s ∈ X(k),

– (random ascent/up-walk) randomly move up to
a face s′′ ∈ X(k + l) that contains s, where as
before s′′ is picked with probability

p(l)s (s′′) = [(Dk+1 · · ·Dk+l+1)
�es](s′′).

– (deterministic descent) deterministically go to
s′ = s′′\s ∈ X(l).

For our applications, we will need to show that the
walk Sk,l has good spectral expansion whenever X is a

d-dimensional γ-expander, for γ sufficiently small. To
show this, we will relate the swapping walk operator
Sk,l on X to the canonical random walk operators N(u)

k,l
(q.v. Lemma IV.4).

By the machinery of expanding posets (q.v. Sec-
tion V) it is possible to argue that the spectral ex-
pansion of the random walk operator N

(u)
k,l on a high

dimensional expander will be close to that of the com-
plete complex. This will allow us to conclude using the
relation between the swapping walks and the canonical
walks (q.v. Lemma IV.4) that the spectral expansion of
the swapping walk on X, will be comparable with the
spectral expansion of the swap walk on the complete
complex. More precisely, we will show

Lemma IV.4 (Lemma V.34). For any d, k, l ≥ 0, and the
complete simplicial simplicial complex X(≤ d), one has the
following: If k ≥ l ≥ 0 and d ≥ k + l, we have

σ2(Sk,l) = Ok,l

(
1
n

)
.

Using these two, and the expanding poset machin-
ery, we will conclude

Theorem IV.5 (Theorem V.2 simplified). Let X be a d-
dimensional γ expander. If k ≥ l ≥ 0 satisfy d ≥ l + k we
have,

σ2(Sk,l) = Ok,l(γ)

where Sk,l is the swapping walk on X from X(k) to X(l).

To prove Theorem IV.5 we will need to define
an intermediate random walk that we will call the j-
swapping u-walk from X(k) to X(l):

Definition IV.6 (j-swapping u-walk from X(k) to X(l)).
Given d, u, j, k, l ≥ 0 satisfying l ≤ k, j ≤ u, u ≤ l, and
d ≥ k + u. Let S(u,j)k,l be the Markov operator that represents
the following random walk from X(k) to X(l) on a d-
dimensional simplicial complex X: Starting from s ∈ X(k)

- (random ascent/up-walk) randomly move up to a
face s′′ ∈ X(k + u) that contains s, where s′′ is picked
with probability

p(u)s (s′′) = [(Dk+1 · · ·Dk+u)
�es](s′′).

- (conditioned descent) go to a face s′ ∈ X(l) sampled
uniformly among all the subsets of s′′ ∈ X(k + u) that
have intersection j with s′′\s, i.e. |s′ ∩ (s′′\s)| = j.

Notice that Sk,l = S
(l,l)
k,l for any k and I = S

(u,0)
k,k for any u.

Remark IV.7. We will prove that the parameter u does not
effect the swapping walk S

(u,j)
k,l so long as u ≥ j, i.e. for all

u, u′ ≥ j we have S
(u′ ,j)
k,l = S

(u,j)
k,l . Thus, we will often write

S
(j)
k,l for S

(j,j)
k,l .
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B. Swap Walks are Height Independent

Recall that the swap walk S
(u,j)
k,l is the conditional

walk defined in terms of N
(u)
k,l where s ∈ X(k) is

connected to t ∈ X(l) only if |t \ s| = j. The parameter
u is called the height of the walk, namely the number
of times it moves up. Since up and down operators
have second singular value bounded away from 1, the
second singular value of N(u)

k,l shrinks as u increases. In

other words, the operator N
(u)
k,l depends on the height

u. Surprisingly, the walk S
(u,j)
k,l which is defined in

terms of N(u)
k,l does not depend on the particular choice

of u as long as it is well defined. More precisely, we
have the following result.

Lemma IV.8. If X is a d-dimensional simplicial complex,
0 ≤ l ≤ k, and u, u′ ∈ [j, d− k], then

S
(u,j)
k,l = S

(u′ ,j)
k,l .

In order to obtain Lemma IV.8, we will need a
simple proposition:

Proposition IV.9. Let s ∈ X(k), s′ ⊆ s and |t′| = j.
Suppose s′ � t′ ∈ X(l). Then, we have

S
(u,j)
k,l (s, s′ � t′) =

1

( k
l−j) · (u

j)
· ∑

a∈X(k+u):
a⊇(s�t′)

p(u)s (a).

Lemma IV.10 (Height Independence). Let u ∈ [j, d− k].
For any s ∈ X(k), s′ ⊆ s and t′ ∈ X(j) satisfying s′ � t′ ∈
X(l) we have the following,

S
(u,j)
k,l (s, s′ � t′) =

1

( k
l−j)(

k+j
j )
·

Πk+j(s� t′)
Πk(s)

.

In particular, the choice of u ∈ [j, d− k] does not affect the
swap walk.

Since the choice of u does not affect the formula,
we obtain Lemma IV.8.

C. Canonical Walks in Terms of the Swap Walks

We show that the canonical walks are given by an
average of swap walks with respect to the hypergeo-
metric distribution.

Lemma IV.11. Let u, l, k, d ≥ 0 be given satisfying l ≤ k
and u ≤ l. Then, we have the following formula for the
canonical u-walk on any X(≤ d) satisfying d ≥ k + u

N
(u)
k,l =

u

∑
j=0

(u
j)(

k
l−j)

(k+u
l )

· S(j)
k,l .

D. Inversion: Swap Walks in Terms of Canonical Walks

We show how the swap walks can be obtained as
a signed sum of canonical walks. This result follows
from binomial inversion which we recall next.

Fact IV.12 (Binomial Inversion, [BS02]). Let
(an)n≥0, (bn)n≥0 be arbitrary sequences. Suppose for
all n ≥ 0 we have,

bn =
n

∑
j=0

(
n
j

)
· (−1)j · aj.

Then, we also have

an =
n

∑
j=0

(
n
j

)
· (−1)j · bj.

Corollary IV.13. Let k, l, d ≥ 0 be given parameters such
that k + l ≤ d and k ≥ l. For any simplicial complex X(≤
d), one has the following formula for the u-swapping walk
from X(k) to X(l) in terms of the canonical j-walks:(

k
l − u

)
S
(u)
k,l =

u

∑
j=0

(−1)u−j ·
(

k + j
l

)
·
(

u
j

)
·N(j)

k,l .

V. SPECTRAL ANALYSIS OF SWAP WALKS

Swap walks arise naturally in our k-CSPs approx-
imation scheme on HDXs where the running time and
the quality of approximation depend on the expansion
of these walks. For this reason, we analyze the spectra
of swap walks. We show that swap walks Sk,k of
γ-HDXs are indeed expanding for γ sufficiently small.
More precisely, the first main result of this section is
the following.

Theorem V.1 (Swap Walk Spectral Bound). Let X(≤ d)
be a γ-HDX with d ≥ 2k. Then the second largest singular
value σ2(Sk,k) of the swap operator Sk,k is

σ2(Sk,k) ≤ γ ·
(
27 · k4 · 23k · kk

)
.

Theorem V.1 is enough for the analysis of our
k-CSP approximation scheme when k is a power of
two. However, to analyze general k-CSPs on HDXs
we need to understand the spectra of general swap
walks Sk,l where k may differ from l. Therefore, we
generalize the spectral analysis of Sk,k above to Sk,l
obtaining Theorem V.2, our second main result of this
section.

Theorem V.2 (Rectangular SwapWalk Spectral Bound).
Suppose X(≤ d) is a γ-HDX with d ≥ k + l and k ≤ l.
Then the largest non-trivial singular value σ2(Sk,l) of the
swap operator Sk,l is

σ2(Sk,l) ≤
√

γ ·
(
28 · k2�2 · 22k+4l · kk

)
.
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A. Square Swap Walks Sk,k

We prove Theorem V.1 by connecting the spectral
structure of Sk,k of general γ-HDXs to the well behaved
case of complete simplicial complexes. To distinguish
these two cases we denote by SΔ

k,k the swap Sk,k of
complete complexes 2. In fact, SΔ

k,k is the random
walk operator of the well known Kneser graph K(n, k)
(see Definition V.3).

Definition V.3 (Kneser Graph K(n, k) [GM15]). The
Kneser graph K(n, k) is the graph G = (V, E) where
V = ([n]k ) and E = {{s, t} | s∩ t = ∅}.

Then at least for complete complexes we know
that SΔ

k,k is expanding. This is a direct consequence
of Fact V.4.

Fact V.4 (Kneser Graph [GM15]). The singular values 3

of the Kneser graph K(n, k) are(
n− k− i

k− i

)
,

for i = 0, . . . , k.

This means that σ2(S
Δ
k,k) = Ok(1/n) as shown

in Claim V.5.

Claim V.5. Let d ≥ 2k and Δd(n) be the complete complex.
The second largest singular value σ2(S

Δ
k,k) of the swap

operator SΔ
k,k on Δd(n) is

σ2(S
Δ
k,k) =

k
n− k

,

provided n ≥ Mk where Mk ∈ N only depends on k.

Therefore, if we could claim that σ2(Sk,k) of an
arbitrary γ-HDX is close to σ2(S

Δ
k,k) (provided γ is

sufficiently small), we would conclude that general Sk,k
walks are also expanding. A priori there is no reason
why this claim should hold since a general d-sized γ-
HDX may have much fewer hyperedges (Od(n) versus
(n

d) in the complete Δd(n)). Fortunately, it turns out that
this claim is indeed true (up to Ok(γ) errors).

To prove Theorem V.14 we employ the beautiful
expanding poset (EPoset) machinery of Dikstein et
al. [DDFH18]. Before we delve into the full technical
analysis, it might be instructive to see how Theo-
rem V.1 is obtained from understanding the quadratic
form 〈Sk,k f , f 〉 where f ∈ Ck.

2The precise parameters of the complete complex Δd(n) where SΔ
k,k

lives will not be important. We only require that SΔ
k,k is well defined

in the sense that d ≥ 2k and n > d.
3The precise eigenvalues are also well known, but singular values

are enough in our analysis.
4Due to space constraints, we will omit some details. The full proof

can be found in the full version of our paper [AJT19]

First we informally recall the decomposition Ck =

∑k
i=0 Ck

i from the EPoset machinery where Ck
i can be

thought of as the space of approximate eigenfunctions
of degree i of Ck (the precise definitions are deferred
to V-B). In this decomposition, Ck

0 is defined as the
space of constant functions of Ck.

We prove the stronger result that the Sk,k operators
of any γ-HDX has an an approximate spectrum that
only depends on k provided γ is small enough. More
precisely, we prove Lemma V.6.

Lemma V.6 (Swap Quadratic Form). Let f = ∑k
i=0 fi

with fi ∈ Ck
i . Suppose X(≤ d) is a γ-HDX with d ≥ 2k.

If γ ≤ ε
(
64kk+423k+1

)−1
, then

〈Sk,k f , f 〉 =
k

∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends only on k and i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .

Remark V.7. From Lemma V.6, it might seem that we
are done since there exist approximate eigenvalues λk(i)
that only depend on k and i. However, giving an explicit
expression for these approximate eigenvalues is tricky. For
this reason, we rely on the expansion of Kneser graphs as
will be clear later.

Towards showing Lemma V.6, we introduce the
notion of balanced operators which in particular cap-
tures canonical and swap walks and we show that the
quadratic form expression of Lemma V.6 is a particular
case of a general result for 〈B f , f 〉 where B is a general
balanced operator. A balanced operator in Ck is any
operator that can be obtained as linear combination of
pure balanced operators, the later being operators that
are a formal product of an equal number of up and
down operators.

Lemma V.8 (General Quadratic Form). Let ε ∈ (0, 1)
and let Y ⊆ {Y | Y : Ck → Ck} be a collection of formal
operators that are product of an equal number of up and
down walks (i.e., pure balanced operators) not exceeding �
walks. Let B = ∑Y∈Y αYY where αY ∈ R and let f =

∑k
i=0 fi with fi ∈ Ck

i . If γ ≤ ε
(
16kk+2�2 ∑Y∈Y |αY|

)−1
,

then

〈B f , f 〉 =
k

∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the

formal expression of Y, i and k, i.e., λY
k (i) is the approximate

eigenvalue of Y associated to Ck
i .

Remark V.9. Note that our result generalizes the anal-
ysis of [DDFH18] for expanding posets of HDXs which
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considered the particular case B = Dk+1Uk. Moreover,
their error term analysis treated all the parameters not
depending on the number of vertices n as constants. In this
work we make the dependence on the parameters explicit
since this dependence is important in understanding the
limits of our k-CSPs approximation scheme on HDXs. The
beautiful EPoset machinery [DDFH18] is instrumental in
our analysis.

Now, we are ready to prove Theorem V.1. For
convenience we restate it below.

Theorem V.10 (Swap Walk Spectral Bound (restate-
ment of Theorem V.1)). Let X(≤ d) be a γ-HDX with

d ≥ 2k. For every σ ∈ (0, 1), if γ ≤ σ ·
(
64kk+423k+1

)−1
,

then the second largest singular value σ2(Sk,k) of the swap
operator Sk,k is

σ2(Sk,k) ≤ σ.

B. Expanding Posets and Balanced Operators

We state the definitions used in our technical
proofs starting with γ-EPoset from [DDFH18].

Definition V.11 (γ-EPoset adapted from [DDFH18]). A
complex X(≤ d) with operators U0, . . . ,Ud−1, D1, . . . ,Dd
is said to be a γ-EPoset 5 provided∥∥M+

i − Ui−1Di
∥∥
op ≤ γ, (1)

for every i = 1, . . . , d− 1, where

M+
i :=

i + 1
i

(
Di+1Ui −

1
i + 1

I

)
,

i.e., M+
i is the non-lazy version of the random walk N

(1)
i,i =

Di+1Ui.

Definition V.11 can be directly used as an opera-
tional definition of high-dimension expansion as done
in [DDFH18]. To us it is important that γ-HDXs are
also γ-EPosets as established in Lemma V.12. In fact,
these two notions are known to be closely related.

Lemma V.12 (From [DDFH18]). Let X be a d-sized
simplicial complex.

- If X is a γ-HDX, then X is a γ-EPoset.
- If X is a γ-EPoset, then X is a 3dγ-HDX.

Naturally the complete complex Δd(n) is a γ-
EPoset since it is a γ-HDX. Moreover, in this particular
case γ vanishes as n grows.

Lemma V.13 (From [DDFH18]). The complete complex
Δd(n) is a γ-EPoset with γ = Od (1/n).

5We tailor their general EPoset definition to HDXs. In fact, what
they call γ-HDX we call γ-EPoset. Moreover, what they call γ-HD
expander we call γ-HDX.

Harmonic Analysis on Simplicial Complexes: The
space Ck defined in Section II-B2 can be decomposed
into subspaces Ck

i of functions of degree i for 0 ≤ i ≤ k
where

Ck
i := {Uk−ihi | hi ∈ Hi},

with Hi := ker (Di), and

Ck
0 := { f : X(k)→ R | f is constant}.

More precisely, we have the following.

Lemma V.14 (From [DDFH18]).

Ck =
k

∑
i=0

Ck
i .

For convenience set �δ ∈ Rd−1 such that δi = 1/(i+
1) for i ∈ [d − 1]. It will also be convenient to work
with the following equivalent version of Eq. (1)

‖Di+1Ui − (1− δi)Ui−1Di − δiI‖op ≤ i
i + 1

γ. (2)

Towards our goal of understanding quadratic
forms of swap operators we study the approximate
spectrum of operators of the form Y = Y� . . .Y1 where
each Yi is either an up or down operator, namely, Y is
a generalized random walk of � steps. We regard the
expression Y� . . .Y1 defining Y as a formal product.

Definition V.15 (Pure Balanced Operator). We call
Y : Ck → Ck a pure balanced operator if Y can be defined as
product Y� . . .Y1

6 where each Yi is either an up or down
operator. When we say that the spectrum of Y depends on Y
we mean that it depends on k and on the formal expression
Y� . . .Y1 (i.e., pattern of up and down operators).

Remark V.16. By definition canonical walks N
(u)
k,k are pure

balanced operators.

Taking linear combinations of pure balanced opera-
tors leads to the notion of balanced operators.

Definition V.17 (Balanced Operator). We call B : Ck →
Ck a balanced operator provided there exists a set of pure
balanced operators Y such that

B = ∑
Y∈Y

αY · Y,

where αY ∈ R.

Remark V.18. Corollary IV.13 establishes that S
(u)
k,k are

balanced operators. In particular, Sk,k is a balanced operator.

It turns out that at a more crude level the
behavior of Y is governed by how the number

6For the analysis it is convenient to order the indices appearing
in Y� . . .Y1 in decreasing order from left to right.
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of up operators compares to the number of down
operators. For this reason, it is convenient to de-
fine U (Y) = {Yi | Yi is an up operator} and D(Y) =
{Yi | Yi is a down operator} where Y is a pure bal-
anced operator. When Y is clear in the context we use
U = U (Y) and D = D(Y).

Henceforth we assume hi ∈ Hi = ker (Di), fi ∈ Ck
i

and g ∈ Ck. This convention will make the statements
of the technical results of Section V-C cleaner.

C. Quadratic Forms over Balanced Operators

Now we establish all the technical results lead-
ing to and including the analysis of quadratic forms
over balanced operators. By considering this general
class of operators our analysis generalizes the analysis
given in [DDFH18]. At the same time we refine their
error terms analysis by making the dependence on
the EPoset parameters explicit. Recall that an explicit
dependence on these parameters is important in un-
derstanding the limits of our k-CSP approximation
scheme.

Lemma V.19 (General Quadratic Form (restatement
of Lemma V.8)). Let ε ∈ (0, 1) and let Y ⊆ {Y | Y : Ck →
Ck} be a collection of formal operators that are product of
an equal number of up and down walks (i.e., pure balanced
operators) not exceeding � walks. Let B = ∑Y∈Y αYY

where αY ∈ R and let f = ∑k
i=0 fi with fi ∈ Ck

i . If

γ ≤ ε
(
16kk+2�2 ∑Y∈Y |αY|

)−1
, then

〈B f , f 〉 =
k

∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the

formal expression of Y, i and k, i.e., λY
k (i) is the approximate

eigenvalue of Y associated to Ck
i .

Since swap walks are balanced operators, we will
deduce the following.

Lemma V.20 (Swap Quadratic Form (restatement
of Lemma V.6)). Let f = ∑k

i=0 fi with fi ∈ Ck
i .

Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If γ ≤
ε
(
64kk+423k+1

)−1
, then

〈Sk,k f , f 〉 =
k

∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .

The next result, Lemma V.21, (implicit
in [DDFH18]) will be key in establishing that the
spectral structure of γ-EPosets is fully determined by

the parameters in �δ provided γ is small enough. Note
that the Eposet Definition V.11 provides a “calculus”
for rearranging a single pair of up and down DU. The
next result treats the more general case of DU · · ·U.
Lemma V.21 (Structure Lemma). Suppose |D| = 1.
Let Yc ∈ D be the unique down operator in Y� . . .Y1. If
‖A‖op ≤ 1, then

〈AY� . . .Y1hi , g〉 =

⎧⎪⎨
⎪⎩
0 if � = 1 or

c = 1
Qc,i(�δ) · 〈AU�−2hi , g〉 ± (c− 1) · γ ‖hi‖ ‖g‖ otherwise,

where Qc,i is a polynomial in the variables �δ depending on
c, i such that Qc,i(�δ) ≤ 1.

With Lemma V.21 we are close to recover the ap-
proximate spectrum of Dk+1Uk from [DDFH18]. How-
ever, in our application we will need to analyze more
general operators, namely, pure balanced and balanced
operators.

Lemma V.22 (Refinement of [DDFH18]). If ‖A‖op ≤ 1,
then

〈ADk+1Uk fi, g〉 = λi · 〈A fi, g〉 ± (k− i+ 1) ·γ ‖hi‖ ‖g‖ ,
where λi = Qk−i+2,i(�δ).

Then powers of the operator Dk+1Uk behave as
expected.

Lemma V.23 (Exponentiation Lemma).

〈(Dk+1Uk)
s fi, fi〉 = λs

i · ‖ fi‖2 ± s · (k− i+ 1) ·γ ‖hi‖ ‖ fi‖ ,
where λi is given in Lemma V.22.

In case |D| > |U |, Y : Ci → Cj is an operator whose
kernel approximately contains ker(Di) as the following
lemma makes precise.

Lemma V.24 (Refinement of [DDFH18]). If |D| > |U |
and hi ∈ ker (Di), then

〈AY� . . .Y1hi, g〉 = ± �2 · γ ‖hi‖ ‖g‖ ,
provided ‖A‖op ≤ 1.

We turn to an important particular case of |D| =
|U |, namely, the canonical walks. We show that
N
(u)
k,k is approximately a polynomial in the operator

Dk+1Uk. As a warm up consider the case N
(2)
k,k =

Dk+1Dk+2Uk+1Uk. Using the Eq. (2), we get

N
(2)
k,k ≈ (1− δk+1) ·Dk+1UkDk+1Uk + δk+1 ·Dk+1Uk

= (1− δk+1) · (Dk+1Uk)
2 + δk+1 ·Dk+1Uk.

Inspecting this polynomial more carefully we see that
that its coefficients form a probability distribution. This
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property holds in general as the following Lemma V.25
shows. This gives an alternative (approximate) ran-
dom walk interpretation of N

(u)
k,k as the walk that

first selects the power s according to the distribution
encoded in the polynomial and then moves according
to (Dk+1Uk)

s.

Lemma V.25 (Canonical Polynomials). For k, u ≥ 0
there exists a degree u univariate polynomial FN

u,k,�δ
depend-

ing only on u, k,�δ such that∥∥∥N(u)
k,k − FN

u,k,�δ
(Dk+1Uk)

∥∥∥
op

≤ (u− 1)2 · γ.

Moreover, the coefficients of this polynomial form a probabil-
ity distribution, i.e., FN

u,k,�δ
(x) = ∑u

i=0 cixi where ∑u
i=0 ci =

1 and ci ≥ 0 for i = 0, . . . , u.

Remark V.26. Having a polynomial expression
FN

u,k,�δ
(Dk+1Uk) ≈ N

(u)
k,k and knowing that Sk,k can be

written as linear combination of canonical walks, we could
deduce that Sk,k is also approximately a polynomial in
Dk+1Uk. Using an error refined version of the Lemma V.23
(showing that exponentiation of Dk+1Uk behaves naturally),
we could deduce the approximate spectrum of Sk,k. We
avoid this approach since it analysis introduces unnecessary
error terms and we can understand quadratic forms of pure
balanced operators directly.

Remark V.27. The canonical polynomial FN
u,k,�δ

(Dk+1Uk) is
used later in the error analysis that relates the norms ‖hi‖
and ‖ fi‖ (Lemma V.30).

Now we consider Y where |D| = |U | in full gen-
erality. We show how the quadratic form of Y behaves
in terms of the approximate eigenspace decomposition
Ck = ∑k

i=0 Ck
i .

Lemma V.28 (Pure Balanced Walks). Suppose Y =
Y� . . .Y1 is a product of an equal number of up and down
operators, i.e., |D| = |U |. Then for fi ∈ Ck

i

〈Y fi, fi〉 = λY
k,i · 〈 fi, fi〉 ± γ · (�2+ �(k− i− 1)) ‖hi‖ ‖ fi‖ ,

where λY
k,i is an approximate eigenvalue depending only on

Y, k and i.

To understand all errors in the analysis
in Lemma V.28we need to use the approximate
orthogonality of fi and f j for i �= j from [DDFH18]
in more detail. We start with the following bound in
terms of hi, hj.

Lemma V.29 (Refinement of [DDFH18]). For i �= j,

〈 fi, f j〉 = ± (2k− i− j)2 · γ ‖hi‖
∥∥hj
∥∥ .

To give a bound for Lemma V.29 only in terms of
the eigenfunction norms ‖ fi‖ and not in terms of ‖hi‖,

we need to understand how the norms of hi and fi are
related.

Lemma V.30 (Refinement of [DDFH18]). Let ηk,i = (k−
i)2 + 1 and let βi =

√∣∣∣FN
k−i,i,�δ

(δi)± γ · ηk,i

∣∣∣ where FN
k−i,k,�δ

is a canonical polynomial of degree k− i from Lemma V.25.
Then

〈 fi, fi〉 = β2
i · 〈hi, hi〉.

Let θk,i = (i + 1)k−i. Furthermore, if γ ≤ 1/(2 · ηk,i · θk,i),
then βi ≥ 1

2θk,i
.

Now, we can state the approximate orthogonal-
ity Lemma V.31 in terms of the eigenfunction norms.

Lemma V.31 (Approximate Orthogonality (refinement
of [DDFH18])). Let ηk,s, θk,s, βs for s ∈ {i, j} be given as
in Lemma V.30. If i �= j and βi, β j > 0, then

〈 fi, f j〉 = ± γ · (2k− i− j)2

βiβ j
‖ fi‖

∥∥ f j
∥∥ .

Furthermore, if γ ≤ min
(
1/(2 · ηk,i · θk,i), 1/(2 · ηk,j · θk,j)

)
,

then βi, β j > 0 and

〈 fi, f j〉 = ± γ · θk,i · θk,j · (2k− i− j)2 ‖ fi‖
∥∥ f j
∥∥ .

We generalize the quadratic form of Lemma V.28 to
linear combinations of general pure balanced operators
Y, namely, to balanced operators.

Lemma V.32 (General Quadratic Form (restatement
of Lemma V.8)). Let ε ∈ (0, 1) and let Y ⊆ {Y | Y : Ck →
Ck} be a collection of formal operators that are product of
an equal number of up and down walks (i.e., pure balanced
operators) not exceeding � walks. Let B = ∑Y∈Y αYY

where αY ∈ R and let f = ∑k
i=0 fi with fi ∈ Ck

i . If

γ ≤ ε
(
16kk+2�2 ∑Y∈Y |αY|

)−1
, then

〈B f , f 〉 =
k

∑
i=0

(
∑
Y∈Y

αYλY
k (i)

)
· 〈 fi, fi〉 ± ε,

where λY
k (i) depends only on the operators appearing in the

formal expression of Y, i and k, i.e., λY
k (i) is the approximate

eigenvalue of Y associated to Ck
i .

We instantiate Lemma V.31 for swap walks with
their specific parameters. First, we introduce some
notation. Using Corollary IV.13, we have

Sk,k =
k

∑
j=0

(−1)k−j ·
(

k + j
k

)
·
(

k
j

)
·N(j)

k,k =
k

∑
j=0

αj ·N(j)
k,k,

where αj = (−1)k−j · (k+j
k ) · (k

j).
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Finally, we have all the pieces to prove Lemma V.6
restated below.

Lemma V.33 (Swap Quadratic Form (restatement
of Lemma V.6)). Let f = ∑k

i=0 fi with fi ∈ Ck
i .

Suppose X(≤ d) is a γ-HDX with d ≥ 2k. If γ ≤
ε
(
64kk+423k+1

)−1
, then

〈Sk,k f , f 〉 =
k

∑
i=0

λk(i) · 〈 fi, fi〉 ± ε,

where λk(i) depends on only on k an i, i.e., λk(i) is an
approximate eigenvalue of Sk,k associated to space Ck

i .

D. Rectangular Swap Walks Sk,l

We turn to the spectral analysis of rectangular
swap walks, i.e., Sk,l where k �= l. Recall that to bound
σ2(Sk,k) in Section V-A we proved that the spectrum
of Sk,k for a γ-HDX is close to the spectrum of SΔ

k,k
using the analysis of quadratic forms over balanced
operators from Section V-C. Then we appealed to the
fact that SΔ

k,k is expanding since it is the walk operator
of the well known Kneser graph. In this rectangular
case, we do not have a classical result establishing
that SΔ

k,l is expanding, but we were able to establish
it Lemma V.34.

Lemma V.34. Let d ≥ k + l and Δd(n) be the complete
complex. The second largest singular value σ2(S

Δ
k,l) of the

swap operator SΔ
k,l on Δd(n) is

σ2(S
Δ
k,l) ≤ max

(
k

n− k
,

l
n− l

)
,

provided n ≥ Mk,l where Mk,l ∈ N only depends on k and
l.

Towards proving Lemma V.34 we first introduce
a generalization of Kneser graphs which we denote
bipartite Kneser graphs defined as follows.

Definition V.35 (General Bipartite Kneser Graph). Let
X(≤ d) where d ≥ k + l. We denote by KX(n, k, l) the
bipartite graph on (vertex) partition (X(k), X(l)) where s ∈
X(k) is adjacent to t ∈ X(l) if and only if s ∩ t is empty.
We also refer to graphs of the form KX(n, k, l) as bipartite
Kneser graphs.

It will be convenient to distinguish bipartite Kneser
graphs coming from general γ-HDX and the complete
complex Δd(n).

Definition V.36 (Complete Bipartite Kneser Graph).
Let X(≤ d) where d ≥ k + l. If X is the complete complex,
i.e., X = Δd(n), then we denote KX(n, k, l) as simply as
K(n, k, l) and we refer to it as complete bipartite Kneser.

We obtain the spectra of bipartite Kneser graphs
generalizing 7 the classical result of Fact V.4. More
precisely, we prove Lemma V.37.

Lemma V.37 (Bipartite Kneser Spectrum). The non-zero
eigenvalues of the (normalized) walk operator of K(n, k, l)
are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . ,min(k, l).

Now the proof follows a similar strategy to the Sk,k,
namely, we analyze quadratic forms over Sk,k using the
results from Section V-C

Let X(≤ d) where d ≥ k + l. Let Ak,l be the
(normalized) walk operator of KX(n, k, l), i.e.,

Ak,l =

⎛
⎝ 0 S

(l)
k,l(

S
(l)
k,l

)†
0

⎞
⎠ .

To determine the spectrum of Ak,l it is enough to

consider the spectrum of B = S
(l)
k,l

(
S
(l)
k,l

)†
. Using Corol-

lary IV.13, we have

B =

⎛
⎝ l

∑
j=0

(−1)l−j
(

k + j
l

)
·
(

l
j

)
·N(j)

k,l

⎞
⎠

⎛
⎝ l

∑
j′=0

(−1)l−j′
(

k + j′

l

)
·
(

l
j′

)
·
(
N
(j′)
k,l

)†⎞⎠
=

l

∑
j,j′=0

αk,l,j,j′N
(j)
k,l N

(j′+k−l)
l,k ,

for some coefficients αk,l,j,j′ depending only on k, l,
i, j and j′. Since we have not yet used any specific
property of HDXs, these coefficients are the same for
the complete complex and general HDXs.

Lemma V.38. Let X(≤ d) be a γ-HDX with d ≥ k + l.
Let f = ∑k

i=0 fi with fi ∈ Ck
i . For ε ∈ (0, 1), if γ ≤

ε
(
64kk+2�222k+4l+2

)−1
, then

〈B f , f 〉 =
k

∑
i=0

⎛
⎝ l

∑
j,j′=0

αk,l,j,j′λk,l,j,j′(i)

⎞
⎠ · 〈 fi, fi〉 + ε,

where λk,l,j,j′(i) is the approximate eigenvalues of

N
(j)
k,l N

(j′+k−l)
l,k corresponding to space Ck

i . Furthermore,
λk,l,j,j′(i) depends only on k, l, i, j and j′.

7Note that the singular values of K(n, k) can be deduced from the
bipartite case.
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Let B and BΔ stand for the B operator for general
γ-HDX and the complete complex, respectively.

Lemma V.39. Suppose X(≤ d) is a γ-HDX with d ≥
k + l. For ε ∈ (0, 1), if γ ≤ ε2

(
64kk+2�222k+4l+2

)−1
,

then the second largest singular value σ2(B) of B is

σ2(B) ≤ ε2.

Furthermore, the second largest non-trivial eigenvalue
λ(Ak,l) of the walk matrix of K(n, k, l) is

λ(Ak,l) ≤ ε.

Now the proof of Theorem V.2 follows. For conve-
nience, we restate it.

Theorem V.40 (Rectangular Swap Walk Spectral Bound
(restatement of Theorem V.2)). Suppose X(≤ d) is a
γ-HDX with d ≥ k + l and k ≤ l. For σ ∈ (0, 1),

if γ ≤ σ2 ·
(
64kk+2�222k+4l+2

)−1
, then the largest non-

trivial singular value σ2(Sk,l) of the swap operator Sk,l is

σ2(Sk,l) ≤ σ.

E. Bipartite Kneser Graphs - Complete Complex

Now we determine the spectrum of the complete
bipartite Kneser graph K(n, k, l). More precisely, we
prove the following.

Lemma V.41 (Bipartite Kneser Spectrum (restatement
of Lemma V.37)). The non-zero eigenvalues of the normal-
ized walk operator of K(n, k, l) are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . ,min(k, l).

Henceforth, set X = Δd(n). To prove Lemma V.37
we work with the natural rectangular matrix associated
with K(n, k, l), namely, the matrix W ∈ RX(k)×X(l) such
that

W(s, t) = 1[s∩t=∅]

for every s ∈ X(k) and t ∈ X(l).

Observe that the entries of WW� and W�W only
depend on the size of the intersection of the sets index-
ing the row and columns. Hence, these matrices belong
to the Johnson scheme [GM15] J(n, k) and J(n, l), re-
spectively. Moreover, the left and right singular vectors
of W are eigenvectors of these schemes.

We adopt the eigenvectors used in Filmus’
work [Fil16], i.e., natural basis vectors coming from
some irreducible representation of Sn (see [Sag13]).
First we introduce some notation. Let μ = (n− i, i) be a

partition of n and let τμ be a standard tableau of shape
μ. Suppose the first row τμ contains a1 < · · · < an−i
whereas the second contains b1 < · · · < bi. To τμ we

associate the function ϕτμ ∈ R([n]k ) as follows

ϕτμ = (1a1 − 1b1) . . . (1ai − 1bi
),

where 1a ∈ R(n
k) is the containment indicator of ele-

ment a, i.e., 1a(s) = 1 if and only if a ∈ s. Filmus
proved that{

ϕτμ | 0 ≤ i ≤ k, μ � (n− i, i), τμ standard
}

is an eigenbasis of J (n, k). We abuse the notation by
considering ϕτμ as both a function in R(n

k) and R(n
l ) as

long as these functions are well defined.

Claim V.42. If μ = (n− i, i) and k, l ≥ i, then

Wϕτμ = (−1)i ·
(

n− k− i
l − i

)
· ϕτμ .

Since we are working with singular vectors, we
need to be careful with their normalization when
deriving the singular values. We stress that the norm
of ϕτμ depends on the space where ϕτμ lies.

Claim V.43. If μ = (n− i, i) and ϕτμ ∈ R(n
k), then

∥∥∥ϕτμ

∥∥∥
2

=

√
2i
(

n− 2i
k− i

)
.

Now the singular values of W follow.

Corollary V.44 (Singular Values). The singular values of
W are

σi =

(
n− k− i

l − i

)
·

∥∥∥ϕk
τμ

∥∥∥
2∥∥∥ϕl

τμ

∥∥∥
2

,

for i = 0, . . . ,min(k, l).

Note that for k = l we recover the well know result
of Fact V.4.

Finally we compute the eigenvalues of the bipartite
graph K(n, k, l). Let An,k,l be its normalized adjacency
matrix, i.e.,

An,k,l =

⎛
⎝ 0 1

(n−k
l )

W

1
(n−l

k )
W� 0

⎞
⎠ .

Lemma V.45 (Bipartite Kneser Spectrum (restatement
of Lemma V.37)). The non-zero eigenvalues of the normal-
ized walk operator of K(n, k, l) are ±λi where

λi =
(n−k−i

l−i )(n−l−i
k−i )

(n−k
l )(n−l

k )
,

for i = 0, . . . ,min(k, l).
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VI. APPROXIMATING MAX-k-CSP

In the following, we will show that k-CSP instances
I whose constraint complex XI(≤ k) is a suitable
expander admit an efficient approximation algorithm.
We will assume throughout that XI(1) = [n], and drop
the subscript I.

This was shown for 2-CSPs in [BRS11]. In extend-
ing this result to k-CSPs we will rely on a central
Lemma of their paper. Before, we explain our algo-
rithm we give a basic outline of our idea:

We will work with the SDP relaxation for the k-
CSP problem given by L-levels of SoS hierarchy, as
defined in Section II-D (for L to be specified later).
This will give us an L-local PSD ensemble {Y1, . . . ,Yn},
which attains some value SDP(I) ≥ OPT(I). Since
{Y1, . . . ,Yn}, is a local PSD ensemble, and not nec-
essarily a probability distribution, we cannot sample
from it directly. Nevertheless, since

{
Yj
}
will be actual

probability distributions for all j ∈ [n], one can inde-
pendently sample ηj ∼

{
Yj
}
and use η = (η1, . . . , ηn)

as the assignment for the k-CSP instance I.

Unfortunately, while we know that the local dis-
tributions {Ya}a∈X(k) induced by {Y1, . . . ,Yn} will
satisfy the constraints of I with good probability, i.e.,

E
a∼Πk

E
{Ya}

⎡
⎣1[Ya satisfies the constraint on a︸ ︷︷ ︸

⇐⇒Ya∈ Ca

]

⎤
⎦

= SDP(I) ≥ OPT(I),

this might not be the case for the assignment η
sampled as before. It might be that the random
variables Ya1 , . . . ,Yak are highly correlated for a ∈
X(k), i.e., Ea∼Πk

∥∥{Ya} − {Ya1} · · · {Yak}
∥∥
1 is large.

One strategy employed by [BRS11] to ensure that
the quantity above is small, is making the local PSD
ensemble {Y1, . . . ,Yn} be consistent with a randomly
sampled partial assignment for a small subset of vari-
ables (q.v. Section II-D). We will show that this strategy
is succesful if X(≤ k) is a γ-HDX (for γ sufficiently
small). Our final algorithm is Algorithm VI.1.

In our setting, we will apply Algorithm VI.1 with
the distribution Πk and the L-local PSD ensemble
{Y1, . . . ,Yn}. Notice that in expectation, the marginals
of Y′ on faces a ∈ X(k) – which are actual distributions
– will agree with the marginals of Y, i.e. ES,ηS E Y′a =
E Ya. In particular, the approximation quality of Algo-
rithm VI.1 will depend on the average correlation of
Y′a1 , . . . ,Y

′
ak

on the constraints a ∈ X(k), where Y′ is
the local PSD ensemble obtained at the end of the first
phase of Algorithm VI.1.

In the case where k = 2, the following is known

Algorithm VI.1 (Propagation Rounding Algorithm).

Intput An L-local PSD ensemble {Y1, . . . ,Yn},
and a distribution Π on X(≤ �).

Output A random assignment η : [n]→ [q].

1) Choose m ∈ {1, . . . , L/�} uniformly at random.
2) Independently sample m �-faces,

sj ∼ Π for j = 1, . . . ,m.
3) Write S =

⋃m
j=1 sj, for the set of the seed vertices.

4) Sample assignment ηS : S → [q] according to the local
distribution, {YS}.

5) Set Y′ = {Y1, . . . Yn|YS = ηS}, i.e. the local ensemble
Y conditioned on agreeing with ηS.

6) For all j ∈ [n], sample independently ηj ∼ {Y′j}.
7) Output η = (η1, . . . , ηn).

Theorem VI.2 (Theorem 5.6 from [BRS11]). Suppose a
weighted undirected graph G = ([n], E,Π2) and an L-local
PSD ensemble Y = {Y1, . . . ,Yn} are given. There exists
absolute constants c ≥ 0 and C ≥ 0 satisfying the following:
If L ≥ c · q

ε4
, Supp(Yi) ≤ q for all i ∈ V, and λ2(G) ≤

C · ε2/q2 then we have

E
{i,j}∼Π2

∥∥∥{Y′i,Y
′
j} − {Y′i}{Y′j}

∥∥∥
1
≤ ε,

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Π1.

To approximate k-CSPs well, we will show the
following generalization of Theorem VI.2 for k-CSP
instances I, whose constraint complex X(≤ k) is γ-
HDX, for γ sufficiently small.

Theorem VI.3. Suppose a simplicial complex X(≤ k)
with X(1) = [n] and an L-local PSD ensemble Y =
{Y1, . . . ,Yn} are given.

There exists some universal constants c′ ≥ 0 and
C′ ≥ 0 satisfying the following: If L ≥ c′ · (qk · k5/ε4),
Supp(Yj) ≤ q for all j ∈ [n], and X is a γ-HDX for
γ ≤ C′ · ε4/(k8+k · 26k · q2k). Then, we have

E
a∼Πk

∥∥∥{Y′a} −
{

Y′a1
}
· · ·
{

Y′ak

}∥∥∥
1
≤ ε, (3)

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Πk.

Indeed, using Theorem VI.3, it is straightforward
to prove the following,

Corollary VI.4. Suppose I is a q-ary k-CSP instance whose
constraint complex X(≤ k) is a γ-HDX.

There exists absolute constants C′ ≥ 0 and c′ ≥ 0,
satisfying the following: If γ ≤ C′ · ε4/(k8+k · 26k · q2k),
there is an algorithm that runs in time nO(k5·q2k ·ε−4) based
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on ( c′ ·k5·qk

ε4
)-levels of SoS-hierarchy and Algorithm VI.1

that outputs a random assignment η : [n] → [q] that in
expectation ensures SATI(η) = OPT(I)− ε.

Our proof of Theorem VI.38 will hinge on the
fact that we can upper-bound the expected correlation
of a face of large cardinality �, in terms of expected
correlation over faces of smaller cardinality and ex-
pected correlations along the edges of a swap graph.
The swap graph here is defined as a weighted graph
G�1,�2 =

(
X(�1) � X(�2), E(�1, �2),w�1,�2

)
, where

E(�1, �2) =
{
{a, b} : a ∈ X(�1), b ∈ X(�2),

and a� b ∈ X(�1 + �2)

}
.

We will assume �1 ≥ �2, and if �1 = �2 we are going to
identify the two copies of every vertex. We will endow
E(�1, �2) with the weight function,

w�1,�2(a, b) =
Π�1+�2(a� b)

(�1+�2
�1

)
,

which can easily be verified to be a probability dis-
tribution on E(�1, �2) Notice that in the case where
�1 �= �2 the random walk matrix of G�1,�2 is given by

A�1,�2 =

(
0 S�1,�2

S†�1,�2
0

)
,

and if �1 = �2 we have A�1,�1 = S�1,�1 . The stationary
distribution of A�1,�2 is Π�1,�2 defined by,

Π�1,�2 (b) =
1[b ∈ X(�1)]

2
·Π�1 (b) +

1[b ∈ X(�2)]

2
·Π�2 (b). (4)

When we write an expectation of f (•, •) over the
edges in E(�1, �2) with respect to w�1,�2 , it is important
to note,

E
{s,t}∼w�1,�2

[ f (s, t)] = ∑
{s,t}∈E(�1,�2)

Π�1+�2(s� t),

(�1+�2
�1

)
· f (s, t),

=
1

( ��1)
E

a∼Πk

⎡
⎣ ∑
{s,t}∼a

f (s, t)

⎤
⎦ , (5)

where sum within the expectation in the RHS runs
over the (�1+�2

�1
) possible ways of splitting a into s � t

such that s ∈ X(�1) and t ∈ X(�2). When we are
speaking about the spectral expansion of G�1,�2 , we will
be speaking with regards to λ2(G�1,�2) and not with
regards to σ2(G�1,�2).

Remark VI.5. By simple linear algebra, we have

λ2(G�1,�2) := λ2(A�1,�2) ≤ σ2(S�1,�2),

where we employ the notation λ2(M) to denote the second
largest eigenvalue (signed) of the matrix M.

8Due to space constraints, we will omit some details. The full proof
can be found in the full version of our paper [AJT19].

With this, we will show
Lemma VI.6 (Glorified Triangle Inequality). For a sim-
plicial complex X(≤ k), �1 ≥ �2 ≥ 0, � = �1 + �2, � ≤ k,
and an �-local ensemble {Y1, . . . ,Yn}, one has

E
a∈Π�

∥∥∥∥∥{Ya} −
�

∏
i=1

{
Yai

}∥∥∥∥∥
1

≤ E
{s,t}∼w�1,�2

‖{Ys,Yt} − {Ys}{Yt}‖1

+ E
s∼Π�1

∥∥∥∥∥{Ys} −
�1

∏
i=1

{
Ysi

}∥∥∥∥∥
1

+ E
t∼Π�2

∥∥∥∥∥{Yt} −
�2

∏
i=1
{Yti}

∥∥∥∥∥
1

(6)

One useful observation, is that by using
Lemma VI.6 repeatedly, we can reduce the problem of
bounding Ea∈Π�

∥∥∥{Ya} −∏�
i=1{Yai}

∥∥∥
1
to a problem

of bounding

E
{s,t}∼w�1,�2

‖{Ys,Yt} − {Ys}{Yt}‖1,

for �1 + �2 ≤ k. Though it is not a direct implication,
it is heavily suggested by Fact II.7 and Theorem VI.2,
that if G�1,�2 is a good spectral expander, after an appli-
cation of Algorithm VI.1 with our chosen parameters,
we should be able to bound these expressions. Using
a key lemma used from [BRS11], we will prove that
this is indeed the case. The only thing we need to
make sure after this point, is that the second eigenvalue
λ2(G�1,�2) of the swap graphs G�1,�2 we will be using
are small enough for our purposes. Indeed, our choice
of γ in Theorem VI.3 and Corollary VI.4 is to make sure
that the bound we get on λ2(G�1,�2) from Theorem V.2
(together with Remark VI.5) is good enough for our
purposes.

A. Breaking Correlations for Expanding CSPs

Throughout this section, we will use the some-
what non-standard definition of variance introduced
in [BRS11],

Var [Ya] = ∑
η∈[q]a

Var [1[Ya = η]] .

We will use the following central lemma from
[BRS11] in our proof of Theorem VI.3:

Lemma VI.7 (Lemma 5.4 from [BRS11]). Let G =
(V, E,Π2) be a weighted graph, {Y1, . . . ,Yn} a local PSD
ensemble, where we have Supp(Yi) ≤ q for every i ∈ V,
and q ≥ 0. Suppose ε ≥ 0 is a lower bound on the expected
statistical difference between independent and correlated
sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

∥∥{Yij} − {Yi}{Yj}
∥∥
1.

There exists absolute constants c0 ≥ 0 and c1 ≥ 0 that
satisfy the following: If λ2(G) ≤ c0 · ε2

q2 . Then, conditioning
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on a random vertex decreases the variances,

E
i∼Π1

E
j∼Π2

E
{Yj}

Var
[
Yi | Yj

]
≤ E

i∼Π1
[Var [Yi]]− c1 ·

ε2

q2
.

For our applications, we will be instantiating
Lemma VI.7 with G�1,�2 as G; and with the local PSD
ensemble {Ya}a∈X that is obtained from {Y1, . . . ,Yn}
(q.v. Fact II.7). For convenience, we will write the
concrete instance of the Lemma that we will use,

Corollary VI.8. Let �1 ≥ �2 ≥ 0 satisfying �1 + �2 ≤
k be given parameters, and let G�1,�2 be the swap graph
defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local PSD
ensemble; satisfying Supp(Ya) ≤ qk for every a ∈ X(�1)∪
X(�2) for some q ≥ 0. Suppose ε ≥ 0 satisfies,

ε

4k
≤ E
{s,t}∈w�1,�2

‖{Ys�t} − {Ys}{Yt}‖1.

There exists absolute constants c0 ≥ 0 and c2 ≥ 0 that
satisfy the following: If λ2(G) ≤ c0 · (ε/(4k · qk))2. Then,
conditioning on a random face a ∼ Π�1,�2 decreases the
variances, i.e.

E
a,b∼Π2

�1,�2

E
{Ya}

[Var [Yb | Ya]]

≤ E
b∼Π�1,�2

[Var [Yb]]− c2 ·
ε2

16 · k2 · q2k .

Here, it can be verified that the expansion criterion
presupposed by Lemma VI.7 is satisfied by Corol-
lary VI.8 by Theorem V.2.

VII. HIGH-DIMENSIONAL THRESHOLD RANK

In [BRS11], Theorem VI.2 was proven for a more
general class of graphs than expander graphs – namely,
the class of low threshold rank graphs.

Definition VII.1 (Threshold Rank of Graphs
(from [BRS11])). Let G = (V, E,w) be a weighted graph
on n vertices and A be its normalized random walk matrix.
Suppose the eigenvalues of A are 1 = λ1 ≥ · · · ≥ λn.
Given a parameter τ ∈ (0, 1), we denote the threshold rank
of G by rank≥τ(A) (or rank≥τ(G)) and define it as

rank≥τ(A) := |{i|λi ≥ τ}| .

There [BRS11], the authors asked for the correct
notion of threshold rank for k-CSPs. In this section,
we give a candidate definition of low threshold rank
motivated by our techniques.

To break k-wise correlations it is sufficient to as-
sume that the involved swap graphs in the foregoing
discussion are low threshold rank since this is enough
to apply a version of Lemma VI.7, already described
in the work of [BRS11].

Moreover, we have some flexibility as to which
swap graphs to consider as long as they satisfy some
splitting conditions. To define a swap graph it is
enough to have a distributions on the hyperedges of
a (constraint) hypergraph. Hence, the notion of swap
graph is independent of high-dimensional expansion.
HDXs are just an interesting family of objects for which
the swap graphs are good expanders.

To capture the many ways of splitting the statistical
distance over hyperedges into the statistical distance
over the edges of swap graphs, we first define the
following notion. We say that a binary tree T is a k-
splitting tree if it has exactly k leaves. Thus, labeling
every vertex with the number of leaves on the subtree
rooted at that vertex ensures,

- the root of T is labeled with k and all other vertices
are labeled with positive integers,

- the leaves are labeled with 1, and
- each non-leaf vertex satisfy the property that its
label is the sum of the labels of its two children.

Note that, we will think of each non-leaf node with
left and right children labeled as a and b as repre-
senting the swap graph from X(a) to X(b) for some
simplicial complex X(≤ k). Let Swap(T , X) be the set
of all such swap graphs over X finding representation
in the splitting tree T . Indeed the tree T used in the
proof of Theorem VI.3 is just one special instance of a
k-splitting tree.

Given a threshold parameter τ ≤ 1 and a set of
normalized adjacency matrices A = {A1, . . . ,As}, we
define the threshold rank of A as

rank≥τ(A) := max
A∈A

rank≥τ(A),

where rank≥τ(A) is denotes usual threshold rank of A
as in Definition VII.1.

Now, we are ready to define the notion of a k-CSP
instance being (T , τ, r)-splittable as follows.

Definition VII.2 ((T , τ, r)-splittability). A k-CSP in-
stance I with the constraint complex X(≤ k) is said to
be (T , τ, r)-splittable if T is a k-splitting tree and

rank≥τ(Swap(T , X)) ≤ r.

If there exists some k-splitting tree T such that I is
(T , τ, r)-splittable, the instance I will be called a (τ, r)-
splittable instance.

Now, using this definition we can show that when-
ever rankτ(I) is bounded for the appropriate choice of
τ, after conditioning on a random partial assignment
as in Algorithm VI.1 we will have small correlation
over the faces a ∈ X(k), i.e.,
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Theorem VII.3. Suppose a simplicial complex X(≤ k)
with X(1) = [n] and an L-local PSD ensemble Y =
{Y1, . . . ,Yn} are given. There exists some universal con-
stants c4 ≥ 0 and C′′ ≥ 0 satisfying the following: If
L ≥ C′′ · (q4k · k7 · r/ε5), Supp(Yj) ≤ q for all j ∈ [n],
and I is (c4 · (ε/(4k · qk))2, r)-splittable. Then, we have

E
a∈X(k)

∥∥∥{Y′a} −
{

Y′a1
}
· · ·
{

Y′ak

}∥∥∥
1
≤ ε, (7)

where Y′ is as defined in Algorithm VI.1 on the input of
{Y1, . . . ,Yn} and Πk.

It is important to note that the specific knowledge
of the k-splitting tree T that makes I (T , τ, r)-splittable
is only needed for the proof of Theorem VII.3. The
conclusion of Theorem VII.3 can be used without the
knowledge of the specific k-splitting tree T . Theo-
rem VII.3 can be thought of an extension of Theo-
rem VI.3 to the case where not necessarily every tree
is good, and where we can bound the threshold rank
instead of the spectral expansion.

This, will readily imply an algorithm

Corollary VII.4. Suppose I is a q-ary k-CSP instance
whose constraint complex is X(≤ k). There exists an abso-
lute constant C′′ ≥ 0 and c4 ≥ 0 that satisfies the following:
If I is (c4 · (ε/(4k · qk))2, r)-splittable, then there is an

algorithm that runs in time n
O
(

q4k ·k7 ·r
ε5

)
and that is based

on (C′′ ·k5·qk ·r
ε4

)-levels of SoS-hierarchy and Algorithm VI.1
that outputs a random assignment η : [n] → [q] that in
expectation ensures SATI(η) = OPT(I)− ε.

We will need the more general version of
Lemma VI.7, proved in [BRS11].

Lemma VII.5 (Lemma 5.4 from [BRS11]). 9Let G =
(V, E,Π2) be a weighted graph, {Y1, . . . ,Yn} a local PSD
ensemble, where we have Supp(Yi) ≤ q for every i ∈ V,
and q ≥ 0. If ε ≥ 0 is a lower bound on the expected
statistical difference between independent and correlated
sampling along the edges,i.e.,

ε ≤ E
{i,j}∼Π2

∥∥{Yij} − {Yi}{Yj}
∥∥
1.

There exists absolute constants c3 ≥ 0 and c4 ≥ 0 that
satisfy the following: Then, conditioning on a random vertex

9The parameters we get differ from those of [BRS11]. The deriva-
tion of our parameters can be found in the appendix of the full
version of this paper [AJT19].

decreases the variances,

E
i∼Π1

E
j∼Π1

E
{Yj}

Var
[
Yi | Yj

]
≤ E

i∼Π1
[Var [Yi]]− c3 ·

ε4

q4 · rank≥c4ε2/q2(G)
.

Since we will use this lemma, only with the swap
graphs G�1,�2 and (L/k)-local PSD ensemble {Ya}a∈X
obtained from the L-local PSD ensemble {Y1, . . . ,Yn},
for convenience we will write the corollary we will use
more explicitly

Corollary VII.6. Let �1 ≥ �2 ≥ 0 satisfying �1 + �2 ≤
k be given parameters, and let G�1,�2 be the swap graph
defined for a γ-HDX X(≤ k). Let {Ya}a∈X be a local PSD
ensemble; and suppose we have Supp(Ya) ≤ qk for every
a ∈ X(�1)∪X(�2) for some q ≥ 0. Suppose ε > 0 satisfies,

ε

4k
≤ E
{s,t}∈E(�1,�2)

‖{Ys∪t} − {Ys}{Yt}‖1.

There exists absolute constants c3 ≥ 0 and c5 ≥ 0 that
satisfy the following:
If rank≥c4·(ε/(4k·qk))2(G�1,�2) ≤ r, then conditioning on a
random face a ∼ Π�1,�2 decreases the variances, i.e.

E
a,b∼Π2

�1,�2

E
{Ya}

Var [Yb | Ya]

≤ E
s∼Π�1,�2

[Var [Yb]]− c5 ·
ε4

256 · k4 · q4k · r .
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