
Near-Optimal Massively Parallel Graph Connectivity

Soheil Behnezhad∗, Laxman Dhulipala†, Hossein Esfandiari‡, Jakub Łącki‡ and Vahab Mirrokni‡
∗University of Maryland

soheil@cs.umd.edu
†Carnegie Mellon University

ldhulipa@cs.cmu.edu
‡Google Research, New York

{esfandiari,jlacki,mirrokni}@google.com

Abstract—Identifying the connected components of a graph,
apart from being a fundamental problem with countless
applications, is a key primitive for many other algorithms.
In this paper, we consider this problem in parallel settings.
Particularly, we focus on the Massively Parallel Computations
(MPC) model, which is the standard theoretical model for
modern parallel frameworks such as MapReduce, Hadoop, or
Spark. We consider the truly sublinear regime of MPC for
graph problems where the space per machine is nδ for some
desirably small constant δ ∈ (0, 1).

We present an algorithm that for graphs with diameter D
in the wide range [logε n, n], takes O(logD) rounds to identify
the connected components and takes O(log log n) rounds for
all other graphs. The algorithm is randomized, succeeds with
high probability1, does not require prior knowledge of D, and
uses an optimal total space of O(m). We complement this
by showing a conditional lower-bound based on the widely
believed 2-CYCLE conjecture that Ω(logD) rounds are indeed
necessary in this setting.

Studying parallel connectivity algorithms received a resur-
gence of interest after the pioneering work of Andoni et
al. [FOCS 2018] who presented an algorithm with O(logD ·
log log n) round-complexity. Our algorithm improves this result
for the whole range of values of D and almost settles the
problem due to the conditional lower-bound.

Additionally, we show that with minimal adjustments, our
algorithm can also be implemented in a variant of (CRCW)
PRAM in asymptotically the same number of rounds.

I. INTRODUCTION

Identifying the connected components of a graph is a

fundamental problem that has been studied in a variety

of settings (see e.g. [2, 31, 27, 56, 60, 52] and the ref-

erences therein). This problem is also of great practical

importance [55] with a wide range of applications, e.g. in

clustering [52]. The main challenge is to compute connected

components in graphs with over hundreds of billions or even

trillions of nodes and edges [55, 59]. The related theory

question is:

What is the true complexity of finding connected
components in massive graphs?

The first author was supported in part by NSF SPX grant CCF-1822738
and a Google PhD fellowship.

1We use the term with high probability to refer to probability at least
1− n−c for arbitrarily large constant c > 1.

We consider this problem in parallel settings which are a

common way of handling massive graphs. Our main focus is

specifically on the Massively Parallel Computations (MPC)

model [12, 42, 36]; however, we show that our techniques

are general enough to be seamlessly implemented in other

parallel models such as (CRCW) PRAM. The MPC model

is arguably the most popular theoretical model for modern

parallel frameworks such as MapReduce [29], Hadoop [5],

or Spark [62] and has received significant attention over the

past few years (see Section I-A). We consider the strictest

regime of MPC for graph problems where the space per

machine is strongly sublinear in n.

The MPC model: The input, which in our case is the

edge-set of a graph G(V,E) with n vertices and m edges,

is initially distributed across M machines. Each machine

has a space of size S = nδ words where constant δ ∈
(0, 1) can be made arbitrarily small. Furthermore, M · S =
O(m) so that there is only enough total space to store the

input. Computation proceeds in rounds. Within a round, each

machine can perform arbitrary computation on its local data

and send messages to each of the other machines. Messages

are delivered at the beginning of the following round. An

important restriction is that the total size of messages sent

and received by each machine in a round should be O(S).
The main objective is to minimize the number of rounds that

are executed.

What we know: Multiple algorithms for computing

connected components in O(log n) MPC rounds have been

shown [42, 59, 52, 44]. On the negative side, a popular

2-CYCLE conjecture [61, 54, 44, 7] implies that Ω(log n)
rounds are necessary. Namely, the conjecture states that in

this regime of MPC, distinguishing between a cycle on

n vertices and two cycles on n/2 vertices each requires

Ω(logn) rounds. However, the 2-CYCLE conjecture and the

matching upper bound are far from explaining the true com-

plexity of the problem. First, the hard example used in the

conjecture is very different from what most graphs look like.

Second, the empirical performance of the existing algorithms

(in terms of the number of rounds) is much lower than what

the upper bound of O(log n) suggests [43, 44, 59, 52, 48].

This disconnect between theory and practice has moti-

1603

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00097

vated the study of graph connectivity as a function of diam-

eter D of the graph. The reason is that the vast majority of

real-world graphs, indeed have very low diameter [46, 26].

This is reflected in multiple theoretical models designed to

capture real-world graphs, which yield graphs with polylog-

arithmic diameter [20, 37, 47, 21].

Our contribution: Our main contribution is the follow-

ing algorithm:

Theorem 1 (main result). There is a strongly sublinear
MPC algorithm with O(m) total space that given a
graph with diameter D, identifies its connected compo-
nents in O(logD) rounds if D ≥ logε n for any constant
ε > 0, and takes O(log logm/n n) rounds otherwise. The
algorithm is randomized, succeeds with high probability,
and does not require prior knowledge of D.

The 2-CYCLE conjecture mentioned above directly im-

plies that o(logD) round algorithms do not exist in this

setting for D = Θ(n). However, it does not rule out the

possibility of achieving an O(1) round algorithm if e.g.

D = O(
√
n). We refute this possibility and show that

indeed for any choice of D ∈ [log1+Ω(1), n], there are family

of graphs with diameter D on which Ω(logD) rounds are

necessary in this regime of MPC, if the 2-CYCLE conjecture

holds.

Theorem 2. Fix some D′ ≥ log1+ρ n for a desirably small
constant ρ ∈ (0, 1). Any MPC algorithm with n1−Ω(1) space
per machine that w.h.p. identifies each connected component
of any given n-vertex graph with diameter D′ requires
Ω(logD′) rounds, unless the 2-CYCLE conjecture is wrong.

We note that proving any unconditional super constant

lower bound for any problem in P, in this regime of MPC,

would imply NC1 � P which seems out of the reach of

current techniques [54].

Extention to PRAM: As a side result, we provide an

implementation of our connectivity algorithm in O(logD+
log logm/n n) depth in the multiprefix CRCW PRAM model,

a parallel computation model that permits concurrent reads

and concurrent writes. This implementation of our algorithm

performs O((m + n)(logD + log logm/n n)) work and is

therefore nearly work-efficient. The following theorem states

our result. We defer further elaborations on this result to

Appendix G.

Theorem 3. There is a multiprefix CRCW PRAM algo-
rithm that given a graph with diameter D, identifies its
connected components in O(logD+log logm/n n) depth and
O((m+ n)(logD + log logm/n n)) work. The algorithm is
randomized, succeeds with high probability and does not
require prior knowledge of D.

Comparison with the state-of-the-art: The round com-

plexity of our algorithm improves over that of the state-of-

the-art algorithm by Andoni et al. [4] that takes O(logD ·
log logm/n n) rounds. Note that the algorithm of [4] matches

the Ω(logD) lower bound for a very specific case: if the

graph is extremely dense, i.e., m = n1+Ω(1). In practice,

this is usually not the case [24, 46, 30]. In fact, it is

worth noting that the main motivation behind the MPC
model with sublinear in n space per machine is the case

of sparse graphs [42]. We also note that for the particularly

important case when D = poly logn, our algorithm requires

only O(log logn) rounds. This improves quadratically over

a bound of O(log2 log n) rounds, which follows from the

result of [4].

Our result also provides a number of other qualitative

advantages. For instance it succeeds with high probability

as opposed to the constant success probability of [4]. Fur-

thermore, the running time required for identifying each

connected component depends on its own diameter only.

The diameter D in the result of [4] is crucially the largest

diameter in the graph.

A. Further Related work

The MPC model has been extensively studied over the

past few years especially for graph problems. See for in-

stance [42, 36, 45, 11, 3, 1, 54, 40, 9, 28, 33, 14, 15, 10, 6,

34, 13, 4, 16, 7, 22] and the references therein.

More relevant to our work on graph connectivity, a recent

result by Assadi et al. [7] implies an O(log 1
λ + log logn)

round algorithm for graphs with Õ(n) edges that have spec-
tral gap at least λ. By a well-known bound, D = O(logn

λ).
Therefore, our algorithm requires O(logD + log logn) =
O(log(logn

λ)+ log logn) = O(log 1
λ + log logn) rounds for

graphs with spectral gap at least λ. As a result, the running

time bound of our algorithm is never worse than the bound

due to Assadi et al. However, as shown in [4], there are

graphs with 1
λ ≥ D · nΩ(1) making our algorithm more

general.

Finally, we remark that a preprint claiming a deterministic

MPC connectivity algorithm requiring only O(logD) rounds

has been published recently [23]. However, the key claim of

the paper is fundamentally incorrect. Specifically, the paper

first shows that the algorithm requires O(log k) rounds for a

graph that is a path of length k and directly concludes that

this implies round complexity of O(logD) (see Lemma 3

in [23]). This kind of reasoning is not valid. In particular,

the HashToMin algorithm [52] works in O(log k) rounds

for graphs consisting of disjoint paths of length at most k,

but has been shown to require ω(logD) rounds for certain

graphs [4]. Apart from the fact that the proof is incorrect,

we believe that the counterexample of [4] also shows that

the algorithm of [23] on a family of graphs with diameter

O(log n), has round complexity Ω(logn) = Ω(D).

1604

B. Paper Organization

Section II gives a high-level overview of our techniques.

Sections III and IV are devoted to our algorithm, its correct-

ness and performance. Then, in Section V we give a new

lower bound for the problem of solving connectivity in the

MPC model. In Appendix A we describe the implementation

details of the algorithm in the MPC model. We remark that

the implementation follows from standard techniques, but

we provide it for completeness.

II. HIGH-LEVEL OVERVIEW OF TECHNIQUES

Recall that we assume the regime of MPC with strictly

sublinear space of nδ with δ being a constant in (0, 1).
This local space, roughly speaking, is usually not sufficient

for computing any meaningful global property of the graph

within a machine. As such, most algorithms in this regime

proceed by performing local operations such as contracting

edges/vertices, adding edges, etc. Note that even the direct

neighbors of a high-degree vertex may not fit in the memory

of a single machine, however, using standard techniques

most of basic local operations can be implemented in

O(1/δ) = O(1) rounds of MPC. The details are given in

Appendix A. For the purpose of this section, we do not get

into technicalities of how this can be done.

We start with a brief overview of some of the relevant

techniques and results, then proceed to describe the new

ingredients of our algorithm and its analysis.

Graph exponentiation: Consider a simple and well-

known algorithm that connects every vertex to vertices

within its 2-hop (i.e., vertices of distance 2) by adding

edges. It is not hard to see that the distance between any

two vertices shrinks by a factor of 2. By repeating this

procedure, each connected component becomes a clique

within O(logD) steps. The problem with this approach,

however, is that the total space required can be up to Ω(n2),
which for sparse graphs is much larger than O(m).

Andoni et al. [4] manage to improve the total space to the

optimal bound of O(m), at the cost of increasing the round

complexity to O(logD · log logm/n n). We briefly overview

this result below.

Overview of Andoni et al.’s algorithm: Suppose that

every vertex in the graph has degree at least d � log n.

Select each vertex as a leader independently with probability

Θ(log n/d). Then contract every non-leader vertex to a

leader in its 1-hop (which w.h.p. exists). This shrinks the

number of vertices from n to Õ(n/d). As a result, the

amount of space available per remaining vertex increases to

Ω̃(m
n/d) = Ω̃(nd

n/d) ≈ d2. At this point, a variant of the afore-

mentioned graph exponentiation technique can be used to

increase vertex degrees to d2 (but not more), which implies

that another application of leader contraction decreases the

number of vertices by a factor of Ω(d2). Since the available

space per remaining vertex increases doubly exponentially,

O(log logn) phases of leader contraction suffice to increase

it to n per remaining vertex. Moreover, each phase requires

O(logD) iterations of graph exponentiation, thus the overall

round complexity is O(logD log logn).

A. Our Connectivity Algorithm: The Roadmap

The main shortcoming of Andoni et al.’s algorithm is that

within a phase, where the goal is to increase the degree of

every vertex to d, those vertices that have already reached

degree d are stalled (i.e., do not connect to their 2-hops)

until all other vertices reach this degree. Because of the

stalled vertices, the only guaranteed outcome of the graph

exponentiation operation is increasing vertex degrees. In

particular, the diameter of the graph may remain unchanged.

This is precisely why their algorithm may require up to

O(logD · log log n) applications of graph exponentiation.

We note that this is not a shortcoming of their analysis.

Indeed, we remark that there are family of graphs on which

Andoni et al.’s algorithm takes Θ(logD · log logn) rounds.

Instead of describing our algorithm, we focus in this

section on some of the properties that we expect it to

satisfy, and how they suffice to get our desired round

complexity. This overview should be helpful when reading

the description of the algorithm in Section III-A.

Our algorithm assigns budgets to vertices. Intuitively, a

budget controls how much space a vertex can use, i.e., how

much it can increase its degree. To bound the space complex-

ity, we will bound the sum of all vertex budgets. In our algo-

rithm vertices may have different budgets (differently from

the algorithm of Andoni et al.). This allows us to prevent

the vertices from getting stalled behind each other. Overall,

we have L = Θ(log log n) possible budgets β0, β1, . . . , βL

where β0 = O(1), βL = Ω(n), and βi = (βi−1)
1.25. We say

a vertex v is at level �(v) = i, if its budget b(v) equals βi.

The algorithm executes a single loop until each connected

component becomes a clique. We call a single execution of

this loop an iteration which can be implemented in O(1)
rounds of MPC.

Property 1 (see Lemma 8 for a formal statement). For any

two vertices u and v at distance exactly 2 at the beginning of

an iteration of the algorithm, after the next 4 iterations, either

their distance decreases to 1, or the level of both vertices

increases by at least one.

We call every 4 iterations of the algorithm a super-
iteration. Property 1 guarantees that if a vertex does not

get connected to every vertex in its 2-hop within a super-

iteration, its level must increase. Recall, on the other

hand, that the maximum level of any vertex is at most

O(log logn). As such, every vertex resists getting connected

to those in its 2-hop for at most O(log logn) super-iterations.

However, somewhat counter-intuitively, this observation is

(provably) not sufficient to guarantee an upper bound of

O(logD + log logn) rounds. Our main tool in resolving

this, is maintaining another property.

1605

Property 2 (see Observation 6 for a formal statement). If a

vertex v is neighbor of a vertex u with �(u) > �(v), then

by the end of the next iteration, the level of v becomes at

least �(u).

The precise proof of sufficiency of Properties 1 and 2 is

out of the scope of this section. Nonetheless, we provide

a proof sketch with the hope to make the actual arguments

easier to understand. See Lemma 11 for the formal statement

and its proof.

Proof sketch of round complexity.: Fix two vertices

u and v in one connected component of the original graph

and let P1 be the shortest path between them. As the vertices

connect to their 2-hops and get closer to each other, we drop

some of the vertices of P1 while ensuring that the result is

also a valid path from u to v. More precisely, we maintain a

path Pi by the end of each super-iteration i which is obtained

by replacing some subpaths of Pi−1 of length at least two by

single edges. We say that the interior vertices of the replaced

subpaths are dropped.

Our goal is to show that for R := O(logD + log logn),
path PR has length 2; it is not hard to see that this means

each connected component becomes a clique by iteration

R. To show this, we require a potential-based argument.

Suppose that we initially put one coin on every vertex of P1,

thus we have at most D + 1 coins. As we construct Pi+1

from Pi, every vertex that gets dropped from Pi, passes

its coins to any of its two neighbors in Pi that survives

to Pi+1 (if they both survive, it divides them equally and if

none of them survive the coins are discarded). Moreover, we

construct Pi+1 from Pi such that it satisfies the following

property, which we call invariant 1: If the level of a vertex

w ∈ Pi within super-iteration i+1 does not increase, either

w, or one of its two neighbors in Pi are dropped. This is

guaranteed to be possible due to Property 1.

Finally, we use Property 2 to prove invariant 2: In any path

Pi, every vertex of level j has at least (1.5)i−j coins. That is,

we have more coins on the vertices that have lower levels.

Note that this is sufficient to prove the round complexity.

For, otherwise, if |PR| > 2, due to the fact that the level of

every vertex is at most O(log log n), there should remain a

vertex in PR with at least

(1.5)R−j ≥ (1.5)Θ(logD+log logn)−O(log logn)

≥ (1.5)2 logD

� D + 1

coins, while we had only D+1 coins in total. Property 2 is

useful in the proof of invariant 2 in the following sense: If a

low-level vertex w ∈ Pi survives to Pi+1 without increasing

its level, its dropped neighbor (which exists by invariant 1)

cannot have a higher level than w, and thus has a lot of

coins to pass to w.

Algorithm 1. FindConnectedComponents(G(V,E))

1) To any vertex v, we assign a level �(v) ← 0, a

budget b(v) ← (Tn)
1/2, and a set C(v) ← {v}

which throughout the algorithm, denotes the set of

vertices that v corresponds to. Moreover, every vertex

is initially marked as active and we set next(v) ← v
for every vertex v.

2) Repeat the following steps until each remaining con-

nected components becomes a clique:

a) Connect2Hops(G, b, �)

b) RelabelInterLevel(G, b, �, C, next)

c) RelabelIntraLevel(G, b, �, C)

3) For every remaining connected component C corre-

sponds to one of the connected components of the

original graph whose vertex set is ∪v∈CC(v).

III. MAIN ALGORITHM: CONNECTIVITY WITH

O(m+ n poly log n) TOTAL SPACE

In this section, we describe an O(logD + log logT/n n)
round connectivity algorithm assuming that the total avail-

able space is T ≥ m+ n logα n where α is some desirably

large constant. We later show how to improve the total space

to the optimal bound of O(m) in Section IV. We start with

description of the algorithm in Section III-A and proceed to

its analysis in Sections III-B, III-C, and III-D.

Remark 1. For simplicity, we describe an algorithm that
succeeds with probability 1 − 1/nΩ(1). One can boost the
success probability to 1−1/nc by changing some parameters
in the algorithm or by simply running O(c) independent
copies of it in parallel.

A. The Algorithm

The algorithm consists of a number of iterations, each

of which calls three subroutines named Connect2Hops,
RelabelInterLevel, and RelabelIntraLevel.2 Each iteration

will be implemented in O(1) rounds of MPC and we later

show that O(logD + log logT/n n) iterations are sufficient.

We first formalize the overall structure of the algorithm as

Algorithm 1, then continue to describe the subroutines of

each iteration one by one.

Within the Connect2Hops subroutine, every active vertex

v attempts to connect itself to a subset of the vertices in

its 2-hop. If there are more candidates than the budget of

v allows, we discard some of them arbitrarily. To formalize

this, we use N(u) to denote the neighbors of a vertex u.

2We note that the relabeling subroutines are close to the leader con-
traction operation we discussed in Section II. However, we use a different
terminology to emphasize the difference in handling chains. See Figure 1.

1606

Connect2Hops(G, b, �)

For every active vertex v:

1) Define H(v) := {u | ∃w s.t. w ∈ N(u) ∩
N(v), �(u) = �(w) = �(v)}.

2) Let dv be the number of vertices currently connected

to v that have level at least �(v). Pick min{b(v) −
dv, |H(v)|} arbitrary vertices in H(v) and connect

them to v.

RelabelInterLevel(G, b, �, C, next)

1) For every (active or inactive) vertex v:

a) Let h(v) be the neighbor of v with the highest level

with ties broken arbitrarily.

b) If �(h(v)) > �(v), mark v as inactive and set

next(v) ← h(v).

2) Replace every edge {u, v} in the graph with

{next(u), next(v)}.

3) Remove duplicate edges and self-loops.

4) For every vertex v, set I(v) ← ∪u:next(u)=vC(u).

5) For every vertex v, if v is active, set C(v) ← C(v) ∪
I(v) and if v is inactive set C(v) ← I(v).

6) If an inactive vertex has become isolated, remove it

from the graph.

Next, in the RelabelInterLevel subroutine, every vertex v
that sees a vertex u of a higher level in its neighborhood,

is “relabeled” to that vertex. That is, any occurrence of v in

the edges is replaced with u. As a technical point, it might

happen that we end up with a chain v1 → v2 → v3 → . . .
of relabelings where vertex v1 has to be relabeled to v2, v2
has to be relabeled to v3, and so on. In each iteration of

the algorithm, we only apply the direct relabeling of every
vertex, that is v1 ends up with label v2, v2 ends up with

label v3, etc. An example of this is illustrated in Figure 1.

Finally, the last subroutine RelabelIntraLevel, is where we

increase the budgets/levels.

B. Analysis of Algorithm 1 – Correctness

Correctness: We first show that the algorithm indeed

computes the connected components of the given graph.

The following lemma follows directly from the fact that

Algorithm 1 does not split or merge connected components.

Lemma 2. Let S1, . . . ,Sk be the connected components
of G at the end of Algorithm 1. Then, the family of sets
{∪v∈Si

C(v) | i ∈ [k]} is equal to the family of vertex sets
of connected components of the original graph.

Proof: We use induction to show that the claim is true

c d e

v1

a b

c d ea b

v2 v3

v2 v3

next(v1)=v2 next(v2)=v3

next(v2)=v3

c d ea b

v3

Figure 1: Algorithm 1 does not traverse “relabeling chains”.

In the first iteration, vertex v1 is relabeled to v2 and v2
is relabeled to v3. After two iterations, both v1 and v2 are

contracted to v3. Note that the edge {v2, v3} of iteration 1

will become a self-loop after applying the relabeling v2 →
v3 and thus will be removed. However, the edge {v2, v3} that

still remains in the second iteration is the result of applying

relabelings v1 → v2 and v2 → v3 on edge {v1, v2}.

at the end of each iteration r of Algorithm 1. Before we start

the algorithm, i.e., when r = 0, for every vertex v we have

C(v) = {v}. Therefore, clearly the base case holds. For

the rest of the proof, it suffices to show that the three steps

of Connect2Hops, RelabelInterLevel, and RelabelIntraLevel
maintain this property.

Within the Connect2Hops subroutine, we only add edges

to the graph. The only way that this operation may hurt our

desired property, is if the added edges connect two different

connected components of the previous iteration. However,

every added edge is between two vertices of distance at most

2 (and thus in the same component) implying that this cannot

happen.

For the RelabelInterLevel subroutine, we first have to

argue that the relabelings do not change the connectivity

structure of the graph. It is clear that two disconnected

components cannot become connected since each vertex is

relabeled to another vertex of the same connected com-

ponent. Moreover, we have to argue that one connected

1607

RelabelIntraLevel(G, b, �, C)

1) Mark an active vertex v as “saturated” if it has more

than b(v) active neighbors that have the same level as

v.

2) If an active vertex v has a neighbor u with �(u) =
�(v) that is marked as saturated, v is also marked as

saturated.

3) Mark every saturated vertex v as a “leader” indepen-

dently with probability min{ 3 logn
b(v) , 1}.

4) For every leader vertex v, set �(v) ← �(v) + 1 and

b(v) ← b(v)1.25.

5) Every non-leader saturated vertex v that sees a leader

vertex u of the same level (i.e., �(u) = �(v)) in its

2-hop (i.e., dist(v, u) ≤ 2), chooses one as its leader

arbitrarily.

6) Every vertex is contracted to its leader. That is, for

any vertex v with leader u, every edge {v, w} will be

replaced with an edge {u,w} and all vertices in set

C(v) will be removed and added to set C(u). We then

remove vertex v from the graph.

7) Remove duplicate edges or self-loops and remove

saturated/leader flags from the vertices.

component does not become disconnected. For this, consider

a path between two vertices u and v of the same component.

After relabeling vertices, there is still a walk between the

corresponding vertices to u and v, thus they remain con-

nected. Finally, observe that once a vertex v is relabeled to

some vertex u, in Line 5 of the RelabelInterLevel subroutine,

we add every vertex of C(v) to C(u). This ensures that for

every component S, the set ∪v∈SC(v) does not lose any

vertex and thus remains unchanged.

Similarly, in the RelabelIntraLevel step, the vertices only

get contracted to the leaders in their 2-hop and once removed

from the graph, a vertex v passes every element in C(v) to

C(u) of another vertex u in its component, thus the property

is maintained, concluding the proof.

C. Analysis of Algorithm 1 – Round Complexity

In order to pave the way for future discussions, we start

with some definitions. We use Gr = (Vr, Er) to denote the

resulting graph by the end of iteration r of Algorithm 1.

Therefore, we have V = V0 ⊇ V1 ⊇ V2 ⊇ . . . as we do

not add any vertices to the graph. Moreover, for any vertex

v ∈ V and any iteration r ≥ 0, we define nextr(v) to be the

vertex w ∈ Vr such that v ∈ C(w) by the end of iteration

r. That is, nextr(v) is the vertex that corresponds to v by

the end of iteration r.

Observation 3. Let v ∈ Vr be an active vertex. Then for
any r′ ≤ r, we have nextr′(v) = v.

For any iteration r ≥ 0 and any vertex v ∈ V , we

respectively use �r(v), br(v) and Cr(v) to denote the value

of �(nextr(v)), b(nextr(v)) and C(nextr(v)) by the end

of iteration r. Furthermore, for any two vertices v, u ∈ V ,

we use distr(u, v) to denote the length of the shortest path

between nextr(u) and nextr(v) in graph Gr.

The following claim implies that the corresponding level

of a vertex is non-decreasing over time.

Claim 4. For any vertex v ∈ V and any r ≥ r′, we have
�r(v) ≥ �r′(v).

Proof: We use induction on r. For the base case with

r = r′, we clearly have �r(v) = �r′(v). Suppose, by the

induction hypothesis, that �r−1(v) ≥ �r′(v). If in iteration r
of the algorithm, vertex nextr−1(v) is not relabeled, i.e., if

we have nextr(v) = nextr−1(v), then �r(v) = �r−1(v) by

definition and the fact that the level of a particular vertex

cannot decrease in one iteration. Therefore, by the induction

hypothesis, we have �r(v) = �r−1(v) ≥ �r′(v). On the

other hand, if vertex v is relabeled in iteration r, i.e., if

nextr(v) �= nextr−1(v), then it suffices to show that it is

relabeled to a vertex whose level is higher. This is clear from

description of the algorithm. A vertex that gets relabeled

within the RelabelInterLevel subroutine, does so if and only

if the new vertex has a higher level. Similarly, in within the

RelabelIntraLevel subroutine of Algorithm 1, any vertex v
that is contracted to another vertex does so if it is a marked

saturated vertex of the same level, whose level increases by

the end of the iteration.

The next claim shows, in a similar way, that the distance

between the corresponding vertices of two vertices u and v
is non-increasing over time.

Claim 5. For any two vertices v, u ∈ V and any r ≥ r′, we
have distr(u, v) ≤ distr′(u, v).

Proof: Similar to the proof of Claim 4, we can show this

by induction on r and, thus, the problem reduces to showing

that in one iteration the corresponding distance between two

vertices cannot increase. To show this, fix a shortest path p
between two vertices v and u at any iteration. Within the

next iteration, the Connect2Hops subroutine does not affect

this path as it only adds some edges to the graph. Moreover,

the only effect of the relabeling steps on this path is that it

may shrink it as one vertex of the path can be relabeled to

one of its neighbors in the path. However, relabeling can in

no way destroy or increase the length of this path. Thus, the

lemma follows.

Our next observation follows directly from the description

of the algorithm.

Observation 6. For any r ≥ 0 and any vertices u, v ∈ V
with distr(u, v) ≤ 1, we have �r+1(u) ≥ �r(v) and
�r+1(v) ≥ �r(u).

Proof: This comes from the fact that any vertex who

1608

sees a neighbor of a higher level, is relabeled to its neighbor

with the highest level in subroutine RelabelInterLevel of

Algorithm 1.

Claim 7. With high probability for any iteration r and any
vertex v ∈ Vr, if v becomes saturated in the next iteration
r + 1, then there is at least one leader of the same level in
its 2-hop, thus �r+1(v) ≥ �r(v) + 1.

Proof: If v is saturated, then by definition, it has at

least b(v) vertices in its inclusive 2-hop (i.e., the set v ∪
N(v)∪N(N(v))) that have the same level as that of v and

are also saturated. To see this, note that if v is marked as

saturated in Line 1 of RelabelIntraLevel, then it has at least

b(v) other active direct neighbors with level at least b(v) all

of which will be marked as saturated in Line 2. Furthermore,

if a vertex v is marked as saturated in Line 2, then it has a

saturated neighbor which has b(v) direct saturated neighbors

as just described. Thus v’s 2-hop will include b(v) saturated

vertices as desired.
It suffices to show that one of these b(v) saturated vertices

will be marked as a leader with high probability. Recall that

we mark each vertex independently with probability 3 logn
b(v) ,

thus

Pr
[
�r+1(v) = �r(v)

]
≤

(
1− 3 logn

b(v)

)b(v)

≤ exp(−3 logn)

≤ 1/n3.

By a union bound over all vertices, and over the total number

of iterations of the algorithm which is clearly less than n2,

we get that with probability at least 1 − 1/n every vertex

that gets saturated sees a marked vertex in its 2-hop and

its corresponding level will thus be increased in the next

iteration.
The next lemma highlights a key property of the algorithm

and will be our main tool in analyzing the round complexity.

Intuitively, it shows that with high probability, after every 4

iterations of Algorithm 1, every vertex v is either connected

to its 2-hop, or its corresponding level increases by at least

1.

Lemma 8. Let u, v ∈ V be two vertices with distr(u, v) = 2
for some iteration r. If distr+4(u, v) ≥ 2, then �r+4(v) ≥
�r(v)+1 and �r+4(u) ≥ �r(u)+1. This holds for all vertices
u and v and over all iterations of the algorithm with high
probability.

Proof: By Claim 5, we have distr+4(u, v) ≤
distr(u, v) = 2. As such, to prove the lemma, it suffices to

obtain a contradiction by assuming that distr+4(u, v) = 2
and (w.l.o.g.) �r+4(u) = �r(u).

Recall that the lemma assumes that distr(u, v) = 2.

Therefore, there must exist a vertex w with distr(u,w) =
distr(w, v) = 1. By an application of Observation 6, we

have

�r+4(u) ≥ �r+3(w) ≥ �r+2(v) ≥ �r+1(w) ≥ �r(u).

Combining this with our assumption that �r+4(u) = �r(u),
we get

�r+4(u) = �r+3(w) = �r+2(v) = �r+1(w) = �r(u). (1)

Moreover, by Claim 4 which states the levels are non-

decreasing over time, we have

�r+4(u) ≥ �r+2(u) ≥ �r(u), and

�r+3(w) ≥ �r+2(w) ≥ �r+1(w). (2)

Combination of (1) and (2) directly implies the following

two useful inequalities.

Observation 9. �r+2(u) = �r+2(w) = �r+2(v).

Proof: Inequality �r+4(u) ≥ �r+2(u) ≥ �r(u) of (2)

combined with equality �r+4(u) = �r(u) of (1) implies

�r+2(u) = �r(u). This combined with �r(u) = �r+2(v) of

(1), gives �r+2(u) = �r+2(v).
Inequality �r+3(w) ≥ �r+2(w) ≥ �r+1(w) of (2) com-

bined with equality �r+3(w) = �r+1(w) of (1) implies

�r+2(w) = �r+1(w). Combined with �r+1(w) = �r+2(v)
of (1), it gives �r+2(w) = �r+2(v).

Observation 10. �r+4(u) = �r+2(u).

Proof: Inequality �r+4(u) = �r(u) due to (1) combined

with inequality �r+4(u) ≥ �r+2(u) ≥ �r(u) of (2) implies

�r+4(u) = �r+2(u) = �r(u).
Observation 9 implies that the corresponding levels of all

three vertices u, w and v should be the same at the end of

iteration r + 2. Thus, within the Connect2Hops subroutine

of iteration r + 3, we have nextr+2(v) ∈ H(nextr+2(u));
now either we connect nextr+2(u) and nextr+2(v) which

reduces their distance to 1 contradicting our assumption that

distr+4(u, v) = 2, or otherwise vertex nextr+2(u) spends

its budget to get connected to at least br+2(u) other vertices

of level at least �r+2(u). Let N be the set of these neighbors

of nextr+2(u). There are three scenarios and each leads to

a contradiction:

• If for a vertex x ∈ N , �r+2(x) > �r+2(u), then by

Observation 6, the level of the corresponding vertex

of u increases in the next iteration and we have

�r+4(u) ≥ �r+3(u) > �r+2(u) which contradicts

equality �r+4(u) = �r+2(u) of Observation 10.

• If a vertex x ∈ N is inactive, then x is in a chain by def-

inition of inactive vertices. Every vertex in a chain has a

vertex of higher level next to it, thus �r+3(x) > �r+2(x)
by Observation 6. Furthermore, since x ∈ N , we know

�r+2(x) ≥ �r+2(u). This means that nextr+3(u) has a

neighbor of strictly higher level, thus by Observation 6,

we have to have �r+4(u) > �r+2(u) which contradicts

equality �r+4(u) = �r+2(u) of Observation 10.

• If the two cases above do not hold, then after applying

Connect2Hops in iteration r + 2, nextr+2(u) has at

least br+2(u) active neighbors of level exactly �r+2(u).

1609

Furthermore, vertex nextr+2(u) itself has to be active,

or otherwise its corresponding level has to increase

in the next iteration which is a contradiction. This

means by definition that nextr+2(u) is saturated during

iteration 3. By Claim 7, with high probability the

corresponding level of every saturated vertex increases

by at least one in the next iteration, and thus we

get �r+3(u) > �r+2(u) which, again, would imply

�r+4(u) �= �r+2(u) contradicting Observation 10.

To wrap up, we showed that if the distance between the

corresponding vertices to u and v after the next 4 iterations

is not decreased to at most 1, then the corresponding level

of u and v has to go up by one with high probability.
As discussed before, Lemma 8 implies that after every

O(1) consecutive iterations of Algorithm 1, each vertex

either is (roughly speaking) connected to the vertices in its

2-hop or sees a level increase. It is easy to show that if

every vertex is connected to the vertices in its 2-hop, the

diameter of the graph is reduced by a constant factor, and

thus after O(logD) iterations every connected component

becomes a clique. Notice, however, that Lemma 8 does not

guarantee this, as for some vertices, we may only have a

level increase instead of connecting them to their 2-hop.

Let L be an upper bound on the level of the vertices

throughout the algorithm. (We later show in Lemma 15

that L = O(log logT/n n).) Since the maximum possible

level is L, each vertex does not connect 2-hops for at most

L iterations. Therefore, if for instance, within each of the

first L iterations of the algorithm, the corresponding level of

every vertex increases, we cannot have any level-increases

afterwards. Therefore within the next O(logD) iterations,

each vertex connects 2-hops and every connected component

becomes a clique. Overall, this takes O(L+logD) iterations.

In reality, however, the level increases do not necessarily

occur in bulk within the first L iterations of the algorithm.

In fact, Lemma 8 alone is not enough to show a guarantee

of O(L + logD). To get around this problem, we need to

use another crucial property of the algorithm highlighted in

Observation 6. A proof of sketch of how we combine these

two properties to get our desired bound was already given

in Section II. The following lemma formalizes this.

Lemma 11. Let L be an upper bound on the number of
times that the corresponding level of a vertex may increase
throughout the algorithm. Only O(L + logD) iterations
of the for loop in Algorithm 1 suffices to make sure that
with high probability, every remaining connected component
becomes a clique.

Proof: It will be convenient for the analysis to call

every 4 consecutive iterations of the for-loop in Algorithm 1

a super-iteration. That is, for any i ≥ 1, we define the

ith super-iteration to be the combination of performing

iterations 4i− 3, 4i− 2, . . . , 4i of Algorithm 1.
Fix two arbitrary vertices u and v in a connected com-

ponent of the original graph G. It suffices to show that

after running the algorithm for R := O(L + logD) super-

iterations, the corresponding vertices to u and v, are at

distance at most 1. To show this, we maintain a path between

u and v and update it over time. We use Pr to denote

the maintained path by the end of super-iteration r, i.e.,

the path is updated every four iterations. The initial path,

P0, is any arbitrary shortest path between u and v in the

original graph G; notice that P0 has at most D+1 vertices,

as the diameter of G is D. As we move forward, u and

v may be relabeled; nonetheless, the path Pr will be a

path from vertex next4r(u) (which is the corresponding

vertex to u by the end of iteration 4r or equivalently super-

iteration r) to vertex next4r(v). Crucially, the path Pr is

not necessarily the shortest path between next4r(v) and

next4r(u) in Gr. The reason is that the naive shortest

paths may “radically” change from one iteration to another.

Instead, we carefully construct Pr to ensure that it passes

only through the corresponding vertices of the vertices in

Pr−1, which also inductively indicates that every vertex in

Pr is in set {next4r(w) |w ∈ P0}.

To use these gradual updates, for every r, we define a

potential function Φr : V (Pr) → N that maps every vertex

of path Pr to a positive integer. The definition of function

Φr and construction of path Pr are recursively based on

Φr−1 and Pr−1. As for the base case, we have Φ0(v) = 1
for every vertex v ∈ P0. For the rest of the iterations, we

follow the following steps.

To construct Pr from Pr−1, we first apply the relabelings

of iterations 4r − 3, . . . , 4r, on the vertices in Pr−1. That

is, the sequence Pr−1 = (w1, . . . , ws) becomes Q =
(q1, . . . , qs) where qi = next4r(wi). Note that multiple

vertices in Pr−1 may have been relabeled to the same vertex

throughout these four iterations, and thus the elements in Q
are not necessarily unique. Next, we use an s-bit mask vector

K ∈ {0, 1}s to denote a subsequence3 of Q that corresponds

to the vertices in Pr. That is, Pr contains the ith element of

Q if and only if Ki = 1. To guarantee that Pr is indeed a

path and that it has some other useful properties, our mask

vector K should satisfy the following properties:

(P1) K1 = Ks = 1.

(P2) If for some i, j ∈ [s] with i �= j, we have qi = qj , then

at most one of Ki and Kj is 1.

(P3) If for some 1 ≤ i < j ≤ s with Ki = Kj = 1, there is

no k with i < k < j for which Kk = 1, then qi and qj
should have a direct edge in graph G4r.

(P4) If for some i ∈ [s], we have �4r(qi) = �4(r−1)(wi)
(i.e., the level of the corresponding vertex to wi is not

increased) and Ki = 1, then at least one of Ki−1 or

Ki+1 should be 0.4

3A subsequence is a derived from another sequence by deleting some or
no elements of it without changing the order of the remaining elements.

4K is an s-bit vector, but assume for preciseness of definition that K0 =
Ks+1 = 1.

1610

Property P1 guarantees that the path of the next iteration

remains to be between the corresponding vertices to u and

v. Property P2 ensures that we do not revisit any vertex in

Pr which is necessary if we want Pr to be a path. Moreover,

Property P3 ensures that every two consecutive vertices in Pr

are neighbors in G4r, which again, is necessary if we want

Pr to denote a path in G4r. Finally, Property P4 guarantees

that if the corresponding level of a vertex wi ∈ V4(r−1) does

not increase in iterations 4r− 3, . . . , 4r, and that qi (which

is the corresponding vertex to wi after these four iterations)

is included in path Pr, the successor and/or predecessor

vertices of wi in Pr−1 should not be included in Pr. Note

that we have to be careful that by satisfying Property P4,

we do not violate Property P3. In other words, we have to

make sure that once we drop the neighboring vertices of

wi in Pr−1 from Pr, Pr remains to be a connected path.

However, this can be guaranteed by Lemma 8 which says

if the corresponding level of a vertex does not increase in 4

iterations, its distance to the vertices in its 2-hop decreases

to at most 1. Overall, we get the following result.

Claim 12. If q1 �= qs and if |Pr−1| > 3, then with
high probability there exists a mask vector K satisfying
Properties P1-P4.

Construction of function Φr is also based on the mask

vector K that we construct Pr with. Recall that Φr is a

function from the vertices in Pr to N. Therefore, in order to

describe Φr, it suffices to define the value of Φr on vertex

qi iff Ki = 1. Assuming that Ki = 1, define li to be the

smallest number in [1, i] where for all j ∈ [li, i−1], we have

Kj = 0. In a similar way, define ri to be the largest number

in [i, s] where for all j ∈ [i+1, ri], we have Kj = 0. Having

these, we define Φr(qi) in the following way:

Φr(qi) := Φr−1(wi)+
1

2

i−1∑
j=li

Φr−1(wj)+
1

2

ri∑
j=i+1

Φr−1(wj).

(3)

The next two claims are the main properties of function

Φr that we use in proving Lemma 11.

Claim 13. For any r ≥ 0 and any vertex w ∈ Pr with level
� = �4r(w), we have Φr(w) ≥ (3/2)r−�.

Proof: We use induction on r. For the base case with

r = 0, we have Φ0(w) = 1 and since it is before the first it-

eration, we have � = 0. Thus, we have Φ0(w) ≥ (3/2)0−0 =
1. The induction hypothesis guarantees for every vertex w′

of path Pr−1 with level �′, that Φr−1(w
′) ≥ (3/2)r−1−�′ .

We show that this carries over to the vertices of Pr as well.

We would like to prove that for every vertex w ∈ Pr, we

have Φr(q) ≥ (3/2)r−�4r(q). We know by construction of Pr

from Pr−1 that vertex w of Pr is the corresponding vertex

of some vertex w′i ∈ Pr−1 with Ki = 1 where K denotes

the mask vector that we use to construct Pr from Pr−1, i.e.,

w = next44(r−1)(w
′
i). By the induction hypothesis, we have

Φr−1(w
′
i) ≥ (3/2)r−1−�4(r−1)(w

′
i). (4)

Therefore, if during super-iteration r, the corresponding

level of wi increases, i.e., if we have �4r(w) ≥ �4(r−1)(w
′
i)+

1, then we have

Φr(w) ≥ Φr−1(w
′
i)

By (4)

≥ (3/2)r−1−�4(r−1)(w
′
i)

≥ (3/2)r−�4r(w),

where the first inequality comes from the fact that Φr(wi) >
Φr−1(w

′
i) which itself is directly followed by (3). This

means that if the corresponding level of w′i remains un-

changed within super-iteration r, we have our desired bound

on Φr(w). The only scenario that is left is if the corre-

sponding level of w′i remains unchanged, i.e., �4r(w) =
�4(r−1)(w

′
i).

If the corresponding level of w′i remains unchanged during

super-iteration r, then by Property P4 of the mask vector K,

either Ki−1 = 0 or Ki+1 = 0 (or both). Suppose without

loss of generality that Ki−1 = 0. First, observe that we have

to have

�4(r−1)(w
′
i−1) ≤ �4(r−1)(w

′
i). (5)

The reason is that if level of w′i−1, which is a neighbor of

w′i in graph G4(r−1), has a higher level than w′i, then by

Observation 6, the corresponding level of w′i in the next

iteration should increase to at least �4(r−1)(w
′
i−1) which

would contradict the assumption that the corresponding level

of w′i remains unchanged for 4 iterations. This means that

by the induction hypothesis, now on vertex w′i−1 of path

Pr−1, we have

Φr−1(w
′
i−1) ≥ (3/2)r−1−�4(r−1)(w

′
i−1)

By (5)

≥ (3/2)r−1−�4(r−1)(w
′
i). (6)

Now, recall that we assumed Ki−1 = 0. This means, by

construction of Φr using (3), that we have to have

Φr(w) ≥ Φr−1(w
′
i) +

1

2
Φr−1(w

′
i−1) (7)

Therefore, we have

Φr(w) ≥ Φr−1(w
′
i) +

1

2
Φr−1(w

′
i−1) By (7).

≥
(
(3/2)r−1−�4(r−1)(w

′
i)
)
+

1

2

(
(3/2)r−1−�4(r−1)(w

′
i)
)

By induction hypothesis and (6).

=
3

2

(
(3/2)r−1−�4(r−1)(w

′
i)
)
= (3/2)r−�4(r−1)(w

′
i)

≥ (3/2)r−�4r(w). Since �4r(w) ≥ �4(r−1)(w
′
i).

Concluding the proof of Claim 13.

Claim 14. For any r ≥ 0 with |Pr| > 3, we have∑
w∈Pr

Φr(w) =
∑

w∈P0
Φr(w) ≤ D + 1.

1611

Proof: The inequality
∑

v∈P0
Φr(v) ≤ D + 1 is fol-

lowed by the fact that P0, which is a shortest path between

u and v in the original graph has at most D+1 vertices and

that Φ0(w) = 1 for any vertex w ∈ P0. Moreover, one can

easily show that for any r > 0, we have
∑

w∈Pr
Φr(w) =∑

w∈Pr−1
Φr−1(w) directly by the definition of Φr from

Φr−1 and Property P1 of the mask vectors used. Combining

these two facts via a simple induction on r proves the claim.

We are now ready to prove Lemma 11. Run the algorithm

for R := L+2 logD super-iterations. If path PR has at most

3 vertices, we are done since our goal is to show that the

distance between the corresponding vertices of u and v in

graph GR is at most 2 — which itself would imply that

every connected component in GR has diameter at most

2. In fact, we show that this should always be the case.5

Suppose for the sake of contradiction that we can continue

to super-iteration R in constructing PR and ΦR and still have

|PR| > 3. Let uR := next4R(u) be the corresponding vertex

to vertex u by the end of super-iteration R. Property P1 of

our mask vectors in constructing paths P1, . . . , PR ensures

that path PR should start with vertex uR. By Claim 13, we

have

ΦR(uR) ≥ (3/2)R−�R(uR) ≥ (3/2)R−L, (8)

where the latter inequality comes from the assumption that

L is an upper bound on the level of every vertex. Now, since

R = L+ 2 logD, we have

R− L ≥ 2 logD. (9)

Combining (8) with (9) we get

ΦR(uR) ≥ (3/2)2 logD > D + 1.

However, this contradicts with Claim 14 which guarantees

ΦR(uR) should be less than D + 1. Therefore, our initial

assumption that R can be as large as L+2 logD cannot hold;

meaning that in O(L+logD) iterations, the remaining graph

will be a collection of connected components of diameter

O(1).
Once the diameter of every remaining connected compo-

nent gets below O(1), it is easy to confirm that in the next

O(L) iterations of the algorithm, the diameter reduces to

1 (i.e., every connected component becomes a clique). To

see this, note that since the diameter is O(1), the maximum

level within each component propagates to all the vertices in

O(1) iterations. If this budget is not enough for a vertex to

connect 2-hop, its level increases by Lemma 8. This level,

again, propagates to all other vertices. Eventually, after the

next O(L) iterations, the vertices will reach the maximum

possible level and thus have enough budget to get connected

to every remaining vertex in the component.

5More precisely, the “always” here is conditional on the assumption that
our high probability events hold. This is not a problem since otherwise we
say the algorithm fails and this happens with probability at most 1/n.

Overall, it takes O(L+logD) iterations until the diameter

of every remaining connected component becomes O(1) and

after that, at most O(L) other iterations for them to become

cliques.

To continue, we give the following upper bound on the

levels.

Lemma 15. For any vertex v, the value of �(v) never
exceeds O(log logT/n n).

Proof: Observe that the only place throughout Al-

gorithm 1 that we increase the level of a vertex is in

Line 4 of the RelabelIntraLevel procedure. Within this

line, the budget of the vertex is also increased from b(v)
to b(v)1.25. Now, given that the initial budget of every

vertex is β0 = (T/n)1/2, throughout the algorithm, we

have b(v) = β1.25�(v)

0 . On the other hand, observe that

if a vertex reaches a budget of n, it will not be marked

as saturated, and thus, we do not update its level/budget

anymore. Therefore, we have b(v) = β
(1.25)�(v)

0 ≤ n which

means �(v) ≤ log1.25 logβ0
n = O(log logT/n n).

Combining the two lemmas above, we can prove the

following bound on the round complexity.

Lemma 16. With high probability the number of rounds
executed by Algorithm 1 is O(logD + log logT/n n).

Proof: By Lemma 11, it takes only O(L + logD)
iterations for Algorithm 1 to halt where L is an upper

bound on the level of the vertices. Lemma 15 shows that

L = O(log logT/n n). Therefore, the round complexity of

Algorithm 1 is O(logD + log logT/n n).

D. Analysis of Algorithm 1 – Implementation Details &
Space

Lemma 17. The total space used by Algorithm 1 is O(T).

Proof: To bound the total space used by Algorithm 1,

we have to bound the number of edges that may exist in the

graph. More specifically, we have to show that within the

Connect2Hops subroutine, we do not add too many edges to

the graph. Recall that we control this with the budgets. It is

not hard to argue that sum of budgets of remaining vertices

in each round of the algorithm does not exceed T . However,

there is a subtle problem that prevents this property to be

sufficient for bounding the number of edges in the graph.

The reason is that throughout the algorithm, the degree of a

vertex may be much larger than its budget. For instance in

the first iteration, a vertex may have a degree of up to Ω(n)
while the budgets are much smaller.

For the analysis, we require a few definitions. For every

iteration r and any vertex v ∈ Vr, we define dr(v) to be the

number of neighbors of v in Gr with level at least �r(v).
Moreover, we define the remaining budget sr(v) of v to

be max{0, br(v) − dr(v)} if v is active and 0 otherwise.

To clarify the definition, note that within the Connect2Hops

1612

subroutine, each vertex v connects to at most sr(v) new

vertices. We further define

yr := |Er|+
∑
v∈Vr

sr

to be the potential space by the end of iteration r. It is clear

by definition that yr is an upper bound on the total number

of edges in the graph after iteration r. Therefore it suffices

to show that yr = O(T) for any r. The base case follows

immediately:

Observation 18. y0 = O(T).

Proof: We have y0 = |E0| +
∑

v∈V0
sr ≤ m + n ·

(Tn)
1/2 < m + T ≤ O(T) where the last inequality comes

from the fact that T = Ω(m).
In what follows, we argue that for any r, we have

yr ≤ y0+O(T) = O(T)+O(T) = O(T) as desired. To do

this, we consider the effect of each of the three subroutines

of Algorithm 1 in any iteration r + 1 on the value of yr+1

compared to yr. We first show that the two procedures

Connect2Hops and RelabelInterLevel cannot increase the

potential space. We then give an upper bound of O(T)
on the increase in the potential space due to procedure

RelabelIntraLevel over the course of the algorithm (i.e., not

just one round).

Connect2Hops procedure: In the Connect2Hops pro-

cedure, each vertex v connects itself to at most sr(v) other

vertices of level at least �(v) in its 2-hop as described above.

These added edges, will then decrease the remaining budget

of v by definition. Therefore, for any edge that is added

to the graph, the remaining budget of at least one vertex

is decreased by 1. Thus, the total potential space cannot

increase.

RelabelInterLevel procedure: Next, within the

RelabelInterLevel procedure, we do not add any edges to

the graph. Therefore, the only way that we may increase

the potential space is by increasing the remaining budget

of the vertices. If a vertex gets relabeled to a higher

level neighbor, the algorithm marks it as inactive; this by

definition decreases its remaining budget to 0. As such,

it only suffices to consider the remaining budget of the

vertices that are not relabeled; take one such vertex v.

Recall that the remaining budget of v depends on the

level of the neighbors of v as well. The crucial property

here is that whenever a vertex is relabeled to a neighbor,

its corresponding level is increased. This implies that the

change in the corresponding level of v’s neighbors cannot

increase the remaining budget of v.

There is still one way that v’s remaining budget may

increase: if an edge {v, u} with �r(u) ≥ �r(v) is removed

from the graph. Recall that an edge may be removed from

the graph within Line 3 of RelabelInterLevel where we

remove duplicate edges or self-loops. Note that if removal

of an edge increases the remaining budget of one of its

endpoints only, then the potential space yr+1 does not

change as the increase in
∑

v sr+1(v) is canceled out by the

decrease in |Er+1|. However, we have to argue that removal

of an edge cannot increase the remaining budget of its both

end-points. To see this, observe that the graph, before the

RelabelInterLevel procedure cannot have any duplicate edges

or self-loops (as we must have removed them before) and all

these edges have been created within this iteration. Take an

edge {u, v} and suppose that there are multiple duplicates

of it. All, but at most one, of duplicates of {u, v} are the

result of the relabelings. Call these the relabeled edges and

suppose due to symmetry that any removed edge is relabeled.

Consider an edge e′ that is relabeled to {u, v} and is then

removed. At least one of endpoints of e′ must be some vertex

w which is relabeled to either u or v, say u w.l.o.g. An

equivalent procedure is to remove e′ before w is relabeled to

u and the outcome would be the same. Since u �∈ e′, there is

no way that removing e′ would change the remaining budget

of u. On the other hand, since w is relabeled and does not

survive to Vr+1 it does not have any effect on sr+1. This

means that removing any duplicate edge increases sum of

remaining budgets by at most 1 thus the potential space

cannot increase.

RelabelIntraLevel procedure: We showed that subrou-

tines Connect2Hops and RelabelInterLevel cannot increase

the potential space of the previous round. Here, we consider

the effect of the last subroutine RelabelIntraLevel. Similar

to RelabelInterLevel, we do not add any edges to the graph.

Therefore, we only have to analyze the remaining budgets

after this procedure.

First take a vertex v that is not marked as saturated.

The remaining budget of v may increase if some of its

edges are removed because of duplicates which are caused

by contracting saturated vertices to their leaders. How-

ever, precisely for the same argument that we had for the

RelabelInterLevel procedure, removal of an edge can only

increase the remaining budget of at most one of its end-

points thus this does not increase the potential space.

Next, if a vertex v is marked as saturated but is not marked

as a leader, by Claim 7 it is, w.h.p., going to get contracted

to a leader and removed from the graph. Therefore, the

only case for which the remaining budget of a vertex may

increase is for saturated vertices that are marked as leaders.

We assume the worst case. That is, we assume that if a vertex

v is saturated and is marked as a leader within iteration

r+1, then the potential space is increased by its new budget

br+1(v) (note, by definition, that remaining budget can never

be larger than budget). Instead of analyzing the effect of this

increase within one iteration, we show that the total sum of

such increases over all iterations of the algorithm is bounded

by O(T).
Let us use βi to denote the budget of vertices with level

i and use ni to denote the number of vertices that have

been selected as a leader over the course of algorithm for

1613

at least i times. In other words, ni denotes the total number

of vertices that reach a level of at least i throughout the

algorithm. We can bound sum of increases in potential space

due to the RelabelIntraLevel procedure over all iterations of

the algorithm by:
∞∑
i=1

βi · ni. (10)

Thus it suffices to bound this quantity by O(T).

Claim 19. For any i ≥ 1, we have βi = (βi−1)
1.25 and

have β0 = (T/n)1/2.

Proof: We have β0 = (T/n)1/2 for Line 1 of Algo-

rithm 1. Furthermore, we have βi = (βi−1)
1.25 due to Line 4

of RelabelIntraLevel which is the only place we increase the

level of a vertex and at the same time increase its budget

from b to b1.25.

We also have the following bound on ni:

Claim 20. For any i ≥ 1 we have ni < ni−1 · (βi−1)
−0.25.

Before describing the proof of Claim 20, let us first see

we can get an upper bound of O(T) for the value of (10).

For any i ≥ 1, we have

βi·ni
Claim 19
= (βi−1)

1.25·ni

Claim 20
< (βi−1)

1.25·(βi−1)
−0.25·ni−1 = βi−1 ·ni−

1

.
(11)

On the other hand, recall by Lemma 15 that the maximum

possible level for a vertex is L = O(log logT/n n), meaning

that for any i > L we have ni = 0; thus:

∞∑
i=1

βi·ni =
L∑

i=1

βi·ni

(11)
< L(β0·n0) ≤ O(log logn)·(T/n)1/2·n,

where the last inequality comes from the fact that β0 =
(T/n)1/2 due to Claim 19 and n0 = n by definition. More-

over, recall that T ≥ m + n logα n for some large enough

constant α, therefore (T/n)1/2 ≥ logα/2 n � O(log logn).
This means that

O(log logn) · (T/n)1/2 · n � (T/n)1/2 · (T/n)1/2 · n = T.

Therefore, the total increase over the potential space over the

course of the algorithm is at most T , meaning that indeed

for any r, yr = O(T) and thus in any iteration we have at

most O(T) edges. It is only left to prove Claim 20.

Proof of Claim 20: To prove the claim, we show that

for every vertex of level i − 1 that gets saturated and is

marked as a leader, there are (βi−1)
0.5 other unique vertices

of level i−1 that are not marked as a leader and are removed

from the graph. This is clearly sufficient to show ni ≤ ni−1 ·
(βi−1)

−0.5 � ni−1 · (βi−1)
−0.25.

Consider some arbitrary iteration of the algorithm, and

denote the set of saturated vertices and leaders with budget

βi−1 by S and L respectively. Since each saturated vertex

of budget βi−1 is chosen to be a leader independently with

probability Θ(logn
βi−1

), we have E[|L|] = Θ(logn
βi−1

|S|). On the

other hand, note that if S �= ∅, we have |S| ≥ βi−1 since a

vertex of budget βi−1 is marked as saturated in Line 1 of

RelabelIntraLevel if it has at least βi−1 active neighbors with

budget βi−1, all of which will also get marked as saturated

in Line 2 and thus join S. Therefore, |S| ≥ βi−1, meaning

that E[|L|] = Θ(logn
βi−1

|S|) = Ω(log n). Thus, by a standard

Chernoff bound argument, we get |L| = Θ(logn
βi−1

|S|) with

high probability. On the other hand, recall that by Claim 7,

every non-leader saturated vertex will be contracted to a

leader in its 2-hop. That is, all vertices in S \ L will be

removed from the graph. This, averaged over the vertices in

L, we get

|S \ L|
|L| ≥ |S| − |L|

|L| ≥ |S|
|L| − 1 ≥ |S|

Θ(logn
βi−1

|S|) − 1

≥ Θ

(
βi−1

log n

)
unique vertices that are removed from the graph per leader.

Thus, it suffices to show that
βi−1

logn � (βi−1)
0.5. For

this, observe from Claim 19 and T ≥ m + n logα n that

βi−1 ≥ (T/n)1/2 ≥ logα/2 n where α is some sufficiently

large constant. It suffices to set α > 4, say α = 5, to get

βi−1 � log2 n and thus log n � (βi−1)
0.5. This indeed

means
Θ

(βi−1

logn) � βi−1

(βi−1)0.5
= (βi−1)

0.5 as desired.

We already showed how proving Claim 20 gives an upper

bound of O(T) on the potential space of all iterations, which

by definition, is also an upper bound on the number of edges

in the graph, concluding the proof of Lemma 17.

The next lemma is important for implementing the algo-

rithm.

Lemma 21. For any r, we have
∑

v∈Vr
(br(v))

2 ≤ T .

Proof: We use induction on r. For the base case with

r = 0, we have∑
v∈V0

(b0(v))
2 =

∑
v∈V0

((T/n)1/2)2 = T.

Suppose by the induction hypothesis that∑
v∈Vr−1

(br−1(v))
2 ≤ T , we prove that∑

v∈Vr
(br(v))

2 ≤ T. For this, it suffices to show

that
∑

v∈Vr
(br(v))

2 ≤ ∑
v∈Vr−1

(br−1(v))
2. Recall that

we only increase the budgets in the RelabelIntraLevel
procedure, thus we only have to consider the effect of this

procedure. Take a vertex v ∈ Vr and with br(v) > br−1(v)
(otherwise the sum remains unchanged clearly). Note that v
must have been marked as a leader in iteration r and thus

br(v) = br−1(v)
1.25. Recall from the proof of Claim 20

above that there are at least br−1(v)
0.5 unique vertices for

v with budget br−1(v) that get removed from the graph in

iteration r. Denote the set of these vertices by U . Removing

these vertices decreases sum of budgets’ square by∑
u∈U

br−1(u)
2 = |U |(br−1(v))

2 ≥ br−1(v)
2.5. (12)

1614

On the other hand, increasing the budget of v from br−1(v)
to br−1(v)

1.25 increases the sum of budgets’ square by

(br−1(v)
1.25)2 = br−1(v)

2.5 which is not more than the

decrease due to (12). Thus, we have
∑

v∈Vr
(br(v))

2 ≤∑
v∈Vr−1

(br−1(v))
2 as desired.

Finally, we have to argue that each iteration of Algo-

rithm 1 can be implemented in O(1) rounds of MPC using

O(nδ) space per machine and with O(T) total space. Since

the proof is straightforward by known primitives, we defer

it to Appendix A.

IV. IMPROVING TOTAL SPACE TO O(m)

In the previous section, we showed how it is possible to

find connected components of an input graph in O(logD+
log logT/n n) rounds so long as T ≥ m + n logα n. In this

section, we improve the total space to O(m). The key to the

prove is an algorithm that shrinks the number of vertices by

a constant factor with high probability. More formally:

Lemma 22. There exists an MPC algorithm using O(nδ)
space per machine and O(m) total space that with high
probability, converts any graph G(V,E) with n vertices and
m edges to a graph G′(V ′, E′) and outputs a function f :
V → V ′ such that:

1) |V ′| ≤ γn for some absolute constant γ < 1.
2) |E′| ≤ |E|.
3) For any two vertices u and v in V , vertices f(u) and

f(v) in V ′ are in the same component of G′ if and only
if u and v are in the same component of G.

We emphasize that Lemma 22 shrinks the number of

vertices by a constant factor with high probability. This

is crucial for our analysis. An algorithm that shrinks the

number of vertices by a constant factor in expectation was

already known [42] but cannot be used for our purpose.

Let us first show how Lemma 22 can be used to improve

total space to O(m) proving Theorem 1.

Proof of Theorem 1: First, observe that if m ≥ n logα n
or if T ≥ m + n logα n, then the algorithm of Section III

already satisfiees the requirements of Theorem 1. Assuming

that this is not the case, we first run the algorithm of

Lemma 22 for (α log1/γ log n) iterations. Let G′(V ′, E′) be

the final graph and f be the function mapping the vertices

of the original graph to those of G′. We have

|V ′| ≤ n · γα log1/γ logn = n · log−α n.

Now, we can run the algorithm of Section III on graph G′ to

identify its connected components. The total space required

for this is

O(|E′|+ |V ′| · logα |V ′|) = O
(
m+ (n · log−α n) · logα n

)
= O(m+ n) = O(m).

We can then use function f to identify connected compo-

nents of the original graph in O(1) rounds.

Algorithm 2. Shrinks the number of vertices by a constant

factor in O(1) rounds w.h.p.

1) For each vertex v, draw a directed edge from v to its

neighbor with the minimum id.

2) If for two vertices u and v, we drew two directed edges

(u, v) and (v, u), we remove one arbitrary.

3) If a vertex has more than one incoming edge, we

remove its outgoing edge.

4) If a vertex v has more than one incoming edge, we

merge it with all its neighbors pointing to v and remove

the incoming directed edges of the neighbors of v.

5) We remove each edge with probability 2/3.

6) We merge each directed isolated edge.

Also, observe that the running time required is

O(log logn) + O(logD + log logT/n n). Given that m ≤
n logα n and T ≤ m + n logα n (as discussed above),

we have T/n = O(poly log n), thus log logT/n n =

Ω(log logn
log logn) = Ω(log log n); meaning that O(log logn)+

O(logD+log logT/n n) = O(logD+log logT/n n) and thus

the running time also remains asymptotically unchanged.

We now turn to prove Lemma 22.

Proof of Lemma 22: In order to prove this lemma,

we show that the following procedure reduces the number

of vertices of the graph by a constant factor, with high

probability. This procedure only merges some neighboring

vertices and hence maintains the connected components.

In this procedure, without loss of generality, we assume

that there is no isolated vertices. One can simply label and

remove all isolated vertices at the beginning. It is easy to

implement this procedure in 1
δ rounds using O(nδ) space

per machine and a total space of O(m) (see Appendix A

for implementation details).

Next we show that this procedure reduces the number

of vertices by a constant factor. For readability, we do not

optimize this constant. Note that in Line 1 we are adding n
edges. It is easy to see that there is no cycle of length larger

than 2 in the directed graph constructed in Line 1. Line 2

removes at most half of the edges. Moreover, it removes all

cycles of length 2. Thus by the end of Line 2 we have a

rooted forest with at least n/2 edges.

After Line 3 every vertex with indegree more than 1 has

no outgoing edges. Recall that each vertex has at most one

outgoing edge. Thus, after Line 3 we have a collection of

rooted trees where only the root may have degree more than

2. We call such trees long tail stars. Note that if we remove

the outgoing edge of a vertex v there are two incoming

edges pointing to v (which uniquely correspond to v).

Although the process of Line 3 may cascade and remove the

incoming edges of v, the following simple double counting

1615

argument bounds the number of removed edges. Note that

this argument is just to bound the number of the edges and

we do not require to run it, in order to execute our algorithm.
We put a token on each directed edge of the forest (before

running Line 3). Next we are going to move the tokens such

that (a) we never have more than two tokens on each edge,

and (b) at the end we move all tokens to the edges that

survive after Line 3. This says that at least half of the edges

(i.e., at least n/4 edges) survive Line 3.
We traverse over each rooted tree from the root to the

leaves. At each step, if the outgoing edge of a vertex v
is removed, by induction hypothesis there are at most two

tokens on the edge. Also, v has at least two incoming edges.

We move each of the tokens on the outgoing edge of v to

one of its incoming edges. Note that this is the only time

we move a token to the incoming edges of v and hence we

do not have more than two tokens on each edge as desired.
If we merge a vertex v with r incoming edges in Line 4,

we remove at most 2r directed edges (r incoming edges of

v and at most one incoming edge per each neighbor of v.

On the other hand, we decrease the number of vertices by r.

Thus, if this stage removes more than n/8 edges the number

of vertices drops to at most n − n
16 = 15

16n, as desired. To

complete the proof, we assume that at most n/8 edges are

removed in Line 4 and show that in this case Lines 5 and 6

decrease the number of vertices by a constant factor.
Note that Line 4 removes the root of all long tailed stars.

Thus after Line 4 we have a collection of directed edges.

The probability that an edge passed to Line 5 becomes an

isolated edge after sampling is at least 2
3 · 1

3 · 2
3 = 4

27 . If we

mark every third edge (starting from an end of each path),

the chance that each marked edge becomes an isolated edge

after sampling is independent of other marked edges. There

are 1
3 · n

8 = n
24 marked edges. Let X be a random variable

that indicates the number of marked edges that are isolated

after sampling. Note that E[X] ≥ 4
27

n
24 = n

162 . By applying

a simple Chernoff bound we have

Pr
[
X ≤ 0.5

n

162

]
≤ exp

(
− 0.52 n

162

2

)
= exp

(
− n

1296

)
.

Therefore, with high probability we merge at least n
324 edges

in Line 6 as desired.

V. LOWER BOUND

In this section we show a conditional lower bound on the

round complexity of finding connected components in the

MPC model. We use the following conjecture to show our

hardness result.

Conjecture 23 (2-CYCLE conjecture [61, 54, 44, 7]). Any
MPC algorithm that uses n1−Ω(1) space per machine re-
quires Ω(log n) rounds to distinguish one cycle of size n
from two cycles of size n/2 with high probability.

The conjecture above implies that the round complexity

of our algorithm is tight for graphs with diameter Ω(n).

Algorithm 3.

Input: a graph G consisting of disjoint cycles.

1) Remove each edge of G with probability 2 logn
D′ , thus

obtaining G′.
2) Find the connected components of G′ using ALG.

3) Contract each connected component of G′ to a single

vertex and return the obtained graph.

However, it leaves the possibility of having faster algorithms

for graphs with smaller diameter. For instance, one may still

wonder whether for the case of graphs with D = n1−Ω(1), an

O(1) connectivity algorithm exists or not. In what follows,

we refute this possibility and show that the round complexity

of our algorithm is indeed conditionally tight as long as

D = log1+Ω(1) n.

Theorem 2. Fix some D′ ≥ log1+ρ n for a desirably small
constant ρ ∈ (0, 1). Any MPC algorithm with n1−Ω(1) space
per machine that w.h.p. identifies each connected component
of any given n-vertex graph with diameter D′ requires
Ω(logD′) rounds, unless the 2-CYCLE conjecture is wrong.

Proof: We prove this theorem by contradiction. Assume

that there exists an algorithm ALG in the MPC model

with n1−Ω(1) space per machine that finds all connected

components of any given graph with diameter D′ w.h.p.

in o(logD′) rounds. Using this assumption we show that

the following procedure applied to a graph consisting of

sufficiently long disjoint cycles, shrinks the length of each

cycle by a factor of 4 logn
D′ w.h.p.

We first prove two properties of Algorithm 2, then show

how it helps in obtaining a contradiction.

Claim 24. Algorithm 2 takes o(logD′) rounds of MPC with
n1−Ω(1) space per machine w.h.p.

Proof: Lines 1 and 3 of Algorithm 2 can be trivially

implemented in O(1) rounds of MPC. It suffices to show

that the diameter of graph G′ is at most D′ so that running

ALG takes o(logD′) rounds.

Fix a path of length D′ + 1 in G. The probability that

all edges of this path survive Line 1 of Algorithm 2 is (1−
2 logn
D′)D

′+1 ≤ e−2 logn = n−2. There are only n such paths

in G, thus by a simple union bound, w.h.p., none of them

survives to G′; meaning that diameter of G′ is ≤ D′.

Claim 25. If G has m edges and D′ ≤ m, Algorithm 2
removes at most 4m logn

D′ edges w.h.p.

Proof: Let Z be the number of removed edges. We have

E[Z] = 2 logn
D′ · m. Observe that Z is sum of independent

Bernoulli random variables and hence by Chernoff bound

1616

we have

Pr
[
Z ≥ 2 · 2m log n

D′
]
≤ exp

(
− 2m log n

3D′
)

≤ exp
(
− 2 logn

3

)
= n−2/3,

as desired.

We iteratively run Algorithm 2 and shrink the graph until

it fits the memory of a single machine. Observe that after

each application of Algorithm 2, only those edges that were

removed from the graph will remain as the rest of the edges

are contracted to single vertices. This means by Claim 25

that if the current graph has m edges, after one application

of Algorithm 2, the resulting graph will have at most 4m logn
D′

edges. We repeat Algorithm 2 for at most

log D′
4 log n

n =
log n

log(D′
4 logn)

≤ log n

log(D′
logn)− log 4

≤ log n

log(D′
ρ

1+ρ)− log 4
≤ log n

(ρ
1+ρ) logD

′ − log 4

= O

(
log n

logD′

)

times until the number of edges in the graph drops to no(1)

where we can store the entire graph on a single machine and

solve the problem. The overall round complexity would be

O
(

logn
logD′

) · o(logD) = o(log n) which is a contradiction.

REFERENCES

[1] Kook Jin Ahn and Sudipto Guha. Access to Data

and Number of Iterations: Dual Primal Algorithms for

Maximum Matching under Resource Constraints. In

Proceedings of the 27th ACM on Symposium on Par-
allelism in Algorithms and Architectures, SPAA 2015,
Portland, OR, USA, June 13-15, 2015, pages 202–211,

2015.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.

Analyzing graph structure via linear measurements.

In Yuval Rabani, editor, Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 459–467. SIAM, 2012.

[3] Alexandr Andoni, Aleksandar Nikolov, Krzysztof

Onak, and Grigory Yaroslavtsev. Parallel algorithms for

geometric graph problems. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 574–583, 2014.

[4] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu

Wang, and Peilin Zhong. Parallel graph connectivity in

log diameter rounds. In 59th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2018.,
2018.

[5] Apache Software Foundation. Hadoop. https://hadoop.

apache.org.

[6] Sepehr Assadi, MohammadHossein Bateni, Aaron

Bernstein, Vahab S. Mirrokni, and Cliff Stein. Core-

sets meet EDCS: algorithms for matching and vertex

cover on massive graphs. Proceedings of the 30th
annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), to appear.

[7] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Mas-

sively parallel algorithms for finding well-connected

components in sparse graphs. CoRR, abs/1805.02974,

2018.

[8] Baruch Awerbuch and Y. Shiloach. New connectivity

and MSF algorithms for Ultracomputer and PRAM. In

ICPP, 1983.

[9] MohammadHossein Bateni, Soheil Behnezhad, Mahsa

Derakhshan, MohammadTaghi Hajiaghayi, Raimondas

Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affin-

ity Clustering: Hierarchical Clustering at Scale. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 6867–6877, 2017.

[10] MohammadHossein Bateni, Soheil Behnezhad, Mahsa

Derakhshan, MohammadTaghi Hajiaghayi, and Va-

hab S. Mirrokni. Brief announcement: Mapreduce

algorithms for massive trees. In 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic,

pages 162:1–162:4, 2018.

[11] Paul Beame, Paraschos Koutris, and Dan Suciu. Com-

munication steps for parallel query processing. In Pro-
ceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS
2013, New York, NY, USA - June 22 - 27, 2013, pages

273–284, 2013.

[12] Paul Beame, Paraschos Koutris, and Dan Suciu. Com-

munication Steps for Parallel Query Processing. J.
ACM, 64(6):40:1–40:58, 2017.

[13] Soheil Behnezhad, Sebastian Brandt, Mahsa Der-

akhshan, Manuela Fischer, MohammadTaghi Haji-

aghayi, Richard M. Karp, and Jara Uitto. Massively

parallel computation of matching and MIS in sparse

graphs. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019., pages

481–490, 2019.

[14] Soheil Behnezhad, Mahsa Derakhshan, Hossein Esfan-

diari, Elif Tan, and Hadi Yami. Brief Announcement:

Graph Matching in Massive Datasets. In Proceedings
of the 29th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2017, Washington DC,
USA, July 24-26, 2017, pages 133–136, 2017.

[15] Soheil Behnezhad, Mahsa Derakhshan, and Mo-

hammadTaghi Hajiaghayi. Brief announcement:

Semi-mapreduce meets congested clique. CoRR,

1617

abs/1802.10297, 2018.

[16] Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, Marina Knittel, and Hamed Saleh.

Streaming and massively parallel algorithms for edge

coloring. In 27th Annual European Symposium on
Algorithms, ESA 2019, September 9-11, 2019, Mu-
nich/Garching, Germany., pages 15:1–15:14, 2019.

[17] Guy E. Blelloch. Scans as primitive parallel operations.

In International Conference on Parallel Processing,
ICPP’87, University Park, PA, USA, August 1987.,
pages 355–362, 1987.

[18] Guy E. Blelloch. Programming parallel algorithms.

Commun. ACM, 39(3), March 1996.

[19] Guy E. Blelloch and Bruce M. Maggs. Algorithms and

theory of computation handbook. chapter Parallel Al-

gorithms, pages 25–25. Chapman & Hall/CRC, 2010.

[20] Béla Bollobás and Oliver Riordan. The diameter of a

scale-free random graph. Combinatorica, 24(1):5–34,

2004.

[21] Béla Bollobás and Oliver M Riordan. Mathematical

results on scale-free random graphs. Handbook of
graphs and networks: from the genome to the internet,
pages 1–34, 2003.

[22] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi,

Mohammad Taghi Hajiaghayi, and Saeed Seddighin.

Approximating edit distance in truly subquadratic time:

Quantum and mapreduce. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1170–1189, 2018.

[23] Paul Burkhardt. Graph connectivity in log-diameter

steps using label propagation. CoRR, abs/1808.06705,

2018.

[24] Fan Chung. Graph theory in the information age.

Notices of the AMS, 57(6):726–732, 2010.

[25] Richard Cole, Philip N. Klein, and Robert E. Tarjan.

Finding minimum spanning forests in logarithmic time

and linear work using random sampling. In SPAA,

1996.

[26] Pilu Crescenzi, Roberto Grossi, Michel Habib,

Leonardo Lanzi, and Andrea Marino. On computing

the diameter of real-world undirected graphs. Theor.
Comput. Sci., 514:84–95, 2013.

[27] Michael S. Crouch, Andrew McGregor, and Daniel

Stubbs. Dynamic graphs in the sliding-window model.

In Hans L. Bodlaender and Giuseppe F. Italiano, edi-

tors, Algorithms - ESA 2013 - 21st Annual European
Symposium, Sophia Antipolis, France, September 2-4,
2013. Proceedings, volume 8125 of Lecture Notes in
Computer Science, pages 337–348. Springer, 2013.

[28] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobo-

dan Mitrovic, Krzysztof Onak, and Piotr Sankowski.

Round Compression for Parallel Matching Algorithms.

In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 471–484,

2018.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[30] Illés J Farkas, Imre Derényi, Albert-László Barabási,

and Tamas Vicsek. Spectra of “real-world” graphs:

Beyond the semicircle law. Physical Review E,

64(2):026704, 2001.

[31] Joan Feigenbaum, Sampath Kannan, Andrew McGre-

gor, Siddharth Suri, and Jian Zhang. On graph prob-

lems in a semi-streaming model. Theor. Comput. Sci.,
348(2-3):207–216, 2005.

[32] Hillel Gazit. An optimal randomized parallel algorithm

for finding connected components in a graph. SIAM J.
Comput., 1991.

[33] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad,

Slobodan Mitrovic, and Ronitt Rubinfeld. Improved

massively parallel computation algorithms for mis,

matching, and vertex cover. In Proceedings of the
2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, pages 129–138, 2018.

[34] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed

algorithms with ramifications in massively parallel

computation and centralized local computation. CoRR,

abs/1807.06251, 2018.

[35] Joseph Gil, Yossi Matias, and Uzi Vishkin. Towards a

theory of nearly constant time parallel algorithms. In

32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1-4 October 1991,

pages 698–710, 1991.

[36] Michael T. Goodrich, Nodari Sitchinava, and Qin

Zhang. Sorting, Searching, and Simulation in the

MapReduce Framework. In Takao Asano, Shin-Ichi

Nakano, Yoshio Okamoto, and Osamu Watanabe, edi-

tors, Algorithms and Computation - 22nd International
Symposium, ISAAC 2011, Yokohama, Japan, December
5-8, 2011. Proceedings, volume 7074 of Lecture Notes
in Computer Science, pages 374–383. Springer, 2011.

[37] Lei Gu, Hui Lin Huang, and Xiao Dong Zhang. The

clustering coefficient and the diameter of small-world

networks. Acta Mathematica Sinica, English Series,

29(1):199–208, 2013.

[38] Shay Halperin and Uri Zwick. An optimal randomized

logarithmic time connectivity algorithm for the EREW

PRAM (extended abstract). In SPAA, 1994.

[39] Shay Halperin and Uri Zwick. Optimal randomized

EREW PRAM algorithms for finding spanning forests.

In J. Algorithms, 2000.

[40] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Ef-

ficient massively parallel methods for dynamic pro-

gramming. In Proceedings of the 49th Annual ACM

1618

SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages

798–811, 2017.

[41] Joseph JáJá. An Introduction to Parallel Algorithms.

Addison-Wesley, 1992.

[42] Howard J. Karloff, Siddharth Suri, and Sergei Vas-

silvitskii. A Model of Computation for MapReduce.

In Moses Charikar, editor, Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-
19, 2010, pages 938–948. SIAM, 2010.

[43] Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni,

Vibhor Rastogi, and Sergei Vassilvitskii. Connected

components in mapreduce and beyond. In Ed La-

zowska, Doug Terry, Remzi H. Arpaci-Dusseau, and

Johannes Gehrke, editors, Proceedings of the ACM
Symposium on Cloud Computing, Seattle, WA, USA,
November 3-5, 2014, pages 18:1–18:13. ACM, 2014.

[44] Jakub Lacki, Vahab S. Mirrokni, and Michal Wlo-

darczyk. Connected components at scale via local

contractions. CoRR, abs/1807.10727, 2018.

[45] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and

Sergei Vassilvitskii. Filtering: a method for solving

graph problems in mapreduce. In Rajmohan Rajaraman

and Friedhelm Meyer auf der Heide, editors, SPAA
2011: Proceedings of the 23rd Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures,
San Jose, CA, USA, June 4-6, 2011 (Co-located with
FCRC 2011), pages 85–94. ACM, 2011.

[46] Jure Leskovec and Andrej Krevl. SNAP Datasets:

Stanford large network dataset collection. http://snap.

stanford.edu/data, June 2014.

[47] Linyuan Lu. The diameter of random massive graphs.

In Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 912–921. Soci-

ety for Industrial and Applied Mathematics, 2001.

[48] Alessandro Lulli, Emanuele Carlini, Patrizio Dazzi,

Claudio Lucchese, and Laura Ricci. Fast connected

components computation in large graphs by ver-

tex pruning. IEEE Trans. Parallel Distrib. Syst.,
28(3):760–773, 2017.

[49] Seth Pettie and Vijaya Ramachandran. A randomized

time-work optimal parallel algorithm for finding a

minimum spanning forest. SIAM J. Comput., 31(6),

2002.

[50] C. A. Phillips. Parallel graph contraction. In SPAA,

1989.

[51] Chung Keung Poon and Vijaya Ramachandran. A

randomized linear work EREW PRAM algorithm to

find a minimum spanning forest. In ISAAC, 1997.

[52] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik

Chitnis, and Anish Das Sarma. Finding connected

components in map-reduce in logarithmic rounds. In

Christian S. Jensen, Christopher M. Jermaine, and

Xiaofang Zhou, editors, 29th IEEE International Con-
ference on Data Engineering, ICDE 2013, Brisbane,
Australia, April 8-12, 2013, pages 50–61. IEEE Com-

puter Society, 2013.

[53] J. Reif. Optimal parallel algorithms for integer sorting

and graph connectivity. TR-08-85, Harvard University,

1985.

[54] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R.

Wang. Shuffles and circuits: (on lower bounds for

modern parallel computation). In Christian Scheideler

and Seth Gilbert, editors, Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2016, Asilomar State Beach/Pacific Grove,
CA, USA, July 11-13, 2016, pages 1–12. ACM, 2016.

[55] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu,

Jimmy Lin, and M. Tamer Özsu. The ubiquity of large

graphs and surprising challenges of graph processing.

PVLDB, 11(4):420–431, 2017.

[56] Yossi Shiloach and Uzi Vishkin. An o(log n) parallel

connectivity algorithm. J. Algorithms, 3(1):57–67,

1982.

[57] Yossi Shiloach and Uzi Vishkin. An O(log n) parallel

connectivity algorithm. J. Algorithms, 1982.

[58] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.

A simple and practical linear-work parallel algorithm

for connectivity. In SPAA, 2014.

[59] Stergios Stergiou, Dipen Rughwani, and Kostas Tsiout-

siouliklis. Shortcutting label propagation for distributed

connected components. In Yi Chang, Chengxiang Zhai,

Yan Liu, and Yoelle Maarek, editors, Proceedings of
the Eleventh ACM International Conference on Web
Search and Data Mining, WSDM 2018, Marina Del
Rey, CA, USA, February 5-9, 2018, pages 540–546.

ACM, 2018.

[60] Uzi Vishkin. An optimal parallel connectivity algo-

rithm. Discrete Applied Mathematics, 9(2):197–207,

1984.

[61] Grigory Yaroslavtsev and Adithya Vadapalli. Mas-

sively parallel algorithms and hardness for single-

linkage clustering under �p-distances. In Jennifer G.

Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of JMLR Workshop and
Conference Proceedings, pages 5596–5605. JMLR.org,

2018.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster

Computing with Working Sets. In Erich M. Nahum and

Dongyan Xu, editors, 2nd USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud’10, Boston, MA,
USA, June 22, 2010. USENIX Association, 2010.

1619

APPENDIX

In this section we provide some details on the implemen-

tation of our algorithm in MPC. We start by reviewing some

known computational primitives in the MPC model with

strictly sublinear space per machine.

A. Primitives
The following primitives can be implemented in the MPC

model using O(nδ) space per machine. All of the algorithms

here use space proportional to the input to the primitive

(denoted by N).

• Sorting. Sorting N tuples be solved in O(1/δ)
rounds [36]. The input is a sequence of N tuples, and

a comparison function f . The output is a sequence of

N tuples that are in sorted order with respect to f .

• Filtering. Filtering N tuples can be solved in O(1/δ)
rounds. The input is a sequence of N tuples, and a

predicate function f . The output is a sequence of k
tuples such that a tuple x is in the output if and only

if f(x) = true.

• Prefix Sums. Computing the prefix sum of a sequence

of N tuples can be solved in O(1/δ) rounds [36].

The input is a sequence of tuples {t1, . . . , tN}, an

associative binary operator ⊕, and an identity element,

⊥. The output is a sequence of tuples S, s.t. Sj is equal

to tj , with an extra entry containing ⊥ ⊕j−1
i=1 tj . Note

that reductions are a special case of prefix sums.

• Predecessor. The predecessor problem on a sequence

of N tuples can be solved in O(1/δ) rounds [36, 4].

The input is a sequence of N tuples, where each tuple

has an associated value in {0, 1}. The problem is to

compute for each tuple x, the first tuple x′ that appears

before x in the sequence s.t. x′ has an associated value

of 1.

• Duplicate Removal. Given a sequence of N elements,

we can remove duplicates in the sequence in O(1/δ)
rounds by simply sorting the elements and removing

any tuple that is identical to the one before it, using

predecessor.

B. Algorithm Implementation
Here we show that each subroutine used in the algorithm

can be implemented in O(1) rounds of MPC. We start by de-

scribing the representation of the data structures maintained

by the algorithm.

Data Representation. Here we specify the representation

of several data structures that we maintain over the course

of the algorithm. All of the data structures are collections of

tuples, which have a natural distributed representation and

can be stored on any machine. In addition to each tuple we

store the round that the tuple was written. This simplifies

the process of applying updates to the sets.

• G = (V,E): The graph is represented as a set of

vertex neighborhoods. Each vertex u ∈ V stores its

neighborhood, N(u) as a set of tuples (u, v), which

can be located on any machine.

• b: budgets are represented as a collection of tuples

(u, b(u)). The levels, and active flags for each vertex

are stored similarly.

• C: The set of vertices that have been merged to some

vertex, u, are stored as a collection of (u, x) tuples.

• We represent degrees implicitly by storing

O(log logT/n n) entries for each vertex, v. The

i’th entry indicates the number of level i neighbors

that v has. We refer to this per-vertex structure as its

degree array.

Updating Budgets and Levels. We update the budgets and

levels as follows. We emit a tuple (v, b(v), r) where r is the

current iteration of the algorithm. Updates can be processed

by first sorting by decreasing lexicographic order. Next,

we can use predecessor and a filter to eliminate any tuple

(v, b(v)′, r′) that is overwritten by a tuple (v, b(v), r) where

r > r′. This can be done in O(1) rounds.

Merging and Updating Neighbor Sets and Degrees. As

the algorithm proceeds we merge active vertices to other

vertices (for example in RelabelInterLevel, when merging to

our highest level neighbor, and in RelabelIntraLevel, when

merging to a leader in our 2-hop). We assume that the output

of each merge operation is a tuple (x,m) indicating that a

currently active vertex x is merged to m.

Let m(x) be the id that x is merging to. To merge vertices,

we map over all tuples (u, v) representing the graph, to a set

of tuples (u, v, 0). We also add the tuples (x,m, 1) for each

merge input. Then we sort by the first entry in the tuple, and

run predecessor, which associates each (u, v, 0) tuple with

m(x), and lets us emit a collection of (m(x), v, 0) tuples. We

apply the same idea again on the output of the previous step,

with the first and second entries swapped, which produces a

collection of (m(v),m(x), 0) tuples (the tuples with 1 can be

filtered out). The graph on the merged vertices is produced

by swapping the components, and removing any duplicate

tuples that result from merges. We also remove self-loops

by filtering all (u, v) tuples in G where u = v.

Lastly, we can update the degree arrays by recomputing

them after each update and merge step. Updating is easily

done by sorting, and applying a prefix sum to produce the

number of level i neighbors incident to each vertex.

Since we apply a constant number of O(1) round algo-

rithms, the procedure to update all vertex sets and degrees

in the graph takes O(1) rounds in total.

Computing Degrees. Note that the degree of all vertices

can be computed by sorting all (x, y) tuples in the graph

and applying a prefix sum. Computing the degree of each

vertex can therefore be done in O(1) rounds. Alternately,

we can prefix sum the degree array for the vertex.

Since we maintain the level i degree of each vertex

explicitly in the degree arrays, we can easily compute the

1620

induced degree of a neighboring vertex when restricted to

vertices with level ≥ i. This is done by applying a prefix

sum over the tuples with degree at least i.

C. Implementing Algorithm 1

Implementing Connect2Hops. In Connect2Hops, each ac-
tive vertex, v, either fully connects itself to its 2-hop if the

size of its 2-hop has size at most b(v), or connects itself

to b(v) − d(v) neighbors arbitrarily. First for each vertex

u ∈ N(v) we compute its degree when restricted to vertices

with level at least �(v). This can be done in O(1) rounds as

described previously. Note that if the restricted degree of v
is more than b(v) we do not need to add any edges since

b(v)− d(v) ≤ 0. Thus, we assume d(v) < b(v).
Case 1. If any of v’s neighbors has a restricted degree

≥ b(v), we take the first b(v) vertices from this neighbors

degree and union them with the vertices currently in N(v).
We mark each of our current neighbors with 0 and mark

each new (incoming vertex) with 1 and remove duplicates

(ignoring the {0, 1} tag on the tuples). Next, we sort lexico-

graphically. If this set contains more than b(v) vertices, we

pick the first b(v) to include in N(v) and drop the remaining

tuples. Note that any neighbors of v are guaranteed to remain

in this set, since d(v) was initially less than b(v), and the

lexicographic sort will order our existing neighbors before

any new neighbors. The total space used in this step is

O(b(v)) per vertex, and the output is exactly b(v) neighbors

with level at least l(v).
Case 2. If each of v’s neighbors has restricted degree

< b(v), since v has less than b(v) neighbors of level at least

�(v), and each has restricted degree smaller than b(v), we

can copy each of these neighbor lists into the space available

for v, which is at least Θ(b(v)2). Finally, we can remove

duplicates for these neighbors. By using a similar tagging

idea as in the previous step, we tag each neighbor based on

whether it was present in N(v) originally. If more than b(v)
vertices are produced in this step, we pick the first b(v) of

them in the lexicographically ordered sequence.

As we use a constant number of primitive calls, each of

which require O(1) rounds, the overall round-complexity

is O(1). Furthermore, the maximum space a vertex uses is

at most O(b(v)2), which by Lemma 21, is precisely the

space we can use for each vertex while using only O(T)
total space. The output either fully connects v’s 2-hop, or

updates N(v) to have size at most b(v), adding vertices

chosen arbitrarily from v’s degree-restricted 2-hop.

Implementing RelabelInterLevel. In RelabelInterLevel, each

active vertex, v, chooses the highest level vertex h(v) in its

direct neighborhood and merges itself to it.

We can implement this procedure by having each active

vertex sort its direct neighbors by their level in descending

order. If the first neighbor in this sequence has the same

level as v, we do nothing, otherwise we have found h(v)

and merge v to h(v) by emitting a tuple (v, h(v)). We then

merge and update the neighbor sets of all vertices in G.

Overall, the algorithm runs in O(1) rounds.

Implementing RelabelIntraLevel. In RelabelIntraLevel, each

active saturated vertex, v, first samples itself to be a leader.

If it is chosen as a leader, it does nothing. Otherwise, each

non-leader saturated vertex selects a leader in its 2-hop and

merges with it. The sampling can easily be done in 1 round

of computation, assuming that each machine has a source of

randomness. For each sampled leader, we update the level

and budget of the vertex by writing the tuple (v, l(v)+1) to

the levels and (v, b(v)1.25) to the budgets. These are updated

as described earlier.

Next, we must check whether a vertex has a leader in its

2-hop, which can be implemented as follows. First, each

active saturated vertex chooses a candidate leader in its

neighborhood, breaking ties arbitrarily if multiple leaders are

present. If no candidate exists, we mark this fact with a null

value. This can be done by using mapping the graph to tuples

(u, v, l) where l ∈ {0, 1} indicates whether v is marked

as a leader. Then, for each u we inject a tuple (u,∞, 0),
perform a lexicographic sort, and compute predecessor. Each

(u,∞, 0) tuple finds the first tuple before it that contains a

1—if this tuple’s first entry starts with u, we use the second

entry as the chosen candidate for u. Otherwise, the candidate

is set to null. The candidates are a collection of (u, c) pairs,

where c is the candidate for vertex u and null otherwise.

Note that the algorithm just described computes a function

f (in this case projecting a leader) which is aggregated over

the neighbors of a vertex in O(1) rounds.

Lastly, each non-leader saturated vertex performs another

aggregation, identical to the one described in the previous

step, which gives each active saturated vertex v a leader,

l(v), in its 2-hop w.h.p. We emit tuples (v, l(v)) indicating

that v is merged with l(v). Finally we merge and update

the neighbor sets of all vertices in G. The algorithm runs

in O(1) rounds as it performs a constant number of steps,

each of which take O(1) rounds.

D. Implementing Algorithm 2

We now discuss how each subroutine used in Algorithm 2

can be implemented. Recall that this algorithm eliminates a

constant factor of the vertices in the graph w.h.p. in O(1)
rounds of MPC.

Line 1 can be implemented by using a reduction (prefix

sum with min) over the neighbors of each vertex. Line 2 can

be implemented by sorting the chosen edges, and removing

duplicates. Note that if both (u, v) and (v, u) are chosen

(say u < v), only the (u, v) edge remains. To implement

Line 3, we first compute the in-degree of each vertex, which

can be done by sorting. Next, we send the in-degrees of

each vertex to its outgoing edge, which can be done via

sorting and predecessor, and drop the outgoing edge if its in-

degree is greater than 1. To implement Line 4, each v with

1621

incoming edge set {(v, u1), . . . , (v, uk)}, we generate the

tuples {(u1, v), . . . , (uk, v)} which indicates that u1, . . . , uk

should be merged to v. Recall that we can use a previously

described merging algorithm to merge these vertices to v in

O(1) rounds. Line 5 simply drops each tuple for a remaining

edge with probability 2/3. Lastly, in Line 6 we can detect

isolated edges by computing the in-degree and out-degree of

the vertices as previously described, summing them together,

and choosing out edges of vertices whose in-degree and out-

degree sum to 1, which can be done in O(1) rounds in

total. As each step takes O(1) rounds of MPC, each call to

Algorithm 2 takes O(1) rounds in total.

In this section we show that our connectivity algorithm

can be simulated in O(logD + log logm/n n) depth on

the multiprefix CRCW PRAM, a strong model of paral-

lel computation permitting concurrent reads and concur-

rent writes. The parallel algorithm we derive performs

O((m + n)(logD + log logm/n n)) work and is therefore

nearly work-efficient. We start by describing existing PRAM
models, how the multiprefix CRCW PRAM compares to

these models, and reviewing existing results on parallel

graph connectivity algorithms from the literature.

E. Model

We state results in this section in the work-depth model
where the work is equal to the number of operations

required (equivalent to the processor-time product) and the

depth is equal to the number of time steps taken by the

computation. The related machine model used by our algo-

rithms is the parallel random access machine (PRAM). Note

that in work-depth models, we do not concern ourselves

with how processors are mapped to tasks (see for example,

Jaja [41] or Blelloch et al. [18, 19]). We now place our

machine model, the multiprefix CRCW PRAM, in context

by reviewing related PRAM models.

The arbitrary CRCW PRAM handles concurrent writes

to the same memory cell by selecting an arbitrary write to

the cell to succeed. The scan PRAM extends the arbitrary

PRAM with a unit-depth scan (prefix-sum) operation [17]

(note that in the original paper the extended model was the

EREW PRAM). The inclusion of this primitive is justified

based on the observation that a prefix-sum can be efficiently

implemented in hardware as quickly as retrieving a reference

to shared-memory. The combining CRCW PRAM combines

concurrent writes to the same memory location based on an

associative and commutative combining operator (e.g., sum,

max). The multiprefix CRCW PRAM extends the arbitrary

PRAM with a unit-depth multiprefix operation which is a

generalization of the scan operation that performs multiple

independent scans. The input to the multiprefix operation

is a sequence of key-value pairs. The multi-prefix performs

an independent scan for each key, and outputs a sequence

containing the result of each scan.

We observe that all of aforementioned PRAM models can

be work-efficiently simulated in the MPC model with strictly

sublinear space per machine, such that the number of rounds

of the resulting MPC computation is asymptotically equal

to the depth. To see this, note that the multiprefix CRCW

PRAM can work-efficiently simulate all of the other PRAM
variants, without an increase in depth. Furthermore, a mul-

tiprefix operation on n key-value pairs can be implemented

in the MPC with strictly sublinear space per machine in

O(n) space and O(1) rounds by performing independent

scan operations for each key independently in parallel (see

Section E.6 (Multiple Tasks) in [4] for implementation

details). Therefore, the MPC model with strictly sublinear

space per machine is more powerful than the PRAM variants

described above.

F. Parallel Connectivity Algorithms

Connectivity algorithms on the PRAM have a long history,

and many algorithms have been developed over the past

few decades [57, 8, 53, 50, 32, 25, 38, 39, 51, 49, 58].

Classic parallel connectivity algorithms include the hook-

and-contract algorithms of Shiloach and Vishkin [57] and

Awerbuch and Shiloach [8], and the random-mate algorithms

of Reif [53] and Phillips [50]. All of these algorithms reduce

the number of vertices in each round by a constant fraction,

but do not guarantee that the number of edges reduces

by a constant fraction, and therefore perform O(m log n)
work and run in O(log n) depth on the scan PRAM. (The

algorithms of Reif and Phillips are randomized, so the

bounds hold w.h.p.)

Historical, obtaining a work-efficient parallel connectivity

algorithm (an algorithm which performs asymptotically the

same work as the most efficient sequential algorithm) was

difficult, and progress was not made until the early 90s [32].

Many work-efficient algorithms were subsequently discov-

ered [25, 38, 39, 51, 49, 58].

We observe that all of these algorithms have at least

Ω(logn) depth, even in PRAM models stronger than the

EREW PRAM. A natural question is whether we can solve

connectivity on the CRCW PRAM faster than O(log n)
depth. Since CRCW allows for unbounded fan-in, we can

perform O(logD) rounds of matrix squaring to compute

connectivity, but this approach requires O(n3) work and is

thus work-inefficient. Is there a parallel connectivity algo-

rithm that runs in O(logD) depth while preserving work-

efficiency? Our result shows that a nearly work-efficient

PRAM algorithm with O(logD+log logm/n n) depth exists

in the multiprefix CRCW PRAM, resolving this question

affirmatively for graphs with D = Ω(polylog(n)).

G. Multiprefix CRCW Implementation of Algorithm 1

Data Representation. We represent active and next as dense

arrays of length n. We represent C using an array for each

1622

vertex. We store the graph in a sparse format, storing each

vertex’s neighbors in an array.

Sequence Primitives.
• Scan takes as input an array A of length n, an asso-

ciative binary operator ⊕, and an identity element ⊥
such that ⊥ ⊕ x = x for any x, and returns the array

(⊥,⊥⊕A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕n−2
i=0 A[i]) as well

as the overall sum, ⊥⊕n−1
i=0 A[i]. We use plus-scan to

refer to the scan operation with ⊕ = + and ⊥ = 0.

Scan can be implemented by simply dropping the keys

(or making all keys equal) and applying a multiprefix.

• Multiprefix takes as input an array A =
[(k0, v0), . . . , (kn−1, vn−1)] of length n, an

associative binary operator ⊕ and an identity

element ⊥ (similarly to scan), and returns an array

[(k0, v
′
0), . . . , (kn−1, v

′
n−1)] where the output values

associated with each key are the result of applying

an independent scan operation for the values with

each key. We use a plus-multiprefix to refer to the

multiprefix operation with ⊕ = + and ⊥ = 0.

• Remove Duplicates takes an array A of elements and

returns a new array containing the distinct elements in

A, in the same order as in A. Removing duplicates can

be implemented by using a plus-multiprefix operation

where the keys are elements, and the values are ini-

tially all 1s. Since the plus-multiprefix assigns the first

instance of each key a 0 value, the keys corresponding

to values greater than 0 are filtered out, leaving only a

single copy of each distinct element in A.

• Filter takes an array A and a predicate f and returns a

new array containing a ∈ A for which f(a) is true, in

the same order as in A. Filter can be implemented by

first mapping the array in parallel with the predicate f ,

and setting the key to 1 if f(e) is true, and 0 otherwise.

A plus-multiprefix is then used to assign each element

with a 1 key contiguous and distinct indices. Finally,

the elements where f(e) is true are copied to the output

array using the indices from the previous step.

The multiprefix operation on an array of length n costs

O(n) work and O(1) depth on the multiprefix CRCW

PRAM. Therefore, scan, filter and removing duplicates on

arrays of length n can also be implemented in O(n) work

and O(1) in this model.

We note that for convenience, the parallel algorithm we

describe below often runs multiple multiprefix operations in

parallel. These operations can usually be run using a single

multiprefix. In particular, parallel multiprefix operations can

be simulated using a single operation so long as each parallel

operation is keyed by a unique key. The idea is to prepend

the unique key to the keys within each multiprefix operation.

In our implementation, this unique key is usually the vertex

id.

Graph Primitives. Symmetrize takes as input a directed

graph G = (V,E) as a collection of tuples and outputs an

undirected graph GS in adjacency array form. The algorithm

first computes a plus-scan over the array S = [2d(i)|i ∈
[0, n)]. Each vertex v then copies its incident out-edges

into an array of size 2m at offset S[v], and copies the

edges with their direction reversed at offset S[v] + d(v).
Next, the algorithm removes duplicates from the array.

Lastly, the algorithm collects the edges incident to a vertex

contiguously. This is done by first running a plus-multiprefix,

M , where the keys are the first component of each tuple

and the value is 1. Next, the algorithm computes S, a plus-

scan over the distinct keys, where the value is degree of the

vertex, which is obtained from the result of the multiprefix

within each key. The algorithm finally allocates an array

proportional to the output of this scan, and copies edge

i into the location S[fst(i)] + M [i] where fst(i) is the

first component of edge i. The work of this operation is

O(|E|+ |V |) and the depth is O(1).

Contract takes as input an undirected graph G = (V,E)
in adjacency array form and a mapping m : V → V
s.t. either m(u) = u or m(u) = v where v ∈ NG(u).
The contraction algorithm constructs the graph G′ =
{(m(u),m(v)) | (u, v) ∈ E(G)} with duplicate edges

and self-loops removed. The contraction algorithm is im-

plemented as follows. The algorithm first uses a plus-scan

to count the number of remaining vertices, n′. Next, it

computes d′(v), the degree of the v in G′ using a plus-

multiprefix (or a combining write, which can be work-

efficiently simulated in O(1) depth). It then maps each edge

(u, v) ∈ E(G) to (m(u),m(v)), and uses a multiprefix

operation to remove duplicates, which takes O(m) work and

O(1) depth. After this step, edges exist in both directions and

all edges incident to a vertex m(u) are stored contiguously.

The work of this operation is O(|E|+ |V |) and the depth is

O(1).

Implementing Connect2Hops. Recall that in this step every

active vertex either fully connects to its 2-hop if the size of

its 2-hop is at most b(v), or connects to C = min(b(v) −
d(v), |H(v)|) neighbors arbitrarily. For ease of discussion

we assume that we must connect to exactly b(v) neighbors.

Case 1: ∀u ∈ N(v), d(u) ≤ b(v). In this case, the

algorithm must set v’s neighbors to N(v) ∪ ∪u∈N(v)N(u).
One simple idea (implementable on the arbitrary PRAM)

is to initialize a parallel hash-table and insert all neighbors

into the table, which takes O(b(v)2) work and O(log∗ n)
depth [35]. After insertion, all elements in the table will

be distinct. However, using parallel hashing increases the

depth by a multiplicative factor of O(log∗ n). Instead, our

algorithm uses the multiprefix operation to copy the neigh-

bor’s neighbors into an array and remove duplicates from

this array in O(1) depth.

Concretely, the algorithm first writes the degree of each of

its neighbors (including itself) into an array S, and computes

1623

a plus-scan over this array. Next, it allocates an array Ev

with size proportional to the result of the scan, and copies

the neighbors of the ith neighbor to the sub-array Ev[S[i]].
Note that the array Ev now contains N(v)∪∪u∈N(v)N(u),
possibly with duplicates. We produce the new neighbors of

v by removing duplicates from Ev .

We now address how to add edges discovered by a vertex

u in the Connect2Hops procedure the endpoint, v. Note that

v may already have degree at least b(v), but still have edges

added to it by vertices that discover v in this procedure.

This operation is implemented by simply symmetrizing the

graph.

Case 2: ∃u ∈ N(v) s.t. �(u) > �(v). This case can be

checked in constant depth using a concurrent write. Note that

if v has any higher-level neighbors it will become inactive

on this round in RelabelInterLevel so we can quit.

Case 3: ∃u ∈ N(v) s.t. d(u) > b(v). This case can also be

checked using an arbitrary write. In this case, the algorithm

copies b(v) neighbor ids from the neighbor v with degree

> b(u). It then removes duplicates, and adds edges from

the chosen endpoints to itself by symmetrizing the graph, as

before.

Implementing RelabelInterLevel. Recall that in

RelabelInterLevel, each active vertex, v, chooses the

highest level vertex h(v) in its direct neighborhood and

merges itself to it by updating next. The maximum value

can be selected either using a scan with the max operation.

An arbitrary neighbor with the maximum level in v’s direct

neighborhood can then be selected using a concurrent

write. We then contract the graph using the contraction

primitive where m = next. Finally, we update C. Since

each vertex is uniquely stored in C(v), we do not need to

remove duplicates in this step and simply flatten the sets

C(v)∀m(v) = u to be contiguous, which can be done using

a plus-scan and a parallel copy.

Implementing RelabelIntraLevel. Detecting whether an ac-

tive vertex, v is saturated is done by computing a prefix

sum over its neighbors, filtering out neighbors with degree

less than b(v). In a second synchronous step, each vertex

v checks whether it has a neighbor u with l(u) = l(v)
that is marked as saturated, and if so marks itself as

saturated by performing an arbitrary write. We then use

the processor’s internal randomness to sub-sample vertices

as leaders. Vertices which successfully become leaders do

nothing. The non-leader saturated vertices select a leader in

their 2-hop as follows.

First, each vertex checks if it has a leader in its di-

rect neighborhood, which can be done by mapping over

the neighbors and using a concurrent write. Vertices that

successfully find a leader in their neighborhood indicate

mark themselves with the selected neighbor. Each vertex

that failed the previous step re-check their direct neighbor-

hood, and pick an arbitrary leader chosen by some marked

neighbor, again using a concurrent write (such a neighbor

exists w.h.p.). Finally, we contract the graph using the

contraction primitive, and update C using the same method

as in RelabelInterLevel.

H. Parallel Implementation of Algorithm 2

Recall that this algorithm eliminates a constant factor of

the vertices in the graph w.h.p. per round. We discuss how

to implement each step of the algorithm on the arbitrary

PRAM. Step 1 can be implemented work-efficiently using

the minimum algorithm in O(d(v)) work and O(1) depth

w.h.p. Step 2 can be implemented in O(n + m) work and

O(1) depth by checking each neighbor. Similarly, Step 3 can

be implemented in two PRAM rounds by first arbitrarily

writing any neighbor pointing to the vertex u, and in the

second round writing another edge if it differs from the first

one. The step also takes O(m + n) work and O(1) depth.

Step 4 can be checked similarly. The merge is handled using

the contraction primitive given above which costs O(m+n)
work and O(1) depth. Step 5 can be done in O(m + n)
work and O(1) depth using a random source within each

processor. Finally, we can detect isolated edges in Step 6

similarly to Step 3 above, and merge these edges using graph

contraction in O(m + n) work and O(1) depth using the

contraction algorithm described above. In total, one round

of Algorithm 2 costs O(m+ n) work and O(1) depth.

I. Cost in the multiprefix CRCW PRAM Model

Theorem 3. There is a multiprefix CRCW PRAM algo-
rithm that given a graph with diameter D, identifies its
connected components in O(logD+log logm/n n) depth and
O((m+ n)(logD + log logm/n n)) work. The algorithm is
randomized, succeeds with high probability and does not
require prior knowledge of D.

Proof: Observe that in our parallel implementation, in

each iteration a vertex never performs more than O(b(v)2)
work. By Lemma 21 the total work is therefore O(T) per

round. All other operations in an iteration such as contraction

and symmetrization cost O(m+ n) work. As the algorithm

performs O(logD+log logm/n n) rounds w.h.p., the overall

work is O(T (logD+log logm/n n)) = O((m+n)(logD+
log logm/n n)) w.h.p. for T = O(m+ n).

By Lemma 16 the overall depth is O(logD +
log logm/n n) w.h.p. since each round of the algorithm is

implemented in O(1) depth.

1624

