
The Average-Case Complexity of Counting Cliques
in Erdős-Rényi Hypergraphs

Enric Boix Adserà

EECS, MIT
Cambridge, USA
eboix@mit.edu

Matthew Brennan

EECS, MIT
Cambridge, USA

brennanm@mit.edu

Guy Bresler

EECS, MIT
Cambridge, USA
guy@mit.edu

Abstract—The complexity of clique problems on Erdős-Rényi
random graphs has become a central topic in average-case
complexity. Algorithmic phase transitions in these problems
have been shown to have broad connections ranging from
mixing of Markov chains and statistical physics to information-
computation gaps in high-dimensional statistics. We consider
the problem of counting k-cliques in s-uniform Erdős-Rényi
hypergraphs G(n, c, s) with edge density c and show that its
fine-grained average-case complexity can be based on its worst-
case complexity. We prove the following:
• Dense Erdős-Rényi hypergraphs: Counting k-cliques on

G(n, c, s) with k and c constant matches its worst-case
complexity up to a polylog(n) factor. Assuming ETH, it
takes nΩ(k) time to count k-cliques in G(n, c, s) if k and
c are constant.

• Sparse Erdős-Rényi hypergraphs: When c = Θ(n−α), for
each fixed α our reduction yields different average-case
phase diagrams depicting a tradeoff between runtime and
k. Assuming the best known worst-case algorithms are
optimal, in the graph case of s = 2, we establish that the
exponent in n of the optimal running time for k-clique
counting in G(n, c, s) is ωk

3
− Cα

(
k
2

)
+ Ok,α(1), where

ω
9
≤ C ≤ 1 and ω is the matrix multiplication constant.

In the hypergraph case of s ≥ 3, we show a lower bound
at the exponent of k−α

(
k
s

)
+Ok,α(1) which surprisingly is

tight against algorithmic achievability exactly for the set
of c above the Erdős-Rényi k-clique percolation threshold.

Our reduction yields the first known average-case hardness
result on Erdos-Renyi hypergraphs based on a worst-case hard-
ness assumption. We also analyze several natural algorithms
for counting k-cliques in G(n, c, s) that establish our upper
bounds in the sparse case c = Θ(n−α).

Keywords-average-case complexity; fine-grained complex-
ity; worst-case-to-average-case reductions; graph algorithms;
Erdős-Rényi hypergraphs

I. INTRODUCTION

We consider the average-case complexity of counting k-

cliques in s-uniform Erdős-Rényi hypergraphs G(n, c, s),
where every s-subset of the n vertices is a hyperedge inde-

pendently with probability c. Our main result is a worst-case

to average-case reduction for counting k-cliques on worst-

case hypergraphs given a blackbox solving the problem on

G(n, c, s) with low error probability. This reduction yields

different average-case lower bounds for counting k-cliques

in G(n, c, s) in the dense and sparse cases of c = Θ(1)

and c = Θ(n−α), with tradeoffs between runtime and c,
based on the worst-case complexity of counting k-cliques.

We also show that these average-case lower bounds often

match algorithmic upper bounds.

The complexity of clique problems on Erdős-Rényi ran-

dom graphs has become a central topic in average-case

complexity, discrete probability and high-dimensional statis-

tics. While the Erdős-Rényi random graph G(n, 1/2) con-

tains cliques of size roughly 2 log2 n, a longstanding open

problem of Karp is to find a clique of size (1 + ε) log2 n
in polynomial time for some constant ε > 0 [1]. Natu-

ral polynomial time search algorithms and the Metropolis

process find cliques of size approximately log2 n but not

(1+ε) log2 n [1], [2], [3], [4], [5]. A related line of research

shows that local algorithms fail to find independent sets of

size (1 + ε)n ln(d)/d in several random graph models with

average degree d similar to Erdős-Rényi, even though the

largest independent set has size roughly 2n ln(d)/d [6], [7],

[8]. In [9], it is shown that any algorithm probing n2−δ

edges of G(n, 1/2) in � rounds finds cliques of size at most

(2− ε) log2 n.

A large body of work has considered planted clique

(PC), the problem of finding a k-clique randomly planted in

G(n, 1/2). Since its introduction in [10] and [3], a number of

spectral algorithms, approximate message passing, semidef-

inite programming, nuclear norm minimization and several

other polynomial-time combinatorial approaches have been

proposed and all appear to fail to recover the planted clique

when k = o (
√
n) [11], [12], [13], [14], [15], [16], [17],

[18]. It has been shown that cliques of size k = o (
√
n)

cannot be detected by the Metropolis process [3], low-degree

sum of squares (SOS) relaxations [19] and statistical query

algorithms [20]. Furthermore, the conjecture that PC with

k = o (
√
n) cannot be solved in polynomial time has been

used as an average-case assumption in cryptography [21].

An emerging line of work also shows that the PC conjecture

implies a number of tight statistical-computational gaps,

including in sparse PCA, community detection, universal

submatrix detection, RIP certification and low-rank matrix

completion [22], [23], [24], [25], [26], [27], [28], [29].

Recently, [30] also showed that super-polynomial length

1256

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00078

regular resolution is required to certify that Erdős-Rényi

graphs do not contain cliques of size k = o(n1/4).

Rossman [31], [32] has studied the classical k-CLIQUE

decision problem on sparse Erdős-Rényi random graphs G ∼
G(n, c) at the critical threshold c = Θ

(
n−2/(k−1)

)
, where

the existence of a k-clique occurs with probability bounded

away from 0 and 1. The natural greedy algorithm that selects

a random sequence of vertices v1, v2, . . . , vt such that vi+1 is

a random common neighbor of v1, v2, . . . , vi can be shown

to find a clique of size �(1+ε)k/2� if repeated nε2k/4 times.

This yields an O
(
nk/4+O(1)

)
time algorithm for k-CLIQUE

on G(n, c). Rossman showed that bounded depth circuits

solving k-CLIQUE on G(n, c) must have size Ω(nk/4) in

[31] and extended this lower bound to monotone circuits in

[32]. A survey of this and related work can be found in [33].

All of the lower bounds for the clique problems on Erdős-

Rényi random graphs above are against restricted classes

of algorithms such as local algorithms, regular resolution,

bounded-depth circuits, monotone circuits, the SOS hierar-

chy and statistical query algorithms. One reason for this

is that there are general obstacles to basing average-case

complexity on worst-case complexity. For example, natural

approaches to polynomial-time worst-case to average-case

reductions for NP-complete problems fail unless coNP ⊆
NP/poly [34], [35], [36]. The objective of this work is

to show that this worst-case characterization of average-

case complexity is possible in a fine-grained sense for the

problem of counting k-cliques in s-uniform Erdős-Rényi

hypergraphs G(n, c, s) with edge density c. We now give

an overview of our contributions.

A. Overview of Main Results

We provide two complementary main results on the fine-

grained average-case complexity of counting k-cliques in

G(n, c, s). The precise formulations of the problems we

consider are in Section II-A.

Worst-case to average-case reduction: We give a worst-

case to average-case reduction from counting k-cliques in

worst-case s-uniform hypergraphs to counting k-cliques

in hypergraphs drawn from G(n, c, s). This allows us to

base the average-case fine-grained complexity of k-clique

counting over Erdős-Rényi hypergraphs on its worst-case

complexity, which can be summarized as follows. Counting

k-cliques in worst-case hypergraphs is known to take nΩ(k)

time assuming the Exponential Time Hypothesis (ETH)1 if

k = O(1) [37]. The best known worst-case algorithms up to

subpolynomial factors are the O
(
nω�k/3�) time algorithm

of [38] in the graph case of s = 2 and exhaustive O(nk)
time search on worst-case hypergraphs with s ≥ 3. Here,

ω ≈ 2.373 denotes the best known matrix multiplication

constant.

1ETH asserts that 3-SAT in the worst-case takes at least 2cn time to
solve for some constant c > 0.

Our reduction is the first worst-case to average-case

reduction to Erdős-Rényi hypergraphs. It has different im-

plications for the cases of dense and sparse hypergraphs, as

described next.

1) Dense Erdős-Rényi Hypergraphs. When k and c are

constant, our reduction constructs an efficient k-clique

counting algorithm that succeeds on a worst-case input

hypergraph with high probability, using polylog(n)
queries to an average-case oracle that correctly counts

k-cliques on a 1 − 1/ polylog(n) fraction of Erdős-

Rényi hypergraphs drawn from G(n, c, s). This essen-

tially shows that k-clique counting in the worst-case

matches that on dense Erdős-Rényi hypergraphs. More

precisely, k-clique counting on G(n, c, s) with k, c and

s constant must take Ω̃
(
nω�k/3�) time when s = 2 and

Ω̃(nk) time when s ≥ 3, unless there are faster worst-

case algorithms. Furthermore, our reduction shows

that it is ETH-hard to k-clique count in no(k) time

on G(n, c, s) with k, c and s constant.

2) Sparse Erdős-Rényi Hypergraphs. Our reduction

also applies with a different multiplicative slowdown

and error tolerance to the sparse case of c = Θ(n−α),
where the fine-grained complexity of k-clique count-

ing on G(n, c, s) is very different than on worst-

case inputs. Our reduction implies fine-grained lower

bounds of Ω̃
(
nω�k/3�−α(k2)

)
when s = 2 and

Ω̃
(
nk−α(ks)

)
when s ≥ 3 for inputs drawn from

G(n, c, s), unless there are faster worst-case algo-

rithms. We remark that in the hypergraph case of

s ≥ 3, this lower bound matches the expected number

of k-cliques up to polylog(n) factors.

Precise statements of our results can be found in Section

II-B. For simplicity, our results should be interpreted as

applying to algorithms that succeed with probability 1 −
(log n)−ω(1) in the dense case and 1−n−ω(1) in the sparse

case, although our results apply in a more general context,

as discussed in Section II-B. We discuss the necessity of this

error tolerance and the multiplicative slowdown in our worst-

case to average-case reduction in Section II-B. We also give

a second worst-case to average-case reduction for computing

the parity of the number of k-cliques which has weaker

requirements on the error probability for the blackbox on

G(n, c, s) in the dense case of c = 1/2.
We provide an overview of our multi-step worst-case

to average-case reduction in Section I-B. The steps are

described in detail in Section III.
Algorithms for k-clique counting on G(n, c, s): We

also analyze several natural algorithms for counting k-

cliques in sparse Erdős-Rényi hypergraphs. These include

an extension of the natural greedy algorithm mentioned pre-

viously from k-CLIQUE to counting k-cliques, a modification

to this algorithm using the matrix multiplication step of

[38] and an iterative algorithm achieving nearly identical

1257

guarantees. These algorithms count k-cliques in G(n, c, s)
when c = Θ(n−α) in time:

• Õ
(
nk+1−α(ks)

)
if s ≥ 3 and k < τ + 1;

• Õ
(
nτ+2−α(τ+1

s)
)

if s ≥ 3 and τ +1 ≤ k ≤ κ+1; and

• Õ
(
nω�k/3�+ω−ωα(�k/3�

2)
)

if s = 2 and k ≤ κ+ 1.

Here, τ and κ are the largest positive integers satisfying that

α
(

τ
s−1

)
< 1 and α

(
κ

s−1

)
< s. We restrict our attention to k

with k ≤ κ+ 1 since the probability that the largest clique

in G has size ω(G) > κ + 1 is 1/poly(n). In the graph

case of s = 2, these thresholds correspond to α < τ−1

and α < 2κ−1 ≤ 2
k−1 . At k = τ + 1, the first threshold

becomes α < 1
k−1 which is exactly the k-clique percolation

threshold [39], [40], [41]. Given a hypergraph G, define two

k-cliques of G to be adjacent if they share (k − 1) of their

k vertices. This induces a hypergraph Gk on the set of k-

cliques. For graphs G drawn from G(n, c), [39] introduced

the k-clique percolation threshold of c = 1
k−1 ·n−

1
k−1 , above

which a giant component emerges in Gk. This threshold and

extensions were rigorously established in [42]. Following

the same heuristic as in [39], our threshold τ + 1 is a

natural extension of the k-clique percolation threshold to

the hypergraph case of s ≥ 3.

A comparison of our algorithmic guarantees and average-

case lower bounds based on current best known worst-case

algorithms for counting k-cliques is shown in Figure 1.

1) Graph Case (s = 2). In the graph case, our lower and

upper bounds have the same form and show that the

exponent in the optimal running time is ωk
3 −Cα

(
k
2

)
+

Ok,α(1) where ω
9 ≤ C ≤ 1 as long as k ≤ κ + 1 =

2α−1+1. As shown in Figure 1, our upper and lower

bounds approach each other for k small relative to

κ+ 1.

2) Hypergraph Case (s ≥ 3). In the hypergraph case

of s ≥ 3, the exponents in our lower and upper

bounds are nearly identical at k − α
(
k
s

)
+ Ok,α(1)

up to the k-clique percolation threshold. After this

threshold, our lower bounds slowly deteriorate relative

to our algorithms until they become trivial at the clique

number of G by k = κ+ 1.

Because we consider sparse Erdős-Rényi hypergraphs, for

each n, k, and s we actually have an entire family of

problems parametrized by the edge probability c and the

behavior changes as a function of c; this is the first worst-

to-average-case hardness result we are aware of for which

the complexity of the same problem over worst-case ver-

sus average-case inputs is completely different and can be

sharply characterized over the whole range of c starting from

the same assumption. It is surprising that our worst-case to

average-case reduction techniques – which range from the

self-reducibility of polynomials to random binary expansions

– together yield tight lower bounds matching our algorithms

in the hypergraph case. The fact that these lower bounds

are tight exactly up the k-clique percolation threshold, a

natural phase transition in the Erdős-Rényi model, is also

unexpected a priori.

Two interesting problems left open after our work are to

show average-case lower bounds with an improved constant

C in the graph case and to show tight average-case lower

bounds beyond the k-clique percolation threshold in the case

s ≥ 3. These and other open problems as well as some

extensions of our methods are discussed in Section VI.

B. Overview of Reduction Techniques

For clarity of exposition, in this section we will restrict

our discussion to the graph case s = 2, as well as the case

of constant k.

A key step of our worst-case to average-case reduction

uses the random self-reducibility of multivariate low-degree

polynomials – i.e., evaluating a polynomial on any worst-

case input can be efficiently reduced to evaluating it on

several random inputs. This result follows from a line

of work [43], [34], [44], [45] that provides a method to

efficiently compute a polynomial P : FN → F of degree

d ≤ |F|/20 on any worst-case input x ∈ F
N , given an oracle

P̃ : FN → F that agrees with P on a 1
2 + 1

poly(N) fraction

of inputs. Thus, for any low-degree polynomial over a large

enough finite field, evaluating the polynomial on a random

element in the finite field is roughly as hard as evaluating

the polynomial on any adversarially chosen input.

With the random self-reducibility of polynomials in mind,

a natural approach is to express the number of k-cliques in

a graph as a low-degree polynomial of the n× n adjacency

matrix A

P (A) =
∑
S⊂[n]
|S|=k

(∏
i<j∈S

Aij

)
.

This polynomial has been used in a number of papers,

including by Goldreich and Rothblum [46] to construct a

distribution on dense graphs for which counting k-cliques

is provably hard on average. However, the distribution they

obtain is far from Erdős-Rényi and also their approach does

not yield tight bounds for sparse graphs. The significant

obstacle that arises in applying the random self-reducibility

of P is that one needs to work over a large enough finite

field Fp, so evaluating P on worst-case graph inputs in

{0, 1}(n2) only reduces to evaluating P on uniformly random

inputs in F
(n2)
p . In order to further reduce to evaluating P on

graphs, given a random input A ∈ F
(n2)
p [46] uses several

gadgets (including replacing vertices by independent sets

and taking disjoint unions of graphs) in order to create a

larger unweighted random graph A′ whose k-clique count

is equal to k! · P (A) (mod p) for appropriate p. However,

any nontrivial gadget-based reduction seems to have little

hope of arriving at something close to the Erdős-Rényi

1258

Graphs (s = 2)

feasible

infeasible

open

ωk
3
− α

(k
2

)

ωk
3
−

ωα
9

(k
2

)

k

logn T

ω(G)
k

logn T

k-clique percolation ω(G)

Hypergraphs (s ≥ 3)

feasible

infeasible

open

k
− α
(k

s

)

τ + 1− α
(τ+1

s

)

Figure 1. Comparison of our algorithms and average-case lower bounds for counting k-cliques in sparse Erdős-Rényi Hypergraphs G(n, c, s) with
c = Θ(n−α). Green denotes runtimes T feasible for each k, blue denotes T infeasible given that the best known worst-case algorithms are optimal and
gray denotes T for which the complexity of counting k-cliques is open after this work. The left plot shows the graph case of s = 2 and the right plot
shows the hypergraph case of s ≥ 3. For simplicity, all quantities shown are up to constant Ok,α(1) additive error.

distribution, because gadgets inherently create non-random

structure.

We instead consider a different polynomial for graphs on

nk vertices with nk × nk adjacency matrix A,

P ′(A) =
∑

v1∈[n]

∑
v2∈[2n]\[n]

· · ·
∑

vk∈[kn]\[(k−1)n]

∏
1≤i<j≤k

Avivj
.

The polynomial P ′ correctly counts the number of k-cliques

if A is k-partite with vertex k-partition [n] � ([2n] \ [n]) �
· · ·�([kn]\[(k−1)n]). We first reduce clique-counting in the

worst case to computing P ′ in the worst case; this is a simple

step, because it is a purely worst-case reduction. Next,

we construct a recursive counting procedure that reduces

evaluating P ′ on Erdős-Rényi graphs to counting k-cliques

in Erdős-Rényi graphs. Therefore, it suffices to prove that if

evaluating P ′ is hard in the worst case, then evaluating P ′

on Erdős-Rényi graphs is also hard.

Applying the Chinese Remainder theorem as well as

the random self-reducibility of polynomials, computing P ′

on worst-case inputs in {0, 1}(nk
2) reduces to computing

P ′ on several uniformly random inputs in F
(nk

2)
p , for sev-

eral different primes p each on the order of Θ(log n).
The main question is: how can one evaluate P ′ on in-

puts X ∼ Unif

[
F
(nk

2)
p

]
using an algorithm that evaluates

P ′ on G(n, c, 2) Erdős-Rényi graphs (i.e., inputs Y ∼
Ber(c)⊗(

nk
2))?

To this end we introduce a method for converting fi-

nite field elements to binary expansions: an efficient re-

jection sampling procedure to find Y (0), . . . , Y (t) (for t =
poly(c−1(1 − c)−1 log(n))) such that each Y (i) is close

in total variation to Ber(c)⊗(
nk
2), and such that X =∑t

i=0 2
iY (i). The correctness of the rejection sampling

procedure is proved via a finite Fourier analytic method

that bounds the total variation convergence of random biased

binary expansions to the uniform distribution over residues

in Fp. This argument can be found in Section IV, and as

discussed there the bounds we obtain are essentially optimal

in their parameter dependence and this in turns yields near-

optimal slowdown in the reduction. The technique appears

likely to also be useful for other problems.

Now we algebraically manipulate P ′ as follows:

P ′(X) =
∑

v1∈[n]

∑
v2∈[2n]\[n]

· · ·
∑

vk∈[kn]\[(k−1)n]

∏
1≤i<j≤k

⎛
⎝ ∑

l∈{0,...,t}
2l · Y (l)

vivj

⎞
⎠

=
∑

f∈{0,...,t}(
k
2)

⎛
⎝ ∏

1≤i≤j≤k

2fij

⎞
⎠

×
⎛
⎝ ∑

v1∈[n]
· · ·

∑
vk∈[kn]\[(k−1)n]

∏
1≤i<j≤k

Y (fij)
vivj

⎞
⎠

=
∑

f∈{0,...,t}(
k
2)

⎛
⎝ ∏

1≤i≤j≤k

2fij

⎞
⎠P ′

(
Y (f)

)
.

Here Y (f) is the nk-vertex graph with entries given by

Y
(fāb̄)
ab for 1 ≤ a < b ≤ nk, where ā =
a/n� and

b̄ =
b/n�. We thus reduce the computation of P ′(X)
to the computation of a weighted sum of poly(c−1(1 −
c)−1 log(n))(

k
2) different evaluations of P ′ at graphs close

in total variation to Erdős-Rényi G(n, c, 2) graphs. This

concludes our reduction. Notice that working with P ′ instead

of P was necessary for the second equality.

We also give a different worst-case to average-case reduc-

tion for determining the parity of the number of k-cliques

in Erdős-Rényi hypergraphs, as discussed in Sections II-B

and III.

1259

C. Related Work on Worst-Case to Average-Case Reductions

The random self-reducibility of low-degree polynomials

serves as the basis for several worst-case to average-case

reductions found in the literature. One of the first applica-

tions of this method was to prove that the permanent is hard

to evaluate on random inputs, even with polynomially-small

probability of success, unless P#P = BPP [47], [48]. (Under

the slightly stronger assumption that P#P �= AM, and with

different techniques, [49] proved that computing the perma-

nent on large finite fields is hard even with exponentially

small success probability.) Recently, [50] used the poly-

nomial random self-reducibility result in the fine-grained

setting in order to construct polynomials that are hard to

evaluate on most inputs, assuming fine-grained hardness

conjectures for problems such as 3-SUM, ORTHOGONAL-

VECTORS, and/or ALL-PAIRS-SHORTEST-PATHS. The ran-

dom self-reducibility of polynomials was also used by

Gamarnik [51] in order to prove that exactly computing the

partition function of the Sherrington-Kirkpatrick model in

statistical physics is hard on average.

If a problem is random self-reducible, then random in-

stances of the problem are essentially as hard as worst-case

instances, and therefore one may generate a hard instance

of the problem by simply generating a random instance.

Because of this, random self-reducibility plays an important

role in cryptography: it allows one to base cryptographic

security on random instances of a problem, which can

generally be generated efficiently. A prominent example

of a random-self reducible problem with applications to

cryptography is the problem of finding a short vector in

a lattice. In a seminal paper, Ajtai [52] gave a worst-case

to average-case reduction for this short-vector problem. His

ideas were subsequently applied to prove the average-case

hardness of the Learning with Errors (LWE) problem, which

underlies lattice cryptography [52], [53]. A good survey

covering worst-case to average-case reductions in lattice

cryptography is [54].

There are known restrictions on problems that are self-

reducible. For example, non-adaptive worst-case to average-

case reductions for NP-complete problems fail unless

coNP ⊆ NP/poly [34], [35], [36].

D. Notation and Preliminaries

A s-uniform hypergraph G = (V (G), E(G)) consists of

a vertex set V (G) and a hyperedge set E(G) ⊆ (
V (G)

s

)
. A

k-clique C in G is a subset of vertices C ⊂ V (G) of size

|C| = k such that all of the possible hyperedges between

the vertices are present in the hypergraph:
(
C
s

) ⊆ E(G). We

write clk(G) to denote the set of k-cliques of the hypergraph

G. One samples from the Erdős-Rényi distribution G(n, c, s)
by independently including each of the

(
n
s

)
hyperedges with

probability c.
We denote the law of a random variable X by L(X).

We use T (A, n) to denote the worst-case run-time of an

algorithm A on inputs of size parametrized by n. We

work in the Word RAM model of computation, where the

words have O(log n) bits. All algorithms in this paper are

randomized, and each (possibly biased) coin flip incurs

constant computational cost.

II. PROBLEM FORMULATIONS AND AVERAGE-CASE

LOWER BOUNDS

A. Clique Problems and Worst-Case Fine-Grained Conjec-
tures

In this section, we formally define the problems we con-

sider and the worst-case fine-grained complexity conjectures

off of which our average-case lower bounds are based. We

focus on the following computational problems.

Definition II.1. #(k, s)-CLIQUE denotes the problem of
counting the number of k-cliques in an s-uniform hyper-
graph G.

Definition II.2. PARITY-(k, s)-CLIQUE denotes the problem
of counting the number of k-cliques up to parity in an s-
uniform hypergraph G.

Definition II.3. DECIDE-(k, s)-CLIQUE denotes the prob-
lem of deciding whether or not an s-uniform hypergraph G
contains a k-clique.

Both #(k, s)-CLIQUE and DECIDE-(k, s)-CLIQUE are

fundamental problems that have long been studied in com-

putational complexity theory and are conjectured to be com-

putationally hard. When k is allowed to be an unbounded

input to the problem, DECIDE-(k, s)-CLIQUE is known to

be NP-complete [55] and #(k, s)-CLIQUE is known to be

#P-complete [56]. In this work, we consider the fine-grained

complexity of these problems, where k either can be viewed

as a constant or a very slow-growing parameter compared

to the number n of vertices of the hypergraph. In this

context, PARITY-(k, s)-CLIQUE can be interpreted as an

intermediate problem between the other two clique problems

that we consider. The reduction from PARITY-(k, s)-CLIQUE

to #(k, s)-CLIQUE is immediate. As we show in Appendix

A, DECIDE-(k, s)-CLIQUE also reduces to PARITY-(k, s)-
CLIQUE with a multiplicative overhead of O(k2k) time.

When k is a constant, the trivial brute-force search al-

gorithms for these problems are efficient in the sense that

they take polynomial time. However, these algorithms do not

remain efficient under the lens of fine-grained complexity

since brute-force search requires Θ(nk) time, which can

grow significantly as k grows. In the hypergraph case of

s ≥ 3, no algorithm taking time O(nk−ε) on any of these

problems is known, including for DECIDE-(k, s)-CLIQUE

[57]. In the graph case of s = 2, the fastest known

algorithms take Θ(nω�k/3�) time, where 2 ≤ ω < 2.4 is

the fast matrix multiplication constant [58], [38]. Since this

is the state of the art, one may conjecture that DECIDE-

1260

(k, s)-CLIQUE and #(k, s)-CLIQUE take nΩ(k) time in the

worst case.

Supporting this conjecture, Razborov [59] proves that

monotone circuits require Ω̃(nk) operations to solve

DECIDE-(k, 2)-CLIQUE in the case of constant k. Monotone

circuit lower bounds are also known in the case when

k = k(n) grows with n [60], [61]. In [62], DECIDE-

(k, 2)-CLIQUE is shown to be W[1]-hard. In other words,

this shows that if DECIDE-(k, 2)-CLIQUE is fixed-parameter

tractable – admits an algorithm taking time f(k, s) ·poly(n)
– then any algorithm in the parametrized complexity class

W[1] is also fixed-parameter-tractable. This provides further

evidence that DECIDE-(k, 2)-CLIQUE is intractable for large

k. Finally, [37] shows that solving DECIDE-(k, 2)-CLIQUE

in no(k) time is ETH-hard for constant k2. We therefore

conjecture that our k-clique problems take nΩ(k) time on

worst-case inputs when k is constant, as formalized below.

Conjecture II.4 (Worst-case hardness of #(k, s)-CLIQUE).
Let k be constant. Any randomized algorithm A for #(k, s)-
CLIQUE with error probability less than 1/3 takes time at
least nΩ(k) in the worst case for hypergraphs on n vertices.

Conjecture II.5 (Worst-case hardness of PARITY-(k, s)
-CLIQUE). Let k be constant. Any randomized algorithm
A for PARITY-(k, s)-CLIQUE with error probability less
than 1/3 takes time at least nΩ(k) in the worst case for
hypergraphs on n vertices.

Conjecture II.6 (Worst-case hardness of DECIDE-(k, s)
-CLIQUE). Let k be constant. Any randomized algorithm
A for DECIDE-(k, s)-CLIQUE with error probability less
than 1/3 takes time at least nΩ(k) in the worst case for
hypergraphs on n vertices.

The conjectures are listed in order of increasing strength.

Since Conjecture II.6 is implied by ETH, they all follow

from ETH. We also formulate a stronger version of the

clique-counting hardness conjecture, which asserts that the

current best known algorithms for k-clique counting are

optimal.

Conjecture II.7 (Strong worst-case hardness of #(k, s)
-CLIQUE). Let k be constant. Any randomized algorithm
A for #(k, s)-CLIQUE with error probability less than 1/3
takes time Ω̃(nω�k/3�) in the worst case if s = 2 and Ω̃(nk)
in the worst case if s ≥ 3.

2These hardness results also apply to DECIDE-(k, s)-CLIQUE for s ≥ 3
since there is a reduction from DECIDE-(k, 2)-CLIQUE to DECIDE-(k, s)-
CLIQUE in ns time. The reduction proceeds by starting with a graph G
and constructing an s-uniform hypergraph G′ that contains a s-hyperedge
for every s-clique in G. The k-cliques of G and G′ are in bijection. This
construction also reduces #(k, 2)-CLIQUE to #(k, s)-CLIQUE.

B. Average-Case Lower Bounds for Counting k-Cliques in
G(n, c, s)

Our first main result is a worst-case to average-case

reduction solving either #(k, s)-CLIQUE or PARITY-(k, s)-
CLIQUE on worst-case hypergraphs given a blackbox solv-

ing the problem on most Erdős-Rényi hypergraphs drawn

from G(n, c, s). We discuss this error tolerance over sam-

pling Erdős-Rényi hypergraphs as well as the multiplicative

overhead in our reduction below. These results show that

solving the k-clique problems on Erdős-Rényi hypergraphs

G(n, c, s) is as hard as solving them on worst-case hyper-

graphs, for certain choices of k, c and s. Therefore the worst-

case hardness assumptions, Conjectures II.4, II.5 and II.7,

imply average-case hardness on Erdős-Rényi hypergraphs

for #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE.

Theorem II.8 (Worst-case to average-case reduction for

#(k, s)-CLIQUE). There is an absolute constant C > 0 such
that if we define

Υ#(n, c, s, k) �
(
C · c−1(1− c)−1

)(ks)
× (s log k + s log logn)(log n))(

k
s)

then the following statement holds. Let A be a randomized
algorithm for #(k, s)-CLIQUE with error probability less
than 1/Υ# on hypergraphs drawn from G(n, c, s). Then
there exists an algorithm B for #(k, s)-CLIQUE that has
error probability less than 1/3 on any hypergraph, such that

T (B,n) ≤ (log n) ·Υ# · (T (A, nk) + (nk)s)

For PARITY-(k, s)-CLIQUE we also give an alternative re-

duction with an improved reduction time and error tolerance

in the dense case when c = 1/2.

Theorem II.9 (Worst-case to average-case reduction for

PARITY-(k, s)-CLIQUE). We have that:
1) There is an absolute constant C > 0 such that if we

define

ΥP,1(n, c, s, k) �
(
C · c−1(1− c)−1

)(ks)
×
(
(s log k)

(
s log n+

(
k

s

)
log log

(
k

s

)))(ks)
then the following statement holds. Let A be a random-
ized algorithm for PARITY-(k, s)-CLIQUE with error
probability less than 1/ΥP,1 on hypergraphs drawn
from G(n, c, s). Then there exists an algorithm B for
PARITY-(k, s)-CLIQUE that has error probability less
than 1/3 on any hypergraph, such that

T (B,n) ≤ ΥP,1 · (T (A, nk) + (nk)s)

2) There is an absolute constant C > 0 such that if we
define

ΥP,2(s, k) � (Cs log k)(
k
s)

1261

then the following statement holds. Let A be a random-
ized algorithm for PARITY-(k, s)-CLIQUE with error
probability less than 1/ΥP,2 on hypergraphs drawn
from G(n, 1/2, s). Then there exists an algorithm B
for PARITY-(k, s)-CLIQUE that has error probability
less than 1/3 on any hypergraph, such that

T (B,n) ≤ ΥP,2 · (T (A, nk) + (nk)s)

Our worst-case to average-case reductions yield the fol-

lowing fine-grained average-case lower bounds for k-clique

counting and parity on Erdős-Rényi hypergraphs based on

Conjectures II.4 and II.7. We separate these lower bounds

into the two cases of dense and sparse Erdős-Rényi hy-

pergraphs. We remark that, for all constants k, an error

probability of less than (log n)−ω(1) suffices in the dense

case and error probability less than n−ω(1) suffices in the

sparse case.

Corollary II.10 (Average-case hardness of #(k, s)-CLIQUE

on dense G(n, c, s)). If k, c, ε > 0 are constant, then we
have that

1) Assuming Conjecture II.4, then any algorithm A for
#(k, s)-CLIQUE that has error probability less than
(log n)−(

k
s)−ε on Erdős-Rényi hypergraphs drawn

from G(n, c, s) must have runtime at least T (A, n) ≥
nΩ(k).

2) Assuming Conjecture II.7, then any algorithm A for
#(k, s)-CLIQUE that has error probability less than
(log n)−(

k
s)−ε on Erdős-Rényi hypergraphs drawn

from G(n, c, s) must have runtime at least T (A, n) ≥
Ω̃
(
nω�k/3�) if s = 2 and T (A, n) ≥ Ω̃(nk) if s ≥ 3.

Corollary II.11 (Average-case hardness of #(k, s)-CLIQUE

on sparse G(n, c, s)). If k, α, ε > 0 are constant and c =
Θ(n−α), then we have that

1) Assuming Conjecture II.4, then any algorithm A for
#(k, s)-CLIQUE that has error probability less than
n−α(ks)−ε on Erdős-Rényi hypergraphs drawn from
G(n, c, s) has runtime T (A, n) ≥ nΩ(k).

2) Assuming Conjecture II.7, then any algorithm A for
#(k, s)-CLIQUE that has error probability less than
n−α(ks)−ε on Erdős-Rényi hypergraphs drawn from
G(n, c, s) has runtime T (A, n) ≥ Ω̃

(
nω�k/3�−α(ks)

)
if s = 2 and T (A, n) ≥ Ω̃

(
nk−α(ks)

)
if s ≥ 3.

For PARITY-(k, s)-CLIQUE, we consider here the im-

plications of Theorem II.9 only for c = 1/2, since this

is the setting in which we obtain substantially different

lower bounds than for #(k, s)-CLIQUE. As shown, an error

probability of o(1) on G(n, 1/2, s) hypergraphs suffices for

our reduction to succeed.

Corollary II.12 (Average-case hardness of PARITY-(k, s)
-CLIQUE on G(n, 1/2, s)). Let k be constant. Assuming

Conjecture II.5, there is a small enough constant ε � ε(k, s)
such that if any algorithm A for PARITY-(k, s)-CLIQUE has
error less than ε on G(n, 1/2, s) then A must have runtime
at least T (A, n) ≥ nΩ(k).

We remark on one subtlety of our setup in the sparse case.

Especially in our algorithms section, we generally restrict

our attention to c = Θ(n−α) satisfying α ≤ s
(

k
s−1

)−1
,

which is necessary for the expected number of k-cliques

in G(n, c, s) to not tend to zero. However, even when this

expectation is decaying, the problem #(k, s)-CLIQUE as we

formulate it is still nontrivial. The simple algorithm that al-

ways outputs zero fails with a polynomially small probability

that does not appear to meet the 1/Υ# requirement in our

worst-case to average-case reduction. A simple analysis of

this error probability can be found in Lemma V.1. Note that

even when α > s
(

k
s−1

)−1
, GREEDY-RANDOM-SAMPLING

and its derivative algorithms in Section V still has guarantees

and succeeds with probability 1− n−ω(1). We now discuss

the multiplicative overhead and error tolerance in our worst-

case to average-case reduction for #(k, s)-CLIQUE.

Discussion of the Multiplicative Slowdown Υ#: In

the sparse case of c = Θ(n−α), our algorithmic upper

bounds in Section V imply lower bounds on the necessary

multiplicative overhead. In the hypergraph case of s ≥ 3
and below the k-clique percolation threshold, it must follow

that the overhead is at least Υ# = Ω̃
(
nα(ks)

)
= Ω̃

(
c−(

k
s)
)

.

Otherwise, our algorithms combined with our worst-case to

average-case reduction would contradict Conjecture II.7. Up

to polylog(n) factors, this exactly matches the Υ# from

our reduction. In the graph case of s = 2, it similarly must

follow that the overhead is at least Υ# = Ω̃
(
n

ωα
9 (ks)

)
=

Ω̃
(
c−

ω
9 (

k
s)
)

to not contradict Conjecture II.7. This matches

the Υ# from our reduction up to a constant factor in the

exponent.

Discussion of the Error Tolerance 1/Υ#: Notice that

our worst-case to average-case reductions in Theorems II.8

and II.9 require the error of the average-case blackbox on

Erdős-Rényi hypergraphs goes to zero as k goes to infinity.

This error requirement can be seen to be unavoidable when

k = ω(log n) in the dense Erdős-Rényi graph case of

G(n, 1/2). The expected number of k-cliques in G(n, 1/2)

is
(
n
k

)·2−(k2), which is also an upper bound on the probability

that G(n, 1/2) contains a k-clique by Markov’s inequality.

If k � 3 log2 n, then the probability of a k-clique is

less than nk · 2−k2/2 = 2−k2/6. The algorithm that always

outputs zero therefore achieves an average-case error of

2−k2/6 for #(k, 2)-CLIQUE on G(n, 1/2). However, this

trivial algorithm is useless for solving #(k, 2)-CLIQUE on

worst-case inputs in a worst-case to average-case reduction.

For this particular k = 3 log2 n regime, our #(k, 2)-CLIQUE

reduction requires average-case error on G(n, 1/2) less

than 1/Υ# = 2−O(k2 log logn). Our PARITY-(k, 2)-CLIQUE

1262

reduction is more lenient, requiring error only less than

2−O(k2 log log logn) on G(n, 1/2). Thus, the error bounds

required by our reductions are quite close to the 2−k2/6

error bound that is absolutely necessary for any reduction

in this regime. In the regime where k = O(1) is constant

and on G(n, 1/2), our PARITY-(k, 2)-CLIQUE reduction

only requires a small constant probability of error and our

#(k, 2)-CLIQUE reduction requires less than a 1/ polylog(n)
probability of error. We leave it as an intriguing open

problem whether the error tolerance of our reductions can

be improved in this regime.

Finally, we remark that the error tolerance of the reduction

must depend on c. By a union-bound on the k-subsets of

vertices, the probability that a G(n, c) graph contains a k-

clique is less than (n/ck/2)k. For example, if c = 1/n
then the probability that there exists a k-clique is less

than n−Ω(k2). As a result, no worst-case to average-case

reduction can tolerate average-case error more than n−O(k2)

on G(n, 1/n) graphs. And therefore our reductions for

#(k, 2)-CLIQUE and for PARITY-(k, 2)-CLIQUE are close to

optimal when c = 1/n, because our error tolerance in this

case scales as n−O(k2 log logn).

III. WORST-CASE TO AVERAGE-CASE REDUCTION

FOR G(n, c, s)

In this section, we give our main worst-case to average-

case reduction that transforms a blackbox solving #(k, s)-
CLIQUE on G(n, c, s) into a blackbox solving #(k, s)-
CLIQUE on a worst-case input hypergraph. This also yields

a worst-case to average-case reduction for PARITY-(k, s)-
CLIQUE and proves Theorems II.8 and II.9. The reduction

involves the following five main steps, the details of which

are in Sections III-A to III-E.

1) Reduce #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE

on general worst-case hypergraphs to the worst-case

problems with inputs that are k-partite hypergraphs

with k parts of equal size.

2) Reduce the worst-case problem on k-partite hyper-

graphs to the problem of computing a low-degree

polynomial Pn,k,s on N � N(n, k, s) variables over

a small finite field F.

3) Reduce the problem of computing Pn,k,s on worst-

case inputs to computing Pn,k,s on random inputs in

F
N .

4) Reduce the problem of computing Pn,k,s on random

inputs in F
N to computing Pn,k,s on random inputs

in {0, 1}N . This corresponds to #(k, s)-CLIQUE and

PARITY-(k, s)-CLIQUE on k-partite Erdős-Rényi hy-

pergraphs.

5) Reduce the average-case variants of #(k, s)-CLIQUE

and PARITY-(k, s)-CLIQUE on k-partite Erdős-Rényi

hypergraphs to non-k-partite Erdős-Rényi hyper-

graphs.

These steps are combined in Section III-F to complete the

proofs of Theorems II.8 and II.9. Before proceeding to

our worst-case to average-case reduction, we establish some

definitions and notation, and also give pseudocode for the

counting reduction in Figure 2 – the parity reduction is

similar.

The intermediate steps of our reduction crucially make use

of k-partite hypergraphs with k parts of equal size, defined

below.

Definition III.1 (k-Partite Hypergraphs). Given a s-uniform
hypergraph G on nk vertices with vertex set V (G) = [n]×
[k], define the vertex labelling

L : (i, j) ∈ [n]× [k] �→ j ∈ [k]

If for all e = {u1, . . . , us} ∈ E(G), the labels
L(u1), L(u2), . . . , L(us) are distinct, then we say that G
is k-partite with k parts of equal size n.

In our reduction, it suffices to consider only k-partite

hypergraphs with k parts of equal size. For ease of notation,

our k-partite hypergraphs will always have nk vertices and

vertex set [n]× [k]. In particular, the edge set of a k-partite

s-uniform hypergraph is an arbitrary subset of

E(G) ⊆ {{u1, . . . , us} ⊂ V (G)

: L(u1), . . . , L(us) are distinct}
Taking edge indicators yields that the k-partite hypergraphs

on nk vertices we consider are in bijection with {0, 1}N ,

where N � N(n, k, s) =
(
k
s

)
ns is this size of this set of

permitted hyperedges. Thus we will refer to elements x ∈
{0, 1}N and k-partite s-uniform hypergraphs on nk vertices

interchangeably. This definition also extends to Erdős-Rényi

hypergraphs.

Definition III.2 (k-Partite Erdős-Rényi Hypergraphs). The
k-partite s-uniform Erdős-Rényi hypergraph G(nk, c, s, k)
is a distribution over hypergraphs on nk vertices with vertex
set V (G) = [n] × [k]. A sample from G(nk, c, s, k) is
obtained by independently including hyperedge each e =
{u1, . . . , us} ∈ E(G) with probability c for all e with
L(u1), L(u2), . . . , L(us) distinct.

Viewing the hypergraphs as elements of G(nk, c, s, k)
as a distribution on {0, 1}N , it follows that G(nk, c, s, k)
corresponds to the product distribution Ber(c)⊗N .

A. Worst-Case Reduction to k-Partite Hypergraphs

In the following lemma, we prove that the worst-case

complexity of #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE

are nearly unaffected when we restrict the inputs to be worst-

case k-partite hypergraphs. This step is important, because

the special structure of k-partite hypergraphs will simplify

future steps in our reduction.

1263

Algorithm TO-ER-#(G, k,A, c)

Inputs: s-uniform hypergraph G with vertex set [n], parameters k, c, algorithm A for #(k, s)-CLIQUE on Erdős-Rényi

hypergraphs with density c.

1) Construct an s-uniform hypergraph G′ on vertex set [n]× [k] by defining

E(G′) =
{
{(v1, t1), (v2, t2), . . . , (vs, ts)} : {v1, . . . , vs} ∈ E(G) and

1≤v1<v2<···<vs≤n

1≤t1<t2<···<ts≤k

}
.

Since G′ is k-partite, view it as an indicator vector of edges G′ ∈ {0, 1}N for N := N(n, k, s) =
(
k
s

)
ns.

2) Find the first T primes 12
(
k
s

)
< p1 < · · · < pT such that

∏T
i=1 pi > nk.

3) Define L : (a, b) ∈ [n]× [k] �→ b ∈ [k], and

Pn,k,s(x) =
∑

{u1,...,uk}∈V (G′)
L(ui)=i ∀i

∏
S⊆[k]
|S|=s

xuS

For each 1 ≤ t ≤ T , compute Pn,k,s(G
′) (mod pt), as follows:

(1) Use the procedure of [45] in order to reduce the computation of Pn,k,s(G
′) (mod pt) to the computation of

Pn,k,s on M = 12
(
k
s

)
distinct inputs x1, . . . , xM ∼ Unif[FN

pt
].

(2) For each 1 ≤ m ≤M , compute Pn,k,s(xm) (mod pt) as follows:

(i) Use the rejection sampling procedure of Lemma IV.3 in order to sample (Y (0), . . . , Y (B)) close to

(Ber(c)⊗N)⊗B in total variation distance, such that xm ≡
∑B

b=0 2
b · Y (b) (mod pt). It suffices to take

B = Θ(c−1(1− c)−1s(log n)(log pt)).

(ii) For each function a :
(
[k]
s

) → {0, . . . , B}, define Y
(a)
S = Y a(L(S)) for all S ∈ [N] ⊂ (

[n]
s

)
. Note that

for each a, the corresponding Y (a) is approximately distributed as Ber(c)⊗N . Use algorithm A and the

recursive counting procedure of Lemma III.9 in order to compute Pn,k,s(Y
(a)) for each a.

(iii) Set Pn,k,s(G
′)←∑

a:([k]
s)→{0,...,B} 2

|a|1 · Pn,k,s(Y
(a)).

4) Since 0 ≤ Pn,k,s(G
′) ≤ nk, use Chinese remaindering and the computations of Pn,k,s(G

′) (mod pi) in order to

calculate and output Pn,k,s(G
′).

Figure 2. Reduction TO-ER-# for showing computational lower bounds for average-case #(k, s)-CLIQUE on Erdős-Rényi G(n, c, s) hypergraphs based
on the worst-case hardness of #(k, s)-CLIQUE.

Lemma III.3. Let A be an algorithm for #(k, s)-CLIQUE,
such that A has error probability less than 1/3 for any
k-partite hypergraph G on nk vertices. Then, there is an
algorithm B for #(k, s)-CLIQUE with error probability less
than 1/3 on any hypergraph G satisfying that T (B,n) ≤
T (A, n)+O(ksns). Furthermore, the same result holds for
PARITY-(k, s)-CLIQUE in place of #(k, s)-CLIQUE.

Proof: Let G be an s-uniform hypergraph on n vertices.

Construct the s-uniform hypergraph G′ on the vertex set

V (G′) = [n]× [k] with edge set

E(G′) = {{(v1, t1), (v2, t2), . . . , (vs, ts)}
: {v1, . . . , vs} ∈ E(G) and

1≤v1<v2<···<vs≤n

1≤t1<t2<···<ts≤k

}

The hypergraph G′ can be constructed in O(ksns) time.

Note that G′ is k-partite with the vertex partition L : (i, j) ∈
[n]× [k] �→ j ∈ [k]. There is also a bijective correspondence

between k-cliques in G′ and k-cliques in G given by

{v1, v2, . . . , vk} �→ {(v1, 1), (v2, 2), . . . , (vk, k)}
where v1 < v2 < · · · < vk. Thus, the k-partite s-uniform

hypergraph G′ on nk vertices has exactly the same number

of k-cliques as G. It suffices to run A on G′ and to return

its output.

A corollary to Lemma III.3 is that if any worst-case

hardness for #(k, s)-CLIQUE and PARITY-(k, s)-CLIQUE

general s-uniform hypergraphs immediately transfers to the

k-partite case. For instance, the lower bounds of Conjectures

II.4, II.5, and II.7 imply corresponding lower bounds in the

k-partite case. Going forward in our worst-case to average-

case reduction, we may restrict our attention to k-partite

hypergraphs without loss of generality.

B. Counting k-Cliques as a Low-Degree Polynomial

We now express the number of k-cliques of a k-partite

hypergraph G with edge indicators x ∈ {0, 1}N as a degree-

1264

D polynomial Pn,k,s : {0, 1}N → Z where D � D(k, s) =(
k
s

)
. We identify the N coordinates of x ∈ {0, 1}N with

the s-subsets of [n] × [k] with elements with all distinct

labels. For an s-vertex hyperedge S ⊂ V (G), the variable

xS denotes the indicator variable that the hyperedge S is

in the hypergraph x. The number of k-cliques in G can be

expressed as

Pn,k,s(x) =
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S⊂[k]
|S|=s

xuS
(1)

For any finite field F, this equation defines Pn,k,s as a

polynomial over that finite field. For clarity, we write this

polynomial over F as Pn,k,s,F : FN → F. Observe that for

any hypergraph x ∈ {0, 1}N , we have that

Pn,k,s,F(x) = Pn,k,s(x) (mod char(F))

where char(F) is the characteristic of the finite field. We

now reduce computing #(k, s)-CLIQUE and PARITY-(k, s)-
CLIQUE on a k-partite hypergraph x ∈ {0, 1}N to computing

Pn,k,s,F(x) for appropriate finite fields F. This is formalized

in the following two propositions.

Proposition III.4. Let x ∈ {0, 1}N denote a s-uniform
hypergraph that is k-partite with vertex labelling L. Let
p1, p2, . . . , pt be t distinct primes, such that

∏
i pi >

nk. Then, solving #(k, s)-CLIQUE reduces to computing
Pn,k,s,Fpi

(x) for all i ∈ [t], plus O(k log n) additive
computational overhead. Moreover, computing Pn,k,s,Fpi

(x)
for all i ∈ [t] reduces to computing #(k, s)-CLIQUE, plus
O(tk log n) computational overhead.

Proof: Note that Pn,k,s(x) ≤ nk since there are at most

nk cliques in the hypergraph. So the claim follows from the

Chinese Remainder Theorem and the fact that for any i ∈ [t],
it holds that Pn,k,s,Fpi

(x) ≡ Pn,k,s(x) (mod pi).

Proposition III.5. Let F be a finite field of characteristic 2.
Let x ∈ {0, 1}N be a s-uniform hypergraph that is k-partite
with vertex labelling L. Then solving PARITY-(k, s)-CLIQUE

for x is equivalent to computing Pn,k,s,F(x).

Proof: This is immediate from Pn,k,s,F(x) ≡ Pn,k,s(x)
(mod char(F)).

C. Random Self-Reducibility: Reducing to Random Inputs
in F

N

Expressing the number and parity of cliques as low-

degree polynomials allows us to perform a key step in

the reduction: because polynomials over finite fields are

random self-reducible, we can reduce computing Pn,k,s,F on

worst-case inputs to computing Pn,k,s,F on several uniformly

random inputs in F
N .

The following well-known lemma states the random self-

reducibility of low-degree polynomials. The lemma first

appeared in [45]. We follow the proof of [50] in order to

present the lemma with explicit guarantees on the running

time of the reduction.

Lemma III.6 (Theorem 4 of [45]). Let F be a finite field
with |F| = q elements. Let N,D > 0. Suppose 9 < D <
q/12. Let f : FN → F be a polynomial of degree at most
D. If there is an algorithm A running in time T (A,N) such
that

Px∼Unif[FN][A(x) = f(x)] > 2/3,

then there is an algorithm B running in time O((N +
D)D2 log2 q + T (A,N) · D) such that for any x ∈ F

N ,
it holds that P[B(x) = f(x)] > 2/3.

For completeness, we provide a proof of this lemma in

Appendix B. Lemma III.6 implies that if we can efficiently

compute Pn,k,s,F on at least a 2/3 fraction of randomly

chosen inputs in F
N , then we can efficiently compute the

polynomial Pn,k,s,F over a worst-case input in F
N .

D. Reduction to Evaluating the Polynomial on G(nk, c, s, k)

So far, we have reduced worst-case clique-counting over

unweighted hypergraphs to the average-case problem of

computing Pn,k,s,F over k-partite hypergraphs with random

edge weights in F. It remains to reduce from computing

Pn,k,s,F on inputs x ∼ Unif
[
F
N
]

to random hypergraphs,

which correspond to x ∼ Unif
[{0, 1}N]. Since {0, 1}N

is an exponentially small subset of F
N if |F| > 2, the

random weighted and unweighted hypergraph problems are

very different. In this section, we carry out this reduction

using two different arguments for PARITY-(k, s)-CLIQUE

and #(k, s)-CLIQUE. The latter reduction is based on the

total variation convergence of random binary expansion

modulo p to Unif[Fp] and related algorithmic corollaries

from Section IV.
We first present the reduction that will be applied in the

case of PARITY-(k, s)-CLIQUE. Given a map a :
(
[k]
s

) →
{0, 1, . . . , t−1}, let a∗ : [N]→ {0, 1, . . . , t−1} denote the

map induced by the labels L : V (G) → [k] of the vertices,

when the indices of [N] are identified with the possible

k-partite hyperedges of G. Explicitly, if υ is a bijection

between [N] and the set of possible k-partite hyperedges

of G under the labelling L, then define a∗(i) = a(L(υ(i)))
for all i ∈ [N]. Recall that D =

(
k
s

)
is the degree of Pn,k,s.

The following lemma will be used only for the PARITY-

(k, s)-CLIQUE case:

Lemma III.7. Let p be prime and t ≥ 1. Suppose A is an
algorithm that computes Pn,k,s,Fp

(y) with error probability
less than δ � δ(n) for y ∼ Unif

[
F
N
p

]
in time T (A, n).

Then there is an algorithm B that computes Pn,k,s,Fpt
(x)

with error probability less than tD · δ for x ∼ Unif
[
F
N
pt

]
in

time T (B,n) = O
(
Nt4(log p)3 + tD · T (A, n)

)
.

Proof: We give a reduction computing Pn,k,s,Fpt
(x)

where x ∼ Unif
[
F
N
pt

]
given blackbox access to A. Let β be

1265

such that β, βp, βp2

, . . . , βpt−1 ∈ Fpt forms a normal basis

for Fpt over Fp. Now for each i ∈ [N], compute the basis

expansion

xi = x
(0)
i β + x

(1)
i βp + · · ·+ x

(t−1)
i βpt−1

.

One can find a generator for a normal basis β ∈ Fpt in

time O((t2+log p)(t log p)2) by Bach et al. [63]. Computing

x(0), . . . , x(t−1) then takes time O(Nt3(log p)3) because

N applications of Gaussian elimination each take at most

O(t3) operations over Fp. 3 Note that since x is uniformly

distributed and β, βp, . . . , βpt−1

form a basis, it follows

that x(0), x(1), . . . , x(t−1) are distributed i.i.d according to

Unif
[
F
N
p

]
. For any map b : [N] → {0, 1, . . . , t− 1} define

x(b) ∈ F
N
p as x

(b)
i = x

(b(i))
i for all i ∈ [N]. Observe that for

any fixed map b, the vector x(b) is uniform in F
N
p . We now

expand and redistribute the terms of Pn,k,s,Fpt
as follows.

Pn,k,s,Fpt
(x)

=
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

xuS

=
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
t−1∑
i=0

x(i)
uS

βpi

)

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎜⎝ ∑
{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
x(a(S))
uS

βpa(S)
)⎞⎟⎟⎠

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎝ ∏

S∈([k]
s)

βpa(S)

⎞
⎟⎠

×

⎛
⎜⎜⎝ ∑
{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

x(a(S))
uS

⎞
⎟⎟⎠

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎝ ∏

S∈([k]
s)

βpa(S)

⎞
⎟⎠Pn,k,s,Fp

(
x(a∗)

)

As observed above, it holds that x(a∗) ∼ Unif
[
F
N
p

]
for

each a. Thus, computing Pn,k,s,F(x) reduces to evaluating

Pn,k,s,Fp
on tD uniformly random inputs on in F

N
p and

outputting a weighted sum of the evaluations. The desired

bound on the error probability follows from a union bound.

We now give the reduction to evaluating Pn,k,s on ran-

dom hypergraphs drawn from G(nk, c, s, k) in the case of

#(k, s)-CLIQUE.

3For a good survey on normal bases, we recommend [64].

Lemma III.8. Let p be prime and let c = c(n), γ =
γ(n) ∈ (0, 1). Suppose that A is an algorithm that computes
Pn,k,s,Fp

(y) with error probability less than δ � δ(n)
when y ∈ {0, 1}N is drawn from G(nk, c, s, k). Then,
for some t = O(c−1(1 − c)−1 log(Np/γ) log p), there
is an algorithm B that evaluates Pn,k,s,Fp

(x) with error
probability at most γ + tD · δ when x ∼ Unif

[
F
N
p

]
in time

T (B,n) = O
(
Npt log(Np/γ) + tD · T (A, n)).

Proof: We give a reduction computing Pn,k,s,Fp
(x)

where x ∼ Unif
[
F
N
p

]
given blackbox access to A. We

first handle the case in which p > 2. For each j ∈
[N], apply the algorithm from Lemma IV.3 to sample

x
(0)
j , x

(1)
j , . . . , x

(t−1)
j ∈ {0, 1} satisfying

dTV

(
L(x(0)

j , . . . , x
(t−1)
j),Ber(c)⊗t

)
≤ ε � γ/N and

t−1∑
i=0

2ix
(i)
j ≡ xj (mod p)

By Lemmas IV.2 and IV.3, we may choose t = O(c−1(1−
c)−1 log(Np/γ) log p) and this sampling can be carried

out in O(Npt log(Np/γ)) time. By the total variation

bound, for each j we may couple (x
(0)
j , . . . , x

(t−1)
j)

with (Z
(0)
j , . . . , Z

(t−1)
j) ∼ Ber(c)⊗k, so that P[x

(i)
j =

Z
(i)
j ∀i, j] ≥ 1−γ. Moreover, we have x

(i)
j ⊥⊥ x

(k)
l whenever

j �= l, so we may choose the Z
(i)
j so that Z

(i)
j ⊥⊥ Z

(k)
l

whenever j �= l.
As in the proof of Lemma III.7, given any map b : [N]→

{0, . . . , t−1}, we define Z(b) ∈ {0, 1}N by Z
(b)
j = Z

(b(j))
j ,

for all j ∈ [N]. We also note that for any fixed b, the entries

Z
(b)
1 , . . . , Z

(b)
N are independent and distributed as Ber(c).

Therefore,

Z(b) ∼ G(nk, c, s, k)

Now compute the following quantity, similarly to the calcu-

lations in Lemma III.7:

P̃n,k,s,Fp
(Z)

�
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
t −1∑
i=0

2i · Z(i)
uS

)

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎜⎝ ∑
{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
2a(S)Z(a(S))

uS

)⎞⎟⎟⎠

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎝ ∏

S∈([k]
s)

2a(S)

⎞
⎟⎠

×

⎛
⎜⎜⎝ ∑
{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

Z(a(S))
uS

⎞
⎟⎟⎠

1266

=
∑

a:([k]
s)→{0,...,t−1}

⎛
⎜⎝ ∏

S∈([k]
s)

2a(S)

⎞
⎟⎠Pn,k,s,Fp

(
Z(a∗)

)
.

We may use algorithm A to evaluate the tD values of

Pn,k,s,Fp
(Z(a∗)), with probability < tD ·δ of any error (by a

union bound). Computing P̃n,k,s,Fp
(Z) reduces to comput-

ing a weighted sum over the tD evaluations. Conditioned

on the event that x
(i)
j = Z

(i)
j ∀i, j, then Pn,k,s,Fp

(x) =

P̃n,k,s,Fp
(Z), because

Pn,k,s,Fp(x) =
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

xuS

=
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
t−1∑
i=0

2i · x(i)
uS

)

=
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏
S∈([k]

s)

(
t−1∑
i=0

2i · Z(i)
uS

)

= P̃n,k,s,Fp
(Z).

Since P[x
(i)
j = Z

(i)
j ∀i, j] ≥ 1− t ·γ, by a union bound with

the error in calculation we have computed Pn,k,s,Fp
(x) with

probability of error ≤ γ + tD · δ. The claim follows for the

case p > 2.

If p = 2, then the proof is almost identical, except that

since 2 ≡ 0 (mod 2), we may no longer use the result on

random binary expansions of Lemma IV.3. In this case, for

each j ∈ [N] we sample x
(0)
j , . . . , x

(t−1)
j ∈ {0, 1}N such

that each dTV(L(x(0)
j , . . . , x

(t−1)
j),Ber(c)⊗t) ≤ ε � γ/N ,

and so that
t−1∑
i=0

x
(i)
j = xj (mod p).

By Lemma IV.4, we may choose t = O(c−1(1 −
c)−1 log(N/γ)), and we may sample in time

O(Nt log(N/γ)). Again, we couple the x
(i)
j variables

with variables Z
(i)
j ∼ Ber(c) such that the event E that

x
(i)
j = Z

(i)
j for all i, j has probability P[E] ≥ 1 − γ and

such that Z
(i)
j is independent of Z

(k)
l whenever j �= l.

By a similar, and simpler, calculation to the one for the

case p > 2, we have that P̃n,k,s,F2(Z) = Pn,k,s,F2(x)
conditioned on E, where

P̃n,k,s,F2
(Z) �

∑
a:([k]

s)→{0,...,t−1}
Pn,k,s,F2

(Z(a∗)).

This can be calculated using the algorithm A similarly

to the p > 2 case, because each Z(a∗) is distributed as

G(nk, c, s, k).

E. Reduction to Counting k-Cliques in G(n, c, s)

So far, we have reduced PARITY-(k, s)-CLIQUE and

#(k, s)-CLIQUE for worst-case input hypergraphs to average-

case inputs drawn from the k-partite Erdős-Rényi distribu-

tion G(nk, c, s, k). We now carry out the final step of the

reduction, showing that PARITY-(k, s)-CLIQUE and #(k, s)-
CLIQUE on inputs drawn from G(nk, c, s, k) reduce to

inputs drawn from the non-k-partite Erdős-Rényi distribu-

tion G(n, c, s). Recall that a hypergraph G drawn from

G(nk, c, s, k) has vertex set V (G) = [n] × [k] and vertex

partition given by the labels L : (i, j) ∈ [n]× [k] �→ j ∈ [k].

Lemma III.9. Let δ = δ(n) ∈ (0, 1) be a non-increasing
function of n and let c = c(n) ∈ (0, 1). Suppose that A
is a randomized algorithm for #(k, s)-CLIQUE such that
for any n, A has error probability less than δ(n) on
hypergraphs drawn from G(n, c, s) in T (A, n) time. Then
there exists an algorithm B solving #(k, s)-CLIQUE that
has error probability less than 2k · δ(n) on hypergraphs
drawn from G(nk, c, s, k) and that runs in T (B,n) =
O
(
2k · T (A, nk) + ksns + k2k

)
time.

Proof: It suffices to count the number of k-cliques in

G ∼ G(nk, c, s, k) given blackbox access to A. Construct

the hypergraph H over the same vertex set V (H) = [n]×[k]
by adding each edge e = {v1, v2, . . . , vs} ∈

(
[n]×[k]

s

)
such that |{L(v1), . . . , L(vs)}| < s independently with

probability c. In other words, independently add each edge

to G containing two vertices from the same part of G. It

follows that H is distributed according to G(nk, c, s). More

generally, for every S ⊂ [k], HS is distributed according to

G(|L−1(S)|, c, s) where HS is the restriction of H to the

vertices L−1(S) ⊂ V (H) with labels in S. Note that H can

be constructed in O(ksns) time.

Now observe that for each S �= ∅, it holds that n ≤
|L−1(S)| ≤ nk and the algorithm A succeeds on each HS

with probability at least 1 − δ(n). By a union bound, we

may compute the number of k-cliques |clk(HS)| in HS for

all S ⊂ [k] with error probability less than 2k · δ(n). Note

that this can be done in O
(
2k · T (A, nk)

)
time. From these

counts |clk(HS)|, we now to inductively compute

td � |{S ∈ clk(H) : |L(S)| = d}|
for each d ∈ [k]. Note that t0 = 0 in the base case d = 0.

Given t0, t1, . . . , td, the next count td+1 can be expressed

by inclusion-exclusion as

td+1 =
∑

T⊂[k],|T |=d+1

|{S ∈ clk(H) : L(S) = T}|

=
∑

T⊂[k],|T |=d+1

(
|clk(HT)|

−
d∑

i=0

∑
U⊂T,|U |=i

|{S ∈ clk(H) : L(S) = U}|
)

1267

=

⎛
⎝ ∑

T⊂[k],|T |=d+1

|clk(HT)|
⎞
⎠

−
d∑

i=0

(
k − i

d+ 1− i

)
|{S ∈ clk(H) : |L(S)| = i}|

=
∑

T⊂[k],|T |=d+1

|clk(HT)| −
d∑

i=0

(
k − i

d+ 1− i

)
ti

After O(k2k) operations, this recursion yields the number

of k-cliques tk = |{S ∈ clk(H) : |L(S)| = k}| = |clk(G)|
in the original k-partite hypergraph G, as desired.

Repeating the same proof over F2 yields an analogue of

Lemma III.9 for PARITY-(k, s)-CLIQUE, as stated below.

Lemma III.10. Lemma III.9 holds when #(k, s)-CLIQUE is
replaced by PARITY-(k, s)-CLIQUE.

F. Proofs of Theorems II.8 and II.9

We now combine Steps 1-5 formally in order to prove

Theorems II.8 and II.9.

Proof of Theorem II.8: Our goal is to construct an

algorithm B that solves #(k, s)-CLIQUE with error proba-

bility < 1/3 on any s-uniform hypergraph x. We are given

an algorithm A that solves #(k, s)-CLIQUE with probability

of error < 1/Υ# on hypergraphs drawn from G(n, c, s). We

will construct the following intermediate algorithms in our

reduction:

• Algorithm A0 that solves #(k, s)-CLIQUE with error

probability < 1/3 for any worst-case k-partite hyper-

graph.

• Algorithm A1(x, p) that computes Pn,k,s,Fp
(x) for any

x ∈ F
N
p and for any prime p such that 12

(
k
s

)
< p <

10 log nk, with worst-case error probability < 1/3.

• Algorithm A2(y, p) for primes 12
(
k
s

)
< p < 10 log nk

that computes Pn,k,s,Fp(y) on inputs y ∼ Unif[FN
p]

with error probability < 1/3.

• Algorithm A3(z) that computes Pn,k,s(z) on inputs z ∼
G(nk, c, s, k) with error probability < δ. (The required

value of δ will be determined later on.)

We construct algorithm B from A0, A0 from A1, A2 from

A3, and A3 from A.

1. Reduce to computing #(k, s)-CLIQUE for k-partite
hypergraphs. We use Lemma III.3 to construct B from A0,

such that B runs in time

T (B,n) = T (A0, n) +O((nk)s).

2. Reduce to computing Pn,k,s,Fp
on worst-case inputs.

We use Proposition III.4 to construct A0 from A1 such that

A0 runs in time

T (A0, n) ≤ O(T (A1, n) · log nk + (log nk)2).

The algorithm A0 starts by using a sieve to find the

first T primes 12
(
k
s

)
< p1 < · · · < pT such that

∏T
i=1 pi > nk. Notice that pT ≤ 10 log nk, so this step takes

time O((log nk)2). Then, given a k-partite hypergraph x ∈
{0, 1}N , the algorithm A0 computes Pn,k,s(x) by computing

Pn,k,s,Fpi
(x) for all pi, boosting the error of A1 by repetition

and majority vote. Since T = O((log nk)/(log log nk)),
we only need to repeat O(log log nk) times per prime; this

yields a total slowdown factor of O(log nk). Once we have

computed Pn,k,s(x), we recall that it is equal to the number

of k-cliques in x.

3. Reduce to computing Pn,k,s,Fp
on random inputs in

F
N
p . We use Lemma III.6 to construct A1 from A2 such that

A2 runs in time

T (A1, n) = O((N +D)D2 log2 p+D · T (A2, n))

= O

(
ns

(
k

s

)2

log2 log nk +

(
k

s

)
· T (A2, n)

)
.

4. Reduce to computing Pn,k,s on random inputs in
{0, 1}N We use Lemma III.8 to construct A2 from A3 such

that A2 runs in time

T (A2, n) = O(Npt log(Np) + t(
k
s) · T (A3, n)),

for some t = O(c−1(1−c)−1)s(log n)(log p)). For this step,

we require the error probability δ of algorithm A3(z) on

inputs z ∼ G(nk, c, s, k) to be at most 1/(4tD) = 1/(4t(
k
s)).

5. Reduce to computing #(k, s)-CLIQUE for G(n, c, s)
hypergraphs We use Lemma III.9 to construct A3 from A
such that A3 runs in time

T (A3, n) = O((nk)s + k2k + 2k · T (A, nk)),

and such that A3 has error probability at most δ < 2k/Υ#.

As in the theorem statement, let Υ#(n, c, s, k) �
(C(c−1(1−c)−1)s(log n)(log k+log logn))(

k
s), where C >

0 is a large constant to be determined. If we take C large

enough, then 4t(
k
s) · 2k ≤ Υ#. In this case, the error δ of

A3 will be at most 1/(4t(
k
s)), which is what we needed for

the fourth step. Putting the runtime bounds together,

T (B,n)

= O
(
(nk)s + (log nk)2 + (log nk) ·

(
nstk

(
k

s

)2

(log n)2

+

(
k

s

)
· (4t)(ks) · (T (A, nk) + (nk)s)

))

= O
(
nsk3

(
k

s

)2

(c−1(1− c)−1)(log k + log logn) log4 n

+ (log n) ·Υ# · (T (A, nk) + (nk)s)
)
,

if we choose C > 0 large enough. Hence,

T (B,n) = O((log n) ·Υ# · (T (A, nk) + (nk)s)),

as
(
k
s

) ≥ 3 without loss of generality.

1268

Proof of Theorem II.9: The proof of item 1 of Theorem

II.9 is analogous to the proof of Theorem II.8, except that

it does not use the Chinese remainder theorem. Moreover,

special care is needed in order to ensure that the field

F over which we compute the polynomial Pn,k,s,F in the

intermediate steps is large enough that we may use the

random self-reducibility of polynomials.

Our goal is to construct an algorithm B that solves

PARITY-(k, s)-CLIQUE with error probability < 1/3 on

any s-uniform hypergraph x. We are given an algorithm

A that solves PARITY-(k, s)-CLIQUE with probability of

error < 1/ΥP,1 on hypergraphs drawn from G(n, c, s). We

will construct the following intermediate algorithms in our

reduction:

• Algorithm A0 that solves PARITY-(k, s)-CLIQUE with

error probability < 1/3 for any worst-case k-partite

hypergraph.

• Algorithm A1(w) that computes Pn,k,s,F2κ
(w) on in-

puts w ∼ Unif[FN
2κ] for κ =
log2(12

(
k
s

)
)�, with error

probability < 1/3.

• Algorithm A2(y) that computes Pn,k,s,F2(y) on inputs

y ∼ Unif[FN
2] with error probability < δ2. (The

required value of δ2 will be determined later on.)

• Algorithm A3(z) that computes Pn,k,s,F2
(z) on inputs

z ∼ G(nk, c, s, k) with error probability < δ3. (The

required value of δ3 will be determined later on.)

We construct algorithm B from A0, A0 from A1, A2 from

A3, and A3 from A.

1. Reduce to computing PARITY-(k, s)-CLIQUE for k-
partite hypergraphs. We use Lemma III.3 to construct B
from A0, such that B runs in time

T (B,n) = T (A0, n) +O((nk)s).

2. Reduce to computing Pn,k,s,F2κ
on random inputs in

F
N
2κ . Note that by Proposition III-B if we can compute

Pn,k,s,F2κ
for worst-case inputs, then we can solve PARITY-

(k, s)-CLIQUE. We use Lemma III.6 to construct A0 from

A1 such that A0 runs in time

T (A0, n) = O(κ2(N +D)D2 +D · T (A1, n))

= O

(
ns

(
k

s

)2

log2 κ+

(
k

s

)
· T (A1, n)

)

3. Reduce to computing Pn,k,s,F2
on random inputs in

F
N
2 .We use Lemma III.7 to construct A1 from A2 such that

A1 runs in time

T (A1, n) ≤ O
(
Nκ4 + κ(

k
s) · T (A2, n)

)
,

and has error probability at most δ2 ·κ(
k
s) on random inputs

w ∼ Unif[FN
2κ]. Thus, A2 must have error probability at

most δ2 < 1/(3κ(
k
s)) on random inputs in y ∼ Unif[FN

2]
for this step of the reduction to work.

4. Reduce to computing Pn,k,s,F2
on random inputs in

{0, 1}N We use Lemma III.8 to construct A2 from A3 such

that A2 runs in time

T (A2, n) = O
(
Nt log(N/γ) + t(

k
s) · T (A3, n)

)
,

for some t = O(c−1(1 − c)−1(s log(n) + log(1/γ))). The

error probability of A2 on random inputs z ∼ G(nk, c, s, k)

will be at most δ2 < δ3·t(
k
s)+γ. Since we require error prob-

ability at most δ2 ≤ 1/(3κ(
k
s)) of algorithm A2(z) on inputs

z ∼ G(nk, c, s, k), we set γ = 1/(10κ(
k
s)) and require

δ3 ≤ 1/(10(tκ)(
k
s)), which is sufficient. For this choice of γ,

we have t = O(c−1(1− c)−1(s log(n) +
(
k
s

)
log(s log k))).

5. Reduce to computing #(k, s)-CLIQUE for G(n, c, s)
hypergraphs We use Lemma III.10 to construct A3 from

A such that A3 runs in time

T (A3, n) = O
(
(nk)s + k2k + 2k · T (A, nk)

)
,

and such that A3 has error probability at most δ3 < 2k/ΥP,1.

As in the theorem statement, let

ΥP,1(n, c, s, k) �
(
C · c−1(1− c)−1

)(ks)
×
(
(s log k)

(
s log n+

(
k

s

)
log log

(
k

s

)))(ks)
for some large enough constant C.

If we take C large enough, then (κt)(
k
s) ≤ 1

10 ·2−k ·ΥP,1,

as desired. In this case, the error of A0 on uniformly random

inputs will be at most 1/3, which is what we needed. Putting

the runtime bounds together,

T (B,n) = O
(
ns

(
k

s

)2

log2 κ+ nst log
(
nsκ(

k
s)
)
+ ns

(
k

s

)
κ4

+

(
k

s

)
· (4κt)(ks) · (T (A, nk) + (nk)s)

)

= O
(
ns
(
tk

(
k

s

)2

log2 s log k +

(
k

s

)
κ4
)

+ΥP,1 · (T (A, nk) + (nk)s)
)
,

if we choose C > 0 large enough. Since
(
k
s

) ≥ 3 without

loss of generality,

T (B,n) = O(ΥP,1 · (T (A, nk) + (nk)s)).

For item 2 of the theorem, we restrict the inputs to come

from G(n, 1/2, s), and we achieve a better error tolerance

because algorithm A3 is the same as A2. This means that

we may skip step 4 of the proof of item 1. In particular, we

only need δ3 = δ2 ≤ 1/(3κ(
k
s)). So algorithm A only needs

to have error < 1/ΥP,2, for ΥP,2(k, s) � (Cs log k)(
k
s). It

is not hard to see that, skipping step 4, the algorithm B that

we construct takes time T (B,n) = O(ΥP,2 · (T (A, nk) +
(nk)s)).

1269

IV. RANDOM BINARY EXPANSIONS MODULO p

In this section, we consider the distributions of random

binary expansions of the form

Zt · 2t + Zt−1 · 2t−1 + · · ·+ Z0 (mod p)

for some prime p and independent, possibly biased,

Bernoulli random variables Zi ∈ {0, 1}. We show that for

t polylogarithmic in p, these distributions become close to

uniformly distributed over Fp, more or less regardless of

the biases of the Zi. This is then used to go in the other

direction, producing approximately independent Bernoulli

variables that are the binary expansion of a number with

a given residue.

Our argument uses finite Fourier analysis on Fp. Given

a function f : Fp → R, define its Fourier transform to

be f̂ : Fp → C, where f̂(t) =
∑p−1

x=0 f(x)ω
tx and ω =

e2πi/p. In this section, we endow Fp with the total ordering

of {0, 1, . . . , p − 1} as elements of Z. Given a set S, let

2S = {2s : s ∈ S}. We begin with an simple claim showing

that sufficiently long geometric progressions with ratio 2 in

Fp contain a middle residue modulo p.

Claim IV.1. Suppose that a1, . . . , ak ∈ Fp is a sequence
with a1 �= 0 and ai+1 = 2ai for each 1 ≤ i ≤ k − 1. Then
if k ≥ 1 + log2(p/3), there is some j with p

3 ≤ aj ≤ 2p
3 .

Proof: Let S = {x ∈ Fp : x < p/3} and T =
{x ∈ Fp : x > 2p/3}. Observe that 2S ∩ T = ∅ and

S ∩ 2T = ∅, which implies that no two consecutive ai
can be in S and T . Therefore if (a1, a2, . . . , ak) contains

elements of both S and T , there must be some j with

aj ∈ (S ∪ T)C and the claim follows. It thus suffices to

shows that (a1, a2, . . . , ak) cannot be entirely contained in

one of S or T . First consider the case that it is contained

in S. Define the sequence (a′1, a
′
2, . . . , a

′
k) of integers by

a′i+1 = 2a′i for each 1 ≤ i ≤ k−1 and a′1 ∈ [1, p/3) is such

that a′1 ≡ a1 (mod p). It follows that a′i ≡ ai (mod p) for

each i and a′k ≥ 2k−1 ≥ p/3. Now consider the smallest j
with a′j > p/3. Then p/3 ≥ a′j−1 = a′j/2 by the minimality

of i, and p/3 ≤ aj ≤ 2p/3 which is a contradiction. If

the sequence is contained in T , then (−a1,−a2, . . . ,−ak)
is contained in S and applying the same argument to this

sequence proves the claim.

We now prove the main lemma of this section bounding

the total variation between the distribution of random binary

expansions modulo p and the uniform distribution.

Lemma IV.2. Let p > 2 be prime. Suppose that c ≤
q0, q1, . . . , qt ≤ 1 − c for some c ∈ (0, 1/2] and ε > 0.
Then there is an absolute constant K > 0 such that if
t ≥ K · c−1(1 − c)−1 log(p/ε2) log p and Zi ∼ Ber(qi)
are independent, then the distribution of S =

∑t
i=0 Zi · 2i

(mod p) is within ε total variation distance of the uniform
distribution on Fp.

Proof: Let f : Fp → R be the probability mass function

of
∑t

i=0 2
iZi (mod p). By definition, we have that

f(x) =
∑

z∈{0,1}t+1

(
t∏

i=0

qzii (1− qi)
1−zi

)

× 1

{
t∑

i=0

zi · 2i ≡ x (mod p)

}

This definition and factoring yields that f̂(s) is given by

f̂(s) =

p−1∑
x=0

f(x)ωsx =
t∏

i=0

(
1− qi + qi · ω2i·s

)
Note that the constant function 1 has Fourier transform

p · 1{s=0}. By Cauchy-Schwarz and Parseval’s theorem, we

have that

4 · dTV (L(S),Unif[Fp])
2
= ‖f − p−1 · 1‖21
≤ p · ‖f − p−1 · 1‖22
= ‖f̂ − 1{s=0}‖22

=
∑
s�=0

t∏
i=0

∣∣∣1− qi + qi · ω2i·s
∣∣∣2

Note that |1− q + q · ωa| ≤ 1 by the triangle inequality for

all a ∈ Fp and q ∈ (0, 1). Furthermore, if a ∈ Fp is such

that p/3 ≤ a ≤ 2p/3 and q ∈ [c, 1− c], then we have that

|1− q + q · ωa|2 = (1− q)2 + q2 + 2q(1− q) cos(2πa/p)

= 1− 2q(1− q) (1− cos(2πa/p))

≤ 1− 2c(1− c) (1− cos(4π/3))

= 1− 3c(1− c)

since cos(x) is maximized at the endpoints on the interval

x ∈ [2π/3, 4π/3] and q(1−q) is minimized at the endpoints

on the interval [c, 1− c]. Now suppose that t is such that

t ≥
⌈

log(4ε2/p)

log(1− 3c(1− c))

⌉
·
1 + log2(p/3)�

= Θ
(
c−1(1− c)−1 log(p/ε2) log p

)
Fix some s ∈ Fp with s �= 0. By Claim IV.1,

any
1 + log2(p/3)� consecutive terms of the sequence

s, 2s, . . . , 2ts ∈ Fp contain an element between p/3 and

2p/3. Therefore this sequence contains at least m =⌈
log(4ε2/p)

log(1−3c(1−c))

⌉
such terms, which implies that

t∏
i=0

∣∣∣1− qi + qi · ω2i·s
∣∣∣2 ≤ (1− 3c(1− c))

m ≤ 4ε2

p

by the inequalities above. Since this holds for each s �= 0,

it now follows that

4·dTV (L(S),Unif[Fp])
2 ≤

∑
s �=0

t∏
i=0

∣∣∣1− qi + qi · ω2i·s
∣∣∣2 < 4ε2

1270

and thus dTV (L(S),Unif[Fp]) < ε, proving the lemma.

We now briefly discuss the tightness of the bounds on t in

the lemma above and how the case of c = 1/2 differs from

c �= 1/2. Note that if qi = 1/2 for each i, then
∑t

i=0 Zi · 2i
is uniformly distributed on {0, 1, . . . , 2t+1 − 1}. It follows

that

dTV (L(S),Unif[Fp]) =
∑
x∈Fp

∣∣p−1 − P[S = x]
∣∣
+

=
a(p− a)

2t+1p
≤ p

2t+1

if 0 ≤ a ≤ p − 1 is such that 2t+1 ≡ a (mod p). There-

fore S is within total variation of 1/poly(p) of Unif[Fp]
if t = Ω(log p). However, note that for c constant and

ε = 1/poly(p), our lemma requires that t = Ω(log2 p). This

raises the question: is the additional factor of log p necessary

or an artefact of our analysis? We answer this question with

an example suggesting that the extra log p factor is in fact

necessary and that the case c = 1/2 is special.

Suppose that p is a Mersenne prime with p = 2r − 1 for

some prime r and for simplicity, take qi = 1/3 for each i.
Observe by the triangle inequality that

∣∣∣f̂(1)∣∣∣ =
∣∣∣∣∣∣
∑
x∈Fp

(
f(x)− p−1

) · ωx

∣∣∣∣∣∣
≤ ∥∥f − p−1 · 1∥∥

1
= 2 · dTV (L(S),Unif[Fp])

Now suppose that t = ar − 1 for some positive integer a.

As shown in the lemma, we have∣∣∣f̂(1)∣∣∣2 =
t∏

i=0

∣∣∣∣23 +
1

3
· ω2i

∣∣∣∣
2

=

[
r−1∏
i=0

(
5

9
+

4

9
· cos

(
2π

p
· 2i

))]a

where the second equality is due to the fact that the sequence

2i has period r modulo p. Now observe that since 5
9 + 4

9 ·
cos(x) ≥ e−x2

, we have that

r−1∏
i=0

(
5

9
+

4

9
· cos

(
2π

p
· 2i

))
≥ exp

(
−4π2

p2

r−1∑
i=0

22i

)

= exp

(
−4π2

p2
· 2

2r − 1

3

)
= Ω(1)

which implies that a should be Ω(r) for f̂(1) to be polyno-

mially small in p. Thus the extra log p factor is necessary in

this case and our analysis is tight. Note that in the special

case of c = 1/2, the factors in the expressions for f̂(s)
are of the form 1

2 + 1
2 · ω2i·s which can be arbitrarily close

to zero. We remark that the construction, as stated, relies

on there being infinitely many Mersenne primes. However,

it seems to suggest that the extra log p factor is necessary.

Furthermore, similar examples can be produced with p that

are not Mersenne, as long as the order of 2 modulo p is

relatively small.

We now deduce several simple consequences of our

lemma on random binary expansions that are used in the

analysis of our reductions.

Lemma IV.3. Let p > 2 be prime. Suppose that c ≤
q1, q2, . . . , qt ≤ 1 − c for some c ∈ (0, 1/2] and that
Zi ∼ Ber(qi) are independent. Let Y =

∑t
i=0 Zi · 2i

and for each x ∈ Fp, let Yx ∼ L(Y |Y ≡ x (mod p)).
Consider YR, where R is chosen uniformly at random with
R ∼ Unif[Fp]. If S = Y (mod p) is as in the previous
lemma and Δ = dTV (L(S),Unif[Fp]) < p−1, then it holds
that

1) dTV(L(Y),L(YR)) ≤ Δ.
2) Given x ∈ Fp, we may sample L(Yx) within δ total

variation distance in O
(

t log(1/δ)
p−1−Δ

)
time.

Proof: Note that the x → Yx defines a Markov

transition sending S → Y and R→ YR. The data-processing

inequality yields dTV(L(Y),L(YR)) ≤ dTV(L(S),L(R)) =
Δ, implying the first item.

The second item can be achieved by rejection sampling

from the distribution L(Y) until receiving an element con-

gruent to x modulo p or reaching the cutoff of

m =

⌈
log δ

log(1− p−1 +Δ)

⌉
= O

(
log(1/δ)

p−1 −Δ

)

rounds. Each sample from L(Y) can be obtained in O(t)
by sampling Z0, Z1, . . . , Zt and forming the number Y with

binary digits Zt, Zt−1, . . . , Z0. If we receive a sample by the

mth round, then it is exactly sampled from the conditional

distribution L(Yx) = L(Y |Y ≡ x (mod p)). Therefore

the total variation between the output of this algorithm and

L(Yx) is upper bounded by the probability that the rejection

sampling scheme fails to output a sample. Now note that the

probability that a sample is output in a single round is

P[S = x] ≥ p−1 − dTV (L(S),Unif[Fp]) = p−1 −Δ

by the definition of total variation. By the independence of

sampling in different rounds, the probability that no sample

is output is at most

(1− P[S = x])
m ≤ (

1− p−1 +Δ
)m ≤ δ

which completes the proof of the second item.

We conclude this section with a sampling result similar

to Lemma IV.3, but for the p = 2 case.

Lemma IV.4. Let R ∼ Unif[F2], and let ε > 0 and
c ∈ (0, 1). Then there exists t = O(c−1(1− c)−1 log(1/ε)),
so that in O(t log(1/ε)) time one may sample X1, . . . , Xt

supported on {0, 1}, such that R =
∑t

i=1 Xi (mod 2), and
such that dTV(L(X),Ber(c)⊗t) < ε.

1271

Proof: Let Z1, . . . , Zt
i.i.d∼ Ber(c). By induction on t,

one may show that

P

[
t∑

i=1

Zi ≡ 0 (mod 2)

]
=

1

2
− (1− 2c)t

2

Let t =
log(ε/8)/ log(|1 − 2c|)� + 1 = O(c−1(1 −
c)−1 log(1/ε)), so that dTV(L(

∑t
i=1 Zi),L(R)) ≤ ε/8.

Sample the distribution

X ∼ L
(
Z
∣∣∣ t∑

i=1

Zi ≡ R (mod 2)

)

within ε/2 total variation distance by rejection sampling.

This takes time O(t log(1/ε)), because it consists of at

most O(log(1/ε)) rounds of sampling fresh copies of Z ∼
Ber(c)⊗t and checking if

∑t
i=1 Zi = R. By triangle

inequality, it suffices to show that dTV(L(X),Ber(c)⊗t) ≤
ε/2. This is true because for any ω ∈ {0, 1}t,

P[X = ω] = P

[
Z = ω|

t∑
i=1

Z ≡
t∑

i=1

ωi (mod 2)

]

× P

[
R ≡

t∑
i=1

ωi

]

=
P[Z = ω]

2 · P
[∑t

i=1 Z ≡
∑t

i=1 ωi (mod 2)
] .

Hence (1 − ε/4)P[Z = ω] ≤ P[X = ω] ≤ (1 + ε/4) ·
P[Z = ω] for all ω ∈ {0, 1}, and so dTV(L(X),L(Z)) =
dTV(L(X),Ber(c)⊗t) ≤ ε/2, as desired.

V. ALGORITHMS FOR COUNTING k-CLIQUES

IN G(n, c, s)

In this section, we consider several natural algorithms for

counting k-cliques in G(n, c, s) with c = Θ(n−α) for some

α ∈ (0, 1). The main objective of this section is to show that,

when k and s are constant, these algorithms all run faster

than all known algorithms for #(k, s)-CLIQUE on worst-case

hypergraphs and nearly match the lower bounds from our

reduction for certain k, c and s. This demonstrates that the

average-case complexity of #(k, s)-CLIQUE on Erdős-Rényi

hypergraphs is intrinsically different from its worst-case

complexity. As discussed in Section II-B, this also shows

the necessity of a slowdown term comparable to Υ# in our

worst-case to average-case reduction for #(k, s)-CLIQUE.

We begin with a randomized sampling-based algorithm

for counting k-cliques in G(n, c, s), extending well-known

greedy heuristics for finding k-cliques in random graphs. We

then present an improvement to this algorithm in the graph

case and a deterministic alternative.

A. Greedy Random Sampling

In this section, we consider a natural greedy algorithm

GREEDY-RANDOM-SAMPLING for counting k-cliques in a

s-uniform hypergraph G ∼ G(n, c, s) with c = Θ(n−α).
Given a subset of vertices A ⊆ [n] of G, define

CNG(A) = {v ∈ V (G)\A : B ∪ {v} ∈ E(G)

for all (s− 1)-subsets B ⊆ A}
denote the set of common neighbors of the vertices in A. The

algorithm GREEDY-RANDOM-SAMPLING maintains a set S
of k-subsets of [n] and for T iterations does the following:

1) Sample distinct starting vertices v1, v2, . . . , vs−1 uni-

formly at random and proceed to sample the remaining

vertices vs, vs+1, . . . , vk iteratively so that vi+1 is

chosen uniformly at random from CNG(v1, v2, . . . , vi)
if it is nonempty.

2) If k vertices {v1, v2, . . . , vk} are chosen then add

{v1, v2, . . . , vk} to S if it is not already in S.

This algorithm is an extension of the classical greedy

algorithm for finding log2 n sized cliques in G(n, 1/2)
in [1], [2], the Metropolis process examined in [3] and

the greedy procedure solving k-CLIQUE on G(n, c) with

c = Θ
(
n−2/(k−1)

)
discussed by Rossman in [33]. These

and other natural polynomial time search algorithms fail to

find cliques of size (1+ ε) log2 n in G(n, 1/2), even though

its clique number is approximately 2 log2 n with high proba-

bility [4], [5]. Our algorithm GREEDY-RANDOM-SAMPLING

extends this greedy algorithm to count k-cliques in

G(n, c, s). In our analysis, we will see a phase transition in

the behavior of this algorithm at k = τ for some τ smaller

than the clique number of G(n, c, s). This is analogous to

the breakdown of the natural greedy algorithm at cliques of

size log2 n on G(n, 1/2).
Before analyzing GREEDY-RANDOM-SAMPLING, we state

a simple classical lemma counting the number of k-cliques

in G(n, c, s). This lemma follows from linearity of ex-

pectation and Markov’s inequality. Its proof is included in

Appendix C for completeness.

Lemma V.1. For fixed α ∈ (0, 1) and s, let κ ≥ s
be the largest positive integer satisfying α

(
κ

s−1

)
< s. If

G ∼ G(n, c, s) where c = O(n−α), then E[|clk(G)|] =(
n
k

)
c(

k
s) and ω(G) ≤ κ + 1 + t with probability at least

1−O
(
n−αt(1−s−1)(κ+2

s−1)
)

for any fixed positive integer t.

In particular, this implies that the clique number of

G(n, c, s) is typically at most (s!α−1)
1

s−1 + s − 1. In the

graph case of s = 2, this simplifies to 1 + 2α−1. In the

next subsection, we give upper bounds on the number of

iterations T causing all k-cliques in G to end up in S and an-

alyze the runtime of the algorithm. The subsequent subsec-

tion improves the runtime of GREEDY-RANDOM-SAMPLING

for graphs when s = 2 through a matrix multiplication

1272

post-processing step. The last subsection gives an alterna-

tive deterministic algorithm with a similar performance to

GREEDY-RANDOM-SAMPLING.

B. Sample Complexity and Runtime of Greedy Random
Sampling

In this section, we analyze the runtime of

GREEDY-RANDOM-SAMPLING and prove upper bounds

on the number of iterations T needed for the algorithm

to terminate with S = clk(G). The dynamic set S needs

to support search and insertion of k-cliques. Consider

labelling the vertices of G with elements of [n] and

storing the elements of S in a balanced binary search

tree sorted according to the lexicographic order on

[n]k. Search and insertion can each be carried out in

O(log |clk(G)|) = O(k log n) time. It follows that each

iteration of GREEDY-RANDOM-SAMPLING therefore takes

O(n + k log n) = O(n) time as long as k = O(1).
Outputting |S| in GREEDY-RANDOM-SAMPLING therefore

yields a O(nT) time algorithm for #(k, s)-CLIQUE on

G(n, c, s) that succeeds with high probability.

We now prove upper bounds on the minimum number

of iterations T needed for this algorithm to terminate with

S = clk(G) and therefore solve #(k, s)-CLIQUE.

Theorem V.2. Let k and s be constants and c = Θ(n−α)
for some α ∈ (0, 1). Let τ be the largest integer satisfying
α
(

τ
s−1

)
< 1 and suppose that

T ≥
{
2nτ+1c(

τ+1
s)(log n)3(k−τ)(1+ε) if k ≥ τ + 1

2nkc(
k
s)(log n)1+ε if k < τ + 1

for some ε > 0. Then GREEDY-RANDOM-SAMPLING

run with T iterations terminates with S = clk(G)
with probability 1 − n−ω(1) over the random bits of
GREEDY-RANDOM-SAMPLING and with probability 1 −
n−ω(1) over the choice of random hypergraph G ∼
G(n, c, s).

Proof: We first consider the case where k ≥ τ +1. Fix

some ε > 0 and let v = (v1, v2, . . . , vk) be an ordered tuple

of distinct vertices in [n]. Define the random variable

Zv = n(n− 1) · · · (n− s+ 2)
k−1∏

i=s−1

|CNG(v1, v2, . . . , vi)|

Consider the following event over the sampling G ∼
G(n, c, s)

Av =
{
Zv ≥ 2nτ+1c(

τ+1
s)(log n)3(k−1−τ)(1+ε) and

{v1, v2, . . . , vk} ∈ clk(G)
}

We now proceed to bound the probability of Av through

simple Chernoff and union bounds over G. In the next

part of the argument, we condition on the event that

{v1, v2, . . . , vk} forms a clique in G. For each i ∈ {s −

1, s, . . . , k − 1}, let Yv,i be the number of common neigh-

bors of v1, v2, . . . , vi in V (G)\{v1, v2, . . . , vk}. Note that

Yv,i ∼ Bin
(
n− k, c(

i
s−1)

)
and that |CNG(v1, v2, . . . , vi)| =

k− i+ Yv,i. The standard Chernoff bound for the binomial

distribution implies that for all δi > 0,

P

[
|CNG(v1, v2, . . . , vi)| ≥ k − i+ (1 + δi)(n− k)c(

i
s−1)

]
≤ exp

(
− δ2i
2 + δi

· (n− k)c(
i

s−1)
)

Now define κi to be

κi = (n− k)−1c−(
i

s−1) · (log n)1+ε

for each i ∈ {s − 1, s, . . . , k − 1}. Let δi =
√
κi if i ≤ τ

and δi = κi if i > τ . Note that for sufficiently large n,

δi < 1 if i ≤ τ and δi ≥ 1 if i > τ . These choices of

δi ensure that the Chernoff upper bounds above are each at

most exp
(− 1

3 (log n)
1+ε

)
for each i. A union bound implies

that with probability at least 1 − k exp
(− 1

3 (log n)
1+ε

)
, it

holds that

|CNG(v1, v2, . . . , vi)| < k − i+ (1 + δi)(n− k)c(
i

s−1)

< (1 + 2δi)(n− k)c(
i

s−1)

for all i and sufficiently large n. Here, we used the fact

that δi(n − k)c(
i

s−1) = ω(1) for all i by construction and

k = O(1). Observe that (1+2δi)(n−k)c(
i

s−1) ≤ 3(log n)1+ε

for all i ≥ τ + 1. These inequalities imply that

logZv < log ns−1 +
τ∑

i=s−1

log
(
(1 + 2δi)(n− k)c(

i
s−1)

)
+ 3(k − 1− τ)(1 + ε) log logn

< log nτ+1 + (log c)
τ∑

i=s−1

((
i

s− 1

)
+ log(1 + 2δi)

)

+ 3(k − 1− τ)(1 + ε) log logn

≤ log
(
nτ+1c(

τ+1
s)

)
+ 3(k − 1− τ)(1 + ε) log logn

+ 2

τ∑
i=s−1

δi

≤ log
(
nτ+1c(

τ+1
s)

)
+ 3(k − 1− τ)(1 + ε) log logn

+ o(1)

The last inequality holds since τ = O(1) and since δi �
(log n)

1
2+

ε
2n−

1
2+

1
2α(

τ
s−1) = o(1) for all i ≤ τ because of

the definition that α
(

τ
s−1

)
< 1. In summary, we have shown

that for sufficiently large n

P

[
Zv ≥ 2nτ+1c(

τ+1
s)(log n)3(k−1−τ)(1+ε)∣∣∣ {v1, v2, . . . , vk} ∈ clk(G)

]
≤ k exp

(
−1

3
(log n)1+ε

)
= n−ω(1)

1273

for any k-tuple of vertices v = (v1, v2, . . . , vk). Now since

P [{v1, v2, . . . , vk} ∈ clk(G)] = c(
k
s), we have that P[Av] ≤

c(
k
s)n−ω(1) = n−ω(1) for each k-tuple v. Consider the event

B =
{
Zv < 2nτ+1c(

τ+1
s)(log n)3(k−1−τ)(1+ε)

for all v such that {v1, v2, . . . , vk} ∈ clk(G)
}

Note that B =
⋃

k-tuples v Av and thus a union bound implies

that P[B] ≥ 1−∑
v P[Av] ≥ 1− nk · n−ω(1) = 1− n−ω(1)

since there are fewer than nk k-tuples v.

We now show that as long as B holds over

the random choice of G, then the algorithm

GREEDY-RANDOM-SAMPLING terminates with S = clk(G)
with probability 1 − n−ω(1) over the random bits of

GREEDY-RANDOM-SAMPLING, which completes the proof

of the lemma in the case k > τ + 1. In the next part of

the argument, we consider G conditioned on the event

B. Fix some ordering v = (v1, v2, . . . , vk) of some

k-clique C = {v1, v2, . . . , vk} in G. Note that in any one

of the T iterations of GREEDY-RANDOM-SAMPLING, the

probability that the k vertices v1, v2, . . . , vk are chosen

in that order is exactly 1/Zv . Since the T iterations of

GREEDY-RANDOM-SAMPLING are independent, we have

P [v is never chosen in a round] =

(
1− 1

Zv

)T

≤ exp

(
− T

Zv

)
= n−ω(1)

since T is chosen so that T ≥ Zv(log n)
3(1+ε) for all k-

tuples v, given the event B. Since there are at most nk

possible v, a union bound implies that every such v is

chosen in a round of GREEDY-RANDOM-SAMPLING with

probability at least 1 − nk · n−ω(1) = 1 − n−ω(1) over

the random bits of the algorithm. In this case, S = clk(G)
after the T rounds of GREEDY-RANDOM-SAMPLING. This

completes the proof of the theorem in the case k ≥ τ + 1.

We now handle the case k < τ + 1 through a nearly

identical argument. Define κi as in the previous case and

set δi =
√
κi for all i ∈ {s − 1, s, . . . , k − 1}. By the

same argument, for each k-tuple v we have with probability

1− n−ω(1) over the choice of G that

logZv < log ns−1 +
k−1∑

i=s−1

log
(
(1 + 2δi)(n− k)c(

i
s−1)

)

< log nk + (log c)
k−1∑

i=s−1

(
i

s− 1

)
+ 2

k−1∑
i=s−1

δi

= log
(
nkc(

k
s)
)
+ o(1)

where again δi � (log n)
1
2+

ε
2n−

1
2+

1
2α(

τ
s−1) = o(1) for all

i ≤ k − 1 < τ . Define the event

B′ =
{
Zv < 2nkc(

k
s)(log n)1+ε

for all v such that {v1, v2, . . . , vk} ∈ clk(G)
}

Note that T is such that T ≥ Zv(log n)
1+ε for all v if

B′ holds. Now repeating the rest of the argument from the

k ≥ τ + 1 case shows that P[B′] ≥ 1 − n−ω(1) and that

GREEDY-RANDOM-SAMPLING terminates with S = clk(G)
with probability 1−n−ω(1) over its random bits if G is such

that B′ holds. This completes the proof of the theorem.

Implementing S as a balanced binary search tree and

outputting |S| in GREEDY-RANDOM-SAMPLING therefore

yields the following algorithmic upper bounds for #(k, s)-
CLIQUE with inputs sampled from G(n, c, s).

Corollary V.3. Suppose that k and s are constants and c =
Θ(n−α) for some α ∈ (0, 1). Let τ be the largest integer
satisfying α

(
τ

s−1

)
< 1. Then it follows that

1) If k ≥ τ + 1, there is an Õ
(
nτ+2−α(τ+1

s)
)

time
randomized algorithm solving #(k, s)-CLIQUE on in-
puts sampled from G(n, c, s) with probability at least
1− n−ω(1).

2) If k < τ + 1, there is an Õ
(
nk+1−α(ks)

)
time

randomized algorithm solving #(k, s)-CLIQUE on in-
puts sampled from G(n, c, s) with probability at least
1− n−ω(1).

By Lemma V.1, the hypergraph G ∼ G(n, c, s) has clique

number ω(G) ≤ κ + 2 with probability 1 − 1/poly(n)
if where κ ≥ s is the largest positive integer satisfying

α
(

κ
s−1

)
< s. In particular, when k > κ + 2 in the

theorem above, the algorithm outputting zero succeeds with

probability 1 − 1/poly(n) and #(k, s)-CLIQUE is trivial.

For there to typically be a nonzero number of k-cliques in

G(n, c, s), it should hold that 0 < α ≤ s
(
k−1
s−1

)−1
. In the

graph case of s = 2, this simplifies to the familiar condition

that 0 < α ≤ 2
k−1 . We also remark that when k < τ + 1,

the runtime of this algorithm is an Õ(n) factor off from the

expected number of k-cliques in G ∼ G(n, c, s).

C. Post-Processing with Matrix Multiplication

In this section, we improve the runtime of

GREEDY-RANDOM-SAMPLING as an algorithm for #(k, s)-
CLIQUE in the graph case of s = 2. The improvement

comes from the matrix multiplication step of Nes̆etr̆il and

Poljak from their O
(
nω�k/3�+(k (mod 3))

)
time worst-case

algorithm for #(k, 2)-CLIQUE [38]. Our improved runtime

for GREEDY-RANDOM-SAMPLING is stated in the following

theorem.

Theorem V.4. Suppose that k > 2 is a fixed positive integer
and c = Θ(n−α) where 0 < α ≤ 2

k−1 is also fixed. Then
there is a randomized algorithm solving #(k, 2)-CLIQUE on

1274

inputs sampled from G(n, c) with probability 1−n−ω(1) that
runs in Õ

(
nω�k/3�+ω−ωα(�k/3�

2)
)

time.

Proof: Label the vertices of an input graph G ∼ G(n, c)
with the elements of [n]. Consider the following application

of GREEDY-RANDOM-SAMPLING with post-processing:

1) Run GREEDY-RANDOM-SAMPLING to compute the

two sets of cliques S1 = cl�k/3�(G) and S2 =
cl�k/3�(G) with the number of iterations T as given

in Theorem V.2.

2) Construct the matrix M1 ∈ {0, 1}|S1|×|S1| with rows

and columns indexed by the elements of S1 such that

(M1)A,B = 1 for A,B ∈ S1 if A ∪B forms a clique

of G and all labels in A are strictly less than all labels

in B.

3) Construct the matrix M2 ∈ {0, 1}|S1|×|S2| with rows

indexed by the elements of S1 and columns indexed by

the elements of S2 such that (M2)A,B = 1 for A ∈ S1

and B ∈ S2 under the same rule that A ∪ B forms a

clique of G and all labels in A are strictly less than all

labels in B. Construct the matrix M3 with rows and

columns indexed by S2 analogously.

4) Compute the matrix product

MP =

⎧⎨
⎩

M2
1 if k ≡ 0 (mod 3)

M1M2 if k ≡ 1 (mod 3)
M2M3 if k ≡ 2 (mod 3)

5) Output the sum of entries∑
(A,B)∈S

(MP)A,B

where S is the support of M1 if k ≡ 0 (mod 3) and

S is the support of M2 if k �≡ 0 (mod 3).

We will show that this algorithm solves #(k, 2)-CLIQUE

with probability 1 − n−ω(1) when k ≡ 1 (mod 3). The

cases when k ≡ 0, 2 (mod 3) follow from a nearly

identical argument. By Theorem V.2, the first step apply-

ing GREEDY-RANDOM-SAMPLING succeeds with probabil-

ity 1 − n−ω(1). Note that (MP)A,B counts the number of

�k/3�-cliques C in G such that the labels of C are strictly

greater than those of A and less than those of B and such

that A∪C and C∪B are both cliques. If it further holds that

(M2)A,B = 1, then A∪B is a clique and A∪B∪C is also

clique. Therefore the sum output by the algorithm exactly

counts the number of triples (A,B,C) such that A∪B ∪C
is a clique, |A| = |C| = �k/3�, |B| =
k/3� and the labels

of C are greater than those of A and less than those of

B. Observe that any clique C ∈ clk(G) is counted in this

sum exactly once by the triple (A,B,C) where A consists

of the lowest �k/3� labels in C, B consists of the highest

k/3� labels in C and C contains the remaining vertices of

C. Therefore this algorithm solves #(k, 2)-CLIQUE as long

as Step 1 succeeds.

It suffices to analyze the additional runtime incurred by

this post-processing. Observe that the number of cliques

output by a call to greedy-random-sampling with T iter-

ations is at most T . Also note that if α ≤ 2
k−1 , then

τ ≥ �k2 � − 1. If k ≥ 3, then it follows that τ + 1 ≥ �k2 � ≥

k3 �. It follows by Theorem V.2 that max{|S1|, |S2|} =

Õ
(
n�k/3�+1−α(�k/3�

s)
)

. Note that computing the matrix MP

takes Õ (max{|S1|, |S2|}ω) = Õ
(
nω�k/3�+ω−ωα(�k/3�

2)
)

time. Now observe that all other steps of the algorithm run in

Õ
(
n2�k/3�−2α(�k/3�

s)
)

time, which completes the proof of

the theorem since the matrix multiplication constant satisfies

ω ≥ 2.

We remark that for simplicity, we have ignored minor

improvements in the runtime that can be achieved by more

carefully analyzing Step 4 in terms of rectangular matrix

multiplication constants if k �= 0 (mod 3). Note that

the proof above implicitly used a weak large deviations

bound on |clk(G)|. More precisely, it used the fact that if

GREEDY-RANDOM-SAMPLING with T iterations succeeds,

then |clk(G)| ≤ T . Theorem V.2 thus implies that |clk(G)|
is upper bounded by the minimal settings of T in the theorem

statement with probability 1− n−ω(1) over G ∼ G(n, c, s).
When k ≤ τ + 1, these upper bounds are a polylog(n)

factor from the expectation of |clk(G)|. The upper tails

of |clk(G)| and more generally of the counts of small

subhypergraphs in G(n, c, s) have been studied extensively

in the literature. We refer to [65], [66], [67], [68] for a survey

of the area and recent results. Given a hypergraph H , let

N(n,m,H) denote the largest number of copies of H that

can be constructed in an s-uniform hypergraph with at most

n vertices and m hyperedges. Define the quantity

MH(n, c) = max
{
m ≤

(
n

s

)
: ∀H ′ ⊆ H it holds that

N(n,m,H ′) ≤ n|V (H′)|c|E(H′)|
}

The following large deviations result from [69] generalizes

a graph large deviations bound from [67] to hypergraphs to

obtain the following result.

Theorem V.5 (Theorem 4.1 from [69]). For every s-uniform
hypergraph H and every fixed ε > 0, there is a constant
C(ε,H) such that for all n ≥ |V (H)| and c ∈ (0, 1), it
holds that

P [XH ≥ (1 + ε)E[XH]] ≤ exp (−C(ε,H) ·MH(n, c))

where XH is the number of copies of H in G ∼ G(n, c, s).

Proposition 4.3 in [69] shows that if H is a d-regular

s-uniform hypergraph and c ≥ n−s/d then MH(n, c) =
Θ(nscd). This implies that

P

[
|clk(G)| ≥ (1 + ε)

(
n

k

)
c(

k
s)
]
≤ exp

(
−C ′(ε) · nsc(

k−1
s−1)

)

1275

as long as c ≥ n−s!(k−s)!/(k−1)!. This provides strong

bounds on the upper tails of |clk(G)| that will be useful

in the next subsection.

D. Deterministic Iterative Algorithm for Counting in
G(n, c, s)

In this section, we present an alternative deterministic

algorithm IT-GEN-CLIQUES achieving a similar runtime

to GREEDY-RANDOM-SAMPLING. Although they have

very different analyses, the algorithm IT-GEN-CLIQUES

can be viewed as a deterministic analogue of GREEDY

-RANDOM-SAMPLING. Both are constructing cliques

one vertex at a time. The algorithm IT-GEN-CLIQUES

takes in cutoffs Cs−1, Cs, . . . , Ck and generates sets

Ss−1, Ss, . . . , Sk as follows:

1) Initialize Ss−1 as the set of all (s− 1)-subsets of [n].
2) Given the set Si, for each vertex v ∈ [n], iterate

through all subsets A ∈ Si and add A ∪ {v} to Si+1

if A∪{v} is a clique and v is larger than the labels of

all of the vertices in A. Stop if ever |Si+1| ≥ Ci+1.

3) Stop once Sk has been generated and output Sk.

Suppose that Ct are chosen to be any high probability upper

bounds on the number of t-cliques in G ∼ G(n, c, s) such

as the bounds in Theorem V.5. Then we have the following

guarantees for the algorithm IT-GEN-CLIQUES.

Theorem V.6. Suppose that k and s are constants and c =
Θ(n−α) for some α ∈ (0, 1). Let τ be the largest integer
satisfying α

(
τ

s−1

)
< 1 and Ct = 2ntc(

t
s) for each s ≤

t ≤ k. Then IT-GEN-CLIQUES with the cutoffs Ct outputs
Sk = clk(G) with probability 1− n−ω(1) where

1) The runtime of IT-GEN-CLIQUES is O
(
nτ+2−α(τ+1

s)
)

if k ≥ τ + 2.
2) The runtime of IT-GEN-CLIQUES is O

(
nk−α(k−1

s)
)

if
k < τ + 2.

Proof: We first show that Sk = clk(G) with probability

1−n−ω(1) in IT-GEN-CLIQUES. By a union bound and The-

orem V.5, it follows that |clt(G)| < Ct for each s ≤ t ≤ k
with probability at least 1−(k−s+1)n−ω(1). The following

simple induction argument shows that St = clt(G) for each

s−1 ≤ t ≤ k conditioned on this event. Note that cls−1(G)
is by definition the set of all (s− 1)-subsets of [n] and thus

Ss−1 = cls−1(G). If St = clt(G), then each (t+1)-clique C
of G is added exactly once to St+1 as A∪{v} where v is the

vertex of C with the largest label and A = C\{v} ∈ clt(G)
are the remaining vertices. Now note that the runtime of

IT-GEN-CLIQUES is

O

(
k−1∑

t=s−1

nCt

)
= O

(
max

s−1≤t≤k−1
(nCt)

)

=

⎧⎨
⎩
O
(
nτ+2−α(τ+1

s)
)

if k ≥ τ + 2

O
(
nk−α(k−1

s)
)

if k < τ + 2

since k = O(1). To see the second inequality, note that

logn(Ct+1/Ct) = 1−α
(

t
s−1

)
. This implies that Ct+1 > Ct

if t ≤ τ and Ct is maximized on s ≤ t ≤ k when t = τ +1.

This completes the proof of the theorem.

We remark that in the case of k < τ + 1,

IT-GEN-CLIQUES attains a small runtime improvement

over GREEDY-RANDOM-SAMPLING. However, GREEDY

-RANDOM-SAMPLING can be modified to match this run-

time up to a polylog(n) factor by instead generating

the (k − 1)-cliques of G and applying the last step of

IT-GEN-CLIQUES to generate the k-cliques of G. We also

remark that IT-GEN-CLIQUES can also be used instead

of GREEDY-RANDOM-SAMPLING in Step 1 of the algo-

rithm in Theorem V.4, yielding a nearly identical runtime

of Õ
(
nω�k/3�−ωα(�k/3�−1

2)
)

for #(k, 2)-CLIQUE on inputs

sampled from G(n, c).

VI. EXTENSIONS AND OPEN PROBLEMS

In this section, we outline several extensions of our

methods and problems left open after our work.
Improved Average-Case Lower Bounds: A natural

question is whether tight average-case lower bounds for

#(k, s)-CLIQUE can be shown above the k-clique perco-

lation threshold when s ≥ 3 and if the constant C in the

exponent of our lower bounds for the graph case of s = 2
can be improved from 1 to ω/9.

Raising Error Tolerance for Average-Case Hardness: A

natural question is whether the error tolerance of the worst-

case to average-case reductions in Theorems II.8 and II.9 can

be increased. We remarked in the introduction that for certain

choices of k, the error tolerance cannot be significantly

increased – for example, when k = 3 log2 n, the trivial

algorithm that outputs 0 on any graph has subpolynomial

error on graphs drawn from G(n, 1/2), but is useless for

reductions from worst-case graphs. Nevertheless, for other

regimes of k, such as when k = O(1) is constant, counting

k-cliques with error probability less than 1/4 on graphs

drawn from G(n, 1/2) appears to be nontrivial. It is an open

problem to prove hardness for such a regime. In general,

one could hope to understand the tight tradeoffs between

computation time, error tolerance, k, c, and s for k-clique-

counting on G(n, c, s).
Hardness of Approximating Clique Counts: Another

interesting question is whether it is hard to approximate the

k-clique counts, within some additive error e, of hypergraphs

drawn from G(n, c, s). Since the number of k-cliques in

G(n, c, s) concentrates around the mean μ ≈ c(
k
s)nk with

standard deviation σ, one would have to choose e � σ for

approximation to be hard.
Inhomogeneous Erdős-Rényi Hypergraphs: Consider

an inhomogeneous Erdős-Rényi hypergraph model, where

each hyperedge e is independently chosen to be in the

hypergraph with probability c(e). Also suppose that we

may bound c(e) uniformly away from 0 and 1 (that is,

1276

c(e) ∈ [c, 1− c] for all possible hyperedges e and for some

constant c). We would like to prove that #(k, s)-CLIQUE and

PARITY-(k, s)-CLIQUE are hard on average for inhomoge-

neous Erdős-Rényi hypergraphs. Unfortunately, this does not

follow directly from our proof techniques because step 5 in

the proof of Theorems II.8 and II.9 breaks down due to the

inhomogeneity of the model. Nevertheless, steps 1-4 still

hold, and therefore we can show that #(k, s)-CLIQUE and

PARITY-(k, s)-CLIQUE are average-case hard for k-partite

inhomogeneous Erdős-Rényi hypergraphs – when only the

edges e that respect the k-partition are chosen to be in the

hypergraph with inhomogeneous edge-dependent probability

c(e) ∈ [c, 1− c].

General Subgraph Counts: Let H be a hypergraph on

k vertices. Let H -COUNTING be the problem of counting

the number of occurrences (as an induced subgraph) of H
in a hypergraph G. Can one show that H -COUNTING in the

worst case reduces to H -COUNTING in the average case on

Erdős-Rényi hypergraphs?

Our reduction (Theorem II.8) applies to the special case

when H is a clique. Unfortunately, the proof of Theorem

II.8 breaks down when counting general hypergraphs. First,

the reductions to and from k-partite hypergraphs (steps 1

and 5) no longer work, because H contains non-edges, and

therefore there may be a copy of H that contains more than

one vertex in a given k-partition. In order to remedy this,

we could consider the modification H -COUNTING′ of the

H -COUNTING problem that respects k-partite structure, by

only counting the copies of H in a k-partite hypergraph G,

such that the k vertices of the copy of H lie in the k different

parts of the vertex partition of G. For this modified problem,

the strategy of our reduction still fails – this time at Step

4, because the polynomial that counts copies of H in G
is not homogeneous. Indeed, for clique-counting, Step 4 of

the reduction uses the fact that the variables of the clique-

counting polynomial can be split up into
(
k
s

)
groups, such

that each monomial contained exactly one variable from

each group.

REFERENCES

[1] R. M. Karp, “Probabilistic analysis of some combinatorial
search problems,” in Algorithms and Complexity: New Direc-
tions and Recent Results. Academic Press, 1976.

[2] G. R. Grimmett and C. J. McDiarmid, “On colouring random
graphs,” in Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 77, no. 2. Cambridge University
Press, 1975, pp. 313–324.

[3] M. Jerrum, “Large cliques elude the metropolis process,”
Random Structures & Algorithms, vol. 3, no. 4, pp. 347–359,
1992.

[4] C. McDiarmid, “Colouring random graphs,” Annals of Oper-
ations Research, vol. 1, no. 3, pp. 183–200, 1984.

[5] B. Pittel, “On the probable behaviour of some algorithms
for finding the stability number of a graph,” in Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 92,
no. 3. Cambridge University Press, 1982, pp. 511–526.

[6] D. Gamarnik and M. Sudan, “Limits of local algorithms over
sparse random graphs,” in Proceedings of the 5th conference
on Innovations in theoretical computer science. ACM, 2014,
pp. 369–376.

[7] A. Coja-Oghlan and C. Efthymiou, “On independent sets in
random graphs,” Random Structures & Algorithms, vol. 47,
no. 3, pp. 436–486, 2015.

[8] M. Rahman and B. Virag, “Local algorithms for independent
sets are half-optimal,” The Annals of Probability, vol. 45,
no. 3, pp. 1543–1577, 2017.

[9] U. Feige, D. Gamarnik, J. Neeman, M. Z. Rácz, and
P. Tetali, “Finding cliques using few probes,” arXiv preprint
arXiv:1809.06950, 2018.

[10] L. Kucera, “Expected complexity of graph partitioning prob-
lems,” Discrete Applied Mathematics, vol. 57, no. 2-3, pp.
193–212, 1995.

[11] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large
hidden clique in a random graph,” Random Structures and
Algorithms, vol. 13, no. 3-4, pp. 457–466, 1998.

[12] U. Feige and R. Krauthgamer, “Finding and certifying a large
hidden clique in a semirandom graph,” Random Structures
and Algorithms, vol. 16, no. 2, pp. 195–208, 2000.

[13] F. McSherry, “Spectral partitioning of random graphs,” in
Foundations of Computer Science, 2001. Proceedings. 42nd
IEEE Symposium on. IEEE, 2001, pp. 529–537.

[14] U. Feige and D. Ron, “Finding hidden cliques in linear time,”
in 21st International Meeting on Probabilistic, Combinato-
rial, and Asymptotic Methods in the Analysis of Algorithms
(AofA’10). Discrete Mathematics and Theoretical Computer
Science, 2010, pp. 189–204.

[15] B. P. Ames and S. A. Vavasis, “Nuclear norm minimization
for the planted clique and biclique problems,” Mathematical
programming, vol. 129, no. 1, pp. 69–89, 2011.

[16] Y. Dekel, O. Gurel-Gurevich, and Y. Peres, “Finding hidden
cliques in linear time with high probability,” Combinatorics,
Probability and Computing, vol. 23, no. 1, pp. 29–49, 2014.

[17] Y. Deshpande and A. Montanari, “Finding hidden cliques of
size

√
N/e in nearly linear time,” Foundations of Computa-

tional Mathematics, vol. 15, no. 4, pp. 1069–1128, 2015.
[18] Y. Chen and J. Xu, “Statistical-computational tradeoffs in

planted problems and submatrix localization with a growing
number of clusters and submatrices,” Journal of Machine
Learning Research, vol. 17, no. 27, pp. 1–57, 2016.

[19] B. Barak, S. B. Hopkins, J. Kelner, P. Kothari, A. Moitra,
and A. Potechin, “A nearly tight sum-of-squares lower bound
for the planted clique problem,” in Foundations of Computer
Science (FOCS), 2016 IEEE 57th Annual Symposium on.
IEEE, 2016, pp. 428–437.

[20] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and
Y. Xiao, “Statistical algorithms and a lower bound for detect-
ing planted cliques,” in Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. ACM, 2013, pp.
655–664.

[21] A. Juels and M. Peinado, “Hiding cliques for cryptographic
security,” Designs, Codes and Cryptography, vol. 20, no. 3,
pp. 269–280, 2000.

[22] Q. Berthet and P. Rigollet, “Complexity theoretic lower
bounds for sparse principal component detection.” in COLT,
2013, pp. 1046–1066.

[23] P. Koiran and A. Zouzias, “Hidden cliques and the certifica-
tion of the restricted isometry property,” IEEE Transactions
on Information Theory, vol. 60, no. 8, pp. 4999–5006, 2014.

[24] Y. Chen, “Incoherence-optimal matrix completion,” IEEE
Transactions on Information Theory, vol. 61, no. 5, pp. 2909–

1277

2923, 2015.
[25] B. E. Hajek, Y. Wu, and J. Xu, “Computational lower bounds

for community detection on random graphs.” in COLT, 2015,
pp. 899–928.

[26] Z. Ma and Y. Wu, “Computational barriers in minimax
submatrix detection,” The Annals of Statistics, vol. 43, no. 3,
pp. 1089–1116, 2015.

[27] M. Brennan, G. Bresler, and W. Huleihel, “Reducibility and
computational lower bounds for problems with planted sparse
structure,” in Conference On Learning Theory, 2018, pp. 48–
166.

[28] ——, “Universality of computational lower bounds for sub-
matrix detection,” arXiv preprint arXiv:1902.06916, 2019.

[29] M. Brennan and G. Bresler, “Optimal average-case reductions
to sparse pca: From weak assumptions to strong hardness,”
arXiv preprint arXiv:1902.07380, 2019.

[30] A. Atserias, I. Bonacina, S. F. de Rezende, M. Lauria,
J. Nordström, and A. Razborov, “Clique is hard on average
for regular resolution,” in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. ACM,
2018, pp. 866–877.

[31] B. Rossman, “On the constant-depth complexity of k-clique,”
in Proceedings of the fortieth annual ACM symposium on
Theory of computing. ACM, 2008, pp. 721–730.

[32] ——, “The monotone complexity of k-clique on random
graphs,” in 2010 IEEE 51st Annual Symposium on Founda-
tions of Computer Science. IEEE, 2010, pp. 193–201.

[33] ——, “Lower bounds for subgraph isomorphism,” 2016.
[34] J. Feigenbaum and L. Fortnow, “Random-self-reducibility of

complete sets,” SIAM Journal on Computing, vol. 22, no. 5,
pp. 994–1005, 1993.

[35] A. Bogdanov and L. Trevisan, “On worst-case to average-case
reductions for np problems,” SIAM Journal on Computing,
vol. 36, no. 4, pp. 1119–1159, 2006.

[36] ——, “Average-case complexity,” Foundations and Trends R©
in Theoretical Computer Science, vol. 2, no. 1, pp. 1–106,
2006.

[37] J. Chen, X. Huang, I. A. Kanj, and G. Xia, “Strong computa-
tional lower bounds via parameterized complexity,” Journal
of Computer and System Sciences, vol. 72, no. 8, pp. 1346–
1367, 2006.

[38] J. Nesetril and S. Poljak, “On the complexity of the subgraph
problem,” Commentationes Mathematicae Universitatis Car-
olinae, vol. 26, no. 2, pp. 415–419, 1985.

[39] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in
random networks,” Physical review letters, vol. 94, no. 16, p.
160202, 2005.

[40] G. Palla, I. Derényi, and T. Vicsek, “The critical point of
k-clique percolation in the erdős–rényi graph,” Journal of
Statistical Physics, vol. 128, no. 1-2, pp. 219–227, 2007.

[41] S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, “Crit-
ical phenomena in complex networks,” Reviews of Modern
Physics, vol. 80, no. 4, p. 1275, 2008.

[42] B. Bollobás and O. Riordan, “Clique percolation,” Random
Structures & Algorithms, vol. 35, no. 3, pp. 294–322, 2009.

[43] R. J. Lipton, “New directions in testing.” Distributed Com-
puting and Cryptography, vol. 2, pp. 191–202, 1989.

[44] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and
A. Wigderson, “Self-testing/correcting for polynomials and
for approximate functions,” in Proceedings of the twenty-third
annual ACM symposium on Theory of computing. ACM,
1991, pp. 33–42.

[45] P. Gemmell and M. Sudan, “Highly resilient correctors for
polynomials,” Inf. Process. Lett., vol. 43, no. 4, pp. 169–174,

1992.
[46] O. Goldreich and G. Rothblum, “Counting t-cliques: Worst-

case to average-case reductions and direct interactive proof
systems,” in 2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE, 2018, pp. 77–88.

[47] M. Sudan, “Decoding of reed solomon codes beyond the
error-correction bound,” Journal of complexity, vol. 13, no. 1,
pp. 180–193, 1997.

[48] J.-Y. Cai, A. Pavan, and D. Sivakumar, “On the hardness of
permanent,” in Annual Symposium on Theoretical Aspects of
Computer Science. Springer, 1999, pp. 90–99.

[49] U. Feige and C. Lund, “On the hardness of computing the
permanent of random matrices,” in Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing.
ACM, 1992, pp. 643–654.

[50] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Average-
case fine-grained hardness,” in Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing.
ACM, 2017, pp. 483–496.

[51] D. Gamarnik, “Computing the partition function of the
sherrington-kirkpatrick model is hard on average,” arXiv
preprint arXiv:1810.05907, 2018.

[52] M. Ajtai, “Generating hard instances of lattice problems,” in
Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. ACM, 1996, pp. 99–108.

[53] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” Journal of the ACM (JACM),
vol. 56, no. 6, p. 34, 2009.

[54] ——, “The learning with errors problem.”
[55] R. M. Karp, “Reducibility among combinatorial problems,”

in Complexity of computer computations. Springer, 1972,
pp. 85–103.

[56] L. G. Valiant, “The complexity of enumeration and reliability
problems,” SIAM Journal on Computing, vol. 8, no. 3, p. 410,
1979.

[57] R. Yuster, “Finding and counting cliques and independent sets
in r-uniform hypergraphs,” Information Processing Letters,
vol. 99, no. 4, pp. 130–134, 2006.

[58] A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,”
SIAM Journal on Computing, vol. 7, no. 4, pp. 413–423, 1978.

[59] A. A. Razborov, “Lower bounds for the monotone complexity
of some boolean functions,” in Soviet Math. Dokl., vol. 31,
1985, pp. 354–357.

[60] N. Alon and R. B. Boppana, “The monotone circuit complex-
ity of boolean functions,” Combinatorica, vol. 7, no. 1, pp.
1–22, 1987.

[61] K. Amano and A. Maruoka, “A superpolynomial lower bound
for a circuit computing the clique function with at most
(1/6) log log n negation gates,” SIAM Journal on Computing,
vol. 35, no. 1, pp. 201–216, 2005.

[62] R. G. Downey and M. R. Fellows, “Fixed-parameter tractabil-
ity and completeness ii: On completeness for w [1],” Theoret-
ical Computer Science, vol. 141, no. 1-2, pp. 109–131, 1995.

[63] E. Bach, J. Driscoll, and J. Shallit, “Factor refinement,”
Journal of Algorithms, vol. 15, no. 2, pp. 199–222, 1993.

[64] S. Gao, “Normal bases over finite fields,” Doctoral thesis,
Waterloo, 1993.

[65] V. H. Vu, “A large deviation result on the number of small
subgraphs of a random graph,” Combinatorics, Probability
and Computing, vol. 10, no. 1, pp. 79–94, 2001.

[66] S. Janson and A. Ruciński, “The infamous upper tail,” Ran-
dom Structures & Algorithms, vol. 20, no. 3, pp. 317–342,
2002.

[67] S. Janson, K. Oleszkiewicz, and A. Ruciński, “Upper tails

1278

for subgraph counts in random graphs,” Israel Journal of
Mathematics, vol. 142, no. 1, pp. 61–92, 2004.

[68] R. DeMarco and J. Kahn, “Tight upper tail bounds for
cliques,” Random Structures & Algorithms, vol. 41, no. 4,
pp. 469–487, 2012.

[69] A. Dudek, J. Polcyn, and A. Ruciński, “Subhypergraph
counts in extremal and random hypergraphs and the frac-
tional q-independence,” Journal of combinatorial optimiza-
tion, vol. 19, no. 2, pp. 184–199, 2010.

[70] D. E. Muller, “Application of boolean algebra to switching
circuit design and to error detection,” Transactions of the IRE
professional group on electronic computers, vol. 3, pp. 6–12,
1954.

APPENDIX

A. Reduction from DECIDE-(k, s)-CLIQUE to PARITY-

(k, s)-CLIQUE

The following is a precise statement and proof of the

reduction from DECIDE-(k, s)-CLIQUE to PARITY-(k, s)-
CLIQUE claimed in Section II-A.

Lemma A.1. Given an algorithm A for PARITY-(k, s)-
CLIQUE that has error probability < 1/3 on any s-uniform
hypergraph G, there is an algorithm B that runs in time
O(k2k|A|) and solves DECIDE-(k, s)-CLIQUE with error
< 1/3 on any s-uniform hypergraph G.

Proof: Let clk(G) denote the set of k-cliques in hyper-

graph G = (V,E). Consider the polynomial

PG(xV) =
∑

S∈clk(G)

∏
v∈S

xv (mod 2),

over the finite field F2. If G has a k-clique at vertices

S ⊂ V , then PG is nonzero, because PG(1S) = 1. If G has

no k-clique, then PG is zero. Therefore, deciding whether

G has a k-clique reduces to testing whether or not PG is

identically zero. PG is of degree at most k, so if PG is

nonzero on at least one input, then it is nonzero on at least

a 2−k fraction of inputs. One way to see this is that if we

evaluate PG at all points a ∈ {0, 1}m, the result is a non-zero

Reed-Muller codeword in RM(k,m). Since the distance of

the RM(k,m) code is 2m−k, and the block-length is 2m,

the claim follows [70]. We therefore evaluate PG at c · 2k
independent random inputs for some large enough c > 0,

accept if any of the evaluations returns 1, and reject if all

of the evaluations return 0. Each evaluation corresponds

to calculating PARITY-(k, s)-CLIQUE on a hypergraph G′

formed from G by removing each vertex independently with

probability 1/2. As usual, we boost the error of A by running

the algorithm O(k) times for each evaluation, and using the

majority vote.

B. Proof of Lemma III.6

We restate and prove Lemma III.6.

Lemma A.2 (Theorem 4 of [45]). Let F be a finite field with
|F| = q elements. Let N,D > 0. Suppose 9 < D < q/12.

Let f : FN → F be a polynomial of degree at most D. If
there is an algorithm A running in time T (A,N) such that

Px∼Unif[FN][A(x) = f(x)] > 2/3,

then there is an algorithm B running in time O((N +
D)D2 log2 q + T (A,N) ·D) such that for any x ∈ F

N ,

P[B(x) = f(x)] > 2/3.

Proof: Our proof of the lemma is based off of the proof

that appears in [50]. The only difference is that in [50],

the lemma is stated only for finite fields whose size is a

prime. Suppose we wish to calculate f(x) for x ∈ F
N . In

order to do this, choose y1, y2
i.i.d∼ Unif[FN], and define

the polynomial g(t) = x + ty1 + t2y2 where t ∈ F. We

evaluate A(g(t)) at m different values t1, . . . , tm ∈ F. This

takes O(mND log2 q + m · T (A,N)) time. Suppose that

we have the guarantee that at most (m − 2D)/2 of these

evaluations are incorrect. Then, since f(g(t)) is a univariate

polynomial of degree at most 2D, we may use Berlekamp-

Welch to recover f(g(0)) = A(x) in O(m3) arithmetic

operations over F, each of which takes O(log2 q) time. Since

g(ti) and g(tj) are pairwise independent and uniform in F
N

for any distinct ti, tj �= 0, by the second-moment method,

with probability > 2/3, at most (m− 2D)/2 evaluations of

A(g(t)) will be incorrect if we take m = 12D.

C. Clique Counts in Sparse Erdős-Rényi Hypergraphs

We prove the following classical lemma from Section

V-A.

Lemma A.3. For fixed α ∈ (0, 1) and s, let κ ≥ s
be the largest positive integer satisfying α

(
κ

s−1

)
< s. If

G ∼ G(n, c, s) where c = O(n−α), then E[|clk(G)|] =(
n
k

)
c(

k
s) and ω(G) ≤ κ + 1 + t with probability at least

1−O
(
n−αt(1−s−1)(κ+2

s−1)
)

for any fixed positive integer t.

Proof: Let C > 0 be such that c ≤ Cn−α for

sufficiently large n. For any given set {v1, v2, . . . , vk} of k
vertices in [n], the probability that all hyperedges are present

among {v1, v2, . . . , vk} and thus these vertices form a k-

clique in G is c(
k
s). Linearity of expectation implies that

the expected number of k-cliques is E[|clk(G)|] = (
n
k

)
c(

k
s).

Now consider taking k = κ+ 2 + t and note that

E[|clk(G)|] =
(
n

k

)
c(

k
s)

≤ nkc(
k
s) ≤ C(ks) · exp

((
1− α

s

(
k − 1

s− 1

))
k log n

)

≤ C(ks) · exp
((

1− α

s

(
κ+ 1

s− 1

))
k log n

−α

s
· t
(
κ+ 1

s− 2

)
k log n

)

≤ C(ks)n−αt(1−s−1)(κ+2
s−1)

1279

since k ≥ κ+2 and
(
κ+1+t
s−1

) ≥ (
κ+1
s−1

)
+t

(
κ+1
s−2

)
by iteratively

applying Pascal’s identity. Observe that κ = O(1) and thus

C(ks) = O(1). Now by Markov’s inequality, it follows that

P[ω(G) ≥ k] = P[|clk(G)| ≥ 1] ≤ E[|clk(G)|], completing

the proof of the lemma.

1280

