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Abstract—This paper initiates a systematic develop-
ment of a theory of non-commutative optimization,
a setting which greatly extends ordinary (Euclidean)
convex optimization. It aims to unify and generalize
a growing body of work from the past few years
which developed and analyzed algorithms for nat-
ural geodesically convex optimization problems on
Riemannian manifolds that arise from the symmetries
of non-commutative groups. More specifically, these
are algorithms to minimize the moment map (a non-
commutative notion of the usual gradient), and to
test membership in moment polytopes (a vast class
of polytopes, typically of exponential vertex and facet
complexity, which quite magically arise from this a-
priori non-convex, non-linear setting).

The importance of understanding this very general
setting of geodesic optimization, as these works un-
veiled and powerfully demonstrate, is that it captures a
diverse set of problems, many non-convex, in different
areas of CS, math, and physics. Several of them
were solved efficiently for the first time using non-
commutative methods; the corresponding algorithms
also lead to solutions of purely structural problems
and to many new connections between disparate fields.

In the spirit of standard convex optimization, we
develop two general methods in the geodesic setting,
a first order and a second order method, which re-
spectively receive first and second order information
on the “derivatives” of the function to be optimized.
These in particular subsume all past results. The
main technical work, again unifying and extending
much of the previous work, goes into identifying
the key parameters of the underlying group actions
which control convergence to the optimum in each
of these methods. These non-commutative analogues
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of “smoothness” in the commutative case are far
more complex, and require significant algebraic and
analytic machinery (much existing and some newly
developed here). Despite this complexity, the way in
which these parameters control convergence in both
methods is quite simple and elegant. We also bound
these parameters in several general cases.

Our work points to intriguing open problems and
suggests further research directions. We believe that
extending this theory, namely understanding geodesic
optimization better, is both mathematically and com-
putationally fascinating; it provides a great meeting
place for ideas and techniques from several very dif-
ferent research areas, and promises better algorithms
for existing and yet unforeseen applications.

Keywords-computational complexity, convex opti-
mization, geodesic convexity, invariant theory, moment
polytopes, non-commutative optimization, null cone,
representation theory, scaling algorithms

I. Introduction

Consider a group G that acts by linear transfor-
mations on the complex Euclidean space V = Cm.
This partitions V into orbits: For a vector v P V , the
orbit Ov is simply all vectors of the form g ¨ v to
which the action of a group element g P G can
map v.

The most basic algorithmic question in this
setting is as follows. Given a vector v P V , compute
(or approximate) the smallest �2-norm of any vector
in the orbit of v, that is, inft}w}2 : w P Ovu.
Remarkably, this simple question, for different
groups G, captures natural important problems in
computational complexity, algebra, analysis, and
quantum information. Even when restricted only
to commutative groups, it already captures all linear
programming problems!

845

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00055



Starting with [1], a series of recent works includ-
ing [2–7] designed algorithms and analysis tools
to handle this basic and other related optimization
problems over non-commutative groups G. These
provided efficient solutions for some applications,
and through algorithms, the resolution of some purely
structural mathematical open problems. We will
mention some of these below.

A great deal of understanding gradually evolved
in this sequence of works. These new algorithms
are all essentially iterative methods, progressing
from the input vector v to the desired optimum in
small steps, as do convex optimization algorithms.
This seems surprising, as the basic question above
is patently non-convex for non-commutative groups
(in the commutative case, a simple change of
variables discussed below convexifies the problem).
Indeed, neither the domain nor the function to
be optimized are convex! However, in hindsight,
a key to all of them are the notions of geodesic
convexity (which generalizes the familiar Euclidean
notion of convexity) and the moment map (which
generalizes the familiar Euclidean gradient) in the
curved space and new metrics induced by the group
action. A rich duality theory of geometric invariant
theory (greatly generalizing LP duality), together
with tools from algebraic geometry, representation
theory and differential equations are used in the
convergence analysis of these algorithms.

The main objective of this paper is to unify and
generalize these works, in a way which naturally
extends the familiar first and second order meth-
ods of standard convex optimization. We design
geodesic analogs of these methods, which, respec-
tively, have oracle access to first and second order
“derivatives” of the function being optimized. Our
first order method (which is a non-commutative
version of gradient descent) replaces and extends
the use of “alternate minimization” in most past
works, and thus can accommodate more general
group actions. Our second order method greatly
generalizes the one used for the particular group
action corresponding to operator scaling in [6]. It
may be thought of as a geodesic analog of the “trust
region method” [8] or the “box-constrained Newton
method” [9, 10] applied to a regularized function.
For both methods, in this non-commutative setting,
we recover the familiar convergence behavior of the
classical commutative case: to achieve “proximity”
ε to the optimum, our first order method converges
in O(1/ε) iterations and our second order method

in O(poly log(1/ε)) iterations.

As in the commutative case, the fundamental
challenge is to understand the “constants” hidden
in the big-O notation of each method. These depend
on “smoothness” properties of the function opti-
mized, which in turn are determined by the action
of the group G on the space V that defines the opti-
mization problem. The main technical contributions
of the theory we develop are to identify the key
parameters which control this dependence, and to
bound them for various actions to obtain concrete
running time bounds. These parameters depend on
a combination of algebraic and geometric properties
of the group action, in particular the irreducible rep-
resentations occurring in it. As mentioned, despite
the technical complexity of defining (and bounding)
these parameters, the way they control convergence
of the algorithms is surprisingly elegant.

We also develop important technical tools which
naturally extend ones common in the commutative
theory, including regularizers, diameter bounds,
numerical stability, and initial starting points, which
are key to the design and analysis of the presented
(and hopefully future) algorithms in the geodesic
setting.

As in previous works, we also address other
optimization problems beyond the basic “norm
minimization” question above, in particular the
minimization of the moment map (which turns out
to be a dual problem), and the membership problem
for moment polytopes; a very rich class of polytopes
(typically with exponentially many vertices and
facets) which arises magically from any such group
action.

The paradigm of optimization described above
resulted in efficient algorithms for problems from
various diverse areas of CS and mathematics. We
mention some of these applications in the full
version.

A. Some unexpected applications and connections

We mention here some of the diverse applica-
tions of the paradigm of optimization over non-
commutative groups:

1) Algebraic identities: Given an arithmetic for-
mula (with inversion gates) in non-commuting
variables, is it identically zero?

2) Quantum information: Given density matri-
ces describing local quantum states of various
parties, is there a global pure state consistent
with the local states?
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3) Eigenvalues of sums of Hermitian matrices:
Given three real n-vectors, do there exist three
Hermitian nˆ n matrices A, B, C with these
prescribed spectra, such that A+ B = C?

4) Analytic inequalities: Given m linear maps
Ai : Rn Ñ Rni and p1, . . . , pm ě 0, does
there exist a finite constant C such that for all
integrable functions fi : R

ni Ñ R+ we have

ş
xPRn

śm
i=1 fi(Aix)dx ď C

śm
i=1‖fi‖1/pi

?

These inequalities are the celebrated
Brascamp-Lieb inequalities, which capture
the Cauchy-Schwarz, Hölder, Loomis-Whitney,
and many further inequalities.

At first glance, it is far from obvious that solving
any of these problems has any relation to either
optimization or groups. We will clarify this mystery
below, showing not only how symmetries naturally
exist in all of them, but also how these help both
in formulating them as optimization problems over
groups, suggesting natural algorithms (or at least
heuristics) for them, and finally in providing tools
for analyzing these algorithms. It perhaps should
be stressed that symmetries exist in many examples
in which the relevant groups are commutative
(e.g., perfect matching in bipartite graphs, matrix
scaling, and more generally in linear, geometric, and
hyperbolic programming); however in these cases,
standard convex optimization or combinatorial
algorithms can be designed and analyzed without
any reference to these existing symmetries. Making
this connection explicit is an important part of our
exposition.

Polynomial time algorithms were first given in [1]
for Problem 1 (the works [11–13] later discovered
completely different algebraic algorithms), in [7]
for Problem 2, in [4, 14–16] for Problem 3 (the
celebrated structural result in [14] and the al-
gorithmic results of [15, 16] solved the decision
problem, while [4] solved the search problem),
and in [2] for Problem 4. However the algorithms
in [2, 4, 7] remain exponential time in various input
parameters, exemplifying only one aspect of many
in which the current theory and understanding is
lacking.

The unexpected connections revealed in this
study are far richer than the mere relevance of
optimization and symmetries to such problems.
One type are connections between problems in
disparate fields. For example, the analytic Problem 4
turns out to be a special case of the algebraic

Problem 1. Moreover, Problem 1 has (well-studied)
differently looking but equivalent formulations
in quantum information theory and in invariant
theory, which are automatically solved by the same
algorithm. Another type of connections are of
purely structural open problems solved through
such geodesic algorithms, reasserting the impor-
tance of the computational lens in mathematics.
One was the first dimension-independent bound
on the Paulsen problem in operator theory, obtained
ingeniously through such an algorithm in [5] (this
work was followed by [17], who gave a strikingly
simpler proof and stronger bounds). Another was
a quantitative bound on the continuity of the best
constant C in Problem 4 (in terms of the input
data), important for non-linear variants of such
inequalities. This bound was obtained through
the algorithm in [2] and relies on its efficiency;
previous methods used compactness arguments
that provided no bounds.
We have no doubt that more unexpected applica-

tions and connections will follow. The most extreme
and speculative perhaps among such potential ap-
plications is to develop a deterministic polynomial-
time algorithm for the polynomial identity testing
(PIT) problem. Such an algorithm will imply major
algebraic or Boolean lower bounds, namely either
separating VP from VNP, or proving that NEXP
has no small Boolean circuits [18]. We note that
this goal was a central motivation of the initial
work in this sequence [1], which provided such a
deterministic algorithm for Problem 1 above, the
non-commutative analog of PIT. The “real” PIT
problem (in which variables commute) also has a
natural group of symmetries acting on it, which
does not quite fall into the frameworks developed
so far (including the one of this paper). Yet, the
hope of proving lower bounds via optimization
methods is a fascinating (and possibly achievable)
one. This agenda of hoping to shed light on the
PIT problem by the study of invariant theoretic
questions was formulated in the fifth paper of the
Geometric Complexity Theory (GCT) series [19, 20].

II. Non-commutative optimization: a primer

We now give an introduction to non-commutative
optimization and contrast its geometric structure
and convexity properties with the familiar com-
mutative setting. The basic setting is that of a
continuous group G acting (linearly) on an m-
dimensional complex vector space V – Cm. For
this section, and the rest of the introduction, think
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of G as either the group of nˆn complex invertible
matrices, denoted GL(n), or the group of diagonal
such matrices, denoted T(n). The latter corresponds
to the commutative case and the former is a
paradigmatic example of the non-commutative
case. An action (also called a representation) of
a group G on a complex vector space V is a
group homomorphism π : G Ñ GL(V), that is, an
association of an invertible linear map π(g) from
V Ñ V for every group element g P G satisfying
π(g1g2) = π(g1)π(g2) for all g1, g2 P G. Further
suppose that V is also equipped with an inner
product x¨, ¨y and hence a norm ‖v‖ := xv, vy.1
Given a vector v P V one can consider the

optimization problem of taking the infimum of the
norm in the orbit of the vector v under the action
of G. More formally, define the capacity of v by2

cap(v) := inf
gPG‖π(g)v‖.

This notion generalizes the matrix and operator
capacities developed in [21, 22] (to see this, carry
out the optimization over one of the two group
variables) as well as the polynomial capacity of [23].
It turns out that this simple-looking optimization
problem is already very general in the commutative
case and, in the non-commutative case, captures all
examples discussed in Section I-A.

Let us first consider the commutative case, G =
T(n) acting on V . In this simple case, all actions π
have a very simple form. We give two equivalent
descriptions, first of how any representation π splits
into one-dimensional irreducible representations,
and another describing π as a natural scaling action
on n-variate polynomials with m monomials.

The irreducible representations are given by an
orthonormal basis v1, . . . , vm of V such that the vj
are simultaneous eigenvectors of all the matri-
ces π(g). That is, for all g = diag(g1, . . . , gn) P T(n)
and j P [m],

π(g)vj = λj(g)vj, where λj(g) =
śn

i=1 g
ωj(i)
i

(II.1)

1In general, the theory works whenever the group is connected,
algebraic and reductive, and our results hold in this generality.
However, for purposes of exposition we only discuss very simple
groups in this introduction. We also suppress some technical
details which are spelled out later, e.g., that the representations
are regular and map unitary matrices to unitary matrices (both
are essentially without loss of generality).

2For notational convenience, we suppress the dependence on
the group G and representation π of cap(v) (likewise for the
null cone and the moment polytopes defined below).

for fixed integer vectors ω1, . . . ,ωm P Zn, which
are called weights and encode the simultaneous
eigenvalues, and completely determine the action.
Below we also refer to the weights of represen-
tation π of GL(n), defined as the weights of π
restricted to T(n).
A natural way to view all these actions is as

follows. The natural action of T(n) on Cn by matrix-
vector multiplication, induces an action of T(n)
on n-variate polynomials V = C[x1, x2, . . . , xn]:
simply, any group element g = diag(g1, . . . , gn)
“scales” each xi to gixi. Note that any mono-

mial xω =
śn

i=1 x
ω(i)
i (where ω is the integer

vector of exponents) is an eigenvector of this action,

with an eigenvalue λ(g) =
śn

i=1 g
ω(i)
i .

Now fix m integer vectors ωj as above. Consider
the linear space of n-variate Laurent polynomials
(i.e., polynomials where the variables can have
negative exponents, too) with the following m

monomials: vj = xωj =
śn

i=1 x
ωj(i)
i . The action

on any polynomial v =
řm

j=1 cjvj is precisely the
one described above, scaling each coefficient by
the eigenvalue of its monomial. The norm }v} of
a polynomial is the sum of the square moduli of
its coefficients. Now let us calculate the capacity of
this action. For any v =

řm
j=1 cjvj,

cap(v)2 = inf
g1,...,gnPC˚

mÿ

j=1

|cj|2
nź

i=1

|gi|2ωj(i)

= inf
xPRn

mÿ

j=1

|cj|2ex¨ωj , (II.2)

where we used the change of variables xi =
log |gi|2, which makes the problem convex (in fact,
log-convex)! This class of optimization problems
(of optimizing norm in the orbit of a commutative
group) is known as geometric programming and is
well-studied in the optimization literature (see, e.g.,
Chapter 4.5 in [24]). Hence for non-commutative
groups, one can view cap(v) as non-commutative
geometric programming. Is there a similar change of
variables that makes the problem convex in the non-
commutative case? It does not seem so. However,
the non-commutative case also satisfies a notion of
convexity, known as geodesic convexity, which we
will study next.

1) Geodesic convexity: Geodesic convexity gen-
eralizes the notion of convexity in the Euclidean
space to arbitrary Riemannian manifolds. We will
not go into the notion of geodesic convexity in
this generality but just mention what it amounts
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to in our concrete setting of norm optimization
for G = GL(n).
It turns out the appropriate way to define

geodesic convexity in this case is as follows.
Fix an action π of GL(n) and a vector v. Then
log‖π(etHg)v‖ is convex in the real parameter t
for every Hermitian matrix H and g P GL(n).
This notion of convexity is quite similar to the
notion of Euclidean convexity, where a function
is convex iff it is convex along all lines. However,
it is far from obvious how to import optimization
techniques from the Euclidean setting to work in
this non-commutative geodesic setting. An essential
ingredient we describe next is the geodesic notion
of a gradient, called the moment map.
2) Moment map: The moment map is by def-

inition the gradient of the function log‖π(g)v‖
(understood as a function of v), at the identity
element of the group, g = I. It captures how the
norm of the vector v changes when we act on it by
infinitesimal perturbations of the identity.
Again, we start with the commutative case

G = T(n) acting on the multivariate Laurent
polynomials. For a (“direction”) vector h P Rn

and a real (“perturbation”) parameter t, let eth =
diag

(
eth1 , . . . , ethn

)
. Then, for G = T(n), the mo-

ment map is the function μ : Vzt0u Ñ Rn, defined
by the following property:

μ(v) ¨ h = Bt=0

[
log

∥∥π(diag(eth)v∥∥] ,
for all h P Rn. That is, the directional derivative
in direction h is given by the dot product μ(v) ¨ h.
Here one can see that the moment map matches
the notion of Euclidean gradient. For the action
of T(n) in Eq. (II.1),

μ(v) = ∇x=0 log
( mÿ

j=1

|cj|2ex¨ωj

)
=

řm
j=1 |cj|2ωjřm
j=1 |cj|2 .

(II.3)

Note that the gradient μ(v) at any point v is a
convex combination of the weights! Viewing v as
a polynomial, the gradient thus belongs to the so-
called Newton polytope of v, namely the convex hull
of the exponent vectors of its monomials! Con-
versely, every point in that polytope is a gradient
of some polynomial v with these monomials. We
will soon return to this curious fact!
We now proceed to the non-commutative case,

focusing on G = GL(n). Denote by Herm(n) the
set of n ˆ n complex Hermitian matrices. Here
“directions” will be parametrized by H P Herm(n).

For the case of G = GL(n), the moment map is the
function μ : Vzt0u Ñ Herm(n) defined (in complete
analogy to the commutative case above) by the
following property that

tr[μ(v)H] = Bt=0

[
log

∥∥π(etH)v∥∥]
for all H P Herm(n). That is, the directional
derivative in direction H is given by tr[μ(v)H].

Remark II.1. The reason we are restricting to directions
in Rn in the T(n) case and to directions in Hermn in
the GL(n) case is that imaginary and skew-Hermitian
directions, respectively, do not change the norm.

In the commutative case, Eq. (II.3) is a convex
combination of the weights ωj. Thus, the image
of μ is the convex hull of the weights – a convex
polytope. This brings us to moment polytopes.
3) Moment polytopes: One can ask whether the

above fact is true for actions of GL(n) i.e., is the
set tμ(v) : v P Vzt0uu convex? This turns out to be
blatantly false. Consider the action of GL(n) on Cn

by matrix-vector multiplication. The moment map
in this setting is μ(v) = vv:/‖v‖2, and its image is
clearly not convex. However, there is still something
deep and non-trivial that can be said. Given a
Hermitian matrix H P Herm(n), define its spectrum
to be the vector of its eigenvalues arranged in non-
increasing order. That is, spec(H) := (λ1, . . . , λn),
where λ1 ě ¨ ¨ ¨ ě λn are the eigenvalues of H.
Amazingly, the set of spectra of moment map
images, that is,

Δ :=
�
spec

(
μ(v)

)
: 0 ‰ v P V( ,

is a convex polytope for every representation π [25–
29]! These polytopes are called moment polytopes.
Let us mention two important examples of

moment polytopes. The examples are for actions
of products of GL(n)’s but the above definitions
generalize almost immediately.

Example II.2 (Star quiver with two arrows, or
Horn’s problem). G = GL(n)ˆGL(n)ˆGL(n) acts
onMat(n)‘Mat(n), as follows: π(g1, g2, g3)(X, Y) :=
(g1Xg

´1
3 , g2Yg

´1
3 ). This is one of the simplest examples

of a quiver representation [30]. The moment map in this
case is

μ(X, Y) =
(XX:, YY:,´(X:X+ Y:Y))

‖X‖2F + ‖Y‖2F
.

Using that XX: and X:X are PSD and isospectral, we
obtain the following moment polytope, which character-
izes the eigenvalues of sums of Hermitian matrices, i.e.,
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Horn’s problem [31]:

Δ = t (spec(A), spec(B), spec(´A´ B)) :
A ě 0, B ě 0, trA+ trB = 1u

It is known as the Horn polytope and corresponds to
Problem 3 in Section I-A.

Example II.3 (Tensor action). G = GL(n)ˆGL(n)ˆ
GL(n) acts on V = Cn b Cn b Cn, as follows:
π(g1, g2, g3)v := (g1 b g2 b g3)v. We can think of
vectors ψ P V as tripartite quantum states with local
dimension n. Then the moment map for this group action
captures precisely the notion of quantum marginals.
That is, μ(ψ) = (ρ1, ρ2, ρ3), where ρk = trkc(ψψ:)
denotes the reduced density matrix describing the state
of the k-th particle. This corresponds to Problem 2
in Section I-A. The moment polytope in this case is
also known as the Kronecker polytope, since it can
be equivalently described in terms of the Kronecker
coefficients of the symmetric group.

There is a more refined notion of a moment
polytope. One can look at the collection of spectra
of moment maps of vectors in the orbit closure of a
particular vector v P V . Its closure,

Δ(v) :=
�
spec

(
μ(w)

)
: w P Ov

(

is a convex polytope as well, called the moment
polytope of v [25, 32]!
4) Null cone: Fix a representation π of a group

G on a vector space V (recall G is T(n) or GL(n)
for the introduction). The null cone for this group
action is defined as the set of vectors v such that
cap(v) = 0:

N := tv P V : cap(v) = 0u
In other words, v is in the null cone if and only if 0
lies in the orbit-closure of v. It is of importance in
invariant theory due to the results of Hilbert and
Mumford [33, 34] which state that the null cone
is the algebraic variety defined by non-constant
homogeneous invariant polynomials of the group
action (see, e.g., the excellent textbooks [35, 36]).

Let us see what the null cone for the action of
T(n) in Eq. (II.1) is. Recall from Eq. (II.2), the for-
mulation for cap(v). It is easy to see that cap(v) = 0
iff there exists x P Rn such that x ¨ωj ă 0 for all
j P supp(v), where supp(v) = tj P [m] : cj ‰ 0u
for v =

řm
j=1 cjvj. Thus the property of v being

in the null cone is captured by a simple linear
program defined by supp(v) and the weights ωj’s.

Hence the null cone membership problem for non-
commutative group actions can be thought of as
non-commutative linear programming.
We know by Farkas’ lemma that there exists a

x P Rn such that x ¨ ωj ă 0 for all j P supp(v) iff
0 does not lie in convtωj : j P supp(v)u. In other
words, cap(v) = 0 iff 0 R Δ(v). Is this true in the
non-commutative world? It is! This is the Kempf-
Ness theorem [37] and it is a consequence of the
geodesic convexity of the function g Ñ log‖π(g)v‖.
The Kempf-Ness theorem can be thought of as
a non-commutative duality theory paralleling the
linear programming duality given by Farkas’ lemma
(which corresponds to the commutative world). Let
us now mention an example of an interesting null
cone in the non-commutative case.

Example II.4 (Operator scaling, or left-right action).
G = SL(n)ˆ SL(n) (where SL(n) denotes the group of
nˆn matrices with determinant 1) acts on Mat(n)k as
follows: π(g, h)(X1, . . . , Xk) := (gX1h

T , . . . , gXkh
T ).

This family of actions is called the left-right action.
The null cone for this action captures non-

commutative singularity (see, e.g., [1, 11–13]) and
Problem 1 in Section I-A. The left-right action has
been crucial in getting deterministic polynomial time
algorithms for the non-commutative rational identity
testing problem [1, 11–13]. The commutative analogue
is the famous polynomial identity testing (PIT) problem,
for which designing a deterministic polynomial time algo-
rithm remains a major open question in derandomization
and complexity theory.

Remark II.5 (Generalized Kronecker quivers). Also
sometimes referred to as the left-right action, the ac-
tion π(g, h)(X1, . . . , Xk) := (gX1h

´1, . . . , gXkh
´1)

of matrices g, h P GL(n) on k-tuples of matri-
ces (X1, . . . , Xk) can be obtained from action of Ex-
ample II.4 via the isomorphism h ÞÑ (h´1)T of GL(n).
These actions are called representations of the gener-
alized Kronecker quivers.

III. Computational problems and state of the art

In this section, we describe the main computa-
tional questions that are of interest for the optimiza-
tion problems discussed in the previous section
and then discuss what is known about them in the
commutative and non-commutative worlds.

Problem III.1 (Null cone membership). Given (π, v),
determine if v is in the null cone, i.e., if cap(v) = 0.
Equivalently, test if 0 R Δ(v).

850



The null cone membership problem for GL(n) is
interesting only when the action π(g) is given by
rational functions in the gij rather than polynomials.
This is completely analogous to the commutative
case (e.g., the convex hull of weights ωj with
positive entries never contains the origin). In the
important case that π is homogeneous, the null cone
membership problem is interesting precisely when
the total degree is zero, so that scalar multiples of
the identity matrix act trivially. Thus, in this case
the null cone membership problem for G = GL(n)
is equivalent to the one for G = SL(n). We will
come back to this perspective in Section V.

Problem III.2 (Scaling). Given (π, v, ε) such that
0 P Δ(v), output a group element g P G such that
} spec(μ(g)v)}2 = }μ(π(g)v)}F ď ε.

In particular, the following promise problem can
be reduced to Problem III.2: Given (π, v, ε), decide
whether 0 R Δ(v) under the promise that either 0 P
Δ(v) or 0 is ε-far from Δ(v). In fact, there always
exists ε ą 0, depending only on the group action,
such that this promise is satisfied! Thus the null
cone membership problem can always be reduced
to the scaling problem (see Corollary IV.5 below).

In the full version we develop a duality theory
showing that an efficient agorithm to minimize
the norm on an orbit closure of a vector v (i.e.,
approximate the capacity of v) under the promise
that 0 P Δ(v) results in an efficient algorithm
for the scaling problem and hence for the null
cone membership problem. This motivates our next
computational problem.

Problem III.3 (Norm minimization). Given (π, v, ε)
such that cap(v) ą 0, output a group element g P G
such that log‖π(g)v‖ ´ log cap(v) ď ε.

We also consider the moment polytope membership
problem for an arbitrary point p P Qn.

Problem III.4 (Moment polytope membership).
Given (π, v, p), determine if p P Δ(v).
The moment polytope membership problem is more
general than the null cone membership problem,
but there is a reduction from the former to the latter
via the “shifting trick" in the next subsection. This
forms the basis of our algorithms for the moment
polytope membership problem. As in the case of
the null cone, we consider a scaling version of the
moment polytope membership problem.

Problem III.5 (p-Scaling). Given (π, v, p, ε) such

that p P Δ(v), output an element g P G such that
} spec(μ(π(g)v)) ´ p}2 ď ε.

The above problem has been referred to as
nonuniform scaling [7] or, for operators, matrices
and tensors, as scaling with specified or prescribed
marginals [4]. The following problem can be re-
duced to Problem III.5: Given (π, v, p, ε), decide
whether p P Δ(v) under the promise that either p P
Δ(v) or p is ε-far from Δ(v). By combining the
shifting trick with our duality theory, we show in
the full version that there is a value ε of bit size
polynomial in the input size such that the moment
polytope membership problem can be reduced to p-
scaling.
There are multiple interesting input models for

these problems. One could explicitly describe the
weights ω1, . . . ,ωm for an action of T(n) (Eq. (II.1))
and then describe v as

řm
j=1 cjvj by describing

the cj’s. The analogous description in the non-
commutative world would be to describe the irre-
ducible representations occuring in V . Alternately,
one could give black box access to the function
‖π(g)v‖, or to the moment map μ(π(g)v), etc.
Sometimes π can be a non-uniform input as well,
such as a fixed family of representations like the
simultaneous left-right action Example II.4 as done
in [1]. The inputs p and ε will be given in their
binary descriptions but we will see that some of the
algorithms run in time polynomial in their unary
descriptions.

Remark III.6 (Running time in terms of ε). By stan-
dard considerations about the bit complexity of the facets
of the moment polytope, it can be shown that polynomial
time algorithms for the scaling problems (Problems III.2
and III.5) result in polynomial time algorithms for the
exact versions (Problems III.1 and III.4, respectively).
Polynomial time requires, in particular, poly(log(1/ε))
dependence on ε; a poly(1/ε) dependence is only known
to suffice in special cases.

A. Commutative groups and geometric programming

In the commutative case, the preceding problems
are reformulations of well-studied optimization
problems and much is known about them com-
putationally. To see this, consider the action of
T(n) as in Eq. (II.1), and a vector v =

řm
j=1 cjvj.

It follows from Section II-4 that v is in the null
cone iff 0 R Δ(v) = convtωj : cj ‰ 0u. Recall
from Eq. (II.2), the formulation for cap(v). Since
this formulation is convex, it follows that, given
ω1, . . . ,ωm P Zn (recall this is the description
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of π) and c1, . . . , cm P Q[i] (each entry described
in binary), there is a polynomial-time algorithm
for the null cone membership problem via lin-
ear programming [38, 39]. The same is true for
the moment polytope membership problem. The
capacity optimization problem is an instance of
(unconstrained) geometric programming and one can
design polynomial time algorithms in the same
input model. It is hard to find an exact reference
for this, but this can be done, for example, using the
ellipsoid algorithm as done for the same problem
in slightly different settings in the papers [40–42].
There has been work in the oracle setting as well,
in which one has oracle access to the function
‖π(g)v‖. The advantage of the oracle setting is that
one can handle exponentially large representations
of T(n) when it is not possible to describe all the
weights explicitly. A very general result of this form
is proved in [42]. While not explicitly mentioned
in [42], their techniques can also be used to design
polynomial time algorithms for commutative null
cone and moment polytope membership in the
oracle setting. Thus, in the commutative case,
Problems III.1, III.3 and III.4 are well-understood.

B. Non-commutative actions

Comparatively very little is known in the non-
commutative case. The two non-trivial group ac-
tions for which there are known polynomial-time
algorithms for null cone membership (Problem III.1)
are simultaneous conjugation [43, 44] and the left-
right action [1, 11–13]. Approximate algorithms
for null cone membership have been designed
for the tensor action of products of SL(n)’s [3].
However the running time is exponential in the
binary description of ε (i.e., polynomial in 1/ε).
This is the reason the algorithm does not lead to a
polynomial time algorithm for the exact null cone
membership problem for the tensor action.

The first work on moment polytope membership
(Problem III.4) in the noncommutative case focused
on Brascamp-Lieb polytopes [2] (which are affine slices
of moment polytopes) and solved the moment
polytope membership problem in time depending
polynomially on the unary complexity of the target
point. In [7], efficient algorithms were designed
for the p-scaling problem (Problem III.5) for tensor
actions, extending the earlier work of [4] for the
simultaneous left-right action. The running times of
both algorithms are poly(1/ε); for this reason both
algorithms result in moment polytope algorithms

depending exponentially on the binary bitsize of p
as in [2].
Regarding the approximate computation of the

capacity (Problem III.3), efficient algorithms were
previously known only for the simultaneous left-
right action. [1] gave an algorithm to approximate
the capacity in time polynomial in all of the input
description except ε, on which it had dependence
poly(1/ε). The paper [6] gave an algorithm that
depended polynomially on the input description;
it has running time dependence poly(log(1/ε)) on
the error parameter ε.
In terms of algorithmic techniques, all prior

works fall into two categories. One is that of
alternating minimization (which can be thought
of as a large-step coordinate gradient descent,
i.e., roughly speaking as a first order method).
However, alternating minimization is limited in
applicability to ‘multilinear’ actions of products
of T(n)’s or GL(n)’s, where the action is linear
in each component so that it is easy to optimize
over one component when fixing all the others.
This is true for all the actions described above
and hence explains the applicability of alternating
minimization (in fact, in all the above examples, one
can even get a closed-form expression for the group
element that has to be applied in each alternating
step). The second category are geodesic analogues
of box-constrained Newton’s methods (second order).
Recently, [6] designed an algorithm tailored towards
the specific case of the simultaneous left-right action
(Example II.4), but no second order algorithms were
known for other group actions. However, many
group actions of interest – from classical problems
in invariant theory about symmetric forms to the
important variant of Problem 2 in Section I-A for
fermions – are not multilinear nor can otherwise be
captured by the left-right action, and no efficient
algorithms were known. All this motivates the
development of new techniques.
In this paper, we show how these limitations

can be overcome. Specifically, we provide both first
and second order algorithms (geodesic variants
of gradient descent and box-constrained Newton’s
method) that apply in great generality and identify
the main structural parameters that control the
running time of these algorithm. We now describe
our contributions in more detail.

IV. Algorithmic and structural results

We describe here our algorithmic and structural
contributions to the theory of non-commutative
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optimization. In Section IV-A, we describe the main
parameters that govern the running time of our
algorithms. In Section IV-B, we describe the first
order algorithm for cap(v) and the structural results
we prove for its analysis. In Section IV-B1, we
describe a first order algorithm for the problem of
membership in moment polytopes and the relevant
structural results. In Section IV-C, we describe
the second order algorithm for cap(v) and the
techniques and ideas used in its analysis.

A. Essential parameters and structural results

In this section, we define the essential parameters
related to the group action which, in addition to
dictating the running times of our first and second
order methods, control the relationships between
the null cone, the norm of the moment map, and
the capacity, i.e., between Problems III.1 to III.3.
We saw in Section II that for all actions of T(n) on

a vector space V , one can find a basis of V consisting
of simultaneous eigenvectors of the matrices π(g),
g P T(n). While this is in general impossible for non-
commutative groups, one can still decompose V
into building blocks known as irreducible subspaces
(or subrepresentations), as will be discussed in
further detail in the full version.
For GL(n), these are uniquely characterized

by nonincreasing sequences λ P Zn; such se-
quences λ are in bĳection with irreducible rep-
resentations πλ : GL(n) Ñ GL(Vλ). We say that
λ occurs in π if one of its irreducible subspaces
is of type λ. If all the λ occuring in π have
nonnegative entries, then the entries of the matrix
π(g) are polynomials in the entries of g. Such
representations π are called polynomial, and if all
λ occuring in π have sum exactly (resp. at most)
d, then π is said to be a homogeneous polynomial
representation of degree (resp. at most) d. We elaborate
further on the representation theory of GL(n) in
Section V and in the full version.
Now we can define the complexity measure

which captures the smoothness of the optimization
problems of interest. In the full version we discuss
how to think of the following measure as a norm of
the Lie algebra representation Π, hence the name
weight norm.

Definition IV.1 (Complexity measure I: weight
norm). We define the weight normN(π) of an action π
of GL(n) by N(π) := maxt‖λ‖2 : λ occurs in πu,
where ‖¨‖2 denotes the Euclidean norm.
Another use of the weight norm is to provide

a bounding ball for the moment polytope. As
shown in the full version, the moment polytope is
contained in a Euclidean ball of radius N(π). The
weight norm is in turn controlled by the degree of
a polynomial representation. More specifically, if π
is a polynomial representation of GL(n) of degree
at most d, then N(π) ď d.
We now describe our second measure of complex-

ity which will govern the running time bound for
our second order algorithm. This parameter, which
will be discussed further in the full version, also
features in Theorem IV.3 concerning quantitative
non-commutative duality.

Definition IV.2 (Complexity measure II: weight
margin). The weight margin γ(π) of an action π
of GL(n) is the minimum Euclidean distance between
the origin and the convex hull of any subset of the
weights of π that does not contain the origin.

Our running time bound will depend inversely
on the weight margin. Two interesting examples
with large (inverse polynomial) weight margin
are the left-right action (Example II.4) and simul-
taneous conjugation. The existing second order
algorithm for the left-right action relied on the
large weight margin of the action [6]. It is inter-
esting that the simultaneous conjugation action

(GL(n) acts on (Mat(n))‘d, π(g)(X1, . . . , Xd) =
(gX1g

´1, . . . , gXdg
´1)), the sole other interesting

example of an action of a non-commutative group
for which there are efficient algorithms for the
null cone membership problem [43–45] (which
have nothing to do with the weight margin), also
happens to have large weight margin! The only
generally applicable lower bound on the weight
margin is n´1N(π)´n, and indeed this exponential
behavior is seen for the somewhat intractable 3-
tensor action (Example II.3), which has weight
margin at most 2´n/3 and weight norm

?
3 (implicit

in [46]). For the convenience of the reader, we
arrange in a tabular form the above information
about the weight margin for various paradigmatic
group actions in Table I (using a definition of the
weight margin and weight norm, given in the full
version, that naturally generalizes the one given
above for GL(n)):
As the moment map is the gradient of the

geodesically convex function log‖v‖, it stands to
3This commutative example is modelled as follows: G =

ST(n)ˆST(n) acts on Mat(n) by π(A,B)M = AMB, where
ST(n) is the group of diagonal n ˆ n matrices with unit
determinant.
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Group action Weight margin γ(π)

Matrix scaling3 ě n´3/2 [47]

Simultaneous conjugation ě n´3/2 (full version)

Simultaneous left-right action ě Ω(n´3/2) [22]

3-tensor action ď 2´n/3; implicit in [46]

GL(n)-action of degree d ě d´nn´1 (full version)

Table I: Weight margin for various representations.

reason that as μ(v) tends to zero, ‖v‖ tends to
the capacity cap(v). However, in order to use this
relationship to obtain efficient algorithms, we need
this to hold in a precise quantitative sense. To this
end, in the full version we show the following
fundamental relation between the capacity and the
norm of the moment map.

Theorem IV.3 (Noncommutative duality). For v P
Vzt0u we have

1´ ‖μ(v)‖F
γ(π)

ď cap(v)2

‖v‖2 ď 1´ ‖μ(v)‖2F
4N(π)2

.

Equipped with this inequality, it is easy to relate
Problems III.2 and III.3.

Corollary IV.4. An output g for the norm mini-
mization problem on input (π, v, ε) is a valid output
for the scaling problem on input (π, v,N(π)

?
8ε).

If ε/γ(π) ă 1
2
then an output g for the scaling

problem on input (π, v, ε) is a valid output for the norm
minimization problem on input (π, v, 2 log2ε

γ(π) ).

Because 0 P Δ(v) if and only if cap(v) ą 0,
Theorem IV.3 and Corollary IV.4 immediately yield
the accuracy to which we must solve the scaling
problem or norm minimization problem to solve
the null cone membership problem:

Corollary IV.5. It holds that 0 P Δ(v) if and only
if Δ(v) contains a point of norm smaller than γ(π).
In particular, solving the scaling problem with in-
put (π, v, γ(π)/2) or the norm minimization problem
with (π, v, 1

8
(γ(π)/2N(π))2) suffices to solve the null

cone membership problem for (π, v).

In the full version we prove an analogous state-
ment relating p-scaling to the moment polytope
membership problem.

B. First order methods: structural results and algorithms

As discussed above, in order to approximately
compute the capacity in the commutative case,
one can just run a Euclidean gradient descent on
the convex formulation in Eq. (II.2). We will see

that gradient descent method naturally general-
izes to the non-commutative setting. It is worth
mentioning that there are several excellent sources
of the analysis of gradient descent algorithms for
geodesically convex functions (in the general setting
of Riemannian manifolds and not just the group
setting that we are interested in); see e.g., [48–53]
and references therein. In this paper, our contri-
bution is mostly in understanding the geometric
properties (such as smoothness) of the optimization
problems that we are concerned with, which allow
us to carry out the classical analysis of Euclidean
gradient descent in our setting.
The natural analogue of gradient descent for the

optimization problem cap(v) is the following: start
with g1 = I and repeat, for T ´ 1 iterations and a
suitable step size η:

gt+1 = e´ημ(π(gt)v)gt

Finally, return the group element g among
g1, . . . , gT , which minimizes ‖μ(π(g)v)‖F. This al-
gorithm is described in Algorithm IV.1. A natu-
ral geometric parameter which governs the com-
plexity (number of iterations T , step size η) of
gradient descent is the smoothness of the func-
tion to be optimized. The smoothness parameter
for actions of T(n) in Eq. (II.1) turns out to be
O(maxjP[m]‖ωj‖22) (see, e.g., [42]). We prove in
the full version that the function log‖π(g)v‖ is
geodesically smooth, with a smoothness parameter
exactly analogous to the commutative case. The
smoothness parameter turns out to be the weight
norm N(π) defined in Definition IV.1.

Input:

‚ Oracle access to the moment map restricted to
a group orbit, i.e., to the map g ÞÑ μ(π(g)v),

‚ a number of iterations T .

Output: A group element g P G.
.
Algorithm:

1) Set g0 = I. Set a step size η = 1
2N(π)2

.

2) For t = 0, . . . , T ´ 1: Set
gt+1 := e´η μ(π(gt)v)gt.

3) return argmingPtg0,...,gT´1u ‖μ(π(g)v)‖2F
Algorithm IV.1: Algorithm for the scaling problem.

We now state the running time for our geodesic
gradient descent algorithm for Problem III.2, which
is proved in the full version.
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Theorem IV.6 (First order algorithm for scaling).
Fix a representation π : GL(n) Ñ GL(V) and a unit
vector v P V such that cap(v) ą 0 (i.e., v is not in
the null cone). Then Algorithm IV.1 with a number of
iterations at most

T = O

(
N(π)2

ε2

ˇ̌
log cap(v)

ˇ̌)

outputs a group element g P G satisfying
‖μ(π(g)v)‖F ď ε.

Theorem V.2 in Section V states concrete running
time bounds in terms of the bit complexity of the
input.

The analysis of Theorem IV.6 relies on the smooth-
ness of the function Fv(g) := log‖π(g)v‖, which
implies that

Fv(e
Hg) ď Fv(g) + tr

[
μ
(
π(g)v

)
H
]
+N(π)2‖H‖2F,

for all g P GL(n) and for all Hermitian H P
Herm(n).
1) First order method for moment polytope member-

ship: Next, we describe our first order algorithm
for the p-scaling problem. Theorem IV.6 solves the
problem of minimizing the moment map (equiva-
lent to capacity computation), hence can be used
to determine if 0 P Δ(v). Can we reduce the
general moment polytope membership problem,
p P Δ(v), to this case? This is straightforward in
the commutative case, G = T(n). It follows from
the reasoning in Section II-4 that, for p P Rn, we
have p R Δ(v) iff

capp(v)
2 := infxPRn

řm
j=1 |cj|2ex¨(ωj´p) = 0.

(IV.1)

Thus, all we need to do is shift the relevant
vectors by p. Is there an analog of this trick in
the non-commutative world? There is! It is called,
unsurprisingly, the shifting trick [32]. Let us describe
it here. A nice property about Eq. (IV.1) is that

(recall Eq. (II.3)) ∇x=0 log
(řm

j=1 |cj|2ex¨(ωj´p)
)
=

μ(v) ´ p. How do we shift the moment map in
the case of GL(n)? It relies on the following two
elementary properties of the moment map:

1) The moment map of the tensor product π of
two representations π1, π2 of GL(n), which is
defined as π(g)(vbw) := (π1(g)v)b(π2(g)w),
satisfies μ(vbw) = μ(v) + μ(w).

2) There is a vector vλ (known as a highest weight
vector) in the vector space Vλ of the irreducible
action πλ such that μ(vλ) = diag(λ).

Now suppose p P Qn and let � ą 0 be the
least integer such that λ := �p P Zn. Let λ˚ :=
(´λn, . . . ,´λ1). Then one can see that the tensor
product action of GL(n) on the space Sym	(V) b
Vλ˚ satisfies 1

	
μ
(
vb	 b vλ˚

)
= μ(v) + diag(λ˚)/� =

μ(v) ´ Λ, where Λ is the diagonal matrix with
entries Λi,i = pn´i+1, which has spectrum p. We
have managed to shift the moment map! So we are
led to the following optimization problem,

capp(v)
	 := inf

gPG }(π(g)v)b	 b (πλ˚(g)vλ˚) }.
In the noncommutative case, the relation between
this p-capacity and the moment polytope is slightly
more subtle. While capp(v) ą 0 always guarantees
that p P Δ(v), these two conditions are in general not
equivalent (unless p = 0, when capp(v) reduces to
cap(v)). However, what holds is that p P Δ(v) if and
only if capp(π(g)v) ą 0 for generic g P G. We can
thus solve the p-scaling problem by first applying
a random group element and then applying an
optimization algorithm to approximate capp(v).
We now outline our optimization algorithm

for capp(v). The optimization problem defin-
ing capp(v) is defined in terms of actions on a
space of exponential dimension. However, it turns
out that the gradients can be explicitly computed
and the geodesic gradient descent can be described
explicitly as follows: start with g1 = I and repeat,
for T ´ 1 iterations and suitable step size η:

gt+1 = e´η (μ(π(gt)v)´QtΛQ
:
t)gt,

where gt = QtRt is the QR decomposition of gt.
Finally return group element g among g1, . . . , gT ,

which minimizes ‖μ(π(gt)v) ´ QtΛQ
:
t‖F. This al-

gorithm is stated precisely in the full version.

Theorem IV.7 (First order algorithm for p-scaling).
Fix a representation π : GL(n) Ñ GL(V), a unit
vector v P V , and a target point p P Qn such that
capp(v) ą 0. Let N2 := N(π)2 + ‖p‖2. Then our first
order algorithm for p-scaling with a number of iterations
at most

T = O

(
N2

ε2

ˇ̌
log capp(v)

ˇ̌)

outputs a group element g P G satisfying
‖spec (μ(π(g)v)) ´ p‖2 ď ε.

A precise calculation of the smoothness of the func-
tion g ÞÑ log‖π(g)v‖ + 1

	
log‖πλ˚(g)vλ˚‖ (which

underlies the p-capacity) features crucially in our
analysis.
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As described above, Theorem IV.7 preceded by
a randomization step can be used to solve the p-
scaling problem. Theorem V.5 in Section V describes
the performance of such a randomized algorithm
for G = GL(n).

C. Second order methods: structural results and algo-
rithms

Here we discuss our second order algorithm for
Problem III.3, the approximate norm minimization
problem. As mentioned in Section III, the paper [6]
(following the algorithms developed in [9, 10]
for the commutative Euclidean case) developed
a second order polynomial-time algorithm for
approximating the capacity for the simultaneous
left-right action (Example II.4) with running time
polynomial in the bit description of the approxima-
tion parameter ε. In the full version, we generalize
this algorithm to arbitrary groups and actions. It
repeatedly optimizes quadratic Taylor expansions of
the objective in a small neighbourhood. Such algo-
rithms also go by the name “trust-region methods”
in the Euclidean optimization literature [8]. The
running time of our algorithm will depend inversely
on the weight margin defined in Definition IV.2.

Theorem IV.8 (Second-order algorithm for norm
minimization). Fix a representation π : GL(n) Ñ
GL(V) and a unit vector v P V such that cap(v) ą 0.
Put C := | log cap(v)|, γ := γ(π) and N := N(π).
Then our second order g-convex optimization algorithm
for a suitably regularized objective function outputs g P
G satisfying log }π(g)v} ď log cap(v) + ε with a
number of iterations at most

T = O

(
N

?
n

γ

(
C+ log

n

ε

)
log

C

ε

)
.

Theorem V.3 in Section V specializes Theo-
rem IV.8 to the group SL(n) by obtaining running
time bounds in terms of the bit complexity of the
input.

The two main structural parameters which gov-
ern the runtime of our second order g-convex
optimization algorithm in general are the robustness
(controlled by the weight norm) and a diameter
bound (controlled by the weight margin). The robust-
ness of a function bounds third derivatives in terms
of second derivatives, similarly to the well-known
notion of self concordance (however, in contrast to
the latter, the robustness is not scale-invariant). As
a consequence of the robustness, we show in the
full version that the function Fv(g) = log‖π(g)v‖ is

sandwiched between two quadratic expansions in
a small neighbourhood:

F(g) + Bt=0F(e
tHg) +

1

2e
B2
t=0F(e

tHg)

ď F(eHg) ďF(g) + Bt=0F(e
tHg) +

e

2
B2
t=0F(e

tHg)

for every g P GL(n) and H P Herm(n) such
that ‖H‖F ď 1/(4N(π)).
Another ingredient in the analysis of our second

order g-convex optimization algorithm is to prove
the existence of “well-conditioned” approximate
minimizers, i.e. g‹ P G with small condition
number satisfying log‖π(g‹)v‖ ď log cap(v)+ε. The
bound on the condition numbers of approximate
minimizers helps us ensure that the algorithm’s
trajectory always lies in a compact region with the
use of appropriate regularizers. As in [6], we obtain
this “diameter bound” by designing a suitable
gradient flow and bounding the (continuous) time
it takes for it to converge! A crucial ingredient of
this analysis is our Theorem IV.3 relating capacity
and norm of the moment map.

Our gradient flow approach, which can be traced
back to works in symplectic geometry [54], is the
only one we know for proving diameter bounds
in the non-commutative case. In contrast, in the
commutative case several different methods are
available (see, e.g., [41, 42]). It is an important
open problem to develop alternative methods for
diameter bounds in the non-commutative case,
which will also lead to improved running time
bounds for algorithms like our second order g-
convex optimization algorithm.

V. Explicit time complexity bounds for SL(n) and
GL(n)

Moving beyond the number of oracle calls, we
now describe the running time of our algorithms in
terms of the bitsize needed to describe the vector v
and the action π. For concreteness, we restrict to
homogeneous, polynomial actions of GL(n), i.e., those
for which there is a degree d such that entries of
the map π are homogeneous polynomials of degree
d. This important class includes the setting studied
by Hilbert in his seminal paper [33]. The results in
this section extend readily to products of GL(n) 1s,
a setting which captures all of the interesting
examples discussed so far (tensor scaling, left-right
action, simultaneous conjugation action, etc).

Up to isomorphism, irreducible polynomial repre-
sentations of GL(n) can be specified by partitions of
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length n, or nonincreasing vectors in Zně0; the parti-
tion corresponding to an irreducible representation
is called its highest weight. If the representation is
of degree d, then the corresponding partition λ is
a partion of (sums to) d.

We must be careful that we specify represen-
tations in such a way that the action can be
computed. To this end, if λ is a partition, we take
πλ : GL(n) Ñ GL(m) to be the unique irreducible
representation of highest weight λ such that the
standard basis of Cm is a Gelfand-Tsetlin basis for πλ.
The Gelfand-Tsetlin basis, as described in [55], is a
well-studied basis for irreducible representations in
which the entries of the map πλ are polynomials
with bounded, rational coefficients. Moreover, the
group action and moment map can be computed
in polynomial time when working in this basis.

A list of partitions λ1, . . . , λs specifies the repre-
sentation π – ‘s

i=1πλi ; up to isomorphism, every
finite dimensional representation π of GL(n) can be
specified this way. If π is such a representation, the
input size xπy of π is defined to be xλ1y+ ¨ ¨ ¨+ xλsy
where xλiy is the binary size of λi. We may assume
that π is specified in unary without loss of general-
ity, because the dimensions of the representations
we study grow exponentially quickly in the entries
of the λi.

For a vector v P Cm with coordinates in Q+ iQ,
xvy refers to the total binary size of its entries. In [56,
57] it is shown that, for π, v specified as above and
g P Mat(n,Q + iQ) specified in binary, π(g)v and
μ(v) can be computed in polynomial time. If ε is a
rational number, xεy refers to its size in binary.
We now define instances for the problems dis-

cussed in Section III for the case SL(n) and GL(n).
Further, we assume any target spectrum p for
the moment polytope membership problem has
nonnegative, rational entries adding to d because
if π is polynomial and homogeneous of degree d
then every element of Δ(v) has this property. For
the problem of norm minimization (equivalently,
the null cone membership problem), we consider
the restriction of π to the smaller group SL(n). This
is without loss of generality because, unless d = 0,
the capacity for homogeneous actions of GL(n) is
always zero.

1) A tuple (π = ‘s
i=1πλi , v) is called an instance

of the null cone membership problem for SL(n) if

‚ π : GL(n) Ñ GL(m) is a homogeneous,
polynomial representation of GL(n) of
degree d.

‚ v P V = Cm is a Gaussian integer vector.

2) A tuple (π, v, ε) is called an instance of the scal-
ing problem for SL(n) if (π, v) is an instance of
the null cone membership problem for SL(n)
and ε ą 0 is a rational number.

3) A tuple (π, v, p) is an instance of moment
polytope membership for GL(n) if (π, v) is an
instance of the null–cone membership prob-
lem for SL(n) and p P Qně0 is a vector with
nonnegative, rational entries adding to d.

4) A tuple (π, v, p, ε) is an instance of the p-scaling
problem for GL(n) if (π, v, p) is an instance of
moment polytope membership over GL(n)
and ε ą 0 is rational number.

Remark V.1 (Degree versus dimension). We may
assume that for our input representations ‘s

i=1πλi we
have λin = 0 for some i P [s]; this is without loss of
generality because simultaneously translating each λi

by an integer multiple of the all–ones vector simply
shifts the entire moment polytope in Rn by the same
vector. If some λin = 0, then the bound d ď mn follows
from classical formulae for the dimensions of irreducible
representations, which ensures that our bounds in the
coming theorems are polynomial in xvy, xπy.
By deriving capacity lower bounds for vectors
of bounded bit complexity, we prove in the full
version that Theorem IV.6 implies the following
time bounds for Problem III.2.

Theorem V.2 (First order algorithm for scaling in
terms of input size). Let (π, v, ε) be an instance of
the scaling problem over SL(n) such that 0 P Δ(v)
and every entry of v is at most M in absolute value.
Algorithm IV.1 with a number of iterations at most

T = O

(
d2

ε2
mn3d log(Mmnd)

)

returns a group element g P SL(n) such that
‖μ(π(g)v)‖F ď ε. By Remark V.1, there is
a poly(xvy, xπy, ε´1) time algorithm to solve the scaling
problem (Problem III.2) for SL(n).

We also show a concrete version of Theorem IV.8
on norm minimization.

Theorem V.3 (Second order algorithm for norm
minimization in terms of input size). Let (π, v, ε)
be an instance of the scaling problem for SL(n) such
that 0 P Δ(v) and every entry of v is at most M in
absolute value. Let γ denote the weight margin γ(π).
Then our second order g-convex optimization algorithm,
applied to a suitably regularized objective function, with
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a number of iterations at most

T = O

(
d

?
n

γ
mn3d log2

(
Mmnd

ε

))

returns a group element g P G such that log‖π(g)v‖ ď
log cap(v) + ε.
By Remark V.1, there is an algorithm that solves

the norm minimization problem for SL(n) in time
poly(xvy, xπy, γ´1, log 1

ε
), which is shown in the full

version to be at most poly(xvyn, xπyn, log 1
ε
). Note that

xπyn, xvyn are polynomial in the input size if the group
is fixed.

Corollary IV.5 implies that both the first and second
order algorithm result in a null cone membership
algorithm with polynomial dependence on γ´1; the
tradeoffs are discussed further in the full version.
Using the bound γ ě n´1d´n from Table I also
gives a bound which is polynomial if n is fixed.

Corollary V.4 (Algorithm for null cone member-
ship problem in terms of input size). There is an
algorithm to solve the null cone membership problem
for SL(n) in time poly(xvy, xπy, γ´1), which is at most
poly(xvyn, xπyn).
In the important setting when n is constant, the
above corollary asserts that our second order algo-
rithm solves the null-cone problem for GL(n) in
deterministic polynomial time. Prior to this result,
the only known polynomial time algorithms for
this class of null-cone problems were given by the
use of quantifier elimination (which is completely
impractical) and, more recently, by Mulmuley in [20,
Theorem 8.5] through a purely algebraic approach.
Mulmuley constructs a circuit which encodes a
generating set of invariants for the ring of invariants
of the corresponding action, and then invokes
previous results on Polynomial Identity Testing to
obtain an algorithm for the null-cone problem.

Finally, we apply Theorem IV.7 to obtain a
randomized algorithm for the p-scaling problem
for GL(n). Note that we consider the full group
GL(n) rather than SL(n) as in the null cone mem-
bership problem.

Theorem V.5 (First-order randomized algorithm for
p-scaling in terms of input size). Let (π, v, p, ε) be
an instance of the moment polytope problem for GL(n)
such that p P Δ(v) and every entry of v is at most M
in absolute value. Then our first order algorithm for p-
scaling with a randomized starting point and a number

of iterations at most

T = O

(
d2

ε2
mn5d log(Mmnd)

)
.

outputs g P GL(n) such that } spec(μ(π(gg0)v) ´
p}2 ď ε with probability at least 1/2. By Remark V.1,
there is a randomized algorithm for the p-scaling problem
for GL(n) that runs in time poly(xvy, xπy, xpy, ε´1).

VI. Conclusion

This paper initiates a systematic development of
a theory of non-commutative optimization, a setting
which greatly extends ordinary (Euclidean) convex
optimization. This very general setting captures
a diverse set of problems, many non-convex, in
different areas of CS, math, and physics. Several of
them were solved efficiently for the first time using
non-commutative methods; the corresponding al-
gorithms also lead to solutions of purely structural
problems and to many new connections between
disparate fields. Our work points to intriguing open
problems and suggests further research directions.
We believe that extending this theory, namely
understanding geodesic optimization better, is both
mathematically and computationally fascinating;
it provides a great meeting place for ideas and
techniques from several very different research
areas, and promises better algorithms for existing
and yet unforeseen applications. We mention a few
concrete challenges:

1) Is the null cone membership problem for
general group actions in P? A natural inter-
mediate goal is to prove that they are in NP
X coNP. The duality theory explained in this
paper makes such a result likely. The same
question may be asked about the moment
polytope membership problem for general
group actions [57].

2) Can we find more general classes of prob-
lems or group actions where our algorithms
converge in polynomial time? In view of the
complexity parameters we have identified,
it is of particular interest to understand in
which cases the weight margin is only inverse
polynomially rather than exponentially small.

3) Interestingly, when restricted to the com-
mutative case discussed in Section III, our
algorithms’ guarantees do not match those
of cut methods (in the spirit of the el-
lipsoid algorithm). Can we extend non-
commutative/geodesic optimization to in-
clude cut methods (in the spirit of the el-
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lipsoid algorithm), as well as interior point
methods? The foundations we lay in extend-
ing first and second order methods to the
non-commutative case makes one optimistic
that similar extensions are possible of other
methods in standard convex optimization.

4) Can geodesic optimization lead to new or
different efficient algorithms in combinato-
rial optimization? We know that it captures
known algorithms like bipartite matching
(and more generally matroid intersection).
How about perfect matching in general graphs
– is the Edmonds polytope a moment polytope
of a natural group action?

5) Can geodesic optimization lead to new or
different efficient algorithms in algebraic com-
plexity and derandomization? We know that
it captures PIT (polynomial identity testing)
in non-commutative variables. Is the classical
PIT problem a null cone membership prob-
lem for some group action? Can we identify
the required generalization and extend the
current methods to solve it? Which algebraic
varieties are not null cones of group actions?
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