
General Framework for Metric Optimization Problems with Delay or with

Deadlines

Yossi Azar

azar@tau.ac.il

Tel Aviv University

Noam Touitou

noamtouitou@mail.tau.ac.il

Tel Aviv University

Abstract—In this paper, we present a framework used
to construct and analyze algorithms for online opti-
mization problems with deadlines or with delay over a
metric space. Using this framework, we present algo-
rithms for several different problems. We present an
O(D2)-competitive deterministic algorithm for online
multilevel aggregation with delay on a tree of depth
D, an exponential improvement over the O(D42D)-
competitive algorithm of Bienkowski et al. (ESA ’16),
where the only previously-known improvement was
for the special case of deadlines by Buchbinder et al.
(SODA ’17). We also present an O(log2 n)-competitive
randomized algorithm for online service with delay
over any general metric space of n points, improving
upon the O(log4 n)-competitive algorithm by Azar et
al. (STOC ’17).

In addition, we present the problem of online facility
location with deadlines. In this problem, requests
arrive over time in a metric space, and need to be
served until their deadlines by facilities that are opened
momentarily for some cost. We also consider the
problem of facility location with delay, in which the
deadlines are replaced with arbitrary delay functions.
For those problems, we present O(log2 n)-competitive
algorithms, with n the number of points in the metric
space.

The algorithmic framework we present includes tech-
niques for the design of algorithms as well as tech-
niques for their analysis.

I. Introduction

Recently in the field of online algorithms, there has

been an increasing interest in online problems in-

volving deadlines or delay. In such problems, requests

of some form arrive over time, requiring service. In

problems with deadlines, each request is equipped with

a deadline, by which the request must be served. In

problems with delay, this hard constraint is replaced

with a more general constraint. In those problems, each

request is equipped with a delay function, such that

an algorithm accumulates delay cost while the request

remains pending. This provides an incentive for the

algorithm to serve the request as soon as possible.

Deadlines are a special case of delay, as deadlines can

be approximated arbitrarily well by delay functions.

This paper is partially supported by the ISF grant no. 1506/16. A
full version of this paper appears in https://arxiv.org/abs/1904.07131.

The mechanism of adding delay or deadlines can be

used to convert a problem over a sequence into a

problem over time. For example, a problem in which

an arriving request must immediately be served by

the algorithm can be converted into a problem with

deadlines, providing more flexibility to a possible so-

lution. This conversion often creates interesting prob-

lems over time from problems that are trivial over a

sequence, as well as enables much better solutions (i.e.

lower cost).

A case of special interest is the case of such problems

over a metric space. A notable example, which we

consider in this paper, is the online multilevel aggre-

gation problem. In this problem, the requests arrive

on the leaves of a tree. At any time, the algorithm

may choose to transmit any subtree that includes the

root of the tree, at a cost which is the sum of the

weights of the subtree’s edges. Pending requests on

any leaves contained in the transmitted subtree are

served by the transmission. The general delay case of

this problem was first considered by Bienkowski et

al. [7], who gave a O(D42D)-competitive algorithm

for the problem, with D the depth of the tree. Buch-

binder et al. [13] then showed a O(D)-competitive
deterministic algorithm for the deadline case. In this

paper, we improve the result of [7] for general delay

exponentially.

Another notable example is the online service with

delay problem, presented in [5]. In this problem, re-

quests arrive on points in a metric space, accumulating

delay while pending. There is a single server in the

metric space, which can be moved from one point to

another at a cost which is the distance between the

two points. Moving a server to a point at which there

exists a pending request serves that request. In [5], an

O(log4 n)-competitive randomized algorithm is given

for the problem, where n is the number of points in the
metric space. This algorithm encompasses a random

embedding to an hierarchical well-separated tree (HST)

of depth h = O(log n), and an O(h3)-competitive
deterministic algorithm for online service with delay

on HSTs. In this paper, we also improve this result to

O(log2 n) competitiveness.

60

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00013

In addition, we also present the problem of online

facility location with deadlines. In this problem,

requests arrive over time on points of a metric space,

each equipped with a deadline. The algorithm can open

a facility at any point of the metric space, at some

fixed cost. Immediately upon opening a facility, the al-

gorithm may connect any number of pending requests

to that facility, serving these requests. Connecting a

request to a facility incurs a connection cost which is

the distance between the location of the request and

the location of the facility. In contrast to previous con-

siderations of online facility location, in our problem

the facility is only opened momentarily, disappearing

immediately after connecting the requests. We also

consider the problem of online facility location with

delay, in which the deadlines are replaced with arbi-

trary delay functions. For those problems we present

O(log2 n)-competitive algorithms, with n the number

of points in the metric space.

The problem of facility location is a widely researched

classic problem. The modification of ephemeral facil-

ities is highly motivated, as it describes an option of

renting facilities instead of buying them. As renting

shared resources is a growing trend (e.g. in cloud

computing), this problem captures many practical sce-

narios.

Our paper presents algorithms for online facility lo-

cation with deadlines, online facility location with

delay, online multilevel aggregation with delay and

online service with delay. These algorithms all share a

common framework that we develop. The framework

includes techniques for both the design of the algo-

rithms and their analysis. We believe the flexibility and

generality of this framework would enable designing

and analyzing algorithms for additional problems with

deadlines or with delay.

Our Results

In this paper, we present a framework used to con-

struct and analyze online optimization problems with

deadlines or with delay over a metric space. Using this

framework, we present the following algorithms.

1) An O(D2)-competitive deterministic algorithm

for online multilevel aggregation with delay on a

tree of depth D. This is an exponential improve-
ment over the O(D42D) bound in [7].

2) An O(log2 n)-competitive randomized algorithm
for online service with delay over a metric

space with n points. This improves upon the

O(log4 n)-competitive randomized algorithm in

[5].

3) An O(log2 n)-competitive randomized algorithm
for online facility location with deadlines over a

metric space with n points.

4) An O(log2 n)-competitive randomized algorithm
for online facility location with delay over a

metric space with n points.

Our algorithms all share a common framework, which

we present. The framework provides general structure

to both the algorithm and its analysis.

Such an improvement for the online multilevel aggre-

gation problem is only known for the special case of

deadlines, as given in [13].

The algorithms for online facility location with dead-

lines and with delay can be easily extended to the case

in which the cost of opening a facility is different

for each point in the metric space. This changes

the competitiveness of the algorithms to O(log2 Δ +
logΔ log n), where Δ is the aspect ratio of the metric

space.

Our Techniques

All of our algorithms are based on corresponding com-

petitive algorithms for HSTs. The randomized algo-

rithms for general metric spaces are obtained through

randomized HST embedding. The O(D2)-competitive
deterministic algorithm for online multilevel aggrega-

tion with delay on a tree is based on decomposing

the tree into a forest of HSTs. This decomposition is

similar to that used in [13] for the case of deadlines.

The framework – algorithm design.

In designing algorithms for the problems over HSTs,

we use a certain framework. In an algorithm designed

using the framework, there is a counter for every node

(in the case of facility location) or every edge (in

the case of online multilevel aggregation and service

with delay). The sizes of the counters vary between

the problems considered. When the counter for a tree

element (either node or edge) is full, the algorithm

resets the counter and explores the subtree rooted at

that element.

The process of exploration serves some of the pending

requests at that subtree, while simultaneously charging

counters of descendant tree elements. The exploration

takes place in a DFS fashion – if at any time during the

exploration of an element the counter of a descendant

element is full, the algorithm immediately suspends

the exploration of the current element in favor of its

descendant. The exploration of the original element

resumes only when the exploration of the descendant

is complete.

The exploration of specific element has a certain

budget, used to charge counters of descendants. This

budget is equal to the size of the counter of the

element being explored. The algorithm adheres to

61

the budget very strictly, spending exactly the amount

specified. This is a crucial part of the framework, as

exceeding the budget (or falling below budget) by even

a constant factor would yield a competitiveness which

is exponential in the depth of the tree.

This DFS exploration method is very different from

previous algorithms, and enables us to get our im-

proved results. The counter-based structure of our

algorithms enables this DFS exploration while control-

ling the budget. Using the counter-based structure is,

in turn, enabled by the techniques that we present in

our framework’s analysis.

The framework – analysis.

The analysis of the algorithms of this framework

require constructing a preflow - a weighted directed

graph which is similar to a flow network, but in

which we allow nonnegative excesses at nodes (i.e.

more incoming than outgoing). We refer to nodes of

the preflow as charging nodes. We construct a source

charging node, from which the output is proportional

to the cost of the optimum, and then use the preflow

to propagate this output throughout the preflow graph.

Since the excesses are nonnegative, the sum of the

excesses of any subset of charging nodes is a lower

bound of the total output from the source charging

node, and thus also some lower bound on the cost of

the optimum. We construct the preflow in a manner

that allows us to locate such a subset of high-excess

charging nodes, thus providing the required lower

bound.

In the preflows we construct, each tree element (node

or edge) is converted to multiple charging nodes, each

corresponding to an exploration of that tree element.

The possible edges between charging nodes in the

preflow depend on the structure of the tree and the

operation of our algorithm. Of those possible edges,

we describe a procedure that chooses the actual edges

of the preflow. This procedure depends on the optimal

solution. Though the original metric space is a tree, the

multiple copies of each tree element cause the resulting

preflow to be a general directed graph.

The goal of the preflow creation procedure is to

propagate the optimum’s costs to some “top layer”

of charging nodes. This top layer usually consists of

nodes corresponding to explorations of the root tree

element, though in the case of online service with

delay the definition is different. The charging nodes

of that top layer are then chosen to lower bound the

optimum, as described.

The preflow creation procedure involves creating col-

ors at the “top” layer of the charging nodes. These

colors are then propagated, through some set of prop-

agation rules, to nodes in lower layers. Each color cor-

responds to the charging node in which it originated,

with the exception of two colors – the empty color, and

an additional “special” color. As nodes are colored, the

possible edges that contain them become actual edges

of the preflow.

We now discuss the techniques used in each of the

problems in this paper.

Online facility location with deadlines.

We use our framework in constructing an algorithm for

this problem over an HST. The algorithm maintains a

counter on each node (other than the root node), such

that each counter is of size f , where f is the cost of

opening a facility. Whenever a counter is full, it resets

and triggers an exploration of that node. Whenever the

deadline of a pending request expires, the algorithm

starts an exploration of the root node.

In the exploration of a node u, the algorithm opens

a facility at u, and considers pending requests in the

node’s subtree according to increasing deadline. For

each request considered, it raises the counter of the

child node on the path to the request by the cost of

connecting that request to u. If the counter of the child
is full, an exploration of that child is called recursively,

which would surely serve the considered request. Oth-

erwise, the algorithm connects that request to u. As
per the framework, the budget of u’s exploration for

raising these counters is exactly f .

Online facility location with delay.

The algorithm for this problem is an extension of the

deadline case. An exploration of the root node is now

triggered upon a set of requests which is critical, i.e.

has accumulated large delay.

The significant difference between the delay case and

the deadline case is in the exploration itself. In the

deadline case, the exploration of a node u spends its

budget attempting to “push back” the next occurrence

of a single event (i.e. the earliest deadline of a pending

request in the subtree rooted at u). In the delay case,

there are two events to consider. The first event is

a single request with a delay large enough to justify

connection to u. The second event is a “coalition” of

many tightly-grouped requests with small individual

delay, but large overall delay. This coalition does not

justify connection to u, but does merit opening a

facility near the coalition.

Online multilevel aggregation with delay.

In our algorithm for this problem over HSTs, each edge

has a counter. The size of the counter is the weight

62

of edge. This is in contrast to our algorithms for the

facility location problems, in which all counters were

of the same size. We assume, without loss of generality,

that there exists a single edge exiting the root node,

called the root edge. As in the facility location case,

an exploration of the root edge is triggered when the

delay of a set of requests becomes high.

In our algorithm, exploring an edge means adding

descendant edges to the transmitted subtree. The ex-

plored edge again has a budget equal to its weight.

The exploration repeatedly chooses the earliest point

in time in which the delay of a set of requests exceeds

the cost of expanding the transmission to include these

requests. It then raises the counter of the descendant

edge in the direction of that request set. Note the

contrast with the algorithms for facility location –

the explored edge is allowed to raise the counters of

its descendant edges, and not just of its immediate

children.

While the analysis for our facility location problems

required constructing a single preflow to get a lower

bound on the cost of the optimum, the analysis for

online multilevel aggregation with delay requires con-

structing an additional preflow to get an upper bound

on the cost of the algorithm.

Online service with delay.

Our algorithm for this problem uses the exploration

method of the algorithm for online multilevel aggrega-

tion with delay. However, the tree to be explored is not

the entire tree, but rather some subtree according to

the location of the server. The concepts of relative trees

and major edges are defined in a similar way to [5]. We

also use a potential function based on the distance of

the algorithm’s server from the optimum’s server. As

the algorithm consists (mainly) of making calls to the

multilevel aggregation exploration, the analysis divides

these explorations to those for which the optimum can

be charged (using similar arguments to the analysis of

the multilevel aggregation algorithm), and explorations

for which the costs are covered by the potential func-

tion.

Related Work

The online multilevel aggregation problem generalizes

a range of studied problems, such as the TCP acknowl-

edgment problem [14], [17], [22] and the joint replen-

ishment problem [8], [12], [15]. For both the deadline

and delay variants of online multilevel aggregation,

the best known lower bounds are only constant [8].

Bienkowski et al. [7] were the first to present an algo-

rithm for the online multilevel aggregation problem

with arbitrary delay functions, which is O(D42D)-

competitive. Buchbinder et al. [13] presented an O(D)-
competitive algorithm for the special case of deadlines.

The problem of online service with delay was pre-

sented in [5], along with the O(log4 n)-competitive
randomized algorithm for a general metric space of n
points. The problem has also been studied over specific

metric spaces, such as uniform metric and line metric,

in which improved results can be achieved [5], [11].

Another metric optimization problem with delay is the

problem of matching with delay [2], [19], [18], [4], [9],

[10]. For this problem, arbitrary delay functions are

intractable, and thus the main line of work focuses on

linear delay functions.

Additional problems with delay exist other than those

over a metric space. The set aggregation problem,

presented in [16], is a variant of set cover with delay.

The problem of bin packing with delay is presented in

[3].

The classic online facility location problem, suggested

by Meyerson [23], has also been studied [21], [1].

In this problem, requests arrive one after the other,

and the algorithm must either connect a request to

an existing facility immediately upon the request’s

arrival, or open a facility at the request’s location.

This problem is different from the problems of facility

location with deadlines and facility location with delay

presented in this paper. The main difference is that in

our problems, a facility is only opened momentarily,

which only allows immediate connection of pending

requests. In contrast, an opened facility in the online

facility location of [23] is permanent, allowing the

connection of any future request to that facility.

Paper Organization.

Section II presents the problem of online facility lo-

cation with deadlines, and an O(log2 n)-competitive
randomized algorithm for the problem, as well as its

analysis. Section III discusses the more general problem

of online facility location with delay, and extending

the algorithm for the deadline case in Section II to an

O(log2 n)-competitive algorithm for the case of delay.

Section IV presents the O(D2)-competitive determin-
istic algorithm for online multilevel aggregation with

delay. Section V presents the O(log2 n)-competitive
randomized algorithm for online service with delay,

which relies on the algorithm for online multilevel

aggregation with delay given in Section IV.

II. Online Facility Location with Deadlines

A. Problem and Notation

In the online facility location with deadlines problem,

requests arrive on points of a metric space over time.

63

Each request is associated with a deadline, by which

it must be served. An algorithm for the problem can

choose, in any point in time, to open a facility at any

point in the metric space momentarily, at a cost of f .
Immediately upon opening the facility, the algorithm

must choose the subset of pending requests (i.e. re-

quests that have arrived but have not been served) to

connect to the facility. The cost of connecting each

request to the facility is the distance between the re-

quest’s location and the facility’s location. Connecting

a request to a facility serves that request. Immediately

after connecting the requests, the facility disappears.

We allow opening a facility at the same point more

than once, at different times.

Formally, we are given a metric space A = (A, δA)
such that |A| = n. A request is a tuple q = (vq, rq, dq)
such that vq is a point in A, the arrival time of the
request is rq and the deadline of the request is dq . We
assume, without loss of generality, that all deadlines

are distinct. For any instance of the problem, the algo-

rithm’s solution has two costs. The first is the buying

cost (or opening cost) ALGB = mf , where m is the

number of facilities opened by the algorithm. Denoting

by Q the set of requests in the instance, and denoting

by βq the location of the facility to which the algorithm

connects request q, the second cost of the algorithm

is the connection cost ALGC =
∑

q∈Q δA(vq, βq).
Wherever a single metric space A is considered, we

write δ = δA.
The goal of the algorithm is to minimize the total cost,

which is ALG = ALGB +ALGC .

For the special case in which A is a tree T , and δ is
the distance between nodes in T , we denote the root
of T by r and the weight function on the edges of the
tree by w. We assume, without loss of generality, that
the requests only arrive on leaves of the tree.

The following definitions regarding trees are used

throughout the paper.

Definition II.1. For every tree node u ∈ T , we use
the following notations:

• For u �= r, we denote by p(u) the parent of u in

the tree. We denote by Tu the subtree rooted at

u.
• For a set of requests Q ⊆ Tu, we denote by TQ

u ⊆
Tu the subtree spanned by u and the leaves of Q.

The following definition is similar to the usual defini-

tion of a β-HST, except that we allow a child edge to

be strictly smaller than 1
β times its parent edge.

Definition II.2 ((≥ β)-HST). A rooted tree T is a

(≥ β)-HST if for any two edges e, e′ ∈ T such that

e is a parent edge of e′, we have that w(e) ≥ βw(e′).

When considering the problem over a tree T , we
assume, without loss of generality, that w(e) ≤ f for

any edge e ∈ T . Indeed, if this is not the case, no

request would be connected over e, effectively yielding
two disjoint instances of the problem.

In this section, we prove the following theorem.

Theorem II.3. There exists an O(log2 n)-competitive
randomized algorithm for online facility location with

deadlines for any metric space of n points.

B. Algorithm for HSTs

We present an algorithm for facility location with

deadlines on a (≥ 2)-HST T of depth D. We denote
the root of the tree by r.

We make the assumption that the total weight of any

path from the root to a leaf is at most f . In a (≥ 2)-
HST, the total weight of such a path is at most twice

the weight of the top edge, which is at most f . Thus,
this assumption only costs us a constant factor of 2 in
competitiveness.

Without loss of generality, we allow the algorithm to

open facilities on internal nodes of the tree. Indeed, any

algorithm that opens facilities on internal nodes can

be converted to an algorithm that only opens facilities

on leaves in the following manner. Consider a facility

opened by the original algorithm on the internal node

u, and denote by Q the set of requests connected to

that facility. The modified algorithm would open the

facility at vq∗ instead, where q
∗ = argminq∈Q δ(u, vq),

and connect the original requests. Through triangle in-

equality, the connection cost of the modified algorithm

is at most twice larger.

Algorithm’s description. The algorithm for facility

location with deadlines on a (≥ 2)-HST is given in

Algorithm 1. The algorithm waits until the deadline of

a pending request. It then begins exploring the root

node. An exploration of a node u consists of consider-

ing the pending requests in Tu by order of increasing

deadline. The exploration has a budget of exactly f to

spend on raising counters of child nodes – it maintains

that budget in the variable bu. When considering a

request q, the algorithm raises the counter of the child

node v, denoted cv in the algorithm, for the child

node v in the request’s direction. The counter is raised
by the smallest of δ(vq, u), the amount required to

fill cv , and the remaining budget bu. If this fills the
counter of v, the exploration of u is paused, and a new
exploration of v is started, in a DFS manner. We claim,
in the analysis, that this exploration of v connects q.
Otherwise, the request q is connected to u.

64

Algorithm 1: Facility Location with Deadlines

1 Initialization.

2 Initialize cu ← 0 for any node u ∈ T\{r}.
3 Declare bu for any node u ∈ T .
4

5 Event Function UponDeadline() // Upon expired deadline of pending request at time t
6 Explore(r)

7

8 Function Explore(u)
9 Open(u)

// Spend a budget of f on charging child node counters

10 set bu ← f
11 while bu �= 0 and there remain pending requests in Tu do

// Consider pending requests by increasing deadline

12 let q be the pending request with earliest deadline in Tu

13 let v be the child of u on the path to vq
14 call Invest(u,v,δ(u, vq))
15 if cv = f then set cv ← 0 ; call Explore(v).
16 if q is still pending then connect q to facility at u

Algorithm 1: Facility Location with Deadlines (cont.)

1 Function Open(u)
2 open facility at u.
3 if u is a leaf node then connect to facility all pending requests on u

4

5 Function Invest(u,v,x) // Invests in v’s counter either x, or until v’s counter
is full, or until u is out of budget.

6 let y ← min(x, bu, f − cv)
7 increase cv by y
8 decrease bu by y
9 return y

C. Analysis

Fix any instance of online facility location with dead-

lines on a (≥ 2)-HST. Let OPT be any solution to the

instance. We denote by OPTB the total buying cost

of OPT, and by OPTC the total connection cost of

OPT. Denote by ALG the total cost of the solution

of Algorithm 1 for this problem. In this subsection, we

prove the following theorem.

Theorem II.4. ALG ≤ O(D2)·OPTB+O(D)·OPTC .

To prove Theorem II.4, we show validity of the algo-

rithm, an upper bound for ALG and a lower bound

for OPT.

1) Validity of the Algorithm

The following proposition and its corollary show that

the algorithm is valid.

Proposition II.5. Let q be a request considered in a call
to Explore(u). Then q is served when Explore(u)
returns.

Proof: This is guaranteed by the condition check

at the end of the main loop in Explore.

Corollary II.6. Every request is served by its deadline.

That is, the algorithm is valid.

Proof: Observe that upon the deadline of a request

q, Explore(r) is called, and immediately considers

q. Proposition II.5 concludes the proof.

2) Upper Bounding ALG

Throughout the analysis, we denote by k the number

of calls to UponDeadline made by the algorithm.

We also denote by t1, ..., tk the times of these k calls,

by increasing order. We prove the following lemma.

65

Lemma II.7. ALG ≤ 3 · (D + 1) · kf .

The proof of Lemma II.7 is through providing an upper

bound for the cumulative amount by which counters

are raised in the algorithm, then bounding the cost of

the algorithm by that cumulative amount.

Observation II.8. Observe any node u, and consider a
call to Explore(u). Denote by x the total amount

by which Explore(u) increases the counters of its

children nodes through calls to Invest. Then we have
that x ≤ f . Moreover, if there exists a pending request

in Tu after the return of Explore(u), then x = f .

From the previous observation, the following observa-

tion follows.

Observation II.9. For any u, Explore(u) is called
at most once at any time t.

Using the last observation, we refer to a call to

Explore(u) at time t by Exploret(u).

Observe the state of each counter in the algorithm over

time. The counter undergoes phases, such that in the

start of each phase its value is 0. The counter increases
in value during the phase until it reaches f , and is then
reset to 0, triggering a service and the end of the phase.

We define a virtual counter c̄u which contains the

cumulative value of cu. That is, whenever cu increases,
c̄u increases by the same amount, but c̄u is never reset
when cu is reset. For the sake of analysis, we also

consider a virtual counter c̄r , which is raised by f
whenever Explore(r) is called.
Propositions II.10 and II.11 immediately yield Lemma

II.7, and their proofs are given the full version of the

paper.

Proposition II.10.
∑

u∈T c̄u ≤ (D + 1)kf

Proposition II.11. ALG ≤ 3 ·∑u∈T c̄u

3) Lower Bounding OPT

We now provide a lower bound for the cost of OPT,
through proving the following lemma. Recall that k is

number of calls to Explore(r).

Lemma II.12. kf ≤ 2(D + 1) ·OPTB + 4 ·OPTC

Charging nodes and incurred costs.

We define a charging node to be a tuple (u, [τ1, τ2])
such that u ∈ T , and τ1, τ2 are two subsequent times in
which Explore(u) is called. We allow the charging

nodes of the form (u, [τ1, τ2]) in which τ1 = −∞ and

τ2 is the first time in which Explore(u) is called.
Similarly, we allow the charging nodes (u, [τ1, τ2]) in
which τ1 is the last time Explore(u) is called, and

τ2 = ∞. We denote by M the set of charging nodes.

Figure 1 visualizes the set of charging nodes.

For a charging node μ = (u, [τ1, τ2]), we define the
following.

1) Let cb(μ) be the buying cost incurred by OPT
in μ, defined to be the total cost at which OPT
opened facilities in Tu during [τ1, τ2].

2) Let cc(μ) be the connection cost incurred by OPT
in μ, defined to be

∑
q∈Q δ(p(u), vq), where Q

is the set of requests q such that vq ∈ Tu, rq ∈
[τ1, τ2] and OPT connected q to a facility outside
Tu.

Let c(μ) = cb(μ)+cc(μ) be the total cost OPT incurred

in μ.

Lemma II.13.
∑

μ c(μ) ≤ 2(D+1)·OPTB+4·OPTC

Proof: In the full version of the paper.

Definition II.14 (excess). Let G = (V ′, E) be a

directed multigraph, with a non-negative weight func-

tion α : E → R+ defined on its edges. We denote

by E+
v ⊆ E the set of edges entering node v, and by

E−v ⊆ E the set of edges leaving v. We define the

excess at a node v ∈ V ′ to be χv =
∑

σ∈E+
v
α(σ) −∑

σ∈E−v α(σ).

Note that every edge σ ∈ E from u to v is counted

in χu and χv with opposite signs. The following

observation follows.

Observation II.15. For any G = (V ′, E) and weights
α : E → R

+, we have
∑

v∈V ′ χv = 0.

Definition II.16. For a graph G = (V ′ = V ∪{s}, E)
and non-negative weights α : E → R

+, We say that

Z = (G, s, α) is a preflow if for every node v �= s we
have that χv ≥ 0. We call s the source node of the

preflow.

Observation II.15 yields that χs ≤ 0 for every preflow
Z = (G, s, α). We write ωZ = −χs.

Proposition II.17. For G = (V ∪ {s}, E) a directed

graph, for weights α : E → R
+ such that Z = (G, s, α)

is a preflow, and for every S ⊆ V , we have
∑

v∈S χv ≤
ωZ .

Proof: Observation II.15 and the definition of a

preflow, we get
∑

v∈S χv ≤
∑

v∈V χv = −χs = ωZ .

We now construct a preflow to lower bound OPT. The
graph G underlying the preflow has the set of nodes

M ∪ {s}, where M is the set of charging nodes and s
is a source node.

Consider a charging node μ = (u, [τ1, τ2]). We have
that [τ1, τ2] corresponds to a phase of the counter cu,

66

(a) Charging Nodes for Single Tree Node (b) Charging Nodes for a Branch

Sub-figure 1a is a visualization of the charging nodes corresponding to a single tree node, displayed over a

timeline. Each rectangle is a charging node. Note the charging node from −∞ and the charging node to ∞.
Sub-figure 1b shows the charging nodes corresponding to a branch in the tree. Observe the containment of

charging node intervals for a certain tree node in the intervals of descendant tree nodes.

Figure 1: Visualization of Charging Nodes

since cu was empty at τ1 and was filled and emptied
again until time τ2.

Definition II.18 (Investing). Observe two charging

nodes μ = (u, [τ1, τ2]) and μ′ = (u′ = p(u), [τ ′1, τ
′
2]).

We say that μ′ invested x in μ if the function call

Exploreτ ′1
(u′) increased cu by x, through calls to

Invest, during the phase of cu between τ1 and τ2.

Definition II.19 (λt
u and λμ). For every function call

Exploret(u) for some u ∈ T and time t, we denote
by λt

u the earliest deadline of a pending request in Tu

immediately after the return of Exploret(u) (if there
are no pending requests in Tu, we write λt

u =∞).
In addition, for a charging node μ = (u, [τ1, τ2]) with
τ1 �= −∞, we write λμ = λτ1

u .

Possible edges.

We describe the set of possible edges in G from nodes

in M to other nodes in M , denoted by Ē, and the

weight function α : Ē → R
+. The final set of edges

added to G by the preflow-building procedure from

the nodes of M to themselves is a subset of Ē. The
set Ē contains an edge σ from any charging node μ1 =
(u1, [τ

1
1 , τ

1
2]) to any charging node μ2 = (u2, [τ

2
1 , τ

2
2])

if μ1 invested in μ2. We set the weight α(σ) to be the
amount that μ1 invested in μ2.

The procedure which constructs the preflow, as well

as the proof of Lemma II.12, appear in the full version

of the paper. Figure 2 gives a visualization of this

procedure.

Proof of Theorem II.4: Combining Lemmas II.7 and

II.12, we have that

ALG ≤ Dkf ≤ O(D2) ·OPTB +O(D) ·OPTC

Remark II.20. Our algorithm and its analysis also work

in the case that the cost of opening a facility is different

between nodes in the tree, as long as the cost of

opening a facility at a node is at least the cost of

opening a facility at its parent node. If this is not the

case, the analysis would no longer hold.

III. Online Facility Location with Delay

We now describe the facility location with delay

problem. The problem is an extension of the facility

location with deadlines problem, in which the deadline

for each request q is replaced with an arbitrary delay
function dq(t) associated with that request. Each delay
function is required to be continuous and monotoni-

cally non-decreasing. This is indeed an extension of

the deadline problem, as a deadline can be described

as a step function, which goes from 0 to infinity at

the time of the deadline. Such a step function can be

approximated arbitrarily well by a continuous delay

function.

A feasible solution for a facility location with delay

instance consists of opening facilities and connecting

each request to some facility, as in the deadline case.

In addition to the opening costs and connection costs

incurred, the solution also pays dq(t) for each request
q connected at time t. Overall, for an instance of the

67

(a) Initial state before coloring (b) After assigning colors to root charging nodes

(c) After propagating color to depth 1 (d) Final state after preflow construction

In this figure, we see the stages of the preflow construction in the preflow-building procedure, visualized on a set

of charging nodes corresponding to a branch in the tree. Sub-Figure 2a shows the state after the initialization,

where the Special color has been assigned. The nodes with the Special color appear as striped. The gray

edges are the edges of Ē, not yet added to the edge set E.
Sub-Figure 2b shows the state after the creation of the colors at the root charging nodes. Note that when a node

is colored, the edges of Ē incoming to that node are added to E. In the figure, nodes with the None color for

which the procedure will not call SetColor again (i.e. None is their final color) are colored gray. Note that

the procedure does not call SetColor for the final root node (the interval of which ends at ∞), and thus its
color remains None.
Sub-Figure 2c shows the state after the propagation of colors to the nodes at depth 1. Sub-Figure 2d shows the
final state of the preflow, after coloring the nodes at the maximum depth. Note that the color of a node μ at the

maximum depth is either Special or None, as λμ =∞.
Figure 2: Visualization of preflow construction

problem with requests Q, the algorithm incurs the

delay cost ALGD =
∑

q∈Q dq(tq), where tq is the time
in which q is served by the algorithm.

The algorithm’s goal is to minimize the total cost

ALG = ALGB +ALGC +ALGD .

Without loss of generality, we assume that dq(rq) = 0.
Indeed, if this is not the case, observe that any solu-

tion (including the optimal one) must pay this initial

amount of dq(rq) in delay for that request, which only
reduces the competitive ratio of any online algorithm.

In the full version of the paper, we prove the following

theorem.

Theorem III.1. There exists an O(log2 n)-competitive
randomized algorithm for facility location with delay for

a general metric space of size n.

IV. Online Multilevel Aggregation with Delay

A. Problem and Notation

In the online multilevel aggregation with delay prob-

lem, requests arrive on the leaves of a rooted tree over

time. Each such request accumulates delay until served.

At any point in time, an algorithm for this problem

may choose to transmit a subtree which contains the

root, at a cost which is the weight of that subtree. Any

pending requests on a leaf in the transmitted subtree

are served by the transmission.

Formally, as in the facility location with delay problem,

a request is a tuple (vq, rq, dq(t)) where the leaf of the
request is vq , the arrival time of the request is rq and
dq(t) is the request’s delay function. The function dq(t)
is again required to be non-decreasing and continuous.

We observe online multilevel aggregation with delay

on a (≥ 2)-HST. We assume, without loss of generality,

68

Algorithm 2: Online Multilevel Aggregation with Delay

1 Initialization.

2 Initialize ce ← 0 for any edge e ∈ T\{r}
3 Declare be for every edge e ∈ T .
4 Declare T .
5

6 Event Function UponCritical() // Upon request set becoming critical as per Definition IV.3

7 set T ← ∅
8 Explore(r)
9 transmit T
10

11 Function Explore(e)
12 Add(e)
13 set be ← w(e)
14 while be �= 0 and there remain pending requests in Te do

15 let H be the live cut under e.
16 let Q be the set of pending requests in Te.

17 let t′ be the earliest time such that there exists a set of requests Q′ ⊆ Q that saturates Te′ for

some e′ ∈ H .

18 call Invest(e,e′)
19 if ce′ = w(e′) then set ce′ = 0 ; call Explore(e′).

Algorithm 2: Online Multilevel Aggregation with Delay (cont.)

1 Function Add(e)
2 T ← T ∪ {e}
3 if e is a leaf edge then mark all pending requests on e as served

4

5 Function Invest(e,e′)
6 let y ← min(be, w(e

′)− ce′)
7 increase ce′ by y
8 decrease be by y
9 return y.

that only a single edge exits the root node, called the

root edge. Otherwise, we operate on each edge that

exits the root node separately, as there is no interaction

between the subtrees rooted at those edges. We denote

the tree by T , and its root edge by r.

For a request q, and a set of edges E we write that

q ∈ E if the leaf edge on which q is released is in E. In
accordance, we write Q ⊆ E if q ∈ E for every q ∈ Q.
For a set of pending requests Q at time t, we denote
by dQ(t) the total delay incurred by the requests of Q
until time t. We denote by w(e) the weight of an edge,
and by w(E) =

∑
e∈E w(e) the total weight of a set

of edges.

We assume that each request would gather infinite

delay if it remains pending forever.

The following notations are similar to those for facility

location, but refer to edges instead of nodes.

Definition IV.1 (Similar to Definition II.1). For every

tree edge e ∈ T , we use the following notations:

• For e �= r, denote by p(e) the parent edge of e in
the tree. We denote by Te the subtree rooted at e.

• For a set of requests Q ⊆ Te, denote by TQ
e ⊆ Te

the subtree spanned by e and the leaves of Q. We
denote TQ = TQ

r .

We prove the following theorem.

Theorem IV.2. There exists a O(D2)-competitive de-
terministic algorithm for online multilevel aggregation

with delay on any tree of depth D.

69

B. Algorithm for HSTs

We now present an algorithm for the online multilevel

aggregation with delay problem over a (≥ 2)-HST of

depth D.

Definition IV.3 (saturation and critical sets). For any

edge e, we say that a set of pending requests Q ⊆ Te

saturates Te if dQ(t) ≥ w(TQ
e). We say that a set of

pending requests Q is critical at time t if Q saturates

the root edge r.

Upon a set of critical requests, the algorithm starts a

service. In every service, the algorithm maintains a tree

T , which it expands and ultimately transmits.
Definition IV.4 (live cut). At any time during the

construction of T , we define the live cut under e ∈ T
to be the set of edges E = {e′|e′ ∈ Te\T ∧p(e′) ∈ T }.

Algorithm’s description. The algorithm is given in

Algorithm 2. When a set of requests is critical, a call

is made to UponCritical, which resets the tree

to transmit T , calls Explore(r) to expand T , then
transmits T .
The exploration of an edge e adds e to T . It then
considers the live cut underneath e, which is the set of
potential candidates for expanding T . The exploration
forwards time until a set of pending requests saturates

Te′ for an edge e′ in the the live cut. It then invests

in raising the counter of e′, until either the counter
is full (which triggers Explore(e′) immediately) or
Explore(e) is out of budget. The counter of e, as
well as the budget of Explore(e), is equal to w(e).

Note that the live cut under e can change significantly
after every iteration of the loop in Explore(e), as
making a recursive call to Explore(e′) can add many
additional edges to T . The analysis of Algorithm 2, as

well as the proof of Theorem IV.2, appear in the full

version of the paper.

V. Online Service with Delay

In the online service with delay (OSD) problem, a

single server exists on a point in a metric space.

Requests arrive on points of the metric space over time,

and accumulate delay until served, where serving a

request requires moving the server to that request. The

cost of moving the server from one point to another

is the distance between those two points in the metric

space. The goal is to minimize the sum of the moving

cost and the delay cost.

Formally, a request is a tuple q = (vq, rq, dq(t)) such
that vq is the point on which q arrives, the request

arrives at time rq , and dq(t) is an arbitrary non-

decreasing continuous delay function. We also assume

that dq(t) tends infinity as time progresses. For any

instance of OSD I , denote by ALGB the total cost

of moving the algorithm’s server. We also denote by

ALGD =
∑

q∈Q dq(tq), where tq is the time in which
the request q is served. Then the algorithm’s goal is

to minimize the total cost

ALG = ALGB +ALGD

As in the previous problems in this paper, we also

consider the special case in which the metric space is

the leaves of a (≥ 2)-HST. Without loss of generality,

we allow an algorithm to move its server to the

internal nodes of the tree, even though they are not a

part of the original metric space. This is implemented

by lazy moving of the server – that is, the server never

really moves to those internal nodes, but its virtual

location in an internal node is kept in the algorithm’s

memory for the sake of calculations.

In the full version of the paper, we prove the following

theorem.

Theorem V.1. There exists a randomized O(log2 n)-
competitive algorithm for online service with delay on a

general metric space of n points.

References

[1] Aris Anagnostopoulos, Russell Bent, Eli Upfal, and
Pascal Van Hentenryck. A simple and deterministic
competitive algorithm for online facility location. Inf.
Comput., 194(2):175–202, 2004.

[2] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish
Chiplunkar, Ofir Geri, Haim Kaplan, Rahul M. Makhi-
jani, Yuyi Wang, and Roger Wattenhofer. Min-cost bi-
partite perfect matching with delays. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2017, August
16-18, 2017, Berkeley, CA, USA, pages 1:1–1:20, 2017.

[3] Yossi Azar, Yuval Emek, Rob van Stee, and Danny
Vainstein. The price of clustering in bin-packing with
applications to bin-packing with delays. In The 31st
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA 2019, 2019. To appear.

[4] Yossi Azar and Amit Jacob Fanani. Deterministic min-
cost matching with delays. In Approximation and Online
Algorithms - 16th International Workshop, WAOA 2018,
Helsinki, Finland, August 23-24, 2018, Revised Selected
Papers, pages 21–35, 2018.

[5] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya
Panigrahi. Online service with delay. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 551–563, 2017.

[6] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and
Joseph Naor. A polylogarithmic-competitive algorithm
for the k-server problem. J. ACM, 62(5):40:1–40:49, 2015.

70

[7] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka,
Marek Chrobak, Christoph Dürr, Lukáš Folwarczný,
Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel
Veselý. Online algorithms for multi-level aggregation.
In 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark, pages 12:1–
12:17, 2016.

[8] Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak,
Lukasz Jez, Dorian Nogneng, and Jirí Sgall. Better
approximation bounds for the joint replenishment prob-
lem. In Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 42–54,
2014.

[9] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu,
and Pawel Schmidt. A primal-dual online deterministic
algorithm for matching with delays. In Approximation
and Online Algorithms - 16th International Workshop,
WAOA 2018, Helsinki, Finland, August 23-24, 2018, Re-
vised Selected Papers, pages 51–68, 2018.

[10] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt.
A match in time saves nine: Deterministic online
matching with delays. In Approximation and Online
Algorithms - 15th International Workshop, WAOA 2017,
Vienna, Austria, September 7-8, 2017, Revised Selected
Papers, pages 132–146, 2017.

[11] Marcin Bienkowski, Artur Kraska, and Pawel Schmidt.
Online service with delay on a line. In Structural
Information and Communication Complexity - 25th Inter-
national Colloquium, SIROCCO 2018, Ma’ale HaHamisha,
Israel, June 18-21, 2018, Revised Selected Papers, pages
237–248, 2018.

[12] Carlos Fisch Brito, Elias Koutsoupias, and Shailesh
Vaya. Competitive analysis of organization networks
or multicast acknowledgment: How much to wait?
Algorithmica, 64(4):584–605, 2012.

[13] Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor,
and Ohad Talmon. O(depth)-competitive algorithm
for online multi-level aggregation. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19, pages 1235–1244, 2017.

[14] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online
primal-dual algorithms for maximizing ad-auctions rev-
enue. In Algorithms - ESA 2007, 15th Annual European
Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
pages 253–264, 2007.

[15] Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin
Makarychev, and Maxim Sviridenko. Online make-to-
order joint replenishment model: primal dual competi-
tive algorithms. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008,
pages 952–961, 2008.

[16] Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José
Verschae. The online set aggregation problem. In
LATIN 2018: Theoretical Informatics - 13th Latin Amer-
ican Symposium, Buenos Aires, Argentina, April 16-19,
2018, Proceedings, pages 245–259, 2018.

[17] Daniel R. Dooly, Sally A. Goldman, and Stephen D.
Scott. TCP dynamic acknowledgment delay: Theory
and practice (extended abstract). In Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of
Computing, Dallas, Texas, USA, May 23-26, 1998, pages
389–398, 1998.

[18] Yuval Emek, Shay Kutten, and Roger Wattenhofer. On-
line matching: haste makes waste! In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-
21, 2016, pages 333–344, 2016.

[19] Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum
cost perfect matching with delays for two sources. In
Algorithms and Complexity - 10th International Con-
ference, CIAC 2017, Athens, Greece, May 24-26, 2017,
Proceedings, pages 209–221, 2017.

[20] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A
tight bound on approximating arbitrary metrics by tree
metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[21] Dimitris Fotakis. On the competitive ratio for online
facility location. Algorithmica, 50(1):1–57, 2008.

[22] Anna R. Karlin, Claire Kenyon, and Dana Randall.
Dynamic TCP acknowledgment and other stories about
e/(e-1). Algorithmica, 36(3):209–224, 2003.

[23] Adam Meyerson. Online facility location. In 42nd
Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 426–431, 2001.

71

