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Abstract—We formalize and study the question of whether
there are inherent difficulties to showing lower bounds on
propositional proof complexity.

We establish the following unconditional result: Proposi-
tional proof systems cannot efficiently show that truth tables
of random Boolean functions lack polynomial size non-uniform
proofs of hardness. Assuming a conjecture of Rudich, proposi-
tional proof systems also cannot efficiently show that random
k-CNFs of linear density lack polynomial size non-uniform
proofs of unsatisfiability. Since the statements in question assert
the average-case hardness of standard NP problems (MCSP
and 3-SAT respectively) against co-nondeterministic circuits
for natural distributions, one interpretation of our result is
that propositional proof systems are inherently incapable of
efficiently proving strong complexity lower bounds in our
formalization. Another interpretation is that an analogue of
the Razborov-Rudich ‘natural proofs’ barrier holds in proof
complexity: under reasonable hardness assumptions, there
are natural distributions on hard tautologies for which it is
infeasible to show proof complexity lower bounds for strong
enough proof systems.

For the specific case of the Extended Frege (EF) proposi-
tional proof system, we show that at least one of the following
cases holds: (1) EF has no efficient proofs of superpolynomial
circuit lower bound tautologies for any Boolean function or (2)
There is an explicit family of tautologies of each length such
that under reasonable hardness assumptions, most tautologies
are hard but no propositional proof system can efficiently
establish hardness for most tautologies in the family. Thus,
under reasonable hardness assumptions, either the Circuit
Lower Bounds program toward complexity separations cannot
be implemented in EF, or there are inherent obstacles to
implementing the Cook-Reckhow program for EF.

Keywords-Computational complexity, proof complexity, cir-
cuit lower bounds, barriers

I. INTRODUCTION

A. Motivation

Complexity theory is full of questions that are easy to

state but hard to answer. The most famous of these is the P
vs NP problem [14], but there are numerous others such as

the NP vs coNP problem, the PSPACE vs P problem, and

the BPP vs P problem. In all of these cases, despite decades

of effort, very little progress has been made. Is this because

complexity theory is a young field, and we have not yet had

the time to develop a deep understanding of computation and

its limits? Or are these problems fundamentally intractable

in some sense?

Since complexity theory is the theory of intractability,

it is natural to apply it to the seeming intractability of

complexity-theoretic questions themselves. Since the early

days of complexity theory, progress on complexity lower

bounds has gone hand-in-hand with the formalization of

various sorts of barriers to progress. In the 70s, analogies

between complexity theory and recursion theory were devel-

oped, with various concepts and techniques from recursion

theory being adapted to the resource-bounded setting. How-

ever, Baker, Gill & Solovay [7] observed in the late 70s that

popular machine simulation and diagonalization techniques

from recursion theory relativized, i.e., continued to work

even when machines were given access to an arbitrary

oracle. By giving an oracle relative to which P = NP and

another oracle relative to which P �= NP [7], they proved that

no relativizing techniques could solve the NP vs P question.

It seemed that techniques of a fundamentally different sort

were required.

After this barrier result, attention shifted to a more finitis-
tic setting. Rather than considering uniform machines that

work for all inputs, Boolean circuits corresponding to finite

functions became the object of study. It is well-known that

P can be simulated by polynomial-size Boolean circuits, and

therefore super-polynomial lower bounds on Boolean circuit

size imply lower bounds against P.

Perhaps the hope was that circuits are simpler and more

‘combinatorial’ objects, and therefore more amenable to

lower bounds via combinatorial and algebraic techniques.

Indeed, initial results were promising. In a series of

influential works [2], [21], [24], [48] applying the technique

of random restrictions, super-polynomial lower bounds

were shown for the Parity function against constant-depth

circuits. Razborov [40] and Smolensky [47] developed the

polynomial approximation technique to give lower bounds

against constant-depth circuits with prime modular gates.

Razborov [39] used the method of approximations to show

that the Clique problem required super-polynomial size

monotone circuits. This sequence of works introduced

several new lower bound techniques, and it seemed that

steady progress was being made toward the goal of
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separating NP and P via a Circuit Lower Bounds Program.

Circuit Lower Bounds Program: Separate NP and

P by proving super-polynomial lower bounds for functions

in NP against increasingly expressive classes of Boolean

circuits.

Unfortunately, the Circuit Lower Bounds Program stalled

in the early 90s. Even now, almost 30 years later, we

still don’t know if there are explicit functions that require

super-polynomial depth-two threshold circuits, or constant-

depth circuits with Mod 6 gates. However, even if no

breakthrough lower bounds were proved for a while, our

understanding of barriers to lower bounds did evolve, due

mainly to work of Razborov [41], [42] and Razborov

& Rudich [45]. Razborov & Rudich [45] developed the

concept of natural proofs, which captures known circuit

lower bounds proved via combinatorial and algebraic

techniques, and showed that under standard cryptographic

assumptions, natural proofs cannot prove super-polynomial

lower bounds for general Boolean circuits.

The natural proofs barrier has not proven to be as

damaging to the finitistic approach to complexity as the

relativization barrier was to the machine-based approach.

Circuits are still a popular model, and combinatorial and

algebraic techniques are still heavily used. Various methods

to evade the natural proofs barrier have been proposed,

though none have yet resulted in any breakthrough lower

bounds for explicit functions.

The meta-mathematics of circuit lower bounds is one of

our motivations for the results in this paper, but the main

motivation comes from a different approach to complex-

ity theory, via proof complexity. The NP vs P problem

essentially asks if short proofs for mathematical theorems

are easy to find. Thus logic and proof are inherent to the

problem. These aspects are emphasized not just in Steve

Cook’s seminal paper [14] stating the problem, but already

in Godel’s famous letter to von Neumann in the early 1950s.

Cook and Reckhow [18] defined the notion of a proposi-
tional proof system: a polynomial-time computable surjec-

tive function mapping strings to tautologies. The requirement

that the range of the function is the set of tautologies

models the soundness of the proof system; the surjectiveness

of the function models completeness; the polynomial-time

computability of the function models efficient verifiability

of proofs. A proof of a tautology φ with respect to a

propositional proof system P is simply a string x such that

P (x) = φ. A natural complexity question then is how the

minimum proof size grows as a function of the length of the

tautology, with respect to a given propositional proof system

P .

Cook and Reckhow [18] show that NP = coNP iff

there is a propositional proof system P that is polynomially
bounded, i.e., all tautologies have polynomial-size proofs in

P . Equivalently, NP �= coNP iff there is a hard sequence of

tautologies for every propositional proof system P .

Just as the Circuit Lower Bounds Program aims to make

progress on the NP vs P question, the work of Cook and

Reckhow suggests an approach to making progress on the

NP vs coNP question.

Cook-Reckhow Program: Separate NP and coNP by

proving super-polynomial lower bounds on the proof size

of tautologies in increasingly powerful proof systems P .

We note a couple of differences between the circuit

complexity lower bound setting and the proof complexity

lower bound setting. In the circuit complexity setting, it

is easy to see by a counting argument that most Boolean

functions do not have small circuits. The challenge is to

show a circuit lower bound for an explicit Boolean function,

i.e., a function in NP. In the proof complexity setting, we

do not care about explicitness - we are satisfied with lower

bounds for any sequence of tautologies. In this setting,

counting arguments do not work to get non-constructive

lower bounds, since the space of small proofs is comparable

in size to the space of tautologies.

Despite these differences, progress on the Cook-Reckhow

Program has been partly inspired by analogies with the

Circuit Lower Bounds Program. Haken [23] showed super-

polynomial lower bounds on the size of proofs of the Pi-

geonhole Principle in the Resolution proof system. Ajtai [3]

obtained a significant extension of this result by showing that

the Pigeonhole Principle is also super-polynomially hard for

Bounded-Depth Frege - a restricted version of the standard

Frege system where the lines are bounded-depth circuits.

Ajtai’s super-polynomial lower bound was strengthened to

an exponential lower bound by [9]. Both [3] and [9] use

strong versions of the random restriction technique used to

prove lower bounds on bounded-depth circuits.

There has been significant effort devoted to proving

lower bounds for constant-depth Frege proofs with modular

counting gates - the proof-theoretic analogue of constant-

depth circuits with modular counting gates - but without any

success. Thus the Cook-Reckhow program is also stalled.

What is even more unsatisfactory, though, is that unlike

the Circuit Lower Bounds program, we do not have a good

explanation for why progress is stalled. There is no known

analogue of the natural proofs barrier for proof complexity,

and indeed this is one of the main open questions asked in

the survey of Beame and Pitassi [10] from the late 90s.

Our main motivation in this paper is to formalize and

study the question of whether there are inherent obstacles to

proving proof complexity lower bounds for strong proposi-

tional proof systems.

There are several reasons why this question is interesting.

First, as described above, it is motivated by the difficulty of

making progress on the Cook-Reckhow program.
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Second, propositional proof systems correspond naturally

to certain classes of algorithms that are used in practice for

solving the Satisfiability problem. For example, the Tree

Resolution proof system corresponds to branching algo-

rithms. Showing lower bounds for a proof system P trans-

lates to constructing hard instances for the corresponding

class A(P ) of algorithms, which is an interesting question

in its own right. The question of whether proof complexity

lower bounds are hard thus connects to the question of

whether provably hard instances exist for various classes of

algorithms.

Third, propositional proof systems can be interpreted

not only algorithmically, as in the previous para, but also

meta-mathematically, as a setting within which barriers

to progress in complexity theory can be formalized and

understood. This duality is also important in this paper,

and enables us to use our ideas to show the unprovability

of certain strong complexity hypotheses within a finitistic

context. In the terminology of Aaronson [1], these are new

‘second-generation’ independence results. First generation

independence results are about unprovability in logical the-

ories such as ZFC,PA and restrictions thereof. In this paper,

on the other hand, we focus on finitistic results in the context

of propositional proof complexity, where proofs always exist
for any tautology, but the question is whether they are of a

reasonable size.

We now proceed to discuss our model, and the hypotheses

we consider.

B. The Setting

We would like to study the question of whether proof

complexity lower bounds are inherently ‘hard’. The most

natural formalization of ‘hardness’ we can imagine in this

context is that tautologies corresponding to proof complexity

lower bounds are themselves hard to prove, even in strong

propositional proof systems.

This formalization is inspired by the analogy with circuit

complexity. In his work on complexity barriers, Razborov

[41], [42] considered the proof complexity of the circuit
lower bound formulas, which are propositional formulas

tt(fn, s) expressing that a Boolean function fn on n bits

given by its truth table does not have Boolean circuits of

size s, for some parameter s. Intuitively the reason why

this statement can be expressed by propositional formulas

(which are tautologies when f is indeed hard) is that it

is a universal statement, saying that no circuit of size at

most s can compute the function corresponding to the given

truth table. This can be encoded by a DNF of size O(2ns3)
where the propositional variables correspond to the bits of

the circuit1. The main result of [41], [42] is that under

standard cryptographic assumptions, no propositional proof

1Note that the encoding is exponentially large. More succinct encodings
have been considered in recent work of Müller and Pich [36]

system satisfying the ‘feasible interpolation’ property can

efficiently prove circuit lower bound formulas corresponding

to s = nω(1) for any Boolean function. The advantage of this

result is that it applies to any Boolean function; the weakness

is that it only holds for propositional proof systems with

feasible interpolation, and systems such as Extended Frege

and Frege are known not to have feasible interpolation under

cryptographic assumptions [12], [33].

We can define proof lower bound formulas for a given

propositional proof system R in an analogous way. Given

a formula φ and a parameter s, the corresponding R-proof

lower bound formula lbR(φ, s) states that there is no R-proof

of φ of size s. Just as with circuit lower bound formulas, this

is a universal statement: there no proof for φ of size at most

s in R. This can be encoded by a DNF of size poly(|φ|, s),
where the propositional variables correspond to the bits of

the proof.

Now we can ask about the proof complexity of R-proof

lower bound formulas. In this paper, we typically adopt

a high standard for hardness - we require that the proof

complexity of R-proof lower bound formulas is large for

every propositional proof system S arguing about these

lower bound formulas.

We remark that upper bounds on the proof complexity

of R-proof lower bound formulas for certain proof sys-

tems R are implicit in previous work. A result of Cook

and Pitassi [17] implies that Resolution-proof lower bound

formulas corresponding to the Pigeonhole principle can be

efficiently proved within Extended Frege. Bellantoni, Pitassi

and Urquhart [11] give constructive proofs of constant-

depth Frege lower bounds that appear to be efficiently

implementable within Extended Frege. Thus some of the

strongest proof complexity lower bounds we have at present

seem also to be provable within standard propositional proof

systems.

In contrast to these upper bound results, our emphasis

is on lower bound and impossibility results, which give evi-

dence that certain propositional proof systems are inherently

hard to analyze.

Let us say a collection of R-proof complexity lower

bounds is feasibly provable if the corresponding R-proof

lower bound formulas all have short S-proofs in some

propositional proof system S. Armed with this notion, we

can define a feasible version of the Cook-Reckhow program.

Feasible Cook-Reckhow Program: For every propositional

proof system R, show that for each k > 0 there is a sequence

of tautologies {φn} and a propositional proof system S,

lbR(φn, |φn|k) has polynomial-size S-proofs.

Note that our requirement here is fairly mild: we allow the

propositional proof system S to depend on the propositional

proof system R for which lower bounds are being shown.

We even allow S to depend on the constant k corresponding
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to the lower bound being shown. Also note that we do
not require that S has efficient proofs that the formulas

φn are tautologies. All we ask is that these formulas are

indeed tautologies, and that S can show that they don’t

have efficient R-proofs.

Since we are interested in impossibility results, the mild-

ness of our proof-theoretic requirements is an advantage

- it makes our results stronger. However, we do insist on

feasibility. Intuitively, in a finite resource-bounded world, it

seems unreasonable to allow the prover unlimited resources.

The results of [17] and [11] mentioned above consti-

tute partial progress toward the Feasible Cook-Reckhow

program. If R is Resolution or Constant-Depth Frege, the

feasibility condition is satisfied when S is Extended Frege

and the formulas {φn} are the pigeon-hole principles.

The Feasible Cook-Reckhow Program can be interpreted

as a feasible approach to proving NP �= coNP. We wish

to get evidence for the difficulty or impossibility of im-

plementing this program. However, the mildness of our

proof-theoretic requirements is an issue here. Consider any

efficiently computable sequence {φn} of tautologies of

increasing length, such that the sequence {φn} requires

R-proofs of super-polynomial size. One way to define a

proof system S in which these lower bounds are easily

provable is to simply add the corresponding proof lower

bound tautologies lbR(φn, |φn|k) as axioms to a standard

propositional proof system such as Extended Frege. Since

these are tautologies, the resulting system S is still sound,

and since the {φn} are efficiently computable, S can be

shown to be a propositional proof system in the Cook-

Reckhow sense. Since the R-proof lower bound formulas

corresponding to {φn} are axioms of S, they are also easily

provable.

We are therefore led to consider situations where the

hard tautologies are not efficiently computable. One natural

situation in which this happens is if the hard tautologies are

random in some sense. The Cook-Reckhow program aims

to show a worst-case separation between NP and coNP. It

is plausible that stronger average-case separations hold, and

the hypotheses we consider in this paper correspond to such

average-case separations for standard NP problems against

(non-uniform) coNP over natural distributions.

The main hypothesis we consider is Rudich’s Conjecture

[46]. Rudich’s main motivation in making this conjecture

was to strengthen the ‘natural proofs’ barrier of Razborov

and Rudich [45]. The ‘natural proofs’ barrier shows that

under the standard cryptographic assumption that one-way

functions exist, there are no dense subsets of the hard

Boolean functions computable by polynomial-size circuits,

where Boolean functions are represented explicitly by their

truth tables. Rudich conjectured that something stronger

was true: most hard functions do not even have short proofs
of hardness that are verifiable in polynomial size, where

‘short’ means polynomial in the length of the truth table.

Rudich originally stated his conjecture in the terminology

of natural proofs; we find the reformulation below in terms

of proof systems more convenient.

Rudich’s Conjecture: For any proof system R verifiable

in polynomial size, most Boolean functions on n bits do

not have short (i.e., poly(2n)) size R-proofs of hardness.

Suppose we wish to generate hard tautologies for

some propositional proof system R. Simply pick the truth

table of a random Boolean function fn, and consider the

circuit lower bound formula tt(fn, n
k) for some fixed k.

These circuit lower bound formulas are tautologies with

high probability because most Boolean functions are hard.

Rudich’s Conjecture implies that these tautologies are

also hard for R (in fact, even for R that is verifiable in

polynomial size) with high probability.

Another useful perspective on Rudich’s Conjecture is to

think of it as an average-case hardness hypothesis for the

Minimum Circuit Size Problem. The Minimum Circuit Size

Problem MCSP is a fundamental problem in NP that is

believed to be intractable, but for which NP-completeness

has not yet been established. MCSP asks, given the truth

table of a Boolean function fn and a parameter s, whether

fn has circuits of size at most s. Suppose we fix the

parameter s as a function of n. Let us call this parameterized

version of the problem MCSP[s]. Then Rudich’s Conjecture

says that for a large enough constant k, MCSP[nk] does

not have any dense subsets computable by nondeterministic

polynomial-size circuits, where L denotes the complement

of L. The conjecture that there are no dense subsets of the

NO instances of MCSP[nk] computable in some circuit class

C can be seen as an assertion of zero-error average-case

hardness assumption against C with respect to the uniform

distribution, since almost all instances of a given length N
are NO instances [25].

Our notion of feasible proofs extends in a natural way

to Rudich’s Conjecture, modulo a technicality about non-

uniform proofs. The Cook-Reckhow Program aims to sepa-

rate the uniform classes NP and coNP. Rudich’s Conjecture,

on the other hand, asserts hardness for an NP problem

even against nondeterministic circuits, or equivalently proof

systems verifiable in polynomial size. This non-uniformity

can be modelled easily within our propositional setting using

the notion of proof systems with advice due to Cook and

Krajicek [16].

In analogy to the Feasible Cook-Reckhow Program, we

say that Rudich’s Conjecture admits feasible propositional

proofs if for every propositional proof system R with poly-

omial advice and every constant k, there is a propositional

proof system S such that for a 1− o(1) fraction of Boolean

functions fn on n bits, S proves efficiently that there are

no mk size R-proofs of tt(fn, n
k), where m = |tt(fn, nk)|.

Namely, for a significant fraction of Boolean functions f ,
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S can efficiently prove that there are no short R-proofs of

the circuit lower bound formula corresponding to f and size

parameter nk.

The second hypothesis we consider is a nondeterministic

version of Feige’s Hypothesis [20]. Consider the following

very natural distribution UΔ,N over 3-CNFs on N variables

with ΔN clauses, where Δ > 0 is any constant: we

pick each clause by selecting 3 literals uniformly and

independently at random from the 2N possible literals.

Feige’s Hypothesis is that there is no polynomial-time

algorithm that outputs ‘unsatisfiable’ with significant

probability over the distribution UΔ,N and never outputs

‘unsatisfiable’ on satisfiable formulas. We consider a

nondeterministic version of Feige’s Hypothesis conjectured

by Ryan O’Donnell [25], [38].

Nondeterministic Feige’s Hypothesis: For any

propositional proof system R verifiable in polynomial

size, with high probability over φ picked from UΔ,N , there

are no polynomial size proofs of unsatisfiability for φ in R.

Just as Rudich’s conjecture implies that circuit lower

bound formulas corresponding to random functions are hard

tautologies for any propositional proof system with high

probability, Nondeterministic Feige’s Hypothesis implies

that random 3-CNFs with ΔN clauses are hard tautologies

for any propositional proof system with high probability,

for any Δ > 0. Thus both hypotheses state that natural

distributions on tautologies are hard.

Also, just as Rudich’s conjecture is an average-case

hardness hypothesis for MCSP, Nondeterministic Feige’s

Hypothesis is an average-case hardness hypothesis for 3-

SAT against nondeterministic algorithms. Barak [8] has

advocated studying Feige’s hypothesis and its ilk, as offering

some of our best hopes of more insight into average-case

complexity.

We say that Nondeterministic Feige’s Hypothesis admits

feasible propositional proofs if for every propositional proof

system R with polyomial advice and every constant k, there

is a propositional proof system S such that with probability

1−o(1) over φ chosen from UΔ,N , S proves efficiently that

there are no mk size R-proofs of φ, where m = |φ|.
C. Our Results

The main result of this paper is that we unconditionally
rule out feasible proofs of Rudich’s Conjecture.

Theorem 1. Rudich’s Conjecture does not admit feasible
propositional proofs.

In other words, there is a propositional proof system R
with polynomial advice such that no propositional proof

system S can prove lower bounds on the size of R-proofs

for most circuit lower bound tautologies. We emphasize two

aspects of this result. First, it is unconditional. Second, it

rules out polynomial-size S-proofs in every propositional

proof system S 2, even though S is allowed to depend on

R.

At first glance, this might seem strange. If no proposi-

tional proof system S can efficiently prove a sequence of

tautologies, then NP �= coNP [18]. So why doesn’t our result

imply a significant complexity lower bound?

The reason is that the R-proof lower bound formu-

las aren’t necessarily tautologies with high probability. If

Rudich’s Conjecture is true, then they are tautologies. If

Rudich’s Conjecture is false, on the other hand, this isn’t

clear. Indeed, our proof of Theorem 1 splits into two cases:

the first in which Rudich’s Conjecture is true, and the

second in which Rudich’s Conjecture is false. If Rudich’s

Conjecture is false, we show using standard techniques

(together with an amplification argument) that there is a

propositional proof system R with polynomial advice in

which most circuit lower bound tautologies for functions on

n inputs have short proofs, for infinitely many n. In this case,

the R-proof lower bound formulas aren’t tautologies, with

high probability, and hence they cannot have polynomial-

size S-proofs (or indeed proofs of any size) for any sound

propositional proof system S.

The crux of our proof is the argument that when Rudich’s

Conjecture is true, then Rudich’s Conjecture does not admit

feasible proofs. Thus Rudich’s Conjecture is self-defeating
in the propositional setting: its truth implies its unprovability.

This is reminiscent of a comment by Scott Aaronson in his

survey on independence results [1] for P vs NP about the

‘bizarre self-referential nature of P �= NP - a conjecture that

all but asserts the titanic difficulty of finding its own proof’.

We show that when considering the stronger statement that

is Rudich’s Conjecture, this intuition can be made formal in

the feasible setting.

We briefly explain the ideas of the proof. The general

plan is to exploit the connections between proof complexity

and pseudorandomness discovered by [42], [45]. If Rudich’s

conjecture is true, then given any propositional proof system

R with polynomial advice, most truth table tautologies for

functions on n bits are indeed hard for R. We would like

to use Rudich’s conjecture again to show that for any proof

system S, even the R-proof lower bound formulas for the

circuit lower bound tautologies based on fn do not have

short proofs in S, for most fn.

The problem is that if S does not have short proofs of a

certain formula, this can be for two different reasons. First,

the formula might be a tautology but without short proofs in

S. This is the good case for us - if all short proofs in S for

R-lower bound formulas were for tautologies, we could use

this to get a dense set of hard functions computable by small

nondeterministic circuits, and thereby get a contradiction to

2In fact we rule out polynomial-size proofs even for systems S that take
polynomial advice

1309



Rudich’s Conjecture. However, there is a second case: the

formula is not a tautology at all, and so of course it does

not have short proofs in S. This case is problematic, because

now some functions fn for which there are short S-proofs

of R-lower bound formulas corresponding to fn might be

easy, and thus we don’t get a dense subset of hard functions.

To overcome this problem, we use Rudich’s Conjecture

again, to argue that the truth table of MCSP itself does not

have small circuits. Thus, the circuit lower bound formula

with fn = MCSP is indeed a tautology. Moreover, the

sequence of such circuit lower bound tautologies has short

proofs in an appropriately defined propositional proof system

R, where these circuit lower bound tautologies are simply

added as axioms to a standard proof system.

It is still not clear how this helps us. An important step

conceptually is to introduce the notion of pseudorandom
tautologies, which are analogues of pseudorandom functions

in the proof complexity setting. Intuitively, pseudorandom

tautologies are a collection of tautologies which are derived

in a specified way from pseudorandom sets, but unlike

random tautologies, have short proofs in some predefined

proof system R. Thus they can be distinguished from

random tautologies by having short proofs in R, just as

pseudorandom functions can be distinguished from random

functions in the cryptographic setting by being computable

from short seeds by a polynomial-time function. For the

actual proof of Theorem 1, we work with hitting tautologies,

which correspond to hitting sets just as pseudorandom

tautologies correspond to pseudorandom sets.

Inspired by an idea of Razborov [42], we show how

to use Rudich’s Conjecture (for a third time!) to get a

collection W of hitting tautologies which are easy for the

proof system R we define. Since all these hitting tautologies

are easy for R, for any propositional proof system S, the

soundness of S implies that there are no short S-proofs of

R-lower bound formulas corresponding to these tautologies.

Suppose that there were short S-proofs of R-lower bound

formulas for random circuit lower bound formulas. We show

how this together with the hitting property of W implies a

contradiction.

We now discuss two possible interpretations of Theorem

1. The first is a metamathematical interpretation, where

we understand the result as saying something about the

difficulty of proving strong complexity lower bounds. If

strong lower bounds such as Rudich’s Conjecture hold,

then Theorem 1 indicates that standard ‘slice-and-measure’

techniques such as those used in existing circuit complexity

and proof complexity lower bounds are likely to fail in

establishing such lower bounds. So either we must believe

in the failure of Rudich’s Conjecture, which would itself be

very interesting and somewhat counterintuitive, or we should

be prepared to step outside a finitistic mindset if we want

to make progress on very strong complexity conjectures.

Indeed, this is illustrated by our proof of Theorem 1, which

is non-constructive: we show unconditionally that a certain

propositional proof system R with polynomial advice exists

for which it is hard to show lower bounds, but we are

unable to say what R is. Such non-constructive techniques

have been used before as ingredients in diagonalization-style

arguments, but we are unaware of any previous examples in

propositional proof complexity.

The second interpretation is more relevant to our original

motivation of finding proof complexity barriers. As we men-

tioned, the crux of the proof of Theorem 1 is to show that

if Rudich’s Conjecture is true, there is a propositional proof

system R (without advice) such that R-proof complexity

lower bounds are hard to show in any propositional proof

system S. This is an analogue of the ‘natural proofs’ barrier

of Razborov and Rudich [45] in proof complexity. Just

as the ‘natural proofs’ barrier says that ‘feasible’ circuit

lower bounds for random functions are unlikely if one-way

functions exist, our result says that if Rudich’s Conjecture is

true, there is a proof system R such that R-proof complexity

lower bounds for appopriately defined ‘random tautologies’

are hard to prove.

Corollary 1. If Rudich’s Conjecture holds, then there is
a pps R and a samplable sequence of distributions {DN}
on formulas of length poly(N), such that with probability
1− 1/Nω(1) over φN sampled from DN , φN is a tautology
that does not have poly(N) size R-proofs, but there is a
constant k such that no pps S has polynomial-size proofs of
lbR(φN , |φN |k).

More succinctly, if random circuit lower bound tautologies

are hard for propositional proof systems, it is also hard

within a propositional framework to explain why they are

hard.

It is natural to ask if Theorem 1 is a special phenomenon

to do with circuit lower bounds, or is part of a more general

phenomenon. We give evidence for the latter by showing

a similar result for Nondeterministic Feige’s Hypothesis,

which on the surface seems to have nothing to do with circuit

lower bounds. However, unlike Theorem 1, our result for

Nondeterministic Feige’s Hypothesis is conditional.

Theorem 2. Assuming Rudich’s Conjecture3, Nondetermin-
istic Feige’s Hypothesis does not admit feasible proposi-
tional proofs.

Nondeterministic Feige’s Hypothesis guarantees that ran-

dom 3-CNFs of linear density are hard for any propositional

proof system R. Now the question is how to leverage this

to show that it is also hard to prove that a randomly chosen

3In fact, we don’t need the full strength of Rudich’s Conjecture to get
the desired consequence for Nondeterministic Feige’s Hypothesis. It would
be enough to solve Open Problem 3 in [46], which is about ‘stretching
demi-bits’, and seems within reach of current techniques. In the interest of
minimizing hypotheses used, we state the result as above, but it is useful
to keep in mind that much weaker hypotheses suffice.
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3-CNF of linear density is hard for a given proof system R.

If we had a way of constructing pseudorandom or hitting

tautologies based on Nondeterministic Feige’s Hypothesis,

an approach similar to the one for Rudich’s Conjecture might

work. However, we have no idea how to do this, and are

forced to adopt a different strategy.

We use a connection to a hardness hypothesis we call

the MKTP Hardness Hypothesis. We will not describe this

hypothesis formally here, but it is analogous to Rudich’s

Conjecture: while Rudich’s Conjecture is about most func-

tions lacking short proofs of hardness, the MKTP Hardness

Hypothesis is about most strings lacking short proofs that

they are hard in the sense of KT-complexity. KT-complexity

is a notion of time-bounded Kolmogorov complexity defined

by Allender [4] that is closely related to circuit complexity.

We leave the details to the main body of the paper and

continue with a sketch of the proof.

It is shown in [25] that there is an average-case reduction

from Feige’s Hypothesis to the question of whether a string

has high KT-complexity. We observe that this reduction

translates to our setting, and with some technical work,

show how to leverage it to get an implication from feasible

proofs of Nondeterministic Feige’s Hypothesis to feasible

proofs of the MKTP Hardness Hypothesis (with parameters

chosen appropriately). We then show that feasible proofs of

the MKTP Hardness Hypothesis do not exist under strong

enough complexity assumptions, and in particular assuming

Rudich’s Conjecture. This second part of the argument is

analogous to the proof of Theorem 2, but there are some

additional difficulties that need to be overcome.

A common theme to Theorems 1 and 2 is that the hardness

of proving that strings are “random-like” has implications for

barriers in proof complexity.

Theorem 2 has implications for both meta-mathematics of

complexity lower bounds and for proof complexity barriers,

just as with Theorem 1. The implication for proof complex-

ity barriers is especially interesting in this case since random

CNFs are a very natural class of formulas to analyze in

terms of proof complexity. Similar to Corollary 1, we get

from Theorem 2 that under certain hardness assumptions,

namely Rudich’s Conjecture and Nondeterministic Feige’s

Hypothesis, there is a propositional proof system R with

advice such that proving lower bounds on R is hard for any

propositional proof system S.

The final result we highlight in this introduction concerns

the standard Extended Frege proof system. Our previous

results give ‘proofs of principle’: under natural hardness

assumptions, there are propositional proof systems that are

hard to analyze. While these results show fundamental

obstacles to proving strong complexity lower bounds in a

feasible way, it is unclear how relevant they are to analysis

of standard proof systems such as Frege and Extended Frege.

We show that for these proof systems, a ‘lose-lose theorem’

holds: Either the Circuit Lower Bounds program cannot be

implemented within the proof system, or there are inherent

obstacles to implementing the Cook-Reckhow program for

the proof system. We state the result for Extended Frege, but

essentially the same proof also gives the analogous result for

Frege.

Theorem 3. Assume Rudich’s Conjecture and that E does
not have sub-exponential size nondeterministic circuits. Ei-
ther EF does not efficiently prove circuit lower bound
tautologies tt(fn, s) for any sequence {fn} of functions and
s(n) = nω(1), or there are sets SN of formulas of size N
that can be generated in time poly(N), such that for each
c > 0 and all large enough N , most φ ∈ SN are tautologies
and require EF-proofs of size at least Nω(1), and yet no
propositional proof system S can prove in size N c2 that for
most φ ∈ SN , φ requires EF proofs of size at least N c.

The proof of Theorem 3 uses ideas mentioned earlier

together with a complexity-theoretic derandomization tech-

nique [26], [37] to generate explicit sets of tautologies.

D. Related Work

Perhaps the most interesting recent work on the difficulty

of showing proof complexity lower bounds is by Grochow

and Pitassi [22]. They define a proof system called the

Ideal Proof System (IPS). IPS is verifiable in randomised

polynomial time, but is not known to be a propositional

proof system 4. It is shown in [22] that IPS lower bounds

for DNF tautologies imply that VNP �= VP, where VNP
is the algebraic complexity analogue of NP and VP is the

algebraic complexity analogue of P. Since separating VNP
and VP is believed to be a hard problem, this gives evidence

that showing IPS lower bounds is hard. The work of [22]

differs from ours in considering a proof system that is not

known to be propositional, and giving evidence for the

hardness of proof complexity lower bounds based on the

presumed hardness of circuit complexity separations. In our

work, we formalize the question of proof complexity lower

bounds within propositional proof complexity, and study the

inherent limitations of propositional proof systems, rather

than reducing to circuit complexity questions.

In terms of the finitistic meta-mathematics of complexity

separations, the work that is perhaps closest to ours in spirit

is by Razborov [42]. Razborov shows that under certain

complexity assumptions, no proof system P with feasible

interpolation can prove any super-polynomial circuit com-

plexity lower bound. Our work differs from that of Razborov

in showing an unconditional result, and in considering

arbitrary propositional proof systems, rather than ones with

feasible interpolation. The ‘feasible interpolation’ condition

is a fairly restrictive one, and there is evidence that Frege and

EF do not have feasible interpolation [12], [32]. Rudich [46]

4However, as pointed out by an anonymous referee, by using Adleman’s
trick, IPS is a propositional proof system with polynomial advice, when
defined over large enough fields
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uses his Conjecture to extend Razborov’s result to propo-

sitional proof systems that have the ‘feasible disjunction’

property. However, the feasible disjunction property is not

well understood, and it is not clear if Frege or EF have this

property. There is also work on proof complexity generators

[6], [28], [29], [44] where fairly general conjectures are

made about unprovability of circuit lower bounds in EF,

but it is not known how to connect these conjectures to

complexity assumptions. It is also important to note that

our formalization is different from the ones considered in

these papers - our notion of ‘feasible proofs’ aims to prove

complexity separations implicitly rather than explicitly as

done using the circuit lower bound tautologies. This implicit

formulation allows us to prove negative results even for

arbitrary propositional proof systems.

We focus in this paper on the setting of propositional proof

complexity. There is a lot of work on independence results

in the setting of bounded arithmetic, which can be thought of

as a uniform version of propositional proof complexity. For

example, it is known unconditionally that Cook’s theory PV1

cannot prove super-polynomial lower bounds on EF (which

is the propositional proof system analogue of PV1) [13],

[19], [32]. Some of our results in this paper have analogues

in the bounded arithmetic setting, which we plan to explore

in a separate work.

II. PRELIMINARIES

Fn denotes the set of all Boolean functions on n inputs.

A. Proof complexity

Propositional proof systems were defined by Cook and

Reckhow as surjective polynomial-time computable func-

tions from {0, 1}∗ to the set of tautologies (represented as

strings). We use an equivalent notion that is better suited

to defining proof systems with advice. Let TAUT denote

the set of strings over the binary alphabet that encode

DNF tautologies, under some standard efficient encoding

of formulas as strings. Given this standard encoding of

formulas as strings, for any formula φ, |φ| denotes the length

of the encoding of φ, in bits.

Definition 1. A propositional proof system (pps) is a
polynomial-time computable relation R(·, ·) such that for
each x ∈ {0, 1}∗, x ∈ TAUT iff there exists y ∈ {0, 1}∗
such that R(x, y) holds. Given x ∈ TAUT, any y for
which R(x, y) holds is called an R-proof of x. A pps
R is polynomially bounded (p-bounded) if there exists a
polynomial p such that for each x ∈ TAUT, there is an
R-proof of x of size at most p(|x|).
Proposition 1. NP = coNP iff there exists a p-bounded pps.

Definition 2. Given a : N→ N, a propositional proof system
with a bits of advice is a relation R(x, y, z) computable in
polynomial time such that for each n ∈ N, there is wn ∈
{0, 1}∗ of length a(n) satisfying the following condition:

for each x ∈ {0, 1}n, x ∈ TAUT iff there exists y ∈ {0, 1}∗
such that R(x, y, wn) holds. We call an advice string wn

good for R if it satisfies the preceding condition, and we
call an advice sequence {wi} good for R if for each n, wn

is good for R. Given x ∈ TAUT and advice string w|x|, any
y for which R(x, y, w|x|) holds is called an R-proof of x
with advice w|x|. A pps R with advice is p-bounded if there
exists an advice sequence {wi} good for R and a polynomial
p such that for each x ∈ TAUT, there is an R-proof of x
with advice w|x| of size at most p(|x|).
Proposition 2. NP ⊆ coNP/poly iff there exists a p-
bounded pps with polynomial advice.

Let P,Q be propositional proof systems. P simulates Q
if there is a polynomial p such that whenever there is an

s-size Q-proof of φ, there is a p(s)-size P -proof of φ. P is

optimal if it simulates every propositional proof system.

P admits instantiation property if whenever there is an

s-size P -proof of φ(x1, . . . , xn), P proves each instance of

φ, i.e. φ(a1, . . . , an) where ai ∈ {0, 1}n, by a proof of size

s.

B. Formalizing Lower Bounds in the Propositional Setting

Circuit lower bounds. An s(n)-size circuit lower bound

for a function f ∈ Fn can be expressed by a 2O(n)-size

propositional formula tt(f, s),
∨

y∈{0,1}n
f(y) �= C(y)

where the formula f(y) �= C(y) says that a circuit C
represented by poly(s) variables does not output f(y) on

input y.

Definition 3. Given a Boolean function f ∈ Fn and size
parameter s, tt(f, s) is a propositional DNF formula of size
Õ(2ns3) over Õ(s) variables expressing that f does not
have Boolean circuits of size s.

More explicitly, tt(f, s) is defined by taking an OR over

all y ∈ {0, 1}n of the predicate f(y) �= C(y), and expressing

f(y) �= C(y) as a DNF formula of size Õ(s3) over Õ(s)
propositional variables using standard techniques.

Definition 4. Given pps R, propositional formula φ and
size function s : N → N, lbR(φ, s) is a propositional DNF
formula of size poly(|φ| + s) over poly(|φ| + s) variables
expressing that there is no R-proof of φ having size s.

More explicitly, the formula lbR(φ, s) contains s variables

y1, . . . , ys encoding R-proofs of length s and poly(|φ|+ s)
auxiliary variables encoding the computation of the relation

R, to verify that y1, . . . , ys does not constitute an R-proof

of φ.

We extend the above definition in a natural way to ppses

with advice. In the process, we overload the notation lb: the
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number of parameters tells us whether we are dealing with

standard ppses, or ppses with advice.

Definition 5. Given pps R with advice function a : N→ N,
propositional formula φ, size function s : N→ N and advice
string w of length a(|φ|), lbR(φ, s, w) is a propositional
DNF formula of size poly(|φ| + s) over poly(|φ| + s)
variables expressing that there is no R-proof with advice
w of φ having size s.

C. Rudich’s Conjecture and Nondeterministic Feige’s Hy-
pothesis

Given a language L ⊆ {0, 1}∗, the n-slice Ln of L is

L ∩ {0, 1}n. Given a function ε : N→ [0, 1], we say that a

language L ⊆ {0, 1}∗ is ε-sparse if for each large enough

n, |Ln|/2n ≤ ε(n). L is ε-dense if for each large enough

n, |Ln|/2n > ε(n). Note that ε-density is not simply the

negation of ε-sparsity.

We say that a function f : N→ N is poly-constructible if

there is a Turing machine transducer that, on input 1n, halts

with f(n) on its output tape within poly(n) steps.

Given a language L, L denotes the complement of L.

We will be working with two fundamental NP problems

- MCSP (Minimum Circuit Size Problem) and 3-SAT (Sat-

isfiability Problem for 3-CNFs).

Given a string y of length N , fn(y) is the Boolean

function on �log(N)	 bits whose truth table is the 2�log(N)�-
bit initial prefix of y. Conversely, given a Boolean function

f on n bits, tt(f) is the truth table of f . Given a Boolean

circuit C, fC denotes the Boolean function computed by C,

and < C > denotes the standard encoding of C as a string.

Definition 6. Given a size function s : N→ N, MCSP[s] is
the set of strings y such that fn(y) has Boolean circuits of
size at most s(n).

Note that for any poly-constructible s, MCSP[s] is in

NP, simply by guessing a circuit of size at most s(n) and

checking in polynomial time (in the truth table size) that

it computes fn(y). It is also worth pointing out that in the

above definition, s is measured as a function of the length

n of the input to the circuit, rather than as a function of the

length N of the input to the problem, which is exponentially

large in n.

When we are working with MCSP, by default we will

use N to refer to the input size of the problem, and n =
�log(N)	 to refer to the input size of the function encoded

by the input to MCSP.

We consider two hardness assumptions, which concern

the average-case hardness of MCSP and 3-SAT respectively

against non-deterministic circuits over natural distributions.

The first of these assumptions has been considered before

by Rudich [46], while the second is a nondeterministic

variant of a hypothesis originally considered by Feige

[20] in the context of hardness of approximation. This

nondeterministic variant has been conjectured by O’Donnell

[25], [38]. We state each of these hardness assumptions in

turn.

Rudich’s Conjecture: There is a constant c > 0
such that for every language L, if L ⊆ MCSP[nc] and

L ∈ NSIZE(poly), then L is 1/Nω(1)-sparse.

In other words, any set in NSIZE(poly) consisting

only of truth tables of hard Boolean functions (where

’hard’ means that the circuit complexity is greater than

nk) is sub-polynomially sparse. Rudich’s conjecture was

originally stated in terms of the notion of natural proofs,

but the formulation above is equivalent.

Next, we state the nondeterministic variant of Feige’s

hypothesis. Given a positive constant Δ, UΔ,N is the

distribution over 3-CNFs on N variables obtained by

picking 
Δn� 3-clauses independently at random, where

each 3-clause is picked by choosing 3 literals uniformly

and independently at random from the set of 2N literals

over N variables.

Nondeterministic Feige’s Hypothesis: For any constant

Δ > 0, for every language L, if L ⊆ 3− SAT and

L ∈ NSIZE(poly), then Prφ∼UΔ,N
[L(φ) = 1] = o(1).

As stated, this hypothesis is about the hardness of

proving unsatisfiability. Since we are concerned with proof

systems for tautologies in this paper, we will simply

interprets a proof that φ is a tautology as a proof that φ
is unsatisfiable, where φ is the complement of φ obtained

by using De Morgan’s laws. Thus φ is a 3-DNF iff φ is a

3-CNF.

Feige [20] also considered a weaker, but more robust,

version which asserts the hardness of proving that formulas

are far from satisfiable. We choose the version stated above

because it is more convenient from the point of view of

proof complexity; however, our results can also be adapted

to deal with the weaker variant.

We now define what it means to have feasible proposi-

tional proofs of these two hardness assumptions.

Definition 7. We say that Rudich’s conjecture admits fea-
sible propositional proofs if for every large enough integer
d > 0 and every pps R with polynomial advice, there is
a pps S, such that if {wm} is a sequence of poly-sized
advice strings good for R, then for all large enough n, for
a 1 − o(1) fraction of Boolean functions fn ∈ Fn, there
are polynomial-sized S-proofs of lbR(tt(fn, n

d),md, wm),
where m = |tt(fn, nd)|.

To clarify this definition, note that Rudich’s conjecture

states that there is a constant c > 0 such that for every

constant d > 0, there are no non-uniform proofs of size

md of tt(fn, n
c) (where m = |tt(fn, nc)|) for at least a
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1 − 1/Nω(1) fraction of Boolean functions fn over n =
�log(N)	 bits, when N is large enough. This is equivalent

to saying that for every large enough constant d > 0, there

are no non-uniform proofs of size md of tt(fn, n
d) for most

fn, since a lower bound of size nd for d ≥ c implies a lower

bound of size nc. We say that the conjecture admits feasible

proofs if given a fixed pps R with polynomial advice, there

is a pps S that efficiently proves lower bounds on the size

of the R-proofs for random truth table tautologies, thereby

feasibly giving evidence that R does not witness a refutation

of Rudich’s conjecture. Note that we allow S to depend

on R, and moreover we only require S to provide efficient

proofs of lower bounds on R-proof size for 1−o(1) fraction

of truth-table tautologies, even though Rudich’s conjecture

implies more strongly that all but a negligible fraction of

truth table tautologies require large R-proofs.

Definition 8. We say that Nondeterministic Feige’s Hy-
pothesis admits feasible propositional proofs if for every
Δ > 0, for every pps R with polynomial advice and for
every integer d > 0, there is a pps S, such that if {wm}
is a sequence of poly-size advice strings good for R, then
for all large enough N , with probability 1 − o(1) over φ
sampled from UΔ,N , there are polynomial-sized S-proofs of
lbR(φ,m

d, wm), where m = |φ|.

D. Pseudorandomness

Definition 9. For fixed integers N and t and a parameter
ε ≥ 0, we say that HN ⊆ {0, 1}N is an ε-hitting set against
size t (resp. nondeterministic size t) if HN ∩S �= ∅ for every
ε-dense S ⊆ {0, 1}N computable by circuits (resp. nondeter-
ministic circuits) of size t. We say that HN ⊆ {0, 1}N is an
ε-discrepancy set against size t if for every circuit C of size
t on N bits, |Prx∼UN

[C(x) = 1]−Pry∈HN
[C(y) = 1]| ≤ ε.

Given an integer s, we say that an ε-hitting set (resp. an
ε-discrepancy set) HN is s-succinct if for each y ∈ HN ,
fn(y) has circuits of size at most s.

Proposition 3. Let s : N → N and t : N → N be size
functions, and let ε : N → R be non-negative. For any
N ∈ N, there are s(n)-succinct ε(N)-hitting sets over N -
bit strings against non-deterministic size t(N) iff MCSP[s]
has no ε(N)-dense subsets in non-deterministic size t(N).

Definition 10. Let � : N → N satisfy �(N) ≤ N for each
n, and let t : N → N be a size function. Let ε : N → R be
non-negative. We say that a sequence of functions {GN},
where each GN : {0, 1}�(N) → {0, 1}N is a complexity-
theoretic ε-PRG with seed length �(N) against size t (resp.
nondeterministic size s) if there is a Turing machine which
given 1N and z ∈ {0, 1}�(N) computes GN (z) in time
2O(�(N)), and moreover for each large enough N , the range
of GN is an ε(N)-discrepancy set against size t(N) (resp.
non-deterministic size t(N)).

Theorem 4. [26] If there is a constant γ > 0 such that E �⊆
io−NSIZE(2γn), then there is a complexity-theoretic 1/N -
PRG with seed length O(log(N)) against nondeterministic
size N .

We next define the crucial concept of R-easy hitting and

pseudorandom tautologies.

Definition 11. Let R be a pps, ε : N→ R be non-negative,
and s : N→ N be a size function. Let C be a circuit class. We
say W is a set of ε-pseudorandom (resp. ε-hitting) tautolo-
gies against C that is s-easy for R if there is a polynomial-
time computable function f : {0, 1}∗ → {0, 1}∗ and a
sequence {HN}, where for large enough n, HN ⊆ {0, 1}∗
is an ε(N)-discrepancy (resp. ε(N)-hitting) set against C,
and moreover:

1) W =
⋃

N f(HN )
2) For all but finitely many φ ∈ W , we have that φ ∈

TAUT
3) Each tautology φ ∈W has R-proofs of size s(|φ|).
4) Pry∼UN

[f(y) ∈ TAUT] = 1− 1/Nω(1)

5) Pry∼UN
[f(y) has R-proofs of size s(|f(y)|)] = o(1)

On occasion, we will use the above definition for an

R that is a pps with advice. In the default case that the

parameter s is polynomially bounded, we will simply call

the corresponding pseudorandom or hitting tautologies R-

easy.
Intuitively, the above definition captures the notion of tau-

tologies that can be computed efficiently (using the function

f ) from hitting or pseudorandom sets and have short proofs

in R, while if f is applied to random strings, the resulting

formulas are tautologies with very high probability but lack

short R-proofs with significant probability.

E. Kolmogorov Complexity
KT-complexity was proposed in [4], as a variant of

Levin’s notion of time-bounded Kolmogorov complexity

that is closely connected to circuit complexity. Indeed, it is

known that KT(tt(f)) and the minimum circuit size of f are

polynomially-related to each other. Fix a universal random-

access Turing machine U that simulates all Turing machines

efficiently. Informally, the KT-complexity of a string y is

the minimum of |d| + t, where d is a string for describing

y implicitly and t is the time it takes to output y. More

formally, we have the definition below, where Ud denotes

the Turing machine U with random access to the string d:

Definition 12. Let y = y1 · · · yN ∈ {0, 1}N . The KT-
complexity of y is defined as follows.

KT(y) := min{|d|+t | Ud(i) = yi in t steps for any 1 ≤ i ≤ N + 1 }.
Here, yN+1 is defined as ⊥ (a stop symbol).

We have the following simple facts about KT- complexity,

in analogy to corresponding facts about the standard notion

of Kolmogorov complexity.
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Proposition 4. 1) For any string y, KT(y) ≤ |y| +
O(log(|y|))

2) Given any non-negative integer r, for each n, for
at least 1 − 1/2r fraction of strings y of length n,
KT(y) ≥ |y| − r.

The first item follows by using y as its own description,

and the second item follows from a straightforward counting

argument.

The following computational problem is naturally associ-

ated with KT-complexity.

Definition 13. Given a size function s : N→ N, MKTP[s]
is the set of strings y such that KT(y) ≤ s(|y|).

Note that for any poly-constructible s, MKTP[s] is in

NP, simply by guessing a string d and a number t such that

|d|+ t ≤ s(N), and checking that Ud(i) = yi in t steps for

each 1 ≤ i ≤ N + 1. Note also that unlike in the case of

MCSP, we measure s as a function of the length N of the

input string.

The following lemma bounds the KT complexity of

satisfiable 3-CNFs.

Lemma 1. Let {φn} be any sequence of satisfiable 3-CNFs,
such that |φn| = n for each n. Then there is a constant δ > 0
such that for large enough n, KT(φn) ≤ (1− δ)n.

We consider a family of hypotheses parameterized by

a size function s : N→ N such that s(N) = N−ω(log(N)).

MKTP[s] Hardness Hypothesis: If L ⊆ MKTP[s]
and L ∈ NSIZE(poly), then L is o(1)-sparse.

For s ≤ s′, it is obvious that the MKTP[s] Hardness

Hypothesis implies the MKTP[s′] Hardness Hypothesis,

thus the hypothesis is more believable for larger s. In fact,

for any s = log(N)ω(1), Rudich’s Conjecture implies the

corresponding hardness hypothesis for MKTP.

Proposition 5. Let s(N) = log(N)ω(1) be any size func-
tion. Rudich’s Conjecture implies the MKTP[s] Hardness
Hypothesis.

Proof: Follows immediately from the standard fact that

for any string x, KT (x) is upper bounded by a fixed

polynomial in the circuit size of fn(x).

The following proposition, giving a connection between

the MKTP[s] Hardness Hypothesis for a given s and hit-

ting sets composed of strings with low KT-complexity, is

completely analogous to Proposition 3.

Proposition 6. Let s : N → N and t : N → N be size
functions, and let ε : N→ R be non-negative. For any N ∈
N, there is an ε(N)-hitting set HN ⊆ MKTP[s] over N -bit
strings against non-deterministic size t(N) iff MKTP[s] has
no ε(N)-dense subsets in non-deterministic size t(N).

We next define certain formulas expressing that a string

is random in the sense of KT-complexity.

Definition 14. Given a string y of length N and size
parameter s, random(y, s) is a propositional DNF formula
of size Õ(Ns3) over Õ(s) variables expressing that y does
not have KT-complexity at most s.

More explicitly, random(y, s) is defined by taking an OR

over all i ∈ [N + 1] of the predicate yi �= Ud
s−|d|(i), where

Ud
t′(i) denotes the simulation of U on i for t′ steps, and

expressing yi �= Ud
s−|d|(i) as a DNF formula of size Õ(s3)

over Õ(s) propositional variables using standard techniques.

Definition 15. Let s : N→ N be such that s(N) ≤ N for all
N . We say that the MKTP[s] Hardness Hypothesis admits
feasible propositional proofs if for every large enough inte-
ger d > 0 and every pps R with polynomial advice, there is
a pps S, such that if {wm} is a sequence of poly-sized advice
strings good for R, then for all large enough N , for a 1−
o(1) fraction of strings y of length N , there are polynomial-
sized S-proofs of lbR(random(y, s(N)),md, wm), where
m = |random(y, s(N))|.

III. IMPOSSIBILITY OF FEASIBLY PROVING RUDICH’S

CONJECTURE

Lemma 2. If Rudich’s Conjecture holds, then there is a
pps R such that for any k, there is a collection of R-easy
1/Nk-hitting tautologies against nondeterministic size Nk.

Proof: Suppose Rudich’s Conjecture holds. Then there

is a constant c such that any NSIZE(poly) subset of

MCSP[nc] is 1/Nω(1)-sparse. We assume wlog that c > 1.

Since MCSP[nc] contains almost all strings of length N for

any N > 0, it follows that MCSP[nc] does not have circuits

of polynomial size almost everywhere.

We define a sequence {zN} of N -bit strings as follows. If

N = 2n for some non-negative integer n, then zN is defined

to be the truth table of MCSP[mc] on inputs of length n. If

not, then zN = z2�log(N)�0N−2�log(N)�
. By the observation

in the previous para, we have that for any polynomially

bounded function t, for all large enough N , fn(zN ) does

not have circuits of size t(n).
Next we use the strings {zN} to define a sequence of

hitting sets. Since Rudich’s Conjecture holds, by Proposition

3, we have that for any k and each large enough N , there

is a nc-succinct 1/Nk-hitting set HN ⊆ {0, 1}n against

nondeterministic size Nk.

Consider the sequence of sets {H ′N} defined by H ′N =
{y⊕ zN |y ∈ HN} for each N . We claim that {H ′N} is also

a sequence of 1/Nk-hitting sets against nondeterministic

size Nk. Indeed, if not, for infinitely many N , there must

be a 1/Nk-dense subset S′N of {0, 1}N with Nk size

nondeterministic circuits such that S′N ∩H ′N = ∅. Define the

subsets SN = y ⊕ zN |y ∈ S′N . It is clear that for each N
such that S′N has Nk size nondeterministic circuits, so must
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SN , simply by negating the i’th input variable in the circuit

for S′N iff zi = 1. Also, S′N has the same density as SN , as

it is just a linear translate of SN . Now, by definition of H ′N ,

we have that H ′N ∩S′N = ∅ iff HN ∩SN = ∅. Thus we have

that for infinitely many N , there is an 1/Nk-dense subset

SN of N -bit strings with Nk size nondeterministic circuits

such that SN ∩HN = ∅, contradicting the assumption that

HN is an 1/Nk-hitting set against nondeterministic size Nk

for all large enough N .

Now we define our candidate collection of 1/Nk-hitting

tautologies against nondeterministic size Nk, and a pps

R such that these hitting tautologies all have short proofs

in R. We argue that if Rudich’s Conjecture holds, all the

conditions in Definition 11 are satisfied, and therefore our

candidate collection is indeed hitting.

Define the poly-time computable function f : {0, 1}∗ →
{0, 1}∗ by f(x) = tt(fn(x), �log(|x|)	c). Let W =⋃

N f(H ′N ). W is our candidate set of 1/Nk-hitting tau-

tologies against nondeterministic size Nk.

Condition (i) in Definition 11 is satisfied trivially because

of the way we define W , given that {H ′N} is a sequence

of 1/Nk-hitting sets against nondeterministic size Nk. To

see that condition (ii) holds, note that fn(zN ) does not

have circuits of size 2nc + 3 for large enough N , where

n = �log(N)	. Also we have that each y ∈ HN is nc-

succinct. It follows that for each y ∈ HN , y ⊕ zN does

not have circuits of size nc for large enough N , since

fn(y⊕zN ) can be computed by combining circuits for fn(y)
and fn(zN ) with one additional XOR operation (which can

be implemented with 3 AND/OR gates). Thus, for each

x ∈ H ′N , when N is large enough, fn(x) does not have

circuits of size �log(|x|)	c, which implies that f(x) is a

tautology, using Definition 14.

To show that condition (iv) holds, simply note that at

most 2polylog(N) strings y of length N satisfy the condition

that fn(y) has circuits of size at most �log(N)	c, and hence

with overwhelming probability over y chosen uniformly at

random from strings of length N , f(y) is a tautology.

In order to show conditions (iii) and (v) hold, we define

an appropriate pps R. For any u, v ∈ {0, 1}∗, R(u, v) = 1

iff (a) v = 012
|u|

and u ∈ TAUT or (b) v = 1 < C > for

some Boolean circuit C on n bits of size at most nc, and

u = tt(fn(zN⊕y), nc) for some y such that fn(y) = fC and

N ≥ N0, where N0 is a fixed constant such that fn(zN ) does

not have circuits of size 2�log(N)	c + 3 for any N ≥ N0.

Intuitively, each tautology has its standard exponential-size

truth-table proof in R, but in addition, the hitting tautologies

have short proofs encoded by circuits succinctly representing

the corresponding elements of the hitting sets H ′N .

We now formally argue that R is a pps. We need to argue

that R is complete, sound and polynomial time computable.

For completeness, note that each tautology u has a proof v of

size 2|u|+1, by definition of R. For soundness, there are two

cases to be considered. In case (a) of the definition of R, we

have that u ∈ TAUT, and hence this case is sound. In case

(b), u is accepted only if it is a truth-table formula expressing

that fn(zN ⊕ y) does not have circuits of size nc, the proof

encodes a circuit of nc accepting fn(y), and moreover N ≥
N0 satisfies that fn(zN ) does not have circuits of size 2nc+
3. It is clear that in this case, u is accepted only if it is a

tautology, since the upper bound on the circuit complexity

of fn(y) witnessed by C and the lower bound on the circuit

complexity of fn(zN ) guaranteed by N being large enough

together imply that fn(zN ⊕y) does not have circuits of size

nc.

To show that R is polynomial-time computable, define a

poly-time Turing machine M that decides R by operating

as follows. On input (u, v), it first checks if v begins with

a 0. If so, it first checks that v = 012
|u|

. If not, it rejects. If

yes, it uses brute force search over all possible assignments

to u to check that u is a tautology. If this brute force search

succeeds, it accepts, otherwise it rejects. If v begins with 1,

M checks that v = 1 < C > for some Boolean circuit C,

say on n bits. It then checks that u = tt(fn(zN ⊕y), nc) for

some y such that fn(y) = fC and N ≥ N0, where N0 is a

constant hardwired into M . Note that since MCSP[mc] is in

deterministic time 2polylog(n) by brute-force search, where

n is the input length for MCSP[mc], we have that zN can be

computed in time poly(N) deterministically, by computing

the truth table of MCSP[mc] on input length n = �log(N)	
in time 2n+polylog(n) = poly(N). Once zN is computed in

polynomial time, M can compute y in polynomial time and

verify that y = fC . Irrespective of the format of v, M halts

in polynomial time, and decides R.

Finally, we establish that our candidate set W of hitting

tautologies satisfies conditions (iii) and (v) in Definition 11

with respect to R. To see that W is R-easy, note that every

tautology in W is of the form tt(fn(y ⊕ zN ), nc) for some

y ∈ HN . Since HN is nc-succinct, it holds for each y ∈ HN

that fn(y) has circuits of size at most nc, hence there is some

circuit C of size at most nc such that fC = fn(y). But then,

by definition of R, 1 < C > is a valid proof of u = tt(fn(y⊕
zN ), nc) when N ≥ N0, and v = 012

|u|
is a valid proof of

u when N < N0. Since | < C > | = poly(n) << N ,

we have that tautologies in W have polynomially bounded

R-proofs. Indeed, for large enough N , there are proofs of

size at most N .

To establish condition (v), we again use the assump-

tion that Rudich’s conjecture holds. Suppose, for the

sake of contradiction, that there is a constant γ > 0
and positive integer e such that for infinitely many N ,

Pry∼UN
[f(y) has R-proofs of size at most |f(y)|e] ≥ γ.

We show how to refute Rudich’s conjecture by constructing

L ⊆ MCSP[nc] such that L ∈ NSIZE(poly) but L is

not 1/Nω(1)-sparse. Simply define L(y) = 1 iff f(y) has

R-proofs of size at most |f(y)|e. By soundness of R,

L ⊆ MCSP[nc]. Using the fact that r is a pps, we have
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that L ∈ NP. By assumption, there are infinitely many N
for which the fraction of strings y of length N in L is at

least γ, hence L is not 1/Nω(1)-sparse. Contradiction.

The pps R given by the proof of Lemma 2 does not have a

natural form, but as we observe in Section V, we can take R
to be Extended Frege with circuit lower bound axioms, and

this has implications our ability to show proof complexity

lower bounds for Extended Frege.

Lemma 3. If Rudich’s Conjecture holds, then Rudich’s
Conjecture does not admit feasible propositional proofs.

Proof: By Lemma 2, under the assumption that

Rudich’s Conjecture holds, there is a pps R such that for

any k, there is a collection W of R-easy 1/Nk-hitting

tautologies against nondeterministic size Nk.

Assume, for the sake of contradiction, that Rudich’s

Conjecture admits feasible propositional proofs. This means

that for each pps R and integer d > 0, there is a pps S,

such that for all large enough N , for a 1− o(1) fraction of

strings y of length N , there are polynomial-sized S-proofs

of lbR(tt(fn(y), �log(N)	d),md), where m = |tt(fn, nd)|.
Consider the pps S that corresponds to the pps R from

Lemma 2, with d chosen to be the constant c from Rudich’s

Conjecture, as in the proof of Lemma 2. We have that for

large enough N , tautologies from W of size N have R-

proofs of size at most N , and hence of size at most N c,

assuming wlog (as in the proof of Lemma 2) that c > 1. On

the other hand, even though f(y) is a tautology with all but

negligible probability for y a randomly chosen N -bit string,

it follows from the fact that W is a collection of hitting

tautologies that there are N c-size R-proofs for f(y) with

probability o(1).
Now we use the assumption about S to contradict the

hitting property of W . Let b be a constant such that for a

1 − o(1) fraction of strings y of length N , there are rb-

size S-proofs of lbR(tt(fn(y), �log(N)	c),mc), where m =
|tt(fn, nc)|, and r = |lbR(tt(fn(y), �log(N)	c),mc)|. Let a
be a constant such that rb < Na - such a constant exists

because m is bounded by a fixed polynomial in N and r is

bounded by a fixed polynomial in m. Let q be a constant

such that S(u, v) is decidable in time at most (|u|+ |v|)q for

large enough u, v, and let k be a constant such that k > aq.

Define the language LS as follows: y ∈ LS iff there

are Na-size S-proofs of lbR(tt(fn(y), �log(N)	c),mc). By

assumption on S, for large enough N , at least a 1 − o(1)
fraction of strings y of length N are in LS . Moreover,

by our choice of the parameter k, LS is decidable in

NSIZE(Nk). This can be done simply by computing the

formula lbR(tt(fn(y), �log(N)	c),mc), guessing an Na size

S-proof for it, and then verifying that the proof is correct

with circuits of size at most Nk.

Now we use the collection W of R-easy 1/Nk-hitting tau-

tologies against nondeterministic size Nk given by Lemma

2 to derive a contradiction. As in the proof of Lemma 2,

let {H ′N} be the sequence of hitting sets associated with

W , and let f(x) = tt(fn(x), �log(|x|)	c) be the poly-

time computable function associated with W . Since W is

1/Nk-hitting against nondeterministic size Nk, and LS is a

1 − o(1)-dense set computable by nondeterministic circuits

of size at most Nk, there must be an infinite sequence of

strings {yN}, where each yN ∈ H ′N , such that for large

enough N , yN ∈ LS . But since W is R-easy, we have that

for large enough N , lbR(f(yN ), |f(yN )|c) is false, and by

soundness of S, it does not have polynomial-size S-proofs,

or indeed S-proofs of any size. This contradicts the inference

that yN is in LS for large enough S, since for each large

enough string z ∈ LS , there are polynomial-sized S-proofs

of lbR(f(z), |f(z)|c).

The following is a restatement of Theorem 1.

Theorem 5. Rudich’s Conjecture does not admit feasible
propositional proofs.

Proof: Suppose Rudich’s Conjecture holds. Then

Lemma 3 gives us the desired conclusion.

Now suppose Rudich’s Conjecture fails, and that Rudich’s

Conjecture admits feasible propositional proofs. We show

that the failure of Rudich’s conjecture implies that there

exists a pps R with polynomially bounded advice such that

for each d > 0 and infinitely many n, for an Ω(1) fraction

of Boolean functions f ∈ Fn, there are polynomial-size R-

proofs of tt(f, nd). We then show how to use the pps R with

advice to contradict the assumption that Rudich’s Conjecture

admits feasible propositional proofs.

If Rudich’s Conjecture fails, then for all constants c > 0,

there is a constant a > 0 and a language Lc such that Lc ⊆
MCSP[nc] and Lc ∈ NSIZE(poly), but Lc is 1/Na-dense

for infinitely many input lengths N . We show that in this

case, it is also true that for all constants c′ > 0, there is a

constant γ > 0 and a language L′ such that L′ ⊆ MCSP[nc′ ]
and L′ ∈ NSIZE(poly), but L′ is γ-dense for infinitely many

input lengths N ′.
L′ is defined only on input lengths of the form N ′ =

Na+1, where N is a large enough positive integer. Let y
be a given input of length N ′ for such an input length N ′.
L′ interprets its input y as a sequence of Na consecutive

input blocks yi, i = 1 . . . Na, where each yi has length N .

L′ accepts y iff Lc′+1 accepts yi for some input block yi.
We argue that for each large enough input length y, if

y ∈ L′, fn(y) does not have Boolean circuits of size (n′)c
′
,

where n′ = �log(N ′)	. Indeed, such a y is in L′ iff yi is

in L for some i, but this implies that fn(yi) does not have

Boolean circuits of size nc′+1, by the assumption about L,

where n = �log(N)	. Since y is the concatenation of Na

equal size blocks yi, this implies that fn(y) does not have

Boolean circuits of size nc′+1, which is at least (n′)c
′

for

large enough n, as n′ = O(n).
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Next we argue that L′ is γ-dense for infinitely many N ′,
for some constant γ > 0. Indeed, for any large enough N ′

of the form Na+1 such that Lc′+1 is 1/Na-dense on inputs

of length N , we have that the fraction of strings y of length

N ′ in L′ is at least 1 − (1 − 1/Na)N
a ≥ 1 − 1/e. This is

because y ∈ L′ iff some block yi ∈ L, and each block yi
independently has probability at least 1/Na of being in L.

Finally we argue that L′ ∈ NSIZE(poly). Indeed, this

follows directly from the fact that L ∈ NSIZE(poly), and

that deciding membership of y ∈ L′ reduces to breaking y
up into blocks yi and checking if at least one yi is in L.

Indeed, if L has nondeterministic circuits of size at most

Nq for some constant q, L′ has nondeterministic circuits of

size at most (N ′)1+q/a.

Thus we have established our claim about the existence

of L′ corresponding to each constant c′ > 0. We fix such an

L′ as follows: choose a c > 3 for which Lc ∈ NSIZE(Nq)
for some q, and assume wlog that Lc is 1/Na-dense

for some a ≥ q. Let L′ be the language given by the

above construction corresponding to c′ = c − 1. Then we

have that L′ ⊆ MCSP[nc−1] and L′ has nondeterministic

circuits of size at most (N ′)2. Moreover L′ is 1 − 1/e-
dense for infinitely many input lengths N ′. Since L′ has

nondeterministic circuits of size at most (N ′)2, there is

a nondeterministic machine M running in time at most

(N ′)2 polylog(N ′) and using at most (N ′)2 polylog(N) bits

of advice deciding L′.
Now we define a pps R with advice corresponding to L′.

R has at most N2 bits of advice, and is defined as follows:

R(x, y, z) = 1 iff (a) y = 12
|x|

and x ∈ TAUT, or (b) if

x is of the form tt(fn(u), n2) for some string u such that

n = �log(|u|)	 and M accepts u with witness y and advice

z.

Let {wm} be a good sequence of advice strings cor-

responding to the correct advice for the nondeterministic

machine M . We claim that R is a pps such that {wm} is

good for R. Indeed, any tautology φ has a trivial truth-table

proof in R, even without advice. To argue soundness, note

that in case (b), if M accepts u with witness y and correct

advice z, then u ∈ L′ and therefore fn(u) does not have

circuits of size nc−1 ≥ n2. Hence tt(fn(u), n2) is indeed a

tautology.

We claim that for infinitely many N , for at least a fraction

at least 1−1/e of strings u of length N , tt(fn(u), n2) has R-

proofs of size at most m2, where m = |tt(fn(u), n2). Indeed,

L′ is 1−1/e-dense for infinitely many N , and for each such

N , the nondeterministic machine M accepts u with some

witness y and good advice wm in quadratic time, giving

quadratic size R-proofs of tt(fn(u), n2), as per definition of

the pps R.

Now we use the assumption that Rudich’s Conjecture

admits feasible propositional proofs. This implies that for

every pps R with polynomial advice, there is a pps S, such

that if {wm} is a sequence of poly-sized advice strings good

for R, then for all large enough n, for a 1−o(1) fraction of

Boolean functions fn ∈ Fn, there are polynomial-sized S-

proofs of lbR(tt(fn, n
2),m2, wm), where m = |tt(fn, nd)|.

Let R be the pps defined above. Then by the soundness

of the corresponding pps S given by the assumption that

Rudich’s Conjecture admits feasible propositional proofs, it

follows that for all large enough n, for a 1 − o(1) fraction

of Boolean functions fn ∈ Fn, lbR(tt(fn, n
2),m2, wm) is

true, and hence for all large enough N , for a 1 − o(1)
fraction of strings u of length N , tt(fn(u), n2) does not have

quadratic size R-proofs with good advice wm, contradicting

the statement at the end of the previous para.

In fact, the proof of Theorem 5 gives that Rudich’s

Conjecture does not even admit feasible non-uniform propo-

sitional proofs, i.e., the impossibility result extends to ppses

S that use polynomial advice.

Lemma 3 implies that there is a proof complexity-

theoretic analogue of the Razborov-Rudich ”natural proofs”

barrier for some pps R under Rudich’s conjecture. Namely,

there is a samplable sequence of distributions under which a

random formula is a tautology that requires large R-proofs,

yet no pps S can prove this efficiently.

The following is a restatement of Corollary 1.

Corollary 2. If Rudich’s Conjecture holds, then there is
a pps R and a samplable sequence of distributions {DN}
on formulas of length poly(N), such that with probability
1− 1/Nω(1) over φN sampled from DN , φN is a tautology
that does not have poly(N) size R-proofs, but there is a
constant k such that no pps S has polynomial-size proofs of
lbR(φN , |φN |k).

Proof: This follows from Lemma 3, by using the same

pps R as in the proof of the Lemma, and the samplable

sequence of distributions {DN} defined by choosing fn ∈
Fn at random and outputting the formula tt(fn, n

k).

IV. IMPLAUSIBILITY OF FEASIBLY PROVING

NONDETERMINISTIC FEIGE’S HYPOTHESIS

The following lemma giving an average-case reduction

from SAT to MCSP is based on Theorem 38 in [25], but

the proof is slightly different, as we need to be careful about

the output length of the reduction.

Lemma 4. For any large enough integer Δ > 0, there is a
polynomial-time computable function g : {0, 1}∗ → {0, 1}∗
satisfying the following conditions whenever N is large
enough and a power of 2:

1) For any 3-CNF φ on N variables with ΔN clauses,
|g(φ)| = 3ΔN(log(2N))

2) g is poly-time invertible
3) For at least a (1−oN (1)) fraction of strings y of length

KN , y = g(φ) for some 3-CNF φ on N variables with
ΔN clauses
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4) If φ is a satisfiable 3-CNF on N variables with ΔN
clauses, then KT (g(φ)) ≤ |g(φ)| −ΔN/12

Proof: When N is a power of 2, picking a formula

φ from UΔ,N corresponds to picking a string zφ of length

3ΔN(log(2N)) at random - imagine z to be made up of

ΔN equal size blocks each of length 3 log(2N), and each

block to represent a sequence of 3 literals, each described

by log(2N) bits. We simply set g(φ) = zφ. The first con-

dition is obviously satisfied. The second condition follows

from the bijection between 3-CNFs over N variables with

ΔN clauses and strings of length 3ΔN(log(2N) described

above. The third condition follows from the simple form of

the bijection.

For the fourth condition, we show that for any satisfiable

3-CNF φ, we can represent zφ by a string z′φ of length

3ΔN log(2N)−ΔN/6+O(1) together with an N -bit string

x encoding a satisfiying assignment to φ, such that g(φ) can

be recovered quickly from these two strings.

We now think of the formula φ as composed of segments

of 6 clauses each (with possibly a few clauses left over at the

end). Each segment of 6 clauses C1 . . . C6 is represented in

z′φ by the sequence of variables occurring in each clause

(which costs 3 log(N) bits per clause, hence 18 log(N)
bits in total), together with a string in [7]6, where the

ith character in the string represents the position of the

clause Ci in the lexicographic ordering of all clauses on

the sequence of variables in Ci which are satisfied by

x. Since 6
log(7)� < 6
log(8)�, this allows us to save

1 bit in our representation for each segment, and hence

ΔN/6−O(1) bits in total. Moreover, the jth clause in φ can

be reconstructed in time O(log(N)) from z′φ together with

x, simply by identifying the segment corresponding to the

jth clause, and then using x and the relevant portion of z′φ
of size O(log(N)) to determine whether each of the literals

in the jth clause occurs complemented or uncomplemented.

This involves reading at most O(log(N)) bits from x, and

can be done in O(log(N)) time.

Thus the KT-complexity of g(φ) for satisfiable φ is at

most 3ΔN log(2N)−ΔN/6+O(1)+N+O(log(N), which

is at most 3ΔN log(2N)−ΔN/12 when Δ and N are large

enough.

Lemma 5. If Nondeterministic Feige’s Hypothesis has fea-
sible propositional proofs, then there is γ > 0 such that
the MKTP[N − γN/ log(N)] Hardness Hypothesis admits
feasible propositional proofs.

Proof: Let Δ > 0 be a large enough integer for the

proof of Lemma 4 to go through, and let γ < 1/(200Δ) be

any constant. Suppose that for every pps R′ with polynomial

advice and every d > 0, there is a pps S’ such that

for all large enough n, with probability 1 − o(1) over φ
sampled from UΔ,n, there are polynomial-sized S′-proofs of

lbR′(φ,md, wm), where m = |φ| and wm is a good advice

string for R′ at length m.

We show that for every pps R with polynomial advice

and every d > 0, there is a pps S such that for all

large enough N , with probability 1 − o(1) over y ∼ UN ,

there are polynomial-size S-proofs of lbR(random(y,N −
γN/ log(N)),md, wm), where m = |random(y,N −
γN/ log(N))| and wm is a good advice string for R at length

m.

Given a string y of length N , define trunc(y) as the

largest prefix of y of length 3ΔN ′ log(2N ′) for some N ′

that is a power of 2. Note that |trunc(y)| ≥ |y|/4.

Fix a pps R with good advice {wm} satisfying the

criterion in the previous para. We define a pps R′ with

polynomial advice as follows. R′(u, v, w) = 1 iff either (a)

v =< v′, y′ > where v′ is an R-proof of random(y,N −
γN/ log(N)) for large enough N with advice wm (where

m = |random(y,N − γN/ log(N))|), for y = g(u)y′ and

g(u) = trunc(y) (where g is the poly-time computable

function from Lemma 4), and moreover w is the concatena-

tion of advice strings wm for all m corresponding to y such

that g(u) = trunc(y) (b) v = 12
|u|

and u is a tautology.

We argue that R′ is indeed a pps with polynomial advice.

Completeness follows from item (b) of the definition. We

show that soundness follows from soundness of R and

Lemma 4. Indeed, item (b) of the definition never causes

issues with soundness, so we only need to argue about item

(a). Suppose v =< v′, y′ > where v′ is an R-proof of

random(y,N − γN/ log(N)), and moreover we have y =
g(u)y′ and g(u) = trunc(y). Since R is sound and wm is

good advice for R, we have that KT(y) > N−γN/ log(N).
Since y = g(u)y′ and g(u) = trunc(y), we have that

|g(u)| ≥ |y|/4. Since KT(y) > N − γN/ log(N), it must

be case that KT(g(u)) > |g(u)| − 5γ|g(u)|/ log(|g(u)|),
since otherwise we could compress y to contradict the lower

bound on its KT-complexity by giving y′ explicitly together

with the compressed representation of g(u) corresponding

to its presumed small KT-complexity.

Let N ′ be such that |g(u)| = 3ΔN ′ log(2N ′). Since

KT(g(u)) > |g(u)| − γ|g(u)|/ log(|g(u)|), we have that

KT(g(u)) > |g(u)| − 16γΔN ′. Thus KT(g(u)) > |g(u)| −
N ′/12, using the fact that γΔ < 1/200, and this implies

by Lemma 4 that u is unsatisfiable. Hence u is a tautology,

establishing the soundness of item (a).

Finally, we need to argue polynomial-time decidability

of R. Checking item (b) can clearly be done in polynomial

time. This is also the case with item (a), since y′ and y can be

computed in polynomial time from u and v, and since R is

polynomial-time decidable. Moreover, we need to check that

wm occurs as a substring of w in the appropriate location,

but this is easy to do.

Now note that if random(y,N − γN/ log(N)) has

polynomial-size R′-proofs for y such that trunc(y) = g(φ),
then φ has polynomial-size R-proofs. This follows from item

(a) of the definition of R′. Let c be a constant such that if

1319



random(y,N −γN/ log(N) has md-size R-proofs for large

enough N , then φ has �cd-size R′-proofs for large enough

� = |φ| when trunc(y) = g(φ).
We want to show that for every pps R with advice

and every d > 0, there is a pps S such that for all

large enough N , with probability 1 − o(1) over y ∼ UN ,

there are polynomial-size S-proofs of lbR(random(y,N −
γN/ log(N)),md, wm), where m = |random(y,N −
γN/ log(N))| and wm is a good advice string for R at

length m. Let S′ be a pps such that for all large enough n,

with probability 1− o(1) over φ sampled from UΔ,n, there

are polynomial-size S′-proofs of lbR′(φ, �cd, w�), where

� = |φ|.
We define S based on S′ as follows. S(u, v) = 1 iff

either (a) u = lbR(random(y,N − γN/ log(N)),md, wm)
for some y of length N and m = |random(y,N −
γN/ log(N))|, and moreover v is an S′-proof of

lbR′(g−1(trunc(y)), �cd, w) for some w that contains wm

as a substring in the appropriate location (note that a good

advice string w for R′ is the concatenation of all good advice

strings wm for m = |random(y,N − γN/ log(N))|, where

trunc(y) = g(φ)), or (b) v = 12
|u|

and u is a tautology.

Completeness of S follows immediately from item (b) of

the definition of S. Soundness follows the fact that if R′ does

not have �cd-size proofs that φ is a tautology, then R does not

have md-size proofs that y = g(φ)y′ is KT-random for any

y such that g(φ) = trunc(y). Polynomial-time verifiability

of S is clear from the definition.

We still need to argue that for all large enough N , with

probability 1 − o(1) over y ∼ UN , there are polynomial-

size S-proofs of lbR(random(y,N−γN/ log(N)),md, wm)
where wm is good advice for R. We have by as-

sumption that for all large enough n (and in partic-

ular for n a power of two), with probability 1 −
o(1) over φ chosen from Un,Δ, there are polynomial-

size S′-proofs of lbR′(φ, �cd, w�). But this follows by

item (a) of the definition of S since the polynomial-

size S′-proofs v of lbR′(g−1(trunc(y)), �cd, w) also func-

tion as polynomial-size S-proofs of lbR(random(y,N −
γN/ log(N)),md, wm), and by the third item of Lemma

4, this happens for at least a 1 − o(1) fraction of strings y
of length N for N large enough.

Theorem 6. For each 1/2 > γ > 0, there is δ > 0 such
that if the MKTP[δN/ log(N)] hardness hypothesis holds,
then the MKTP[N−γN/ log(N)] hardness hypothesis does
not admit feasible propositional proofs.

Proof: The proof is analogous to the proof of Lemma 3,

and how it builds on Lemma 2. Hence, rather than giving all

details, we explain the structure of the proof, and describe

the aspects in which the proof differs from the proofs of

Lemma 2 and Lemma 3.

Given γ > 0, we choose δ > 0 to be any constant less

than γ.

As in the proof of Lemma 2, the hardness hypothesis is

used to construct a collection of hitting tautologies. For each

ε > 0 and each positive integer k, we will get a collection

W of R-easy ε-hitting tautologies against nondeterministic

size Nk for some pps R, as follows.

Using the MKTP[δN/ log(N)] hardness hypothesis in

Proposition 6, for each ε > 0 and positive integer k > 0,

we get a sequence {HN} of ε-hitting sets supported on N -

bit strings of KT-complexity at most δN/ log(N) against

nondeterministic size Nk.

We define a sequence {zN} of N -bit strings as follows:

zN is the lexicographically first N -bit string such that

KT (zN ) ≥ N−1. The existence of zN for every N follows

from Proposition 4. Now we define a new sequence {H ′N} of

ε-hitting sets against nondeterministic size Nk by including

y of length N in H ′N iff y ⊕ zN is in HN . The argument

that H ′N is a hitting set is exactly the same as in the proof

of Lemma 2.

Define the poly-time computable function f : {0, 1}∗ →
{0, 1}∗ by f(x) = random(x,N − γN/ log(N). Let W =⋃

N f(H ′N ). W is our candidate set of ε-hitting tautologies

against nondeterministic size Nk.

Condition (i) in Definition 11 is satisfied trivially. Con-

dition (ii) follows from the fact that for strings x and x′,
KT(x ⊕ x′) ≤ KT(x) + KT(x′) + O(log(|x|)). Condition

(iv) follows from the second item of Proposition 4.

We next define a pps R with polynomial advice such that

W is R-easy. R is defined exactly as in the proof of Lemma

2, except that linear advice is needed to encode zN . The

proof that R is a pps with advice is along the same lines of

before.

To argue condition (iii) in Definition 11, note that any

tautology in W of the form random(y⊕zN , N−γN/ log(N)
for y ∈ HN has a short proof given by the program

witnessing that y has KT-complexity at most δN/ log(N).
Regarding condition (v), this follows from the MKTP[N −
γN/ log(N)] Hypothesis exactly as condition (v) in the

proof of Lemma 2 follows from Rudich’s Conjecture. Now

note that the MKTP[δN ]/ log(N) Hypothesis implies the

MKTP[N − γN/ log(N)] Hypothesis for any constants δ
and γ.

The way that the set W of ε-hitting tautologies is used

to argue that there are no feasible proofs of MKTP[N −
γN/ log(N)] Hardness Hypothesis is exactly analogous to

the proof of Lemma 3.

The following is a restatement of Theorem 2.

Corollary 3. Under Rudich’s Conjecture, Nondeterministic
Feige’s Hypothesis does not have feasible propositional
proofs.

Proof: Suppose, for the sake of contradiction, that Non-

deterministic Feige’s Hypothesis has feasible propositional

proofs. By Lemma 5, there is a constant γ > 0 such
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that the MKTP[N − γN/ log(N)] Hardness Hypothesis has

feasible propositional proofs. By Proposition 5, Rudich’s

Conjecture implies the MKTP[δN/ log(N)] Hardness Hy-

pothesis for every δ > 0. Now by applying Lemma 5 for

the δ > 0 in the statement of the Lemma, we have that

the MKTP[N−γN/ log(N)] Hardness Hypothesis does not

have feasible propositional proofs. Contradiction.

V. A LOSE-LOSE THEOREM FOR EXTENDED FREGE

Lemma 6. Assume there is an s-size EF-proof of tt(fn, 3nk)
for some k and sufficiently large n. Further, let gn be a
function computable by a circuit of size nk. Then there is a
2s +K2n-size EF-proof of tt(fn ⊕ gn, n

k) where K is an
absolute constant.

Proof: We will use the Extended Resolution proof

system to argue the lemma instead, taking advantage of the

standard fact that Extended Resolution and Extended Frege

simulate each other [18].

Suppose a set of clauses S0 expresses C0 = fn⊕gn for a

circuit C0 of size nk, i.e. S0 is a negation of tt(fn⊕gn, nk),
and a set of clauses S1 expresses C1 = gn where C1 is a

circuit of size nk coded by variables not occurring in S0.

Let uai be the variable encoding the output of Ci on input

a. Further, for each n-bit string a let ya be a new variable,

and let Y be a set of clauses expressing that

ya = ua0 ⊕ ua1 .
The set Y can contain extra variables that help to encode

ua0 ⊕ ua1 .

From S0 ∪ S1 ∪ Y we can derive a set of clauses S⊕
expressing C0⊕C1 = fn where C0⊕C1 is a circuit of size

3nk outputting ya on input a. This derivation takes K2n

steps, for an absolute constant K. Specifically, for each a, it

derives fn(a) = ua0⊕ua1 = ya from ua0 = fn(a)⊕gn(a) and

ua1 = gn(a). Since we assume that we can refute tt(fn, 3n
k)

in size s and substituting some variables for constants does

not increase the refutation size, we can refute S⊕ in size s,
and S0∪S1∪Y in size s+K2n. We can now substitute the

nk-size circuit computing gn in S1 and refute in size s+K2n

the set of clauses S0 ∪ Y ′ where Y ′ is obtained from Y by

substituting the circuit for gn. Note that the clauses in Y ′

say just that ya = ua0 or ya = ¬ua0 . We can thus get rid of

them with a substitution of literals which at most doubles

the resulting refutation size. This yields a 2s + 2K2n-size

refutation of S0.

In fact, Lemma 6 holds even with ‘Extended Frege’

replaced by ‘Resolution’, using essentially the same proof.

Theorem 7. Assuming Rudich’s Conjecture, at least one of
the following is true:

1) There is no sequence of Boolean functions {fn}, fn ∈
Fn, such that tt(fn, n

k) has polynomial-size EF-
proofs for every k > 0

2) There is no pps Q such that there are polynomial-
size Q-proofs of lbEF(tt(fn, n

k),mk) (where m =
|tt(fn, nk)|) for a 1/2O(n) fraction of Boolean func-
tions fn for all constants k and all large enough n.

Proof: Suppose that the first item is false, and that there

is a sequence of Boolean functions {fn}, fn ∈ Fn, such that

tt(fn, n
k) has polynomial-size EF proofs for every k > 0.

Assume Rudich’s Conjecture. Then, using the falsehood of

the first item and Lemma 6, the pps R in the statement

of Lemma 2 can be taken to be EF. It then follows that

Corollary 2 holds with R = EF, and this implies the second

item.

The following is a more rigorous formulation of Theorem

3.

Theorem 8. Assume that Rudich’s Conjecture holds, and
that there is an ε > 0 such that E �⊆ io−NSIZE(2εn). Then
at least one of the following is true:

1) There is no sequence of Boolean functions {fn}, fn ∈
Fn, such that tt(fn, n

k) has polynomial-size EF-
proofs for every k > 0

2) For each k > 0 and each pps Q, there is a polynomial-
time algorithm that on input 1N (where N = 2n),
outputs a set SN of truth tables of Boolean functions
on n bits such that for each large enough N , there
is F ∈ SN such that tt(fn(F ), nk) is a tautology,
there are no Nk-size EF-proofs of tt(fn(F ), nk), and
moreover lbEF(tt(fn(F ), n

k), Nk) does not have Q-
proofs of size Nk2

.

Proof: The basic idea is to derandomize the hard

tautologies in Theorem 7 by using the assumption that

E �⊆ io − NSIZE(2εn) in Theorem 4. Assume the first item

is false, and let d be a constant such that the pps Q(x, y) is

verifiable in time (|x+ y|)d.

By a standard counting argument, we have that for most

F of size N , when N is large enough, tt(fn(F ), nk) is a

tautology. Since Rudich’s Conjecture is true, we have that

for most F of size N , when N is large enough, there are

no Nk-size EF proofs of tt(fn(F ), nk). By the falsity of

the first item, and applying Theorem 7, we have that for

most F of size N , there are no polynomial-size Q-proofs

of lbEF(tt(fn, n
k),mk) (where m = |tt(fn, nk)|), when N

is large enough.

We use the PRG given by Theorem 4 to simultaneously

derandomize all three of these conditions, using the fact

that each of them can be tested, on input F , by a fixed

polynomial-size co-nondeterministic circuit. Indeed, the first

condition can be tested by a co-nondeterministic circuit of

size Õ(Nnk) which simply guesses a circuit of size nk and

verifies that it does not compute F correctly. The second

condition can be tested by a co-nondeterministic circuit that

uses the verification algorithm for EF and has size Õ(Nk).
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The third condition can be tested by a co-nondeterministic

circuit that uses the verification algorithm for Q and has size

Õ(Ndk2

).
Applying Theorem 4, there is a complexity-theoretic

1/N2dk2

-PRG with seed length O(log(N)) against nonde-

terministic size N2dk2

. Let this PRG be {GN} and let SN

be the range of GN2dk2 . Clearly SN has size poly(N), and

by a union bound, most F in SN satisfy all three conditions

above, which proves the theorem.

VI. THE FEASIBLE COOK-RECKHOW PROGRAM AND

OPTIMALITY

We observe that if we reason inside a proof system P ,

it is impossible to prove a lower bound on a stronger

proof system Q. This is a straightforward consequence of

a seminal work of Krajı́ček and Pudlák [34].

Theorem 9 (es. Krajı́ček and Pudlák [34]). For any propo-
sitional proof systems P,Q simulating EF, P does not
admit p-size proofs of lbQ(φn, n

logn) for any sequence of
propositional formulas φn of length n unless every sequence
of tautologies with p-size Q-proofs admits nO(logn)-size P -
proofs.

Proof sketch: Let ψn be a sequence of tautologies

with p-size Q-proofs. If P proves efficiently lbQ(φn, n
logn)

for some φn , P proves ψn in size nO(logn). The P -proof

proceeds as follows. If ¬ψn(a) held for some a, it could be

combined with a p-size Q-proof of ψn to get a contradiction

and a p-size Q-proof of φn.

We consider consequences of the failure of the Feasible

Cook-Reckhow Program in a strong sense. This can be

linked to the existence of a certain variant of optimal proof

systems.

Definition 16 (i.o. optimal proof system). A proof system P
is i.o. optimal if every proof system Q is i.o. simulated by
P , i.e. there is a polynomial p such that for every sequence
of tautologies φn with Q-proofs of length sn, infinitely many
φns admit P -proofs of length p(sn).

Failure of Feasible Cook-Reckhow Program. There exists
a proof system P such that for every proof system Q, every
sequence of tautologies φn there exists a constant k such
that Q does not admit p-size proofs of lbP (φn, nk) for every
sufficiently big n.

Theorem 10. Failure of the Feasible Cook-Reckhow Pro-
gram implies the existence of an i.o. optimal proof system.

Proof: Assume there is a proof system P that witnesses

the failure of the Feasible Cook-Reckhow Program. We will

show that P i.o. simulates every proof system. W.l.o.g. P
simulates EF since otherwise we could consider an extension

of P by EF. It is known that every proof system Q can be

simulated by EF extended with axioms RefQ encoding the

so called reflection principle for Q, cf. [31, Theorem 8.4.3.].

Specifically, RefQ(π, φ, y) is a tautology with free variables

encoding π, φ, y which states that if π is a Q-proof of a

formula φ, then φ is satisfied by y.

Therefore, it suffices to show that for every system Q,

proof system P admits p-size proofs of RefQ(π, φm, y) for

infinitely many m. If this was not the case, then for every k
and for all sufficiently big n denoting the length of RefQ,

formula lbP (RefQ, n
k) would be a tautology. Moreover,

there would be a p-time algorithm A which given n outputs

the tautology. This yields a contradiction with the Failure

of Feasible Cook-Reckhow Program because A could be

used to define an extension of EF admitting p-size proofs of

lbP (RefQ, n
k) for every sufficiently big n.

We also explore consequences of switching the order

of quantifiers in the hypothesis above about failure of the

Feasible Cook-Reckhow Program.

Definition 17 (Optimal proof system). A proof system P is
optimal if every proof system Q is simulated by P , i.e. there
is a polynomial p such that for every sequence of tautologies
φn with Q-proofs of length sn, each φns has P -proofs of
length p(sn).

Theorem 11. If optimal proof systems do not exist, then for
every proof system Q, there exists a proof system P such that
for every sequence of tautologies φn there exists a constant
k such that Q does not admit p-size proofs of lbP (φn, nk)
for every sufficiently big n.

Proof: Let Q be an arbitrary proof system and Q′ be

a proof system simulating both Q and EF. Since Q′ is not

optimal, there is a proof system P such that Q′ does not

have p-size proofs of RefP . By an argument similar to the

proof of Theorem 9, this implies that for every sequence

of tautologies φn there is a constant k such that Q′ (and

hence also Q) does not have p-size proofs of formulas

lbP (φn, n
k).
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