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Abstract—Suppose that you wish to sample a random graph
G over n vertices and m edges conditioned on the event that
G does not contain a “small” t-size graph H (e.g., clique) as
a subgraph. Assuming that most such graphs are H-free, the
problem can be solved by a simple rejected-sampling algorithm
(that tests for t-cliques) with an expected running time of nO(t).
Is it possible to solve the problem in running time that does
not grow polynomially with nt?

In this paper, we introduce the general problem of sampling
a “random looking” graph G with a given edge density that
avoids some arbitrary predefined t-size subgraph H . As our
main result, we show that the problem is solvable with respect
to some specially crafted k-wise independent distribution over
graphs. That is, we design a sampling algorithm for k-
wise independent graphs that supports efficient testing for
subgraph-freeness in time f(t) · nc where f is a function of t
and the constant c in the exponent is independent of t. Our
solution extends to the case where both G and H are d-uniform
hypergraphs.

We use these algorithms to obtain the first probabilistic
construction of constant-degree polynomially-unbalanced ex-
pander graphs whose failure probability is negligible in n (i.e.,
n−ω(1)). In particular, given constants d > c, we output a
bipartite graph that has n left nodes, nc right nodes with
right-degree of d so that any right set of size at most nΩ(1)

expands by factor of Ω(d). This result is extended to the setting
of unique expansion as well.

We observe that such a negligible-error construction can be
employed in many useful settings, and present applications
in coding theory (batch codes and LDPC codes), pseudo-
randomness (low-bias generators and randomness extractors)
and cryptography. Notably, we show that our constructions
yield a collection of polynomial-stretch locally-computable
cryptographic pseudorandom generators based on Goldreich’s
one-wayness assumption resolving a central open problem
in parallel-cryptography (cf., Applebaum-Ishai-Kushilevitz,
FOCS 2004; and Ishai-Kushilevitz-Ostrovsky-Sahai, STOC
2008).

Keywords-Expander Graph, LDPC Codes, Local Cryptogra-
phy

I. INTRODUCTION

Many combinatorial properties of graphs and hyper-

graphs can be formulated as avoiding some family H of

small subgraphs. Notable examples consist of graphs that

avoid short cycles or small cliques, expander graphs (that

avoid small non-expanding subgraphs) and even graphical

representations of good error-correcting codes (that avoid

small “stopping sets” [17]). Motivated by the wide range

of applications, the computational problem of efficiently

constructing H-free graphs has attracted a huge amount

of research (e.g. [1], [15], [16], [23], [33]). In this paper,

we consider several natural probabilistic variants of the

construction problem.

Setup: Let Gn,m,d be the set of all (n,m, d)-
hypergraphs, i.e., d-uniform hypergraphs over n vertices

with m hyperedges. We typically think of d as a constant

that does not grow with n and take m = poly(n). Let H
be a family of “small” d-uniform hypergraphs of size at

most t for some slowly growing function t(n). While our

setup is defined with respect to hypergraphs (to match our

applications), the following problems make sense even for

simple undirected graphs (i.e., d = 2) and so, for now, the

reader may safely focus on this special case. (Indeed, we are

not aware of prior solutions that handle the case of simple

graphs.)

Problem 1.1 (Zero-error/negligible-error constructions):
Generate an H-free hypergraph G ∈ Gn,m,d in probabilistic

poly(n)-time. The algorithm is allowed to fail with a

negligible error probability that vanishes faster from any

inverse polynomial, i.e., n−ω(1). Such a construction is

referred to as a negligible-error construction. We say that

this is a zero-error (or ZPP) construction if the algorithm

outputs a special failure symbol whenever it fails to find an

H-free graph.

Unlike the classical de-randomization literature which

typically emphasizes the distinction between deterministic
and probabilistic construction, in Problem 1.1 we focus

on the error level. We advocate the use of negligible-

error constructions as a second-best alternative when explicit

constructions are unknown. Indeed, for many applications a

randomized construction that almost never fails is almost as

good as a fully explicit construction. In particular, if one

is planning to plug-in G into some randomized algorithm

or system then a negligible error in the construction of G
will be swallowed by the overall error probability of the
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algorithm.1

Following the standard cryptographic tradition, we insist

on an error that is negligible (i.e., tends to zero faster

than any polynomial), in order to guarantee a tiny fail-

ure probability even after polynomially-many repetitions.2

Throughout the paper, we typically assume that an α-fraction

of all (n,m, d)-hypergraphs are H-free, where the density

α is large but not overwhelming, i.e., α(n) = 1 − n−c for

some constant c > 0. In this case, the problem is non-trivial

when testing H-freeness cannot be done in polynomial-time.

While Problem 1.1 is a relaxation of the explicit-

construction problem, our next problem addresses the harder

task of generating a random, or pseudorandom, H-free

graph.
Problem 1.2 (Quasi-random H-free graphs): Sample in

expected probabilistic poly(n) time a random graph G from

some “pseudorandom” distribution over Gn,m,d conditioned
on being H-free.

The general task of generating a pseudorandom object that

always satisfies some given property was first studied by

Goldreich, Goldwasser and Nussboim [21].3 In this setting

the property (i.e., H-freeness) is viewed as a necessary

worst-case requirement that should be satisfied by any
sampled hypergraph G. Using the terminology of [21],

the implementation G must be truthful to the H-freeness

specification. Conditioned on this, G should be distributed

uniformly or close to uniformly under some metric.
This combination of requirements arises when one tries to

understand the behavior of an H-free random system (e.g.,

in simulation) or when the hypergraph G is being used as

part of a system whose analysis relies on a random choice

of G and, in addition, its validity depends on H-freeness. In

such a case we cannot use a single explicit construction of

H-free hypergraphs since it may fail to achieve some other

property of pseudorandom hypergraphs. On the other hand,

we cannot use a random sample from Gn,m,d since it fails

to be H-free with positive (in our case, inverse polynomial)

probability.
We further mention that in some cases even a tiny positive

failure probability can be problematic. This is the case, for

example, when the sampling procedure is invoked by an

untrusted party who can benefit from the existence of H-

subgraphs. If our sampling algorithm has a positive failure

1This view is implicitly used in other contexts. For example, although the
problem of deterministically generating n-bit primes is wide open, there are
randomized algorithms that generate such primes with negligible (or even
zero) error probability. Consequently, applications which employ prime
numbers (or prime-order finite fields) rely on negligible-error constructions.

2Observe that in our context it is not clear how to reduce the error
probability from constant or even inverse polynomial 1/nΩ(1) to negligible.

3The work of [21] focuses on huge exponential-size random objects.
However, the problem remains non-trivial even for polynomial-size objects
as long as the required property cannot be tested in polynomial-time. See
Section II-B for further discussion regarding the applicability of our results
to the GGN setting.

probability, then a cheating party can cheat by selecting “bad

coins” that lead to hypergraphs with H-subgraphs. Since

general subgraph-testing seems to be computationally-hard

such a cheating may be left undetected.4

The testing barrier: A natural way to sample H-

free random hypergraphs is via rejected sampling. That is,

repeatedly sample G until an H-free hypergraph is chosen.

Since we work in a regime where most hypergraphs are H-

free, the expected number of iterations will be polynomial.

This approach reduces the sampling problem to the subgraph

testing problem. If the largest hypergraph in H is of constant

size t, then the problem can be trivially solved in time

f(t)nO(t). However, we think of t as a large constant, or

as a slowly increasing function of n, and so we would like

to have a running time of f(t)nc where the exponent c is

independent of t. Unfortunately, such a running time cannot

be achieved for general subgraph-testing (even for simple

cases such as cliques) unless the exponential-time hypothesis

(ETH) fails (cf. [18]). We refer to this hardness-of-testing

as the testing barrier. Jumping ahead, we will show that

some variant of this barrier arises if one tries to sample

a hypergraph that is uniformly distributed over all H-free

hypergraph in Gn,m,d.

Summary: The problem of constructing H-free hyper-

graphs can be roughly ranked from easy to hard as follows:

negligible-error constructions, zero-error constructions, ex-

plicit constructions, pseudorandom constructions.

II. OUR RESULTS

We partially resolve Problems 1.1 and 1.2. Our main

results consist of two main parts. We begin by studying

pseudorandom constructions of H-free hypergraphs (Sec-

tions II-A and II-B). Then we focus on the concrete case

of unbalanced expanders, describe negligible-error construc-

tions of such graphs (Section II-C), and use them to derive

various applications (Section II-D).

A. Sampling k-Wise Independent Graphs Conditioned on
H-Freeness

We show that Problem 1.2 can be solved with respect to

some k-wise independent distribution over Gn,m,d. Here k-

wise independence means that every k-subset of the hyper-

edges are distributed uniformly over all possible d-uniform

hyperedges. The use of k-wise independent distributions

as a good model for pseudorandom graphs was advocated

by Naor, Nussboim and Tromer [36] and by Alon and

Nussboim [2]. These works further show that a large family

of natural graph-theoretic properties that hold whp over

random graphs (with a given edge density) also hold whp

over polylog(n)-wise independent distributions with the

same density.

4The work of [14] provides a good example for such a case in the context
of financial derivatives.
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We bypass the “testing barrier” by designing a concrete k-

wise independent probability distribution Gn,m,d,k in a way

that allows us to efficiently test whether a given sample G
is H-free. That is, our distribution is amenable to subgraph

testing by design. To formalize this strategy, we introduce a

new notion of sampler/tester pair of algorithms. Roughly

speaking, the sampler S samples an object according to

some given distribution D, and the tester T examines the

coins of the tester and checks whether the corresponding

object avoids some bad event E. The combination of the

two allows us to sample the conditional distribution [D|¬E].
(See full version of this paper [12] for more details on the

sampler/tester framework.)

We prove the following key theorem. Below we define

the log-density of an (n,m, d) hypergraph as c = logn m,

and define the size of a hypergraph as the sum of its vertices

and hyperedges.

Theorem 2.1 (key theorem): For every log-density pa-

rameter c > 1, edge-uniformity parameter d ≥ 2, subgraph-

size function t(n) ≤ O( log log logn
log log log logn ) and independence

parameter k(n) that satisfies k(n) ≤ O(n1/tc
′t
) where c′ is

a constant that depends on c, there exists a poly(n)-time

sampler/tester pair (S, T ) with the following properties:

• Given 1n, the randomized sampler S uses its internal

random coins r to sample an (n,m = nc, d) hypergraph

Gr whose hyperedges are k(n)-wise independent.

• The deterministic tester takes as input a d-uniform

hypergraph H of size at most t(n) and a fixed sequence

of coin tosses r and accepts the input if and only if H
is a subgraph of the hypergraph Gr = S(1n, r) that is

generated by S using coin tosses r.

Although the size t of the tested subgraph is relatively small,

it is still super-constant. This property will be crucial for our

applications. We further note that the independence parame-

ter k(n) is super-logarithmic (or even “almost” polynomial)

in n and so the pseudorandomness properties established

by [2], [36] hold. (See the full version [12] for a more

detailed version of Theorem 2.1 as well as all other theorems

that are stated here.)

Sampling H-free graphs: It is important to note that

our sampler S is independent of the subgraph H , and that

the tester T gets H as an input. These properties allow us

to partially solve the sampling problem (Problem 1.2) with

respect to a family of small hypergraphs H. Indeed, we can

use the sampler S to sample a k-wise independent (n,m, d)-
hypergraph G and use the basic tester to test that G is H-

free for all subgraphs H ∈ H. If one of the tests fails, we

repeat the process from the beginning. Since H contains at

most exp(td) < poly(n) hypergraphs, the expected running

time will be polynomial, assuming that a random k-wise

independent (n,m, d)-hypergraph is H-free with noticeable

probability.

Corollary 2.2 (pseudorandom H-free hypergraphs): Let

c, d, t(n), k(n) and m = nc be as in Theorem 2.1. Let H
be an efficiently constructible family of hypergraphs each

of size at most t(n) such that a k(n)-wise independent

(n,m, d)-hypergraph is H-free with noticeable probability

of 1/poly(n). Then, there exists a probabilistic algorithm

that runs in expected poly(n)-time and samples an H-free

hypergraph from some k-wise independent distribution over

(n,m, d)-hypergraphs.
Remark 2.3: It is natural to try and sample a uniform

H-free (n,m, d)-hypergraph, i.e., to replace the k-wise

independent distribution in Corollary 2.2 with the uniform

distribution over Gn,m,d. We conjecture that sampling uni-

form H-free hypergraphs is computationally infeasible and

present some evidence towards this conjecture. In particular,

suppose that:

(�) For some families of hypergraphs, it is in-

feasible to certify H-freeness over the uniform

distribution. That is, there is no 1-sided error tester

that accepts most (n,m, d)-hypergraphs and never

accepts a hypergraph that is not H-free.

We show that, under the (�) assumption, sampling uni-

form H-free hypergraphs implies the existence of one-way
functions. Put differently, a sampler would allow us to

convert average-case hardness (of testing) to one-wayness,

or, in the language of Impagliazzo [25], to move from

Pessiland to Minicrypt.
The (�) assumption (hardness of certifying H-freeness) is

closely related to previous intractability assumptions (cf. [7],

[9], [14]). We further relate this assumption to the problem

of certifying that a random low-density parity-check code

has a high distance. (See the full version of this paper [12]

for details.)
Remark 2.4 (On k-wise independence): It is instructive

to note that Theorem 2.1 employs k-wise independence in

an unconventional way. Typically, the notion of k-wise inde-

pendence is useful due to the combination of pseudorandom-

ness with computationally-cheap and randomness-efficient

implementations. In contrast, the proof of Theorem 2.1 ex-

ploits the simple algebraic structure of k-wise independence

constructions to force a structure on the sampled object

(the hypergraph G) in a way that makes it amenable to

efficient analysis (i.e., subgraph testing). The fact that such

implementation is computationally-cheap or randomness-

efficient is not really needed. (Nevertheless, these properties

will be used in the next subsection.)
ZPP and explicit constructions.: Corollary 2.2 imme-

diately leads to a ZPP-construction of H-free hypergraphs.

We further observe that, under standard worst-case de-

randomization assumptions, any ZPP-construction implies

an explicit construction.
Corollary 2.5 (explicit H-free hypergraphs): Let

c, d, t(n), k(n) and m = nc and H be as in Corollary 2.2.

Assuming that the class of functions computable in 2O(n)

uniform-time requires 2Ω(n)-size circuits, there exists a
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deterministic poly(n)-time algorithm that always outputs

an H-free (n,m, d)-hypergraph.

The above assumption is known to imply, for any constant a,

a pseudorandom generator prg that fools na-time algorithms

with logarithmic size seed [26]. Such a generator can be

used to fully de-randomize the ZPP construction A and

derive a fully explicit construction A′. (The algorithm A′

just outputs the first seed s for which A(prg(s)) does not

output “failure”.) This makes a crucial use of the ability

to recognize bad outputs (which trivially holds for ZPP
samplers). We are not aware of a similar transformation that

applies to “Monte-Carlo” constructions that have a positive

failure probability.5

B. The Succinct Setting

So far we assumed that the computational complexity of

the sampler is allowed to grow polynomially in the size

of the hypergraph G. In some scenarios, it is more natural

to think of the hypergraph as a huge object and require

a running time that is polynomial in log n. In particular,

we say that an (n,m, d) hypergraph G has a succinct

representation if it can be represented by an identifier z of

length polylog(n) such that given z, a hyperedge e ∈ [m],
and an index i ∈ [d], it is possible to compute the i-th
member of the hyperedge e in time polylog(n).6 (Here

we assume that the hyperedges are ordered and can be

represented by d-tuples.) We prove a succinct version of

Theorem 2.1 that applies to constant-size subgraphs H and

polylog(n)-wise independence.

Theorem 2.6: For every log-density parameter c > 1,

edge-uniformity parameter d ≥ 2, constant subgraph size

t and independence parameter k(n) ≤ polylog(n), there

exists a polylog(n)-time sampler/tester pair (S, T ) with the

following properties:

• Given n (in binary representation), the randomized

sampler uses its internal random coins r to sample a

succinct (n,m = nc, d) hypergraph Gr whose hyper-

edges are k(n)-wise independent.

• The deterministic tester takes as input a d-uniform

hypergraph H of size at most t and a fixed sequence

5There are cases in which derandomization assumptions can be easily
used to turn a negligible-error construction into an explicit construc-
tion [29]. This typically happens when one of the following holds: (1) It is
“easy” to recognize a “bad” object (i.e., to detect a violation of the desired
property) in polynomial-time; or (2) There is an efficient way to combine a
“bad” instance with several “good” instances into a single “good” instance.
As far as we know, in general, both conditions fail for H-freeness.

6This is in contrast to the (more common) notion of succinctness (in
the context of standard graphs), where, given a vertex v and an index i,
we can compute the i-th neighbor of v in time poly logn. Our notion of
succinctness is better suited for our applications, in which a hypergraph rep-
resents the dependencies graph of some function f : {0, 1}n → {0, 1}m
(e.g., low-biased generator) where inputs correspond to vertices, outputs
correspond to hyperedges, and the i-th hyperedge contains the vertices on
which the i-th output depends. Our notion of succinctness guarantees that
each output of f can be computed in polylog(n)-time (e.g., in the RAM
model).

of coin tosses r and accepts the input if and only if H
is a subgraph of the hypergraph Gr = S(n, r) that is

generated by S using coin tosses r.

Theorem 2.6 leads to the following succinct version of

Corollary 2.2.

Corollary 2.7: Let c, d, t, k(n) and m = nc be as in

Theorem 2.6. Let H be a family of hypergraphs each of

size at most t, such that a k(n)-wise independent (n,m, d)-
hypergraph is H-free with probability of 1/polylog(n).
Then, there exists a probabilistic algorithm that runs in

expected polylog(n)-time and samples a succinct H-free

hypergraph from some k-wise independent distribution over

(n,m, d)-hypergraphs.

As already mentioned the problem of constructing huge

k-wise independent graphs that satisfy some given property

(specification) was studied in [2], [21], [35], [36]. Corol-

lary 2.7 provides a zero-error (aka “truthful”) solution for

this problem with respect to H-free hypergraphs of given

density. To the best of our knowledge, prior to our work no

solution was known even for the case of undirected graphs

and concrete fixed-size forbidden subgraphs.

C. Negligible-Error Construction of Constant-Degree Un-
balanced Expanders

We move back to the non-succinct setting, and consider

the problem of explicitly constructing a single, not neces-

sarily random, expander graph. We say that an (n,m, d)-
hypergraph is an (α, t)-expander if every set S of hyperedges

of size at most t “touches” at least α|S| vertices.7 Equiv-

alently, an (α, t)-expander is an (n,m, d)-hypergraph that

avoids small “dense” subgraphs, i.e., (n′,m′, d)-hypergraphs

with n′ ≤ αm′ for m′ ≤ t.
We focus on the setting of constant-degree highly unbal-

anced expanders. That is, we let d be a constant, and assume

that the number of hyperedges m is polynomially larger than

n, i.e., m = nc for some constant log-density 1 < c < d. A

standard probabilistic calculation shows that in this regime

most (n,m, d)-hypergraphs achieve a good expansion factor

of α = Ω(d) (or even α = d−O(1)) for polynomially-small

subsets of size at most t = n1−δ where δ is a constant

that depends on α, c and d. Unfortunately, the problem

of efficiently constructing highly-unbalanced constant-degree

expanders is wide open. Existing constructions either have

only linearly many hyperedges m = O(n) [16] or suffer

from a super-constant (actually polylogarithmic) degree [23].

Motivated by the numerous applications of constant-degree

highly-unbalanced expanders (to be discussed later), we

present a negligible-error construction of such graphs.

We begin by giving a ZPP-construction of constant-

degree highly-unbalanced hypergraphs that expand well for

7This formulation is equivalent to the more standard notion of bipartite
expanders over n left vertices and m right vertices where the degree of
each right vertex is d, and every set S of right vertices of size at most t is
connected to at least α|S| left vertices.
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small sets of super-constant size. The following theorem

follows from Corollary 2.2 by instantiating the class H of

forbidden subgraphs with the class of small non-expanding

hypergraphs.

Theorem 2.8 (ZPP-construction of small-set expanders):
For every log-density parameter c > 1, edge-uniformity

parameter d > c, and α < d − c there exists a ZPP-

construction of (n,m = nc, d)-hypergraph with (α, t)-
expansion where t = O( log log logn

log log log logn ).

Next, we show that Theorem 2.8 gives rise to a negligible-

error construction of hypergraphs that expand well for

polynomial-size subsets. That is, we downgrade the level

of explicitness (from zero-error construction to negligible-

error construction) and upgrade the expansion threshold t to

polynomial.

Theorem 2.9: For every log-density parameter c > 1,

edge-uniformity parameter d > c, and α < d − c, there

exists a negligible-error construction of (n,m = nc, 2d)-
hypergraph with (α, t)-expansion where t = Ω(n1−δ) and

δ = (c− 1)/(d− α− 1).

Recall that a negligible-error construction guarantees the

existence of a poly(n)-time randomized algorithm that out-

puts, except with negligible probability of n−ω(1), an (α, t)-
expanding (n,m, 2d)-hypergraph.

Theorem 2.9 provides an (n,m,D = 2d)-hypergraph

whose expansion parameters (α, t) match the parameters of

a random (n,m, d)-hypergraph. While this factor-2 gap in

the degree has a relatively minor effect on the expansion

threshold t (which is still polynomial in n), it limits the

expansion factor α to be at most D/2 − O(1). Such an

expansion factor suffices for many applications, but in some

cases it is useful to expand by a factor larger than D/2.

Notably, expansion beyond half the degree guarantees the

useful unique expansion property. Formally, a hypergraph

is a (β, t)-unique expander if for every set S of at most t
hyperedges there exists a set U of at least β|S| vertices such

that each vertex in U appears in a unique hyperedge e in S.

Perhaps surprisingly, although we cannot expand by a

factor better than D/2, we can still get a negligible-error

construction of unique expanders.

Theorem 2.10: For every log-density parameter c > 1,

edge-uniformity parameter d > 2c, and β < d − 2c,
there exists a negligible-error construction of (n,m =
Ω(nc), 2d)-hypergraph with (β, t) unique-expansion where

t = Ω(n1−δ) and δ = 2(c− 1)/(d− β − 2).

Theorems 2.8, 2.9 and 2.10 (whose proofs appear in the

full version of this paper [12]) provide the first negligible-

error constructions of highly-unbalanced constant-degree

expanders.

D. Applications

We use our negligible-error construction of unbalanced

expanders to obtain the first negligible-error constructions

of several useful objects including batch codes, and locally-

computable k-wise independent generators, low-bias gener-

ators and randomness extractors. These applications follow

immediately from our expanders via standard techniques.

(See full version of this paper [12] for more details.)

Below we briefly describe two non-trivial applications: high-

rate low-density parity-check (LDPC) codes, and locally-

computable cryptographic pseudorandom generators (PRGs)

with polynomial stretch.

1) High-Rate LDPC Codes: LDPC codes [19] (see also

[32], [37], [38]) are [m, k] linear error-correcting codes

whose (m − k) × m parity check matrix is sparse in the

sense that it contains only dm non-zero entries for some

sparsity constant d = O(1).8 Any (n,m, d)-hypergraph G
defines an [m,m − n]-binary LDPC by letting the parity-

check matrix be the n × m incidence matrix of G. The

parity-check matrix has md ones, and is therefore sparse

when d = O(1). Moreover, it is well known that if, for

some β > 0, the hypergraph G achieves unique-neighbor

expansion of (β, γ) then the resulting code has a distance

of γ.

Theorem 2.10 leads to the first negligible-error construc-

tion of high-rate LDPC code that tolerates polynomially

small number of errors.9 In particular, for every constants

1 < c < d/2 we get an LDPC with sparsity 2d that maps

k bits of information into k+O(k1/c)-bit codeword with a

distance of n1−O(c/d).

Sipser and Spielman showed that an LDPC code whose

underlying graph has a very good expansion factor (well be-

yond half the degree) can be efficiently decoded by a linear

time decoding algorithm with O(log n) parallel steps [37].

Unfortunately, the hypergraph given by Theorem 2.10 does

not satisfy such a strong expansion property. Nevertheless,

we show that our construction can be tweaked in a way

that still allows for highly efficient decoding via a variant

of the Sipser-Spielman decoder. In particular, we prove the

following theorem.

Theorem 2.11: For every constant c > 1, integer d > 10c
and constant 0.9d < α < d − c, there exists a negligible-

error construction of an [m,m − 2m1/c]-LDPC code with

sparsity of 2d that admits a decoder that runs in quasi-linear

time O(m log2 m) and O(log2 m) parallel steps and corrects

up to Ω(n1−δ) errors where δ = (c− 1)/(d− α− 1).

8Recall that an [m, k]-code is a linear code with codewords of length m
and information words of length k, and an [m, k,Δ]-code has, in addition,
an absolute distance of Δ.

9The status of existing explicit/negligible-error constructions is the same
as the status of unbalanced expanders. In fact, any [m,m−n, t] LDPC with
sparsity md implies an (n,m)-hypergraph with average rank of d such that
any set of t hyperedges has some “odd-expansion” property. We do not have
better ways to construct such expanders compared to standard expanders.
The situation is similar for all the applications discussed in this paper. That
is, unbalanced constant-degree hypergraphs with some expansion property
for polynomial-size subsets of hyperedges are also necessary for all these
applications, and accordingly so far we had no explicit or negligible-error
constructions.
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2) Polynomial-Stretch Locally-Computable PRGs: A

cryptographic pseudorandom generator stretches a short ran-

dom n-bit seed into a longer m-bit pseudorandom string that

is computationally indistinguishable from a truly random

string. We say that a PRG is locally-computable if each of

its output bits depends on at most d = O(1) input bits.

Locally-computable PRGs were extensively studied in the

past two decades. In particular, locally-computable PRGs

that polynomially stretch their input (i.e., m = nc for

c > 1) have shown to have remarkable applications. This

includes secure-computation with constant computational

overhead [8], [27] and general-purpose obfuscation based

on constant-degree multilinear maps (cf. [30], [31]).

Unfortunately, constructing locally-computable PRGs

with polynomial-stretch turns out to be a challenging task.

Indeed, while there are good constructions of local PRGs

with sub-linear stretch m = n + o(n) [10], and even

linear stretch m = n + Ω(n) [4], [6], [11] under standard

assumptions, we currently have only partial solutions to

the polynomial-stretch regime. In particular, in [4] the first

author constructed a locally-computable polynomial-stretch

weak-PRG. Here weak means that the distinguishing advan-

tage ε of any polynomial-time adversary is upper-bounded

by some fixed inverse polynomial 1/poly(n), whereas the

standard cryptographic definition requires a negligible dis-

tinguishing advantage of n−ω(1). The construction of [4] is

based on the one-wayness of random local functions with

polynomially-long output length – a variant of Goldreich’s

one-wayness assumption [20].

We show that our negligible-error construction of ex-

panders can be used to upgrade any weak-PRG into standard

PRG while preserving constant locality and polynomial

stretch.

Theorem 2.12: For every constants d ∈ N, a > 0 and

c, c′ > 1 there exists a constant d′ for which the following

holds. Any ensemble of d-local PRGs that stretches n bits

to nc bits and achieves indistinguishability parameter of

ε = 1/na can be converted into an ensemble of d′-local

(standard) PRGs that stretches n bits to nc′ bits.

The term ensemble here means that, given 1n, we can sample

in polynomial-time a circuit that implements a locally com-

putable function f from n-bits to m bits so that except with

negligible probability f is a PRG. This use of ensembles is

standard in the context of parallel cryptography and typically

has at most a minor effect on the applications.

Combined with the weak-PRG of [4], Theorem 2.12

yields the first construction of local PRG with polynomial

stretch based on a one-wayness assumption, resolving an

important open question in the theory of parallel cryptogra-

phy [4], [10], [27], [34]. We mention that there is a second

heuristic approach for constructing such pseudorandom gen-

erators, due to [27] (see also [13], [34] and the survey [5]).

This approach also requires the existence of explicit (or

negligible-error) construction of highly-unbalanced constant

degree expanders, and one can instantiate it using our

constructions as well. In fact, it is known that such expanders

are necessary for any construction of locally-computable

PRG with large-stretch [11].10 Theorem 2.12 shows that, up

to some extent, such expanders are also sufficient for this

task.

III. TECHNICAL OVERVIEW

We briefly sketch some of the main techniques.

A. Sampler/Tester for H-free hypergraphs

We present a k-wise independent distribution over

(n,m, d) hypergraphs that admits efficient subgraph-testing

for hypergraphs of size t = O( log log logn
log log log logn ) (as in Theo-

rem 2.1). For simplicity let us focus on the case of directed

graphs (d = 2). Let us further assume that the number of

vertices n is prime, and that the number of edges m is an

integer power of n, i.e., m = nc for some integer c ≥ 1.

We identify every vertex with an element of the field F =
GF(n), and index the edges with c-tuples of elements of F.

We sample the graph by uniformly sampling a pair (A,B)
of c-variate polynomials over F of total degree k. For every

tuple h = (h1, . . . , hc) ∈ F
c, we define the h-th edge to be

(A(h), B(h)). That is, h leaves the source vertex A(h) and

enters the target vertex B(h).
It is not hard to show that every set of k edges are

uniformly distributed. (This follows by a simple extension of

the well-known fact that random degree-k univariate poly-

nomials are k-wise independent.) We reduce the problem of

subgraph testing to the following polynomial satisfiability

problem: Check whether a system of O(t) polynomial

equations of degree D = O(k + t) and O(t) variables

over the field F has a solution. The latter problem can be

solved by an algorithm of Kayal [28, Theorem 6.1.1] in

time poly(DtO(t)

t log |F|) which is polynomial in n for our

choice of parameters.11

We describe a simplified version of the reduction for

the special case of detecting a directed rectangle (4-cycle).

First observe that any sequence of edges indexed by

x1, x2, x3, x4 ∈ F
c that form a rectangle must satisfy the

system L1 of equations

B(X1) = A(X2), B(X2) = A(X3),

B(X3) = A(X4), B(X4) = A(X1),

10Indeed, prior works on expander-based cryptography (cf. [3], [4], [8],
[13], [20], [27], [30], [31]) assumed, either explicitly or implicitly, the
existence of explicit constant-degree unbalanced vertex-expander, or at least
that such expanders can be sampled efficiently with negligible error, even
though it was unknown how to do so, cf. [27, Remark 5.7]).

11On a high-level, Kayal’s algorithm decomposes the algebraic closed
set X , defined by the input polynomials, into closed sets Xi, such that
each Xi is birational to a hypersurface Yi. If some Yi has an absolutely
irreducible Fq-factor, then by Weil’s theorem there exist rational points
in Yi, and by the birational correspondence also in Xi, so the algorithm
outputs “yes”. Otherwise, if Xi contains a rational point it has to lie on a
closed proper subset of Xi. The subset is computed and the algorithm is
applied on it recursively. See [28] for full details.
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where the formal variables X1, X2, X3 and X4 correspond

to indices of edges and so they take values from F
c.

However, a moment of inspection suggests that the system

L1 can be also solved by a 2-cycle: Assign the first edge to

X1 and X3 and the second edge to X2 and X4. We therefore

need a mechanism for excluding solutions that assign the

same value to different variables. Fortunately, this can be

achieved by introducing few more auxiliary variables and

few more low-degree equations.

In particular, we add four new variables Y =
(Y0, Y1, Y2, Y3) which take values from F

c and define a new

system L2 of four equations

3∑

j=0

YjX
j
1 = 1,

3∑

j=0

YjX
j
2 = 2,

3∑

j=0

YjX
j
3 = 3,

3∑

j=0

YjX
j
4 = 4,

where arithmetic is over the extension field GF(nc) and

1,2,3,4 represent four distinct constants from this field.

Observe that the variables Y define a degree-3 univariate

polynomial PY (·), and the system is satisfiable if this poly-

nomial evaluates to i over the input Xi. Clearly, any solution

to L1 that assigns non-distinct values to the X variables

violates L2. On the other hand, any solution to L1 that

assigns distinct values to the X variables can be extended

by an assignment to Y in a way that satisfies L2. (Such

an assignment can be found via polynomial interpolation).

Hence, by combining L2 with L1 we get a new system that

excludes solutions in which the same edge is being used

twice.

To complete the reduction one has to deal with few

additional minor technicalities. Firstly, the system L1 is over

the field F = GF(n) whereas the second system is over

the extension field GF(nc). This is solved by projecting

down the second system to the base field, and checking the

satisfiability of the combined system over F. Secondly, an

additional distinctness gadget should be used to further force

distinct vertices. (Otherwise, a system for detecting a 4-path

will be fooled by a 4-cycle.)

The construction extends to d-uniform hypergraphs in

a straightforward way (use d polynomials instead of 2),

and to the case of non-integral log-density c = logn m
by working over appropriate extension fields. (See full

version of this paper [12] for full details.) Finally, observe

that the sampled graph has a succinct representation: An

edge query can be implemented by evaluating a low-degree

polynomial. Moreover, for polylogarithmic k and constant t,
the polynomial-satisfiability algorithm can be implemented

in polylogarithmic time, and so we get a succinct version of

the theorem.

B. Expanding the Expansion: From Small-Sets to Large Sets

Theorem 2.8 converts a zero-error construction of

(n,m, d)-hypergraphs G1 with (α, t)-expansion for small

threshold t = O( log log logn
log log log logn ) into a negligible-error con-

struction of (α, T )-expander with polynomial threshold of

T = n1−δ . The proof is based on two observations.

First, suppose that, in addition to G1, we are given

an (n,m, d)-hypergraph G2 with the property that any

“medium-size” set S of hyperedges t ≤ |S| ≤ T expands

by a factor of α. Then, we can combine G1 and G2 into a

single (n,m, 2d)-hypergraph G by letting the i-th hyperedge

of G be the union of the i-th hyperedge of G1 and G2.

(Both hyperedges should be viewed as d-size multisets over

[n].) Every hyperedge set S of size at most T now expands

by a factor of α, either due to the expansion of G1 (when

|S| ≤ t) or due to the expansion of G2 (when t < |S| ≤ T ).

As a result, the expansion factor remains unchanged, but the

overall degree doubles.

The second observation is that a random (n,m, d)-
hypergraph forms a negligible-error construction of medium-

size expanders. Indeed, in our regime of parameters, the

probability that a random (n,m, d)-hypergraph contains an

s-tuple of hyperedges that violate expansion (touch less

than αs vertices) is n−Ω(s) which is negligible when s ≥
t > ω(1). (The constants in the big-Omega depend on

d, c = logn m and the exponent of the expansion thresh-

old logn T .) Indeed, the only reason for which a random

(n,m, d)-hypergraph does not qualify as a negligible-error

expander is the existence of small non-expanding sets which

appear with noticeable probability.

Unique-expansion: Unique-expansion is achieved via

a similar approach except that the merging procedure is

slightly different. As before we merge a pair of (n,m, d)-
hypergraphs G1 and G2 into a single hypergraph G by

defining the i-hyperedge of G to be the union of the i-
th hyperedge of G1 and G2. However, now we treat the

vertices of G1 and the vertices of G2 as distinct sets. (E.g.,

the vertices of G1 are indexed from 1 to n and the vertices

of G2 are indexed by n + 1 to 2n.) As a result, G is a

(2n,m, 2d)-hypergraph. It is not hard to verify that if G1 is

a (β, t) unique-expander and G2 expands by β for sets of

size t < s ≤ T , then G is a (β, T ) unique-expander.

Coding perspective: Recall that unbalanced hyper-

graphs can be viewed as parity-check matrices of error-

correcting codes where t-weight codewords correspond to

“bad” t-size subgraphs (that violate unique expansion).

Using this terminology the above transformation defines a

code by taking the intersection of the code G1 (that has

no nontrivial codewords of weight smaller than t) with the

code G2 (that has no codewords of weight s ∈ [t, T ]). The

efficient decoding algorithm, presented in the full version of

this paper [12], further exploits this view, and shows that,

in our setting, a noisy codeword of the intersection code
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G can be decoded by combining the decoders of G1 and

G2. In particular, the G2 decoder “reduces” the number of

noisy coordinates from T to (roughly) t, and the G1 decoder

further reduces the noise from t to zero.

C. Local Hardness Amplification: From weak-PRGs to
strong-PRGs

Theorem 2.12 converts a weak-PRG g : {0, 1}n →
{0, 1}m into a standard PRG while preserving polynomial

stretch and constant locality. Such hardness amplification

theorems are typically based on a direct sum construction:

Apply g on 	 independent copies of the seed and XOR the

results. By Yao’s XOR-lemma (cf. [22]), if we start with an

inverse polynomial indistinguishability, it suffices to take a

super-constant number of copies 	 = ω(1). Unfortunately,

this leads to a super-constant growth in the locality. We

therefore take a different approach based on randomness

extractors.
We generate polynomially-many pseudorandom strings

(using independent seeds) and place them as rows of a

k × m matrix. Since the rows are independent and the

indistinguishability parameter is a small inverse polynomial,

one can guarantee that each column has an almost full

pseudo-entropy of k − 1/poly(k). Finally, we extract the

randomness from each column using randomness extractor.

This approach was used by [4] (following a more general

transformation from [24]) to obtain a linear-stretch local-

PRG.
The success of this approach depends, however, on the

existence of a suitable locally-computable randomness ex-

tractor. The extractor should take a k-bit source with an

almost-full entropy of k − 1/poly(k) and a polynomially-

short random seed of length k1−ε and output an almost-

uniform k-bit string with negligible statistical error. The

main new observation is that such extractors exist, and

a negligible-error construction can be achieved based on

negligible-error construction of highly-unbalanced constant-

degree expanders. (Similar connections between expanders

and locally-computable extractors were established, for a

different regime of parameters, in related contexts [4], [11]).

See full version of this paper [12] for more details.
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