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Abstract—We develop theory for using heuristics to
solve computationally hard problems in differential
privacy. Heuristic approaches have enjoyed tremen-
dous success in machine learning, for which perfor-
mance can be empirically evaluated. However, privacy
guarantees cannot be evaluated empirically, and must
be proven — without making heuristic assumptions.
We show that learning problems over broad classes
of functions — those that have polynomially sized
universal identification sets — can be solved privately
and efficiently, assuming the existence of a non-
private oracle for solving the same problem. Our first
algorithm yields a privacy guarantee that is contingent
on the correctness of the oracle. We then give a
reduction which applies to a class of heuristics which
we call certifiable, which allows us to convert oracle-
dependent privacy guarantees to worst-case privacy
guarantee that hold even when the heuristic standing
in for the oracle might fail in adversarial ways. Finally,
we consider classes of functions for which both they
and their dual classes have small universal identi-
fication sets. This includes most classes of simple
boolean functions studied in the PAC learning liter-
ature, including conjunctions, disjunctions, parities,
and discrete halfspaces. We show that there is an
efficient algorithm for privately constructing synthetic
data for any such class, given a non-private learning
oracle. This in particular gives the first oracle-efficient
algorithm for privately generating synthetic data for
contingency tables. The most intriguing question left
open by our work is whether or not every problem that
can be solved differentially privately can be privately
solved with an oracle-efficient algorithm. While we
do not resolve this, we give a barrier result that
suggests that any generic oracle-efficient reduction
must fall outside of a natural class of algorithms
(which includes the algorithms given in this paper).

Keywords-differential privacy; oracle-efficiency;
synthetic data;

Throughout when we refer to the Appendix, we

mean the Appendix of the full version of the paper,

hosted here: https://arxiv.org/abs/1811.07765.

I. Introduction

Differential privacy is compatible with a tremen-

dous number of powerful data analysis tasks, in-

cluding essentially any statistical learning problem

[KLN+11, CMS11, BST14] and the generation of

synthetic data consistent with exponentially large

families of statistics [BLR13, RR10, HR10, GRU12,

NTZ13]. Unfortunately, it is also beset with a com-

prehensive set of computational hardness results.

Of course, it inherits all of the computational

hardness results from the (non-private) agnostic

learning literature: for example, even the simplest

learning tasks — like finding the best conjunc-

tion or linear separator to approximately minimize

classification error — are hard [FGKP09, FGRW12,

DOSW11]. In addition, tasks that are easy absent

privacy constraints can become hard when these

constraints are added. For example, although in-

formation theoretically, it is possible to privately

construct synthetic data consistent with all d-way

marginals for d-dimensional data, privately con-

structing synthetic data for even 2-way marginals

is computationally hard [UV10]. These hardness

results extend even to providing numeric answers

to more than quadratically many statistical queries

[Ull16].

How should we proceed in the face of pervasive

computational hardness? We might take inspira-

tion from machine learning, which has not been

slowed, despite the fact that its most basic prob-
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lems (e.g. learning linear separators) are already

hard even to approximate. Instead, the field has

employed heuristics with tremendous success —

including exact optimization of convex surrogate

loss functions (as in the case of SVMs), decision

tree heuristics, gradient based methods for dif-

ferentiable but non-convex problems (as in back-

propogation for training neural networks), and

integer programming solvers (as in recent work

on interpretable machine learning [UR16]). Other

fields such as operations research similarly have

developed sophisticated heuristics including inte-

ger program solvers and SAT solvers that are able

to routinely solve problems that are hard in the

worst case.

The case of private data analysis is different,
however. If we are only concerned with perfor-

mance (as is the case for most machine learning

and combinatorial optimization tasks), we have the

freedom to try different heuristics, and evaluate

our algorithms in practice. Thus the design of

heuristics that perform well in practice can be

undertaken as an empirical science. In contrast,

differential privacy is an inherently worst-case

guarantee that cannot be evaluated empirically

(see [GM18] for lower bounds for black-box testing

of privacy definitions).

In this paper, we build a theory for how to

employ non-private heuristics (of which there are

many, benefitting from many years of intense opti-

mization) to solve computationally hard problems

in differential privacy. Our goal is to guide the

design of practical algorithms about which we can

still prove theorems:

1) We will aim to prove accuracy theorems un-

der the assumption that our heuristics solve

some non-private problem optimally. We are

happy to make this assumption when prov-

ing our accuracy theorems, because accuracy

is something that can be empirically evalu-

ated on the datasets that we are interested

in. An assumption like this is also neces-

sary, because we are designing algorithms for

problems that are computationally hard in

the worst case. However:

2) We aim to prove that our algorithms are

differentially private in the worst case, even

under the assumption that our heuristics

might fail in an adversarial manner.

A. Overview of Our Results

Informally, we give a collection of results show-

ing the existence of oracle-efficient algorithms for

privately solving learning and synthetic data gen-

eration problems defined by discrete classes of

functions Q that have a special (but common)

combinatorial structure. One might initially ask

whether it is possible to give a direct reduction

from a non-private but efficient algorithm for

solving a learning problem to an efficient private

algorithm for solving the same learning problem

without requiring any special structure at all. How-

ever, this is impossible, because there are classes

of functions (namely those that have finite VC-

dimension but infinite Littlestone dimension) that

are known to be learnable absent the constraint

of privacy, but are not privately learnable in an

information-theoretic sense [BNSV15, ALMM18].

The main question we leave open is whether being

information theoretically learnable under the con-

straint of differential privacy is sufficient for oracle-

efficient private learning. We give a barrier result

suggesting that it might not be.

Before we summarize our results in more detail,

we give some informal definitions.

1) Definitions: We begin by defining the kinds of

oracles that we will work with, and end-goals that

we will aim for. We will assume the existence of

oracles for (non-privately) solving learning prob-

lems: for example, an oracle which can solve the

empirical risk minimization problem for discrete

linear threshold functions. Because ultimately or-

acles will be implemented using heuristics, we

consider two types of oracles:

1) Certifiable heuristic oracles might fail, but

when they succeed, they come with a cer-

tificate of success. Many heuristics for solv-

ing integer programs are certifiable, includ-

ing cutting planes methods and branch and

bound methods. SAT Solvers (and any other

heuristic for solving a decision problem in

NP) are also certifiable.

2) On the other had, some heuristics are non-

certifiable. These heuristics might produce in-

correct answers, without any indication that

they have failed. Support vector machines

and logistic regression are examples of non-

certifiable heuristic oracles for learning lin-

ear threshold functions.

We define an oracle-efficient non-robustly differen-
tially private algorithm to be an algorithm that
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runs in polynomial time in all relevant parame-

ters given access to an oracle for some problem,

and has an accuracy guarantee and a differential
privacy guarantee which may both be contingent

on the guarantees of the oracle — i.e. if the oracle

is replaced with a heuristic, the algorithm may

no longer be differentially private. Although in

certain situations (e.g when we have very high

confidence that our heuristics actually do succeed

on all instances we will ever encounter) it might

be acceptable to have a privacy guarantee that is

contingent on having an infallible oracle, we would

much prefer a privacy guarantee that held in the

worst case. We say that an oracle-efficient algo-

rithm is robustly differentially private if its privacy

guarantee is not contingent on the behavior of the

oracle, and holds in the worst case, even if an

adversary is in control of the heuristic that stands

in for our oracle.

2) Learning and Optimization: Our first result is

a reduction from efficient non-private learning to

efficient private learning over any class of func-

tions Q that has a small universal identification

set [GKS93]. A universal identification set of size

m is a set of m examples such that the labelling

of these examples by a function q ∈ Q is enough

to uniquely identify q. Equivalently, a universal

identification set can be viewed as a separator set

[SKS16]: for any pair of functions q � q′ ∈ Q,
there must be some example x in the universal

identification set such that q(x) � q(x′). We will

use these terms interchangeably throughout the

paper. We show that if Q has a universal identi-

fication set of size m, then given an oracle which

solves the empirical risk minimization problem

(non-privately) over Q, there is an ε-differentially
private algorithm with additional running time

scaling linearly with m and error scaling linearly

with m2/ε that solves the private empirical risk

minimization problem over Q. The error can be im-

proved to O(m1.5
√
log1/δ/ε), while satisfying (ε,δ)-

differential privacy. Many well studied discrete

concept classes Q from the PAC learning litera-

ture have small universal identification sets. For

example, in d dimensions, boolean conjunctions,

disjunctions, parities, and halfspaces defined over

the hypercube have universal identification sets of

size d. This means that for these classes, our oracle-

efficient algorithm has error that is larger than the

generic optimal (and computationally inefficient)

learner from [KLN+11] by a factor of O(
√
d). Other

classes of functions also have small universal iden-

tification sets — for example, decision lists have

universal identification sets of size d2.
The reduction described above has the disad-

vantage that not only its accuracy guarantees —

but also its proof of privacy — depend on the

oracle correctly solving the empirical risk min-

imization problem it is given; it is non-robustly

differentially private. This shortcoming motivates

our main technical result: a generic reduction that

takes as input any oracle-efficient non-robustly

differentially private algorithm (i.e. an algorithm

whose privacy proof might depend on the proper

functioning of the oracle) and produces an oracle-

efficient robustly differentially private algorithm,

whenever the oracle is implemented with a certifiable

heuristic. As discussed above, this class of heuris-

tics includes the integer programming algorithms

used in most commercial solvers. In combination

with our first result, we obtain robustly differen-
tially private oracle-efficient learning algorithms

for conjunctions, disjunctions, discrete halfspaces,

and any other class of functions with a small

universal identification set.

3) Synthetic Data Generation: We then proceed

to the task of constructing synthetic data consis-

tent with a class of queries Q. Following [HRU13,

GGAH+14], we view the task of synthetic data

generation as the process of computing an equi-

librium of a particular zero sum game played

between a data player and a query player. In order

to compute this equilibrium, we need to be able

to instantiate two objects in an oracle-efficient

manner:

1) a private learning algorithm for Q (this corre-

sponds to solving the best response problem

for the “query player”), and

2) a no-regret learning algorithm for a dual class

of functions Qdual that results from swapping

the role of the data element and the query

function (this allows the “data player” to ob-

tain a diminishing regret bound in simulated

play of the game).

The no-regret learning algorithm need not be

differentially private. From our earlier results,

we are able to construct an oracle-efficient ro-

bustly differentially private learning algorithm for

Q whenever it has a small universal identification

set. On the other hand, Syrgkanis et al. [SKS16]

show how to obtain an oracle-efficient no regret

learning algorithm for a class of functions under
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the same condition. Hence, we obtain an oracle-

efficient robustly differentially private synthetic

data generation algorithm for any class of func-

tions Q for which both Q and Qdual have small

universal identification sets. Fortunately, this is

the case for many interesting classes of functions,

including boolean disjunctions, conjunctions, dis-

crete halfspaces, and parity functions. The result

is that we obtain oracle-efficient algorithms for

generating private synthetic data for all of these

classes. We note that the oracle used by the data

player need not be certifiable.
4) A Barrier Result: Finally, we exhibit a bar-

rier to giving oracle-efficient private learning algo-

rithms for all classes of functions Q known to be

privately learnable. We identify a class of private

learning algorithms called perturbed empirical risk

minimizers (pERMs) which output the query that

exactly minimizes some perturbation of their em-

pirical risk on the dataset. This class of algorithms

includes the ones we give in this paper, as well

as many other differentially private learning algo-

rithms, including the exponential mechanism and

report-noisy-min. We show that any private pERM

can be efficiently used as a no-regret learning

algorithm with regret guarantees that depend on

the scale of the perturbations it uses. This allows

us to reduce to a lower bound on the running time

of oracle-efficient online learning algorithms due

to Hazan and Koren [HK16]. The result is that

there exist finite classes of queries Q such that

any oracle-efficient differentially private pERM

algorithm must introduce perturbations that are

polynomially large in the size of |Q|, whereas any

such class is information-theoretically privately

learnable with error that scales only with log |Q|.
The barrier implies that if oracle-efficient dif-

ferentially private learning algorithms are as pow-

erful as inefficient differentially private learning

algorithms, then these general oracle efficient pri-

vate algorithms must not be perturbed empirical

risk minimizers. We conjecture that the set of

problems solvable by oracle-efficient differentially
private learners is strictly smaller than the set of

problems solvable information theoretically under

the constraint of differential privacy, but leave this

as our main open question.

B. Additional Related Work

Conceptually, the most closely related piece of

work is the “DualQuery” algorithm of [GGAH+14],

which in the terminology of our paper is a robustly

private oracle-efficient algorithm for generating

synthetic data for k-way marginals for constant

k. The main idea in [GGAH+14] is to formulate

the private optimization problem that needs to be

solved so that the only computationally hard task

is one that does not depend on private data. There

are other algorithms that can straightforwardly

be put into this framework, like the projection

algorithm from [NTZ13]. This approach immedi-

ately makes the privacy guarantees independent

of the correctness of the oracle, but significantly

limits the algorithm design space. In particular,

the DualQuery algorithm (and the oracle-efficient

version of the projection algorithm from [NTZ13])

has running time that is proportional to |Q|, and
so can only handle polynomially sized classes of

queries (which is why k needs to be held constant).

The main contribution of our paper is to be able to

handle private optimization problems in which the

hard computational step is not independent of the

private data. This is significantly more challeng-

ing, and is what allows us to give oracle-efficient

robustly private algorithms for constructing syn-

thetic data for exponentially large families Q. It is
also what lets give oracle-efficient private learning

algorithms over exponentially large Q for the first

time.

A recent line of work starting with the “PATE”

algorithm [PAE+16] together with more recent the-

oretical analyses of similar algorithms by Dwork

and Feldman, and Bassily, Thakkar, and Thakurta

[DF18, BTT18] can be viewed as giving oracle-

efficient algorithms for an easier learning task,

in which the goal is to produce a finite number

of private predictions rather than privately out-

put the model that makes the predictions. These

can be turned into oracle efficient algorithms for

outputting a private model under the assumption

that the mechanism has access to an additional

source of unlabeled data drawn from the same

distribution as the private data, but that does not

need privacy protections. In this setting, there is

no need to take advantage of any special structure

of the hypothesis class Q, because the information

theoretic lower bounds on private learning proven

in [BNSV15, ALMM18] do not apply. In contrast,

our results apply without the need for an auxiliary

source of non-private data.

Privately producing contingency tables, and syn-

thetic data that encode them — i.e. the answers

to statistical queries defined by conjunctions of
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features — has been a key challenge problem in

differential privacy at least since [BCD+07]. Since

then, a number of algorithms and hardness re-

sults have been given [UV10, GHRU13, KRSU10,

TUV12, HRS12, FK14, CTUW14]. This paper gives

the first oracle-efficient algorithm for generating

synthetic data consistent with a full contingency

table, and the first oracle-efficient algorithm for

answering arbitrary conjunctions to near optimal

error.
Technically, our work is inspired by Syrgkanis

et al. [SKS16] who show how a small separator

set (equivalently a small universal identification

set) can be used to derive oracle-efficient no-regret

algorithms in the contextual bandit setting. The

small separator property has found other uses in

online learning, including in the oracle-efficient

construction of nearly revenue optimal auctions

[DHL+17]. Hazan and Koren [HK16] show lower

bounds for oracle-efficient no-regret learning algo-

rithms in the experts setting, which forms the basis

of our barrier result. More generally, there is a rich

literature studying oracle-efficient algorithms in

machine learning [BDH+05, BBB+08, BILM16] and

optimization [BTHKM15] as a means of dealing

with worst-case hardness, and more recently, for

machine learning subject to fairness constraints

[ABD+18, KNRW18, AIK18].
We also make crucial use of a property of

differentially private algorithms, first shown by

[CLN+16]: That when differentially private algo-

rithms are run on databases of size n with privacy

parameter ε ≈ 1/
√
n, then they have similar output

distributions when run on datasets that are sam-

pled from the same distribution, rather than just on

neighboring datasets. In [CLN+16], this was used

as a tool to show the existence of robustly gener-

alizing algorithms (also known as distributionally

private algorithms in [BLR13]). We prove a new

variant of this fact that holds when the datasets

are not sampled i.i.d. and use it for the first time

in an analysis to prove differential privacy. The

technique might be of independent interest.

II. Preliminaries

A. Differential Privacy Tools

Let X denote a d-dimensional data domain (e.g.

R
d or {0,1}d ). We write n to denote the size of a

dataset S . We call two data sets S,S ′ ∈ X n neighbors

(written as S ∼ S ′) if S can be derived from S ′
by replacing a single data point with some other

element of X .

Definition 1 (Differential Privacy [DMNS06,

DKM+06]). Fix ε,δ ≥ 0. A randomized algorithm

A : X ∗ → O is (ε,δ)-differentially private if for every

pair of neighboring data sets S ∼ S ′ ∈ X ∗, and for

every event Ω ⊆ O:
Pr[A(S) ∈Ω] ≤ exp(ε)Pr[A(S ′) ∈Ω] + δ.

Differentially private computations enjoy two

nice properties:

Theorem 1 (Post Processing [DMNS06, DKM+06]).

Let A : X ∗ → O be any (ε,δ)-differentially private

algorithm, and let f : O → O′ be any function.

Then the algorithm f ◦ A : X ∗ → O′ is also (ε,δ)-
differentially private.

Post-processing implies that, for example, every

decision process based on the output of a dif-

ferentially private algorithm is also differentially
private.

Theorem 2 (Basic Composition [DMNS06,

DKM+06]). Let A1 : X ∗ → O, A2 : O × X ∗ → O′
be such that A1 is (ε1,δ1)-differentially private,

and A2(o, ·) is (ε2,δ2)-differentially private for every

o ∈ O. Then the algorithm A : X ∗ → O′ defined as

A(x) = A2(A1(x),x) is (ε1 + ε2,δ1 + δ2)-differentially
private.

The Laplace distribution plays a fundamental

role in differential privacy. The Laplace Distribu-

tion centered at 0 with scale b is the distribution

with probability density function Lap(z|b) = 1
2b e

− |z|
b .

We write X ∼ Lap(b) when X is a random variable

drawn from a Laplace distribution with scale b. Let
f : X n → R

k be an arbitrary function. The �1 sensi-

tivity of f is defined to be Δ1(f ) = maxS∼S ′ ‖f (S)−
f (S ′)‖1. The Laplace mechanism with parameter

ε simply adds noise drawn independently from

Lap(
Δ1(f )
ε ) to each coordinate of f (S).

Theorem 3 ([DMNS06]). The Laplace mechanism is

ε-differentially private.

B. Statistical Queries and Separator Sets

We study learning (optimization) and synthetic

data generation problems for statistical queries

defined over a data universe X . A statistical query

over X is a function q : X → {0,1}. A statistical

query can represent, e.g. any binary classification

model or the binary loss function that it induces.

Given a dataset S ∈ X n, the value of a statistical

query q on S is defined to be q(S) = 1
n

n∑
i=1

q(Si ).
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In this paper, we will generally think about query

classes Q that represent standard hypothesis classes

from learning theory – like conjunctions, disjunc-

tions, halfspaces, etc.

In this paper, we will make crucial use of uni-

versal identification sets for classes of statistical

queries. Universal identification sets are equivalent

to separator sets, defined (in a slightly more general

form) in [SKS16].

Definition 2 ([GKS93, SKS16]). A set U ⊆ X is a

universal identification set or separator set for a

class of statistical queries Q if for every pair of distinct

queries q,q′ ∈ Q, there is an x ∈U such that:

q(x) � q(x′)

If |U | =m, then we say that Q has a separator set of

size m.

Many classes of statistical queries defined over

the boolean hypercube have separator sets of size

proportional to their VC-dimension. For example,

boolean conjunctions, disjunctions, halfspaces de-

fined over the hypercube, and parity functions in d
dimensions all have separator sets of size d. When

we solve learning problems over these classes, we

will be interested in the set of queries that define

the 0/1 loss function over these classes: but as

we observe in Appendix A, if a hypothesis class

has a separator set of size m, then so does the

class of queries representing the empirical loss for

functions in that hypothesis class.

C. Learning and Synthetic Data Generation

We study private learning as empirical risk min-

imization (the connection between in-sample risk

and out-of-sample risk is standard, and follows

from e.g. VC-dimension bounds [KV94] or di-

rectly from differential privacy (see e.g. [BST14,

DFH+15])). Such problems can be cast as finding a

function q in a class Q that minimizes q(S), subject
to differential privacy (observe that the empirical

risk of a hypothesis is a statistical query — see

Appendix A). We will therefore study minimiza-

tion problems over classes of statistical queries

generally:

Definition 3. We say that a randomized algorithm

M : X n →Q is an (α,β)-minimizer for Q if for every

dataset S ∈ X n, with probability 1 − β, it outputs

M(S) = q such that:

q(S) ≤ argmin
q∗∈Q q

∗(S) +α

Synthetic data generation, on the other hand,

is the problem of constructing a new dataset Ŝ
that approximately agrees with the original dataset

with respect to a fixed set of statistical queries:

Definition 4. We say that a randomized algorithm

M : X n → X∗ is an (α,β)-accurate synthetic data

generation algorithm for Q if for every dataset S ∈ X n,

with probability 1−β, it outputs M(S) = Ŝ such that

for all q ∈ Q:
|q(S)− q(Ŝ)| ≤ α

D. Oracles and Oracle Efficient Algorithms

We discuss several kinds of oracle-efficient al-

gorithms in this paper. It will be useful for us to

study oracles that solve weighted generalizations

of the minimization problem, in which each dat-

apoint xi ∈ S is paired with a real-valued weight

wi . In the literature on oracle-efficiency in ma-

chine learning, these are widely employed, and

are known as cost-sensitive classification oracles. Via

a simple translation and re-weighting argument,

they are no more powerful than unweighted mini-

mization oracles, but are more convenient to work

with.

Definition 5. A weighted optimization oracle for a

class of statistical queries Q is a function O∗ : (X ×
R)∗ → Q takes as input a weighted dataset WD ∈
(X ×R)∗ and outputs a query q = O∗(WD) such that

q ∈ argmin
q∗∈Q

∑
(xi ,wi )∈WD

wiq
∗(xi ).

In this paper, we will study algorithms that have

access to weighted optimization oracles for learn-

ing problems that are computationally hard. Since

we do not believe that such oracles have worst-

case polynomial time implementations, in practice,

we will instantiate such oracles with heuristics

that are not guaranteed to succeed. There are two

failure modes for a heuristic: it can fail to produce

an output at all, or it can output an incorrect

query. The distinction can be important. We call a

heuristic that might fail to produce an output, but

never outputs an incorrect solution a certifiable

heuristic optimization oracle:

Definition 6. A certifiable heuristic optimization

oracle for a class of queries Q is a polynomial time

algorithm O : (X ×R)∗ → (Q∪⊥) that takes as input
a weighted dataset WD ∈ (X ×R)∗ and either outputs

O(WD) = q ∈ argminq∗∈Q
∑

(xi ,wi )∈WD

wiq
∗(xi ) or else
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outputs ⊥ (“Fail”). If it outputs a statistical query

q, we say the oracle has succeeded.

In contrast, a heuristic optimization oracle (that

is not certifiable) has no guarantees of correctness.

Without loss of generality, such oracles never need

to return “Fail” (since they can always instead

output a default statistical query in this case).

Definition 7. A (non-certifiable) heuristic optimiza-

tion oracle for a class of queries Q is an arbitrary

polynomial time algorithm M : (X ×R)∗ → Q. Given
a call to the oracle defined by a weighted dataset

WD ∈ (X ×R)∗ we say that the oracle has succeeded

on this call up to error α if it outputs a query q such

that
∑

(xi ,wi )∈WD

wiq(xi ) ≤min
q∗∈Q

∑
(xi ,wi )∈WD

wiq
∗(xi )+α. If

it succeeds up to error 0, we just say that the heuristic

oracle has succeeded. Note that there may not be any

efficient procedure to determine whether the oracle has

succeeded up to error α.

We say an algorithm AO is (certifiable)-oracle

dependent if throughout the course of its run it

makes a series of (possibly adaptive) calls to a

(certifiable) heuristic optimization oracle O. An

oracle-dependent algorithm AO is oracle equivalent

to an algorithm A if given access to a perfect op-

timization oracle O∗, AO∗ induces the same distri-

bution on outputs as A. We now state an intuitive

lemma (that could also be taken as a more formal

definition of oracle equivalence). See the Appendix

for a proof.

Lemma 1. Let AO be a certifiable-oracle dependent

algorithm that is oracle equivalent to A. Then for any

fixed input dataset S , there exists a coupling between

A(S) and AO(S) such that Pr[AO(S) = a|AO(S) �
⊥] = Pr[A(S) = a|AO(S) �⊥].
We will also discuss differentially private heuris-

tic optimization oracles, in order to state additional

consequences of our construction in Section IV.

Note that because differential privacy precludes

exact computations, differentially private heuristic

oracles are necessarily non-certifiable, and will

never succeed up to error 0.

Definition 8. A weighted (ε,δ)-differentially private

(α,β)-accurate learning oracle for a class of statistical

queries Q is an (ε,δ) differentially private algorithm

O : (X × R)∗ → C that takes as input a weighted

dataset WD ∈ (X ×R)∗ and outputs a query qpriv ∈ Q

such that with probability 1− β:∑
(xi ,wi )∈WD

wiqpriv(xi )− argmin
q∗∈C

∑
(xi ,wi )∈WD

wiq
∗(xi ) ≤ α

We say that an algorithm is oracle-efficient if

given access to an oracle (in this paper, always

a weighted optimization oracle for a class of sta-

tistical queries) it runs in polynomial time in the

length of its input, and makes a polynomial num-

ber of calls to the oracle. In practice, we will be

interested in the performance of oracle-efficient al-

gorithms when they are instantiated with heuristic

oracles. Thus, we further require oracle-efficient

algorithms to halt in polynomial time even when

the oracle fails. When we design algorithms for op-

timization and synthetic data generation problems,

their (α,β)-accuracy guarantees will generally rely

on all queries to the oracle succeeding (possibly up

to error O(α)). If our algorithms are merely oracle

equivalent to differentially private algorithms, then

their privacy guarantees depend on the correctness

of the oracle. However, we would prefer that the

privacy guarantee of the algorithm not depend on

the success of the oracle. We call such algorithms

robustly differentially private.

Definition 9. An oracle-efficient algorithm M is

(ε,δ)-robustly differentially private if it satisfies (ε,δ)-
differential privacy even under worst-case perfor-

mance of a heuristic optimization oracle. In other

words, it is differentially private for every heuristic

oracle O that it might be instantiated with.

We write that an oracle efficient algorithm is

non-robustly differentially private to mean that

it is oracle equivalent to a differentially private

algorithm.

III. Oracle Efficient Optimization

In this section, we show how weighted opti-

mization oracles can be used to give differentially
private oracle-efficient optimization algorithms for

many classes of queries with performance that is

worse only by a
√
d factor compared to that of the

(computationally inefficient) exponential mecha-

nism. The first algorithm we give is not robustly

differentially private — that is, its differential pri-
vacy guarantee relies on having access to a perfect

oracle. We then show how to make that algorithm

(or any other algorithm that is oracle equivalent to

a differentially private algorithm) robustly differ-
entially private when instantiated with a certifiable

heuristic optimization oracle.
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A. A (Non-Robustly) Private Oracle Efficient Algo-

rithm

In this section, we give an oracle-efficient (non-

robustly) differentially private optimization algo-

rithm that works for any class of statistical queries

that has a small separator set. Intuitively, it is

attempting to implement the “Report-Noisy-Min”

algorithm (see e.g. [DR14]), which outputs the

query q that minimizes a (perturbed) estimate

q̂(S) ≡ q(S) + Zq where Zq ∼ Lap(1/ε) for each

q ∈ Q. Because Report-Noisy-Min samples an in-

dependent perturbation for each query q ∈ Q, it is
inefficient: its run time is linear in |Q|. Our algo-

rithm – “Report Separator-Perturbed Min” (RSPM)

– instead augments the dataset S in a way that im-

plicitly induces perturbations of the query values

q(S). The perturbations are no longer independent

across queries, and so to prove privacy, we need to

use the structure of a separator set.
The algorithm is straightforward: it simply aug-

ments the dataset with one copy of each element of

the separator set, each with a weight drawn inde-

pendently from the Laplace distribution. All orig-

inal elements in the dataset are assigned weight

1. The algorithm then simply passes this weighted

dataset to the weighted optimization oracle, and

outputs the resulting query. The number of ran-

dom variables that need to be sampled is therefore

now equal to the size of the separator set, instead

of the size of Q. The algorithm is closely related

to a no-regret learning algorithm given in [SKS16]

— the only difference is in the magnitude of the

noise added, and in the analysis, since we need a

substantially stronger form of stability.

Report Separator-Perturbed Min (RSPM)

Given: A separator set U = {e1, . . . , em} for a class

of statistical queries Q, a weighted optimization

oracle O∗ for Q, and a privacy parameter ε.
Input: A dataset S ∈ X n of size n.
Output: A statistical query q ∈
Q.

Sample ηi ∼ Lap(2m/ε) for i ∈ {1, . . . ,m}
Construct a weighted dataset WD of size n +m
as follows:

WD(S,η) = {(xi ,1) : xi ∈ S} ∪ {(ei ,ηi ) : ei ∈U }

Output q = O∗(WD(S,η)).

It is thus immediate that the Report Separator-

Perturbed Min algorithm is oracle-efficient when-

ever the size of the separator set m is polynomial:

it simply augments the dataset with a single copy

of each of m separator elements, makes m draws

from the Laplace distribution, and then makes a

single call to the oracle:

Theorem 4. The Report Separator-Perturbed Min

algorithm is oracle-efficient.

The accuracy analysis for the Report Separator-

Perturbed Min algorithm is also straightforward,

and follows by bounding the weighted sum of the

additional entries added to the original data set.

Theorem 5. The Report Separator-Perturbed Min

algorithm is an (α,β)-minimizer for Q for:

α =
4m2 log(m/β)

εn

Proof: Let q′ be the query returned by

RSPM, and let q∗ be the true minimizer q∗ =

argminq∈Q q∗(S). Then we show that with probabil-

ity 1−β,q′(S) ≤ q∗(S)+α. By the CDF of the Laplace

distribution and a union bound over the m random

variables ηi , we have that with probability 1− β:

∀i, |ηi | ≤ 2m log(m/β)

ε
.

Since for every query q, q(ei ) ∈ [0,1], this means

that with probability 1 − β, q′(WD) ≥ q′(S) − m ·
2m log(m/β)

εn . Similarly q∗(WD) ≤ q∗(S)+2m · m log(m/β)
εn .

Combining these bounds gives:

q′(S) ≤ q′(WD) + 2m2 log(m/β)

εn
≤

q∗(WD) + 2m2 log(m/β)

εn
≤ q∗(S) + 4m2 log(m/β)

εn

as desired, where the second inequality follows

because by definition, q′ is the true minimizer on

the weighted dataset WD.

Remark 1. We can bound the expected error

of RSPM using Theorem 5 as well. If we de-

note the error of RSPM by E, we’ve shown

that for all β, Pr

[
E ≥ 4m2 log(m/β)

εn

]
≤ β. Thus

Pr
[
εnE
4m2 − logm ≥ log(1/β)

]
≤ β for all β. Let Ẽ =

max(0, εnE
4m2 − logm). Since Ẽ is non-negative:

E

[
Ẽ
]
=

∫ ∞

0

Pr
[
Ẽ ≥ t

]
≤

∫ ∞

0

e−t = 1.

Hence
εnE[E]
4m2 − logm ≤ E

[
Ẽ
]
≤ 1, and so E [E] ≤
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4m2

εn (1 + logm).

The privacy analysis is more delicate, and relies

on the correctness of the oracle.

Theorem 6. If O∗ is a weighted optimization oracle

for Q, then the Report Separator-Perturbed Min algo-

rithm is ε-differentially private.

Proof: We begin by introducing some notation.

Given a weighted dataset WD(S,η), and a query

q ∈ Q, let q(S,η) = q(S) +
∑

ei∈U q(ei )ηi be the value

when q is evaluated on the weighted dataset given

the realization of the noise η. To allow us to dis-

tinguish queries that are output by the algorithm

on different datasets and different realizations of

the perturbations, write Q(S,η) = O∗(WD(S,η)). Fix
any q ∈ Q, and define:

E(q,S) = {η : Q(S,η) = q}
to be the event defined on the perturbations η that

the mechanism outputs query q. Given a fixed q ∈
Q we define a mapping fq(η) : R

m → R
m on noise

vectors as follows:

1) If q(ei ) = 1, fq(η)i = ηi − 2
2) If q(ei ) = 0, fq(η)i = ηi +2

Equivalently, fq(η)i = ηi +2(1− 2q(ei )).
We now make a couple of observations about the

function fq.

Lemma 2. Fix any q̂ ∈ Q and any pair of neigh-

boring datasets S,S ′ . Let η ∈ E(q̂,S) be such that

q̂ is the unique minimizer q̂ ∈ infq∈Q q(S,η). Then

fq̂(η) ∈ E(q̂,S ′). In particular, this implies that for any

such η:

�(η ∈ E(q̂,S)) ≤ �(fq̂(η) ∈ E(q̂,S ′))
Proof: For this argument, it will be convenient

to work with un-normalized versions of our queries,

so that q(S) =
∑

xi∈S q(xi ) — i.e. we do not divide

by the dataset size n. Note that this change of

normalization does not change the identity of the

minimizer. Under this normalization, the queries

q are now 1-sensitive, rather than 1/n sensitive.

Recall that Q(S,η) = q̂. Suppose for point of

contradiction that Q(S ′ , fq̂(η)) = q̃ � q̂. This in

particular implies that q̃(S ′ , fq̂(η)) ≤ q̂(S ′ , fq̂(η)).
We first observe that q̂(S ′ ,η) − q̃(S ′ ,η) < 2. This

follows because:

q̃(S ′ ,η) ≥ q̃(S,η)− 1 > q̂(S,η)− 1 ≥ q̂(S ′ ,η)− 2 (1)

Here the first inequality follows because the un-

normalized queries q are 1-sensitive, the second

follows because q̂ ∈ argminq∈Q q(S,η) is the unique

minimizer, and the last inequality follows from the

fact that S and S ′ are neighbors.

Next, we write:

q̃(S ′ , fq̂(η))−q̂(S ′ , fq̂(η)) = q̃(S ′ ,η)−q̂(S ′ ,η)+
m∑
i=1

(q̃(ei )−q̂(ei ))(fq̂(ηi )−ηi )

Consider each term in the final sum: (q̃(ei ) −
q̂(ei ))(fq̂(ηi )−ηi ). Observe that by construction, each

of these terms is non-negative: Clearly if q̃(ei ) =
q̂(ei ), then the term is 0. Further, if q̃(ei ) � q̂(ei ),
then by construction, (q̃(ei ) − q̂(ei ))(fq̂(ηi ) − ηi ) = 2.

Finally, by the definition of a separator set, we

know that there is at least one index i such that

q̃(ei ) � q̂(ei ). Thus, we can conclude:

q̃(S ′ , fq̂(η))− q̂(S ′ , fq̂(η)) ≥ q̃(S ′ ,η)− q̂(S ′ ,η) + 2 > 0

where the final inequality follows from applying

inequality (??). But rearranging, this means that

q̂(S ′ , fq̂(η)) < q̃(S ′ , fq̂(η)), which contradicts the as-

sumption that Q(S ′ , fq̂(η)) = q̃.
Let p denote the probability density function

of the joint distribution of the Laplace random

variables η, and by abuse of notation also of each

individual ηi .

Lemma 3. For any r ∈ R
m,q ∈ Q:

p(η = r) ≤ eεp(η = fq(r))

Proof: For any index i and z ∈ R, we have p(ηi =
z) = ε

4me−|z|ε/(2m). In particular, if |x − y| ≤ 2, p(ηi =
y) ≤ eε/mp(ηi = x). Since for all i and r ∈ R

m |fq(r)i−
ri | ≤ 1, we have:

p(η = fq(r))

p(η = r)
=

m∏
i=1

p(ηi = fq(r)i )

p(ηi = ri )
≤

m∏
i=1

eε/m = eε.

Lemma 4. Fix any class of queries Q that has a finite

separator set U = {e1, . . . , em}. For every dataset S there

is a subset B ⊆ R
m such that:

1) Pr[η ∈ B] = 0 and

2) On the restricted domain R
m \ B, there is a

unique minimizer q′ ∈ argminq∈Q q(S,η)

Proof: Let:

B = {η :

∣∣∣∣∣∣∣argmin
q∈Q (q(S) +

m∑
i=1

ηiq(ei ))

∣∣∣∣∣∣∣ > 1}

be the set of η values that do not result in unique

minimizers q′ .
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Because Q is a finite set1, by a union bound it

suffices to show that for any two distinct queries

q1, q2 ∈ Q,

Pr
η

⎡⎢⎢⎢⎢⎢⎣q1(S) +
m∑
i=1

ηiq1(ei ) = q2(S) +
m∑
i=1

ηiq2(ei )

⎤⎥⎥⎥⎥⎥⎦ = 0.

This follows from the continuity of the Laplace

distribution. Let i be any index such that q1(ei ) �
q2(ei ) (recall that by the definition of a separator

set, such an index is guaranteed to exist). For any

fixed realization of {ηj }j�i , there is a single value

of ηi that equalizes q1(S,η) and q2(S,η). But any

single value is realized with probability 0.

We now have enough to complete the proof. We

have for any query q̂:

Pr[RSPM(S) = q̂] = Pr[η ∈ E(q̂,S)]
=

∫
Rm

p(η)�(η ∈ E(q̂,S))dη

=

∫
Rm\B

p(η)�(η ∈ E(q̂,S))dη Lemma 9

≤
∫
Rm\B

p(η)�(fq̂(η) ∈ E(q̂,S ′))dη Lemma 9

≤
∫
Rm\B

eεp(fq̂(η))�(fq̂(η) ∈ E(q̂,S ′))dη Lemma 8

≤
∫
Rm\fq̂(B)

eεp(η)�(η ∈ E(q̂,S ′))
∣∣∣∣∣∣∂fq̂∂η

∣∣∣∣∣∣dη η → fq̂(η)

=

∫
Rm

eεp(η)�(η ∈ E(q̂,S ′))dη
∣∣∣∣∣∣∂fq̂∂η

∣∣∣∣∣∣ = 1

= eε Pr[η ∈ E(q̂,S ′)]
= eε Pr[RSPM(S ′) = q̂]

In Appendix B4, we give a somewhat more com-

plicated analysis to show that by using Gaussian

perturbations rather than Laplace perturbations, it

is possible to improve the accuracy of the RSPM al-

gorithm by a factor of
√
m, at the cost of satisfying

(ε,δ)-differential privacy:

Theorem 7. The Gaussian RSPM algorithm is (ε,δ)-
differentially private, and is an oracle-efficient (α,β)-
minimizer for any class of functions Q that has a

1Any class of queries Q with a separator set of size m can be
no larger than 2m.

universal identifications sequence of size m for:

α =O

⎛⎜⎜⎜⎜⎝m
√
m ln(m/β) ln(1/δ)

εn

⎞⎟⎟⎟⎟⎠
See Appendix B4 for the algorithm and its anal-

ysis.
It is instructive to compare the accuracy that

we can obtain with oracle-efficient algorithms to

the accuracy that can be obtained via the (inef-

ficient, and generally optimal) exponential mech-

anism based generic learner from [KLN+11]. The

existence of a universal identification set for Q of

size m implies |Q| ≤ 2m (and for many interesting

classes of queries, including conjunctions, disjunc-

tions, parities, and discrete halfspaces over the

hypercube, this is an equality — see Appendix A).

Thus, the exponential-mechanism based learner

from [KLN+11] is (α,β)-accurate for:

α =O

(
m+ log(1/β)

εn

)
.

Comparing this bound to ours, we see that we can

obtain oracle-efficiency at a cost of roughly a factor

of
√
m in our error bound. Whether or not this cost

is necessary is an interesting open question.
We can conclude that for a wide range of hy-

pothesis classes Q including boolean conjunctions,

disjunctions, decision lists, discrete halfspaces, and

several families of circuits of logarithmic depth

(see Appendix A) there is an oracle-efficient dif-

ferentially private learning algorithm that obtains

accuracy guarantees within small polynomial fac-

tors of the optimal guarantees of the (inefficient)

exponential mechanism.

B. A Robustly Differentially Private Oracle-Efficient

Algorithm

The RSPM algorithm is not robustly differen-
tially private, because its privacy proof depends

on the oracle succeeding. This is an undesirable

property for RSPM and other algorithms like it,

because we do not expect to have access to ac-

tual oracles for hard problems even if we expect

that there are certain families of problems for

which we can reliably solve typical instances2. In

this section, we show how to remedy this: we

2There may be situations in which it is acceptable to use non
robustly differentially private oracle-efficient algorithms — for
example, if the optimization oracle is so reliable that it has
never been observed to fail on the domain of interest. But robust
differential privacy provides a worst-case guarantee which is
preferable.
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give a black box reduction, starting from a (non-

robustly) differentially private algorithm AO that

is implemented using a certifiable heuristic3 oracle

O, and producing a robustly differentially private

algorithm ÃO for solving the same problem. ÃO
will be (ε,δ)-differentially private for a parameter

δ that we may choose, and will have a factor of

roughly Õ(1/δ) running time overhead on top of

AO . So if AO is oracle efficient, so is ÃO whenever

the chosen value of δ ≥ 1/poly(n). If the oracle

never fails, then we can prove utility guarantees

for it when AO has such guarantees, since it just

runs AO (using a smaller privacy parameter) on a

random sub-sample of the original dataset. But the

privacy guarantees hold even in the worst case of

the behavior of the oracle. We call this reduction

the Private Robust Subsampling Meta Algorithm or

PRSMA.

1) Intuition and Proof Outline: Before we de-

scribe the analysis of PRSMA, a couple of remarks

are helpful in order to set the stage.

1) At first blush, one might be tempted to assert

that if an oracle-efficient non-robustly dif-

ferentially private algorithm is implemented

using a certifiable heuristic oracle, then it

will sample from a differentially private dis-

tribution conditioned on the event that the

heuristic oracle doesn’t fail. But a moment’s

thought reveals that this isn’t so: the possi-

bility of failures both on the original dataset

S and on the (exponentially many) neighbor-

ing datasets S ′ can substantially change the

probabilities of arbitrary events Ω, and how

these probabilities differ between neighbor-

ing datasets.

2) Next, one might think of the following simple

candidate solution: Run the algorithm AO(S)
roughly Õ(1/δ) many times in order to check

that the failure probability of the heuristic

algorithm on S is � δ, and then output a

sample of AO(S) only if this is so. But this

doesn’t work either: the failure probability

itself will change if we replace S with a

neighboring dataset S ′ , and so this won’t

be differentially private. In fact, there is no

reason to think that the failure probability

of AO will be a low sensitivity function of S ,

3We recall that heuristics for solving integer programs (such
as cutting planes methods, branch and bound, and branch and
cut methods, as implemented in commercial solvers) and SAT
solvers are certifiable.

Private Robust Subsampling Meta Algorithm

(PRSMA)

Given: Privacy parameters ε,δ ≥ 0 and an

oracle-efficient differentially private algorithm

Aε
O : X n → M, implemented with a certifiable

heuristic oracle O.
Input: A dataset S ∈ X n of size n.
Output: An output m ∈ M or ⊥
(“Fail”).

1: Randomly partition S into K = 1
ε (1 + log(2δ ))

equally sized datasets {Si }Ki=1. (If n is not di-

visible by K , first discard n mod K elements

at random.)

2: for i = 1 . . .K do

3: Set oi = PASS
4: for t = 1 . . . log(K/δ)

δ do

5: Compute Aε′
O (Si ) = ait , where ε′ =

1√
8 n
K log(2K/δ)

6: If ait =⊥, set oi =⊥
7: end for

8: end for

9: Compute T = #{oi � ⊥}. Let T̃ = T + z, where

z ∼ Lap(1ε ).

10: Test if T̃ > 1
ε (1 + log(1δ )), if no output ⊥ and

halt. Else:

11: Sample a uniformly at random from {ait : oi �
⊥}.

12: Output a.

so there is no way to privately estimate the

failure probability to non-trivial error.

It is possible to use the subsample-and-aggregate

procedure of [NRS07] to randomly partition the

dataset into K pieces Si , and privately estimate

on how many of these pieces AO(Si ) fails with

probability � δ. The algorithm can then then fail

if this private count is not sufficiently large. In fact,

this is the first thing that PRSMA does, in lines 1-

10, setting oi = PASS for those pieces Si such that

it seems that the probability of failure is � δ, and
setting oi =⊥ for the others.

But the next step of the algorithm is to randomly

select one of the partition elements Si amongst the

set that passed the earlier test: i.e. amongst the set

such that oi � ⊥ — and return one of the outputs

a that had been produced by running AO(Si ).
It is not immediately clear why this should be

private, because which partition elements passed

the test {i : oi �⊥} is not itself differentially private.
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Showing that this results in a differentially private

output is the difficult part of the analysis.

To get an idea of the problem that we need to

overcome, consider the following situation which

our analysis must rule out: Fix a partition of the

dataset S1, . . . ,SK , and imagine that each partition

element passes: we have oi � ⊥ for all i. Now

suppose that there is some event Ω such that

Pr[AO(S1) ∈Ω] ≥ 1/2, but Pr[AO(Si ) ∈Ω] is close to

0 for all i � 1. Since K ≈ 1/ε, and the final output is

drawn from a uniformly random partition element,

this means that PRSMA outputs an element of Ω
with probability Ω(ε). Suppose that on a neigh-

boring dataset S ′ , S1 no longer passes the test and

has o1 = ⊥. Since it is no longer a candidate to be

selected at the last step, we now have that on S ′ ,
PRSMA outputs an element of Ω with probability

close to 0. This is a violation of (ε,δ)-differential
privacy for any non-trivial value of δ (i.e. δ ≤O(ε)).

The problem is that (fixing a partition of S
into S1, . . . ,SK ) moving to a neighboring dataset S ′
can potentially arbitrarily change the probability

that any single element Si survives to step 11 of

the algorithm, which can in principle change the

probability of arbitrary events Ω by an additive

±O(ε) term, rather than a multiplicative 1 ± O(ε)
factor.

Since we are guaranteed that (with high prob-

ability) if we make it to step 11 without failing,

then at least Ω(1/ε) elements Si have survived

with oi � ⊥, it would be sufficient for differential
privacy if for every event Ω, the probabilities

Pr[AO(Si ) ∈ Ω] were within a constant factor of

each other, for all i. Then a change of whether a

single partition element Si survives with oi � ⊥
or not would only add or remove an ε fraction

of the total probability mass on event Ω. While

this seems like a “differential-privacy” like prop-

erty, but it is not clear that the fact that AO∗ is

differentially private can help us here, because

the partition elements Si ,Sj are not neighboring

datasets — in fact, they are disjoint. But as we

show, it does in fact guarantee this property if we

set the privacy parameter ε′ to be sufficiently small

— to roughly O(1/
√
n/K) in step 5.

With this intuition setting the stage, the

roadmap of the proof is as follows. For notational

simplicity, we write A(·) to denote AO∗(·), the

oracle-efficient algorithm when implemented with

a perfect oracle.

1) We observe that ε-differential privacy implies

that the log-probability of any event Ω when

A(·) is run on Si changes by less than an

additive factor of ε when an element of Si is
changed. We use a method of bounded differ-
ences argument to show that this implies that

the log-probability density function concen-

trates around its expectation, where the ran-

domness is over the subsampling of Si from
S . A similar result is proven in [CLN+16]

to show that differentially private algorithms

achieve what they call “perfect generaliza-

tion.” We need to prove a generalization of

their result because in our case, the elements

of Si are not selected independently of one

another. This guides our choice of ε′ in step

5 of the algorithm.

2) We show that with high probability, for every

Si such that oi � ⊥ after step 10 of the

algorithm, AO(Si ) fails with probability at

most O(δ). By Lemma 1, this implies that it

is δ-close in total variation distance to A(Si ).
3) We observe that fixing a partition, on a

neighboring dataset, only one of the partition

elements Si changes — and hence changes its

probability of having oi �⊥. Since with high

probability, conditioned on PRSMA not fail-

ing, Ω(1/ε) partition elements survive with

oi � ⊥, parts 1 and 2 imply that changing a

single partition element Si only changes the

probability of realizing any outcome event by

a multiplicative factor of ≈ 1+ ε.

Theorem 8. PRSMA is (ε,δ) differentially private

when given as input:

1) An oracle-efficient non-robustly differentially
private algorithm AO implemented with a cer-

tifiable heuristic oracle O, and
2) Privacy parameters (ε∗,δ∗) where ε∗ = ε

62 ≤ 1
2

and δ∗ = δ
11 ≤ 1

2 .

We now turn to PRSMA’s accuracy guarantees.

Note that when PRSMA starts with an algorithm

AO∗ instantiated with a perfect oracle O∗, it with

high probability outputs the result of running AO∗
on a subsampled dataset Si of size n/K ≈ εn,
with privacy parameter ε′ = 1√

8 n
K log(2K/δ)

. In gen-

eral, therefore, the accuracy guarantees of PRSMA

depend on how robust the guarantees of A are

to subsampling, which is typical of “Subsample

and Aggregate” approaches, and also to its specific

privacy-accuracy tradeoff. Learning algorithms are

robust to sub-sampling however: below we derive
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an accuracy theorem for PRSMA when instanti-

ated with our oracle-efficient RSPM algorithm.

Theorem 9. Let Q a class of statistical queries with

a separator set of size m. Let AO∗ denote the RSPM

algorithm with access to O∗, a perfect weighted op-

timization oracle for Q. Then PRSMA instantiated

with AO∗ , run on a dataset S of size n, with input

parameters ε and δ is an (α,β)-minimizer for any

β > δ and

α ≤ Õ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
m2 log

(
m
β−δ

)
log(1/δ) +

√
log(1/δ) log

( |Q|
β−δ

)
√
nε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where the Õ hides logarithmic factors in 1

ε , log(
1
δ ).

Proof: With probability at least 1− δ, PRSMA

outputs the result of RSPM run on an n/K frac-

tion of the dataset, with privacy parameter ε′ =
1√

8 n
K log(2K/δ)

. We will condition on this event for

the remainder of the proof, which occurs except

with probability δ.

Let q∗ denote the true minimizer on S . Let SK
denote the random subsample, and let qK denote

the true minimizer on SK . By Theorem 5, we know

that for any η > 0, with probability 1−η, the error

on SK is bounded as follows:

q̂(SK )− qK (SK ) ≤ 2m2 log(m/η)

ε′ nK
We next bound maxq∈Q q(SK )− q(S), the maximum

difference between the value that any query takes

on SK compared to the value that it takes on S . By a

Chernoff bound for subsampled random variables

(see e.g. Theorem 1.2 of [BM13]), for any q ∈ Q, t >
0,

Pr[q(SK )− q(S) ≥ t] ≤ exp

(
−2 n

K
t2

)
.

By a union bound over Q, this means that with

probability 1− η,

max
q∈Q q(SK )− q(S) ≤

√
K
2n

log

(
2|Q|
η

)

We now have all the ingredients to complete the

bound:

q̂(S)− q∗(S) = [q̂(S)− q̂(SK )] + [q̂(SK )− q∗(SK )] + [q∗(SK )− q∗(S)]
≤ 2max

q∈Q |q(SK )− q(S)|+ q̂(SK )− q∗(SK )
= 2max

q∈Q |q(SK )− q(S)|+ q̂(SK )− qK (SK ) + qK (SK )− q∗(SK )

≤ 2max
q∈Q |q(SK )− q(S)|+ q̂(SK )− qK (SK ).

By a union bound and the results above, we know

that the righthand side is less than

2

√
K
2n

log(
2|Q|
η

) +
2m2 log(m/η)

ε′ nK
,

with probability at least 1−η. Substituting η = β−δ,
ε′ = 1√

8 n
K log(2K/δ)

, K = O( 1ε (1 + log(2/δ))) gives the

desired result.
We remark that we can convert this (α,β)-

accuracy bound into a bound on the expected error

using the same technique we used to compute the

expected error of RSPM. The expected error of

PRSMA with the above inputs is Õ(
2m2(logm+1)√

nε
+√

(log |Q|+1)√
nε

).

IV. OracleQuery: Oracle-Efficient Private
Synthetic Data Generation

We now apply the oracle-efficient optimization

methods we have developed to the problem of gen-

erating private synthetic data. In particular, given a

private dataset S and a query class Q, we would

like to compute a synthetic dataset Ŝ subject to dif-

ferential privacy such that the error maxq∈Q |q(Ŝ)−
q(S)| is bounded by some target parameter α. We

provide a general algorithmic framework called

OracleQuery for designing oracle-efficient algo-

rithms. The crucial property of the query class we

rely on to obtain oracle efficiency is dual separa-

bility, which requires both the query class and its

dual class have separator sets. Informally, the dual

of a query class Q is the query class Qdual that

results from swapping the role of the functions

q ∈ Q and the data elements x ∈ X . More formally:

Definition 10 (Dual class and dual separability).

Fix a class of queries Q. For every element x in X , let

hx : Q→ {0,1} be defined such that hx(q) = q(x). The
dual class Qdual of Q is the set of all such functions

defined by elements in X :

Qdual = {hx | x ∈ X }.
We say that the class Q is (m1,m2)-dually separable if
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there exists a separator set of size m1 for Q, and there

exists a separator set of size m2 for Qdual.

As we will show (see Appendix A), many widely

studied query classes, including discrete halfs-

paces, conjunctions, disjunctions, and parities are

dually separable, often with m1 = m2 = d (in

fact, many of these classes are self-dual, meaning

Q = Qdual). For any q ∈ Q, define its negation ¬q
to be ¬q(x) = 1− q(x). Let ¬Q = {¬q | q ∈ Q} be the

negation of Q. It will simplify several aspects of

our exposition to deal with classes that are closed

under negation. For any class Q, define Q = Q∪¬Q
to be the closure of Q under negation. Note that

whenever we have a weighted minimization oracle

for Q, we have one for ¬Q as well — simply by

negating the weights. Further, if U is a separator

set for Q, it is also a separator set for ¬Q. This
implies that we also have oracle efficient learners

for Q, since we can separately learn over Q and

¬Q, and then privately take the minimum value

query that results from the two procedures (using

e.g. report-noisy-min [DR14]).

For this camera-ready version we defer the tech-

nical details of our algorithm and its analysis to the

full version, and instead state the consequences of

our main theorem (that follow from instantiating

it with different oracle-efficient learners).

Theorem 10. Let Q be an (m1,m2)-dually separable

query class. Then given access to a weighted mini-

mization oracle O over the class Qdual and a differen-
tially private weighted minimization algorithm Oε0,δ0
for the class Q (with appropriately chosen privacy

parameters ε0 and δ0), the algorithm OracleQuery is

oracle-efficient, (ε,δ)-differentially private, and (α,β)-
accurate with α depending on the instantiation of

Oε0,δ0 . If Oε0,δ0 is robustly differentially private, then

so is OracleQuery.

1) If Oε0,δ0 is instantiated with the Gaussian

RSPM algorithm, then

α ≤ Õ

⎛⎜⎜⎜⎜⎝m3/2
1 m3/4

2

√
log(m1/β) log |X | log(1/δ)

nε

⎞⎟⎟⎟⎟⎠
1/2

In this case, OracleQuery is oracle equivalent

to a differentially private algorithm, but is not

robustly differentially private.

2) If Oε0,δ0 is instantiated with the PRSMA algo-

rithm (using the Laplace RSPM as AO∗), then

α ≤ Õ

⎛⎜⎜⎜⎜⎝ (m4/3
1 + log1/3(|Q|))m1/4

2 log1/6(|X |)
(nε)1/3

⎞⎟⎟⎟⎟⎠ ·

polylog

(
1

β − δ

)
as long as β > δ. In this case, OracleQuery is

robustly differentially private.

3) If Oε0,δ0 is an (α0,β0)-accurate differentially
private oracle with α0 =O (log(|Q|/(ε0n))), then

α ≤ Õ

⎛⎜⎜⎜⎜⎝m3/4
2

√
log |X | log(1/δ) log(|Q|/β)

nε

⎞⎟⎟⎟⎟⎠
1/2

In this case, OracleQuery is robustly differen-
tially private.

where the Õ hides logarithmic factors in
1
δ ,

1
β ,m1,m2,n and log(|X |).
A couple of remarks are in order.

Remark 2. The first two bounds quoted in Theorem

10 result from plugging in constructions of oracle-

efficient differentially private learners that we gave

in Section III. These constructions start with a non-

private optimization oracle. The third bound quoted

in Theorem 10 assumes the existence of a differen-
tially private oracle with error bounds comparable to

the (inefficient) exponential mechanism based learner

of [KLN+11]. We don’t know if such oracles can

be constructed from non-private (exact) optimization

oracles. But this bound is analgous to the bounds

given in the non-private oracle-efficient learning lit-

erature. This literature gives constructions assuming

the existence of perfect learning oracles, but in prac-

tice, these oracles are instantiated with heuristics like

regression or support vector machines, which exactly

optimize some convex surrogate loss function. This

is often reasonable, because although these heuristics

don’t have strong worst-case guarantees, they often

perform very well in practice. The same exercise makes

sense for private problems: we can use a differentially
private convex minimization algorithm to optimize a

surrogate loss function (e.g. [CMS11, BST14]), and

hope that it does a good job minimizing classification

error in practice. It no longer makes sense to assume

that the heuristic exactly solves the learning problem

(since this is impossible subject to differential privacy)
— instead, the analogous assumption is that it does

as well as the best inefficient private learner.

Remark 3. It is useful to compare the bounds we

obtain to the best bounds that can be obtained with

inefficient algorithms. To be concrete, consider the

class of boolean conjunctions defined over the boolean

hypercube X = {0,1}d (see Appendix A), which are

dually-separable with m1 = m2 = d. The best (ineffi-
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cient) bounds for constructing synthetic data useful

for conjunctions [HR10, GRU12] obtain error: α =

O

(√
log |Q|(log |X |)1/4√

εn

)
. In the case of boolean conjunc-

tions, log |X | = log |Q| = d, and so this bound becomes:

α = O
(
d3/4√
εn

)
. In contrast, the three oracle efficient

bounds given in Theorem 10, when instantiated for

boolean conjunctions are:

1) α =O
(
d11/8√
εn

)
,

2) α =O
(

d7/4

(εn)1/3

)
, and

3) α =O
(
d9/8√
εn

)
respectively. Therefore the costs in terms of error that

we pay, in exchange for oracle efficiency are d5/8,
d

(εn)1/6
, and d3/8 respectively.

We now give a brief overview of our construc-

tion before diving into the technical details in the

Appendix.

Proof overview:: We present our solution in

three main steps.

1) We first revisit the formulation by [HRU13]

that views the synthetic data generation

problem as a zero-sum game between a Data

player and a Query player. We leverage the

fact that at any approximate equilibrium, the

data player’s mixed strategy (over X ) repre-

sents a good synthetic dataset S ′ with respect

to Q.
2) Using the seminal result of [FS96], we will

compute the equilibrium for the zero-sum

game by simulating no-regret dynamics be-

tween the two players: in rounds, the Data

player plays according to an oracle-efficient

online learning algorithm due to [SKS16],

and the Query player best responds to the

Data player by using a differentially private

oracle efficient optimization algorithm. At

the end of the dynamics, the average play of

the Data player is an approximate minimax

strategy for the game, and hence a good

synthetic dataset.

3) We instantiate the private best response pro-

cedure of the Query player using different
oracle-efficient methods, which we have de-

rived in this paper, each of which gives dif-

ferent accuracy guarantees. Finally, we apply

our result to several query classes of interest.

V. A Barrier

In this paper, we give oracle-efficient private algo-

rithms for learning and synthetic data generation

for classes of queries Q that exhibit special struc-

ture: small universal identification sets. Because

of information theoretic lower bounds for differ-
entially private learning [BNSV15, ALMM18], we

know that these results cannot be extended to all

learnable classes of queries Q. But can they be

extended to all classes of queries that are informa-

tion theoretically learnable subject to differential
privacy? Maybe — this is the most interesting

question left open by our work. But here, we

present a “barrier” illustrating a difficulty that one

would have to overcome in trying to prove this

result. Our argument has three parts:

1) First, we observe a folklore connection be-

tween differentially private learning and on-

line learning: any differentially private em-

pirical risk minimization algorithm A for a

class Q that always outputs the exact min-

imizer of a data-independent perturbation of

the empirical risks can also be used as a no-

regret learning algorithm, using the “follow

the perturbed leader” analysis of Kalai and

Vempala [KV05]. The per-round run-time of

this algorithm is exactly equal to the run-

time of A.

2) Oracle-efficient no-regret learning

algorithms are subject to a lower bound

of Hazan and Koren [HK16], that states

that even given access to an oracle which

solves optimization problems over a set of

experts Q in unit time, there exist finite

classes Q such that obtaining non-trivial

regret guarantees requires total running

time larger than poly(|Q|). This implies

a lower bound on the magnitude of the

perturbations that an algorithm of the type

described in (1) must use.

3) Finally, we observe for any finite class of

hypotheses Q, information theoretically, it is

possible to solve the empirical risk minimiza-

tion problem on a dataset of size T up to

error O(
log |Q|
εT ) using the generic learner from

[KLN+11]. This implies a separation between

the kinds of algorithms described in 1), and

the (non-efficiently) achievable information

theoretic bounds consistent with differential
privacy.

We emphasize that oracle efficient algorithms for
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learning over Q have access to a non-private oracle

which exactly solves the learning problem over Q
— not an NP oracle, for which the situation is

different (see the discussion in Section VI).

First we define the class of mechanisms our

barrier result applies to:

Definition 11. We say that an (ε,δ)-differentially
private learning algorithm A : X n → Q for Q is a

perturbed Empirical Risk Minimizer (pERM) if there

is some distribution Dε,δ (defined independently of the

data S) over perturbations Z ∈ R
|Q| such that on input

S ∈ X n, A outputs:

A(S) = argmin
q∈Q

(
n · q(S) +Zq

)
where Z ∼ Dε,δ.

We note that many algorithms are pERM algo-

rithms. The most obvious example is report-noisy-

min, in which each Zq ∼ Lap(1/ε) independently.

The exponential mechanism instantiated with em-

pirical loss as its quality score (i.e. the generic

learner of [KLN+11]) is also a pERM algorithm,

in which each Zq is drawn independently from

a Gumbel distribution [DR14]. But note that the

coordinates Zq need not be drawn independently:

The oracle-efficient RSPM algorithm we give in

Section III is also a pERM algorithm, in which the

perturbations Zq are introduced in an implicit (cor-

related) way by perturbing the dataset itself. And

it is natural to imagine that many algorithms that

employ weighted optimization oracles — which

after all solve an exact minimization problem —

will fall into this class. The expected error guar-

antees of these algorithms are proven by bounding

E[||Z ||∞], which is typically a tight bound.

We now briefly recall the online learning setting.

Let Q be an arbitrary class of functions q : X →
[0,1]. In rounds t = 1, . . . ,T , the learner selects a

function qt ∈ Q, and an (adaptive) adversary selects

an example xt ∈ X , as a function of the sequence

(q1,x1, . . . , qt−1,xt−1). The learner incurs a loss of

�t = qt(xt). A standard objective is to minimize the

expected average regret:

R(T ) = E

⎡⎢⎢⎢⎢⎢⎣ 1T
T∑
t=1

qt(xt)

⎤⎥⎥⎥⎥⎥⎦−min
q∈Q

1

T

T∑
t=1

q(xt)

where the expectation is taken over the random-

ness of the learner. A weighted optimization oracle

in the online learning setting is exactly the same

thing as it is in our setting: Given a weighted

dataset (S,w), it returns argminq∈Q
∑

xi∈S wi · q(xi ).
A natural way to try to use a private learning

algorithm in the online learning setting is just to

run it at each round t on the dataset defined on the

set of data points observed so far: St = {x1, . . . ,xt−1}.
Definition 12. Follow the Private Leader, instanti-

ated with A, is the online learning algorithm that at

every round t selects qt =A(St).

The follow the private leader algorithm instan-

tiated with A has a controllable regret bound

whenever A is a differentially private pERM al-

gorithm. The following theorem is folklore, but

follows essentially from the original analysis of

“follow the perturbed leader” by Kalai and Vem-

pala [KV05]. See e.g. the lecture notes from [RS17]

or [ALMT17] for an example of this analysis cast

in the language of differential privacy. We include

a proof in Appendix F for completeness.

Theorem 11. Let ε,δ ∈ (0,1) and let A be an (ε,δ)
differentially private pERM algorithm for query class

Q, with perturbation distribution D(ε,δ). Then Follow

the Private Leader instantiated with A has expected

regret bounded by:

R(T ) ≤O

(
ε + δ +

EZ∼Dε,δ
[‖Z‖∞]

T

)
Note that the regret is controlled by

EZ∼Dε,δ
[‖Z‖∞], which also controls the error

of A as a learning algorithm.

We wish to exploit a lower bound on the run-

ning time of oracle efficient online learners over

arbitrary sets Q due to Hazan and Koren [HK16]:

Theorem 12 ([HK16]). For every algorithm with

access to a weighted optimization oracle O, there

exists a class of functions Q such that the algorithm

cannot guarantee that its expected average regret

will be smaller than 1/16 in total time less than

O
(√|Q|/ log3(|Q|)).
Here, it is assumed that calls to the oracle O

can be carried out in unit time, and total time

refers to the cumulative time over all T rounds of

interaction. Hence, if A is oracle-efficient — i.e.

it runs in time f (t) = poly(t, log |Q|) when given

as input a dataset of size t, the total run time of

follow the private leader instantiated with A is:∑T
t=1 f (t) ≤ T · f (T ) = poly(T , log |Q|).
This theorem is almost what we want — ex-

cept that the order of quantifiers is reversed. It

in principle leaves open the possibility that for
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every class Q, there is a different oracle efficient

algorithm (tailored to the class) that can efficiently

obtain low regret. After all, our RSPM algorithm

is non-uniform in this way — for each new class

of functions Q, it must be instantiated with a

separator set for that class.

Via a min-max argument together with an equi-

librium sparsification technique, we can give a

version of the lower bound of [HK16] that has the

order of quantifiers we want — see Appendix F for

the proof.

Theorem 13. For any d, there is a fixed finite class

of statistical queries Q of size |Q| = N = 2d defined

over a data universe of size |X | = O(N5 log2N ) such

that for every online learning algorithm with access

to a weighted optimization oracle for Q, it cannot

guarantee that its expected average regret will be o(1)
in total time less than Ω(

√
N/ log3(N )).

Theorem 13 therefore implies that follow the

private leader, when instantiated with any oracle-

efficient differentially private pERM algorithm A
cannot obtain diminishing regret R(T ) = o(1) un-

less the number of rounds T = Ω(|Q|c) for some

c > 0. In combination with Theorem 11, this im-

plies our barrier result:

Theorem 14. Any oracle efficient (i.e. running in

time poly(n, log |Q|)) (ε,δ)-differentially private pERM
algorithm instantiated with a weighted optimization

oracle for the query class Q defined in Theorem 13,

with perturbation distribution D(ε,δ) must be such

that for every (ε + δ) = o(1):

EZ∼D(ε,δ)
[||Z ||∞] ≥Ω(|Q|c)

for some constant c > 0.

If the accuracy guarantee of A is proportional

to EZ∼D(ε,δ)
[||Z ||∞] (as it is for all pERM algorithms

that we know of), this means that there exist finite

classes of statistical queries Q such that no oracle-

efficient algorithm can obtain non-trivial error un-

less the dataset size n ≥ poly(|Q|). Of course, if

n ≥ poly(|Q|), then algorithms such as report-noisy-

min and the exponential mechanism can be run in

polynomial time.

This is in contrast with what we can obtain

via the generic (inefficient) private learner of

[KLN+11], which obtains expected error O
(
log |Q|
εn

)
,

which is non-trivial whenever n = Ω
(
log |Q|

ε

)
. Sim-

ilarly, because we show in Theorem 13 that the

hard class Q can be taken to have universe size

X = poly(Q), this means that information theo-

retically, it is even possible to privately solve the

(harder) problem of α-accurate synthetic data for

Q for α = O

((
log2 |Q|

εn

)1/3)
using the (inefficient)

synthetic data generation algorithm of [BLR13].

This is non-trivial whenever n = Ω
(
log2 |Q|

ε

)
. In

contrast, our barrier result states is that if there

exists an oracle-efficient learner A for this class Q
that has polynomially related sample complexity

to what is obtainable absent a guarantee of oracle

efficiency, then A must either:

1) Not be a pERM algorithm, or:

2) Have expected error that is

O

(
poly(logEZ∼D(ε,δ) [||Z ||∞])

n

)
.

Condition 2. seems especially implausible, as for

every pERM we are aware of, EZ∼D(ε,δ)
[||Z ||∞] is

a tight bound (up to log factors) on its expected

error. In particular, this barrier implies that there

is no oracle efficient algorithm for sampling from

the exponential mechanism distribution used in

the generic learner of [KLN+11] for arbitrary query

classes Q.
VI. Conclusion and Open Questions

In this paper, we have initiated the systematic

study of the power of oracle-efficient differentially
private algorithms, and have made the distinction

between oracle-dependent non-robust differential
privacy and robust differential privacy. This is a

new direction that suggests a number of fasci-

nating open questions. In our opinion, the most

interesting of these is:

‘‘Can every learning and synthetic data

generation problem that is solvable sub-

ject to differential privacy be solved with

an oracle-efficient (robustly) differentially
private algorithm, with only a polynomial

blow-up in sample complexity?”

It remains an open question whether or not finite

Littlestone dimension characterizes private learn-

ability (it is known that infinite Littlestone dimen-

sion precludes private learnability [ALMM18]) —

and so one avenue towards resolving both open

questions in the affirmative simultaneously would

be to show that finite Littlestone dimension can

be leveraged to obtain oracle-efficient differentially
private learning algorithms.

However, because of our barrier result, we con-

jecture that the set of query classes that are pri-
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vately learnable in an oracle-efficient manner is a

strict subset of the set that are privately learnable.

If this is so, can we precisely characterize this

set? What is the right structural property, and is

it more general than the sufficient condition of

having small universal identification sets that we

have discovered?

Even restricting attention to query classes with

universal identification sets of size m, there are

interesting quantitative questions. The Gaussian

version of our RSPM algorithm efficiently ob-

tains error that scales as m3/2, but information-

theoretically, it is possible to obtain error scaling

only linearly with m. Is this optimal error rate

possible to obtain in an oracle-efficient manner,

or is the
√
m error overhead that comes with our

approach necessary for oracle efficiency?

Our PRSMA algorithm shows how to generi-

cally reduce from an oracle-dependent guarantee

of differential privacy to a guarantee of robust

differential privacy — but at a cost, both in terms

of running time, and in terms of error. Are these

costs necessary? Without further assumptions on

the construction of the oracle, it seems difficult

to avoid the O(1/δ)-overhead in running time, but

perhaps there are natural assumptions that can be

placed on the failure-mode of the oracle that can

avoid this. It is less clear whether the error over-

head that we introduce — by running the original

algorithm on an ε fraction of the dataset, with

a privacy parameter ε′ ≈ 1/
√
εn — is necessary.

Doing this is a key feature of our algorithm and

analysis, because we take advantage of the fact

that differentially private algorithms are actually

distributionally private when ε′ is set this small

— but perhaps it can be avoided entirely with a

different approach.
Our barrier result takes advantage of a connec-

tion between differentially private learnability and

online learnability. Because private pERM algo-

rithms can be used efficiently as no-regret learning

algorithms, they are subject to the lower bounds on

oracle-efficient online learning proven in [HK16].

But perhaps the connection between differentially
private learnability and online learnability runs

deeper. Can every differentially private learning

algorithm be used in a black box manner to effi-

ciently obtain a no-regret learning algorithm? Note

that it is already known that private learnability

implies finite Littlestone dimension, so the open

question here concerns whether there is an efficient

blackbox reduction from private ERM algorithms

to online learning algorithms. If true, this would

convert our barrier for pERM algorithms into a full

lower-bound for oracle-efficient private learning

algorithms generally.

Finally, a more open ended question — that

applies both to our work and to work on oracle

efficiency in machine learning more generally —

concerns how to refine the model of oracle effi-

ciency. Ideally, the learning problems fed to the

oracle should be “natural” — e.g. a small pertur-

bation or re-weighting of the original (non-private)

learning problem, as is the case for the algorithms

we present in our paper. This is desirable because

presumably we believe that the heuristics which

can solve hard learning problems in practice work

for “natural” instances, rather than arbitrary prob-

lems. However, the definition for oracle efficiency

that we use in this paper allows for un-natural

algorithms. For example, it is possible to show

that the problem of sampling from the exponential

mechanism of [MT07] defined by rational valued

quality scores that are efficiently computable lies

in BPPNP — in other words, the sampling can

be done in polynomial time given access to an

oracle for solving circuit-satisfiability problems4.

This implies in particular, that there exists an or-

acle efficient algorithm (as we have defined them)

for any NP hard learning problem — because the

learning oracle can be used as an arbitrary NP ora-

cle via gadget reductions5. The same logic implies

that there are oracle efficient no-regret learning

algorithms for any class of experts for which offline

optimization is NP hard — because an NP oracle

can be used to sample from the multiplicative

weights distribution. But these kinds of gadget

4This construction is due to Jonathan Ullman and Salil
Vadhan (personal communication). It starts from the ability
to sample uniformly at random amongst the set of satisfying
assignments of an arbitrary polynomially sized boolean circuit
given an NP oracle, using the algorithm of [BGP00]. For any
distribution P such that there is a polynomially sized circuit C
for which the relative probability mass on any discrete input x
can be computed by C(x), we can construct a boolean circuit
C′ that computes for bounded bit-length rational numbers w:
C′(x,w) = 1 if C(x) ≥ w. The marginal distribution on elements
x when sampling uniformly at random from the satisfying
assignments of this circuit is P .

5Note that this procedure is not robustly differentially private,
since sampling from the correct distribution occurs only if the
oracle does not fail. But it could be fed into our PRSMA algo-
rithm to obtain robust privacy. It also does not solve synthetic
data generation oracle efficiently because the quality score used
for synthetic data generation in [BLR13] is not computable by
a polynomially sized circuit generally.
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reductions seem to be an abuse of the model of

oracle efficiency, which currently reduces to all

of BPPNP when the given oracle is solving an

NP hard problem6. Ambitiously, might there be a

refinement of the model of oracle efficiency that

requires one to prove a utility theorem along the

following lines: assuming an oracle which can with

high probability solve learning problems drawn

from the actual data distribution, the oracle ef-

ficient algorithm will (with slightly lower prob-

ability) solve the private learning problem when

the underlying instance is drawn from the same

distribution. Theorems of this sort would be of

great interest, and would (presumably) rule out

“unnatural” algorithms relying on gadget reduc-

tions.
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holmsmässan, Stockholm, Sweden, July

10-15, 2018, volume 80 of JMLR

92



Workshop and Conference Proceedings,

pages 2569–2577. JMLR.org, 2018.

[KRSU10] Shiva Prasad Kasiviswanathan, Mark

Rudelson, Adam Smith, and Jonathan

Ullman. The price of privately releas-

ing contingency tables and the spec-

tra of random matrices with corre-

lated rows. In Proceedings of the forty-

second ACM symposium on Theory

of computing, pages 775–784. ACM,

2010.

[KV94] Michael J Kearns and Umesh Vazi-

rani. An introduction to computational

learning theory. MIT press, 1994.

[KV05] Adam Kalai and Santosh Vempala.

Efficient algorithms for online deci-

sion problems. Journal of Computer

and System Sciences, 71(3):291–307,

2005.

[LM00] B. Laurent and P. Massart. Adaptive

estimation of a quadratic functional

by model selection. Ann. Statist.,

28(5):1302–1338, 10 2000.

[MT07] Frank McSherry and Kunal Talwar.

Mechanism design via differential
privacy. In Foundations of Computer

Science, 2007. FOCS’07. 48th Annual

IEEE Symposium on, pages 94–103.

IEEE, 2007.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. Smooth sensitivity

and sampling in private data analy-

sis. In Proceedings of the thirty-ninth

annual ACM symposium on Theory of

computing, pages 75–84. ACM, 2007.

[NTZ13] Aleksandar Nikolov, Kunal Talwar,

and Li Zhang. The geometry of dif-

ferential privacy: the sparse and ap-

proximate cases. In Proceedings of the

forty-fifth annual ACM symposium on

Theory of computing, pages 351–360.

ACM, 2013.

[PAE+16] Nicolas Papernot, Martı́n Abadi, Ul-

far Erlingsson, Ian Goodfellow, and

Kunal Talwar. Semi-supervised

knowledge transfer for deep learning

from private training data. arXiv

preprint arXiv:1610.05755, 2016.

[RR10] Aaron Roth and Tim Roughgarden.

Interactive privacy via the median

mechanism. In Proceedings of the

forty-second ACM symposium on The-

ory of computing, pages 765–774.

ACM, 2010.

[RS17] Aaron Roth and Adam Smith.

Lecture 15: Algorithmic foundations

of adaptive data analysis.
https://adaptivedataanalysis.files.wordpress.com/2017/11

2017.

[SKS16] Vasilis Syrgkanis, Akshay Krishna-

murthy, and Robert E. Schapire.

Efficient algorithms for adversar-

ial contextual learning. CoRR,

abs/1602.02454, 2016.

[TUV12] Justin Thaler, Jonathan Ullman, and

Salil Vadhan. Faster algorithms for

privately releasing marginals. In In-

ternational Colloquium on Automata,

Languages, and Programming, pages

810–821. Springer, 2012.

[Ull16] Jonathan Ullman. Answering

nˆ2+o(1) counting queries with

differential privacy is hard. SIAM

Journal on Computing, 45(2):473–496,

2016.

[UR16] Berk Ustun and Cynthia Rudin. Su-

persparse linear integer models for

optimized medical scoring systems.

Machine Learning, 102(3):349–391,

2016.

[UV10] John Ullman and Salil P. Vadhan.

Pcps and the hardness of generating

private synthetic data. IACR Theory of

Cryptography Conference (TCC), 2010.

93


