
Perfect zero knowledge for
quantum multiprover interactive proofs

(Extended Abstract)

Alex B. Grilo

CWI and QuSoft
Amsterdam, The Netherlands

Email: Alex.Grilo@cwi.nl

William Slofstra

Institute for Quantum Computing
Department of Pure Mathematics

University of Waterloo
Waterloo, Canada

weslofst@uwaterloo.ca

Henry Yuen

Department of Computer Science
Department of Mathematics

University of Toronto
Toronto, Canada

Email: hyuen@cs.toronto.edu

Abstract—In this work we consider the interplay between
multiprover interactive proofs, quantum entanglement, and
zero knowledge proofs — notions that are central pillars of
complexity theory, quantum information and cryptography. In
particular, we study the relationship between the complexity
class MIP∗, the set of languages decidable by multiprover
interactive proofs with quantumly entangled provers, and the
class PZK-MIP∗, which is the set of languages decidable
by MIP∗ protocols that furthermore possess the perfect zero
knowledge property.

Our main result is that the two classes are equal, i.e.,
MIP∗ = PZK-MIP∗. This result provides a quantum analogue
of the celebrated result of Ben-Or, Goldwasser, Kilian, and
Wigderson (STOC 1988) who show that MIP = PZK-MIP (in
other words, all classical multiprover interactive protocols can
be made zero knowledge). We prove our result by showing
that every MIP∗ protocol can be efficiently transformed into
an equivalent zero knowledge MIP∗ protocol in a manner
that preserves the completeness-soundness gap. Combining our
transformation with previous results by Slofstra (Forum of
Mathematics, Pi 2019) and Fitzsimons, Ji, Vidick and Yuen
(STOC 2019), we obtain the corollary that all co-recursively
enumerable languages (which include undecidable problems
as well as all decidable problems) have zero knowledge MIP∗

protocols with vanishing promise gap.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

This is a shortened version of the full paper, which can
be found on arXiv.

Multiprover interactive proofs (MIPs) are a model of com-

putation where a probabilistic polynomial time verifier in-

teracts with several all-powerful — but non-communicating

— provers to check the validity of a statement (for example,

whether a quantified boolean formula is satisfiable). If the

statement is true, then there is a strategy for the provers

to convince the verifier of this fact. Otherwise, for all

prover strategies, the verifier rejects with high probability.

This gives rise to the complexity class MIP, which is

the set of all languages that can be decided by MIPs.

This model of computation was first introduced by Ben-Or,

Goldwasser, Kilian and Wigderson [6]. A foundational result

in complexity theory due to Babai, Fortnow, and Lund shows

that multiprover interactive proofs are surprisingly powerful:

MIP is actually equal to the class of problems solvable in

non-deterministic exponential time, i.e., MIP = NEXP [2].

Research in quantum complexity theory has led to the

study of quantum MIPs. In one of the most commonly

considered models, the verifier interacts with provers that are

quantumly entangled. Even though the provers still cannot

communicate with each other, they can utilize correlations

arising from local measurements on entangled quantum

states. Such correlations cannot be explained classically, and

the study of the counter-intuitive nature of these correlations

dates back to the famous 1935 paper of Einstein, Podolsky

and Rosen [18] and the seminal work of Bell in 1964 [4].

Over the past twenty years, MIPs with entangled provers

have provided a fruitful computational lens through which

the power of such correlations can be studied. The set of

languages decidable by such interactive proofs is denoted by

MIP∗, where the asterisk denotes the use of entanglement.

Finally, another type of interactive proof system are zero

knowledge proofs. These were introduced by Goldwasser,

Micali and Rackoff [21] and have played a crucial role in the

development of theoretical cryptography. In this model, if

the claimed statement is indeed true, the interaction between

the verifier and prover must be conducted in such a way that

the verifier learns nothing else aside from the validity of
the statement. This is formalized by requiring the existence

of an efficient simulator whose output is indistinguishable

from the distribution of the messages in a real execution of

the protocol. It was shown by [6] that any (classical) MIP

protocol can be transformed into an equivalent perfect zero

knowledge1 MIP protocol. In other words, the complexity

classes MIP (and thus NEXP) and PZK-MIP are equal,

where the latter consists of all languages decidable by

1The term perfect refers to the property that the interaction in a real
protocol can be simulated without any error.

611

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00044

perfect zero knowledge MIPs.

Informally stated, our main result is a quantum analogue

of the result of Ben-Or, Goldwasser, Kilian, and Wigder-

son [6]: we show that

Every MIP* protocol can be efficiently transformed into an
equivalent zero knowledge MIP* protocol.

Phrased in complexity-theoretic terms, we show that

MIP∗ = PZK-MIP∗. This is a strengthening of the recent

results of Chiesa, Forbes, Gur and Spooner, who show

that NEXP = MIP ⊆ PZK-MIP∗ [10] (which is, in turn,

a strengthening of the the result of Ito and Vidick that

NEXP ⊆ MIP∗ [24]).

Surprisingly, there are no upper bounds known on the

power of quantum MIPs. The recent spectacular result of

Natarajan and Wright shows that MIP∗ contains the com-

plexity class NEEXP, which is the enormously powerful

class of problems that can be solved in non-deterministic

doubly exponential time [32]. Since NEXP �= NEEXP
via the non-deterministic time hierarchy theorem [14], this

unconditionally shows that quantum MIPs are strictly more

powerful than classical MIPs. Furthermore, it is conceivable

that MIP∗ even contains undecidable languages. In [36],

[37], Slofstra proved that determining whether a given MIP*

protocol admits a prover strategy that wins with certainty is

an undecidable problem. In [19], Fitzsimons, Ji, Vidick and

Yuen showed that the class MIP∗1,1−ε(n), the set of languages

decidable by MIPs protocols with promise gap ε(n) that can

depend on the input size, contains NTIME[2poly(1/ε(n))], the

class of problems that are solvable in non-deterministic time

2poly(1/ε(n)). In contrast, the complexity of MIP (even with

a shrinking promise gap) is always equal to NEXP.

Thus, our result implies that all languages in NEEXP –

and any larger complexity classes discovered to be contained

within MIP∗ – have perfect zero knowledge interactive

proofs with entangled provers. In fact, we prove a stronger

statement: every MIP∗ protocol with promise gap ε also has

an equivalent zero knowledge MIP∗ protocol with promise

gap that is polynomially related to ε. This, combined with

the results of [19] and [37], implies that languages of

arbitrarily large time complexity – including some unde-

cidable problems – have zero knowledge proofs (albeit with

vanishing promise gap).

A. Our results

We state our results in more detail. Let MIP∗c,s[k, r] denote

the set of languages L that admit k-prover, r-round MIP*

protocols with completeness c, and soundness s. In other

words, there exists a probabilistic polynomial-time verifier V
that interacts with k entangled provers over r rounds so that

if x ∈ L, then there exists a prover strategy that causes V (x)

to accept with probability at least c; 2 otherwise all prover

strategies cause V (x) to accept with probability strictly less

than s. The class PZK-MIP∗c,s[k, r] are the languages that

have MIP∗[k, r] protocols where the interaction between the

verifier can be simulated exactly and efficiently, without the

aid of any provers. We provide formal definitions of these

complexity classes in Section II-C.

In what follows, let n denote the input size. The param-

eters k, r, s of a protocol are also allowed to depend on the

input size. In this paper, unless stated otherwise, we assume

that completeness parameter c in a protocol is equal to 1.

Theorem 1. For all 0 ≤ s ≤ 1, for all polynomially bounded
functions k, r,

MIP∗1,s[k, r] ⊆ PZK-MIP∗1,s′ [k + 4, 1]

where s′ = 1− (1− s)α for some universal constant α > 0.

The first corollary of Theorem 1 concerns what we

call fully quantum MIPs, which are multiprover interactive

proofs where the verifier can perform polynomial time quan-

tum computations and exchange quantum messages with

entangled quantum provers. The set of languages decidable

by fully quantum MIPs is denoted by QMIP, which clearly

includes MIP∗. Reichardt, Unger, and Vazirani [35] showed

that the reverse inclusion also holds by adding two additional

provers; i.e., that QMIP[k] ⊆ MIP∗[k + 2]. Combined with

Theorem 1 and the fact that we can assume that QMIP
protocols have perfect completeness if we add an additional

prover (see [38]), this implies that

Corollary 2. For all polynomially bounded functions k, r,
we have

QMIP1, 12
[k, r] ⊆ PZK-MIP∗1, 12 [k + 4, 1].

The combination of the results in [19] and [32] implies

that for every hyper-exponential function f ,3 we have that

NTIME[22
f(n)

] ⊆ MIP∗1,s[4, 1],

where NTIME[g(n)] denotes the set of languages that can

be decided by nondeterministic Turing machines running in

time g(n) and s = 1−Cf(n)−c for some universal constants

C and c, independent of n.4 Combining this with Theorem 1,

we obtain the following.

2Technically speaking, the completeness condition actually corresponds
to a sequence of prover strategies with success probability approaching c;
we discuss this subtlety in Section II-D.

3A hyper-exponential function f(n) is of the form
exp(· · · exp(poly(n)) · · ·), where the number of iterated exponentials is
R(n) for some time-constructible function R(n).

4The original result in [19] states that for all hyper-exponential functions
f(n), NTIME[2f(n)] ⊆ MIP∗1,s[15, 1] for s = 1 = Cf(n)−c. Using a
more efficient error correcting code as described in Section A, the number
of provers can be reduced to 4. The improvement from NTIME[2f(n)] to

NTIME[22
f(n)

] is obtained by plugging in the NEEXP ⊆ MIP∗ result of
Natarajan and Wright [32] as the “base case” of the iterated compression
scheme, instead of the NEXP ⊆ MIP∗ result of Natarajan and Vidick [31].

612

Corollary 3. There exist universal constants C, c > 0 such
that for all hyper-exponential functions f : N→ N,

NTIME[22
f(n)

] ⊆ PZK-MIP∗1,s[6, 1]

where s = 1− Cf(n)−c.

Finally, it was also shown in [19], [37] that the un-

decidable language NONHALT, which consists of Turing

machines that do not halt when run on the empty input tape,

is contained in MIP∗1,1[2, 1]. The “1, 1” subscript indicates

that for negative instances (i.e., Turing machines that do

halt), the verifier rejects with positive probability. In more

detail: there exists a polynomial time computable function

that maps Turing machines M to an MIP∗ protocol VM such

that if M does not halt on the empty input tape, then there is

a prover strategy for VM that is accepted with probability 1;

otherwise there exists a positive constant ε > 0 (depending

on M) such that for all prover strategies, the protocol VM
rejects with probability ε.

Theorem 1 implies there is a polynomial time computable

mapping VM �→ V ′M such that V ′M is a PZK-MIP∗ protocol

that preserves completeness (if VM accepts with probability

1, then so does V ′M) and soundness (if VM rejects with

probability ε for all prover strategies, then V ′M rejects with

probability poly(ε) for all prover strategies). Therefore, we

can conclude the following:

Corollary 4. NONHALT ∈ PZK-MIP∗1,1[4, 1].

Corollary 4 implies that all co-recursively enumerable lan-

guages (languages whose complement are recursively enu-

merable) have zero knowledge proofs (with vanishing gap).

B. Proof overview

The proof of Theorem 1 draws upon a number of ideas

and techniques that have been developed to study interactive

protocols with entangled provers. At a high level, the proof

proceeds as follows. Let L be a language that is decided

by some k-prover MIP* protocol with a verifier V . Assume

for simplicity that on positive instances x ∈ L, there is

a prover strategy that causes V to accept with probability

1, and otherwise rejects with high probability. Although V
is probabilistic polynomial time (PPT) Turing machine in

a MIP* protocol, we can instead think of it as a quantum

circuit involving a combination of verifier computations, and

prover computations.

First, we transform the verifier V into an equivalent quan-

tum circuit Venc where the computation is now performed

on encoded data. We do this using techniques from quantum

fault-tolerance, where the data is protected using a quantum

error correcting code, and physical operations are performed

on the encoded data in order to effect logical operations on

the underlying logical data.

We then apply protocol compression to Venc to obtain a

new verifier VZK for an equivalent protocol — this will be

our zero knowledge MIP* protocol. Protocol compression

is a technique that was pioneered by Ji in [25] (and further

developed by Fitzsimons, Ji, Vidick and Yuen [19]) to show

that NEXP has 1-round MIP∗ protocols where the communi-

cation is logarithmic length. Essentially, in the compressed

protocol, the new verifier VZK efficiently checks whether

Venc would have accepted in the original protocol without

actually having to run Venc, by testing that the provers hold

an entangled history state of a successful interaction between

Venc and some provers.
The reason this compressed protocol is zero knowledge

is the following: the verifier VZK asks the provers to report

the outcomes of performing local measurements in order

to verify that they hold an accepting history state. In the

positive case (i.e., x ∈ L), there is an “honest” strategy

where the provers share a history state |Φ〉 of a successful

interaction with Venc. We argue that, because of the fault-

tolerance properties of Venc, individual local measurements

on |Φ〉 reveal no information about the details of the interac-

tion. Put another way, the distribution of outcomes of honest

provers’ local measurements can be efficiently simulated,

without the aid of any provers at all. Since we only require

that this simulatability property holds with respect to honest

provers, this establishes the zero knowledge property of the

protocol run by VZK .
In the next few sections, we provide more details on

the components of this transformation. We discuss things

in reverse order: first, we give an overview of the protocol

compression technique. Then, we discuss the fault tolerant

encoding Venc of the original verifier V . Then we describe

how applying protocol compression to Venc yields a zero

knowledge protocol for L.
1) Protocol compression: The protocol compression

technique of [25], [19] transforms any k-prover, r-round

QMIP protocol where the verifier V runs in time N into a

k +O(1)-prover, 1-round MIP* protocol where the verifier

V ′ runs in time poly logN . In other words, the verifier has

been compressed into an exponentially more efficient one;

however, this comes with the price of having the promise

gap shrink as well: if the promise gap of the original QMIP

protocol is ε, then the promise gap of the compressed

protocol is poly(ε/N).
This compression is achieved as follows: in the protocol

executed by the compressed verifier V ′, the provers are

tested to show that they possess an (encoding of) a history
state of the original protocol executed by V , describing

an execution of the protocol in which the original verifier

V accepts. History states of some T -length computation

generally look like the following:

|ψ〉 = 1√
T + 1

T∑
t=0

|t〉 ⊗ |ψt〉.

The first register holding the superposition over |t〉 is

called the clock register; the second register holding the

613

superposition over |ψt〉 is called the snapshot register. The

t-th snapshot of the computation |ψt〉 is the global state of

the protocol at time t:

|ψt〉 = gtgt−1 · · · g1|ψ0〉
where the gi’s are the gates used in the protocol, and |ψ0〉 is

the initial state of the protocol. Usually, each gi is a one- or

two-qubit gate that is part of the verifier V ’s computation.

However, gi could also represent a prover gate, which is

the computation performed by one of the k provers. Unlike

gates in the verifier’s computation, the prover gates are non-

local, and there is no characterization of their structure. In

general, they may have exponential circuit complexity, and

may act on a Hilbert space that can be much larger than the

space used by the verifier V .
This notion of history states for interactive protocols is

a generalization of the basic concept of history states for

quantum circuits, which was introduced by Kitaev to prove

that the local Hamiltonians problem is QMA-complete [27].

He showed that for every QMA verifier circuit C, there

exists a local Hamiltonian H(C) (called the Feynman-Kitaev

Hamiltonian) such that all ground states of H(C) are history

states of the circuit C. To test whether a given state |φ〉 is

a history state of C, one can sample random terms from

H(C) and measure them to get an estimate of the energy

of |φ〉 with respect to H(C).
In slightly more detail, the local Hamiltonian H(C)

consists of terms that can be divided into four groups:

• Input checking terms Hin. These terms check that the

initial snapshot |ψ0〉, which represents the initial state

of the QMA verifier, has all of its ancilla bits set to

zero.

• Clock checking terms Hclock. These terms check that

the clock register is encoded in unary. The unary

encoding is to ensure that the locality of H(C) is a

fixed constant independent of the computation.

• Propagation terms Hprop. These terms check that the

history state is a uniform superposition over snapshots

|ψt〉, with |ψt〉 = gt|ψt−1〉.
• Output checking terms Hout. These terms check that

at time t = T , the decision bit of the QMA verifier is

equal to |1〉 (i.e., the verifier accepted).

In [25], Ji showed that for every quantum interactive

protocol Π, there is a generalized protocol Hamiltonian
H(Π) whose ground states are all history states of Π.

The Hamiltonian H(Π) is essentially the Feynman-Kitaev

Hamiltonian corresponding to the verifier V , except if at

time t in the protocol Π, prover i is supposed to implement

a unitary gt on their registers (which includes their private

registers as well as some registers used to communicate with

the verifier), then there will be a corresponding non-local

propagation term

1

2
(|t− 1〉 ⊗ I − |t〉 ⊗ gt)

(
〈t− 1| ⊗ I − 〈t| ⊗ g†t

)
. (1)

This term is non-local because of the prover gate gt, which

may act on a Hilbert space of unbounded size. Other than

these prover propagation terms, the rest of H(Π) corre-

sponds to the local computations performed by the verifier

V .

Suppose that one had the ability to sample random terms

of H(Π) and efficiently measure a given state with the terms.

Then, by performing an energy test on a state |ψ〉, one could

efficiently determine whether the state was close to a history

state that describes an accepting interaction in the protocol

Π. This appears to be a difficult task for terms like (1) when

gt is a prover gate, since this requires performing a complex

non-local measurement. Furthermore, the tester would not

know what prover strategy to use.

Ji’s insight in [25] was that a tester could efficiently dele-
gate the energy measurements to entangled quantum provers.

He constructs a protocol where the verifier V ′ commands the

provers to perform measurements corresponding to random

terms of H(Π) on their shared state. If the reported energy

is low, then V ′ is convinced that there must exist a history

state of Π that describes an accepting interaction (and in

particular, the provers share this history state).

In order to successfully command the provers, the verifier

V ′ relies on a phenomena called non-local game rigidity
(also known as self-testing). Non-local games are one-

round protocols between a classical verifier and multiple

entangled provers. This phenomena is best explained using

the famous CHSH game, which is a two-player game where

the optimal entangled strategy succeeds with probability

ω∗(CHSH) = 1
2 + 1√

2
. The canonical, textbook strategy

for CHSH is simple: the two players share a maximally

entangled pair of qubits, and measure their respective qubits

using the Pauli observables σX and σZ , depending on their

input. The rigidity property of the CHSH game implies that

this canonical strategy is, in some sense, unique: any optimal

entangled strategy for CHSH must be, up to a local basis

change, identical to this canonical strategy. Thus we also say

that the CHSH game is a self-test for a maximally entangled

pair of qubits and single-qubit Pauli measurements for the

players.

There has been extensive research on rigidity of non-

local games [35], [15], [28], [12], [9], [29], [30], [13], and

many different self-tests have been developed. The non-

local games used in the compression protocols of [25],

[19] are variants of the CHSH game, where the canonical

optimal strategy is roughly the following: the players share

a maximally entangled state on n qubits, and their measure-

ments are tensor products of Pauli observables on a constant

number of those n qubits, such as

σX(i)⊗ σZ(j)⊗ σZ(k).
which indicates σX acting on the i’th qubit, and σZ on the

j’th and k’th. This game also has the following robust self-

testing guarantee: any entangled strategy that succeeds with

614

probability 1− ε must be poly(ε, n)-close to the canonical

strategy. Here, n is a growing parameter, whereas the weight

of the Pauli observables (i.e. the number of factors that don’t

act as the identity) is at most some constant independent of

n.

For the terms of H(Π) that involve uncharacterized prover

gates, the verifier V ′ simply asks some provers to measure

the observable corresponding to the prover gate. By carefully

interleaving rigidity tests with the energy tests, the verifier

V ′ can ensure that the provers are performing the desired

measurements for all other terms of H(Π), and thus test if

they have an accepting history state.

2) Quantum error correction and fault tolerant verifiers:
In order to describe our fault tolerant encoding of verifiers,

we first discuss quantum error correction and fault tolerant

quantum computation.

Quantum error correcting codes (QECCs) provide a way

of encoding quantum information in a form that is resilient

to noise. Specifically, a [[n, k, d]] quantum code C encodes

all k-qubit states |ψ〉 into an n-qubit state Enc(|ψ〉) such

that for any quantum operation E that acts on at most (d−
1)/2 qubits, the original state |ψ〉 can be recovered from

E(Enc(|ψ〉)). The parameter d is known as the distance of

the code C.

QECCs are an important component of fault tolerant
quantum computation, which is a method for performing

quantum computations in a way that is resilient to noise. In

a fault tolerant quantum computation, the information |ψ〉
of a quantum computer is encoded into a state Enc(|ψ〉)
using some QECC C, and the computation operations are

performed on the encoded data without ever fully decoding

the state.

For example, in many stabilizer QECCs, in order to

compute Enc(g|ψ〉) for some single-qubit Clifford gate g,

it suffices to apply g transversally, i.e., apply g on every

physical qubit of Enc(|ψ〉). Transversal operations are highly

desirable in fault tolerant quantum computation because they

spread errors in a controlled fashion.

Non-Clifford gates, however, do not admit a transversal

encoding in most stabilizer QECCs. In order to implement

logical non-Clifford gates, one can use magic states. These

are states that encode the behaviour of some non-Clifford

gate g (such as a Toffoli gate, or a π/8 rotation), and are

prepared and encoded before the computation begins. During

the fault tolerant computation, the encoded magic states are

used in gadgets that effectively apply the non-Clifford g to

the encoded data. These gadgets only require measurements

and transversal Clifford operations that are controlled on the

classical measurement outcomes.

We now discuss the behaviour of the verifier Venc. First,

the encoded verifier spends time manufacturing a collection

of encoded ancilla states, as well as encoded magic states of

some non-Clifford gates (in our case, the Toffoli gate), using

some fixed quantum error correcting code C. We call this the

Resource Generation Phase. Then, the verifier Venc sim-

ulates the execution of V on the encoded information from

the Resource Generation Phase. All Clifford operations of V
are performed transversally, and non-Clifford operations of

V are performed with the help of the encoded magic states.

When interacting with the provers, the verifier Venc sends its

messages in encoded form as well – the provers are capable

of decoding and re-encoding messages using the code C.

Finally, after the finishing the simulation of V , the verifier

Venc executes an Output Decoding Phase: it performs a

decoding procedure on the physical qubits corresponding to

the output qubit of V .

It is clear that the protocol executed by Venc is equivalent

to the protocol executed by V . The overhead introduced by

this fault tolerant encoding is a constant factor increase in

the length of the circuit (depending on the size of the code

C). The fault tolerant properties of the computation of Venc
will play a major role in our proof of zero knowledge.

3) The zero knowledge protocol, and its analysis: To

distinguish between the parties of the “inner” protocol

executed by Venc and the parties in the “outer” protocol

executed by VZK , we say that Venc is a verifier that interacts

with a number of provers. On the other hand, we say that

VZK is a referee that interacts with a number of players.

The zero knowledge protocol executed by VZK consists of

applying protocol compression to the fault tolerant verifier

Venc. The result is a MIP* protocol that checks whether the

players possess a history state of an accepting interaction

with Venc and some provers.

The formal definition of the zero knowledge property

requires an efficient algorithm, called the simulator, that

when given a yes instance (i.e., x ∈ L), produces an output

that is identically distributed to the transcript produced by

an interaction between the referee and players following

a specified honest strategy. The interaction must be sim-

ulatable even when the referee doesn’t follow the protocol.

A cheating referee could, for instance, sample questions

differently than the honest referee, or interact with the

players in a different order. The only constraint we have

is that the format of the questions, from the perspective of

an individual player, must look like something the honest

referee could have sent. In particular, if a cheating referee

tries to interact with an individual player multiple times, the

player would abort the protocol.

In the yes instance, the honest player strategy for VZK

consists of sharing a history state |Φ〉 that describes the

referee Venc interacting with some provers and accepting

with probability 1. When the players receive a question

in VZK , they either measure some Pauli observable on a

constant number of qubits of |Φ〉, or measure the observable

corresponding to a prover gate. The zero knowledge property

of VZK rests on the ability to efficiently sample the outcomes

of measurements formed from any combination of local

Pauli observables and prover measurements that might be

615

commanded by a cheating referee.

We first analyze non-adaptive referees; that is, they sam-

ple the questions to all the players first. In the compressed

protocol VZK , the honest referee asks the players to perform

local measurements corresponding to a random term in the

the Hamiltonian H(Π). Thus, the support of the measure-

ments commanded by a referee (even a cheating one) can

only involve a constant number of qubits of |Φ〉. Let Ŵ
denote the tuple of questions sent to the players, and let S

̂W
denote the registers of |Φ〉 that are supposed to be measured.

We argue that the reduced density matrix |Φ〉 on the registers

S
̂W

can be computed explicitly in polynomial time.

This is where the fault tolerance properties of Venc come

in. Since Venc is running a computation on encoded informa-

tion, any local view of the state of Venc in the middle of its

computation should not reveal any details about the actual

information being processed. Intuitively, the purpose of a

quantum error correcting code is to conceal information from

an environment that is making local measurements. In the

zero knowledge context, we can think of the cheating referee

as the “noisy environment” to Venc. Thus, the cheating

referee should not be able to learn anything because it

can only access local correlations, while all the “juicy”

information about Venc is encoded in global correlations of

|Φ〉.
Although this is the high level idea behind our proof, there

are several challenges that need to be overcome in order to

make this argument work. First, the state of Venc is not

always properly encoded in an error correcting code: it may

be in the middle of some logical operations, so there is a

risk that some information may be leaked. We argue that if

the code used by Venc is simulatable (see Section II-B), then

this cannot happen. We show that the concatenated Steane

code is simulatable, by analyzing coherent implementations

of logical operations that do not reveal any information.

The next challenge is that the referee is able to perform

local measurements not only on intermediate states of Venc
during its computation, but also superpositions of them.

This threatens to circumvent the concealing properties of

the error correcting code, because of the following example:

suppose that |ψ0〉 and |ψ1〉 are orthogonal n qubit states

such that the reduced density matrix of every small-sized

subset of qubits of |ψ0〉 or |ψ1〉 looks maximally mixed.

However, 1√
2
(|0〉|ψ0〉+ |1〉|ψ1〉) can be distinguished from

1√
2
(|0〉+ |1〉)|ψ0〉 via a local measurement (namely, an σX

measurement on the first qubit). One potential worry is that

|ψ0〉 and |ψ1〉 might represent snapshots of the history state

|Φ〉 that are separated by many time steps, and therefore a

simulator would have trouble simulating measurements on

these superpositions, because it will not be able to determine

what the inner product between |ψ0〉 and |ψ1〉 is in general.

We argue that, because of the structure of the protocol and

the honest strategy, the cheating referee can only measure a

superpositions that involve only constantly many consecutive

snapshots of Venc. From this we deduce that reduced density

matrices of the superpositions can be efficiently computed.

Another challenge involves simulating the outcomes of

measuring the prover gate, which may perform some arbi-

trarily complex computation. We carefully design the honest

strategy for the compressed protocol so that measurement

outcomes of the prover gate are always either constant, or

an unbiased coin flip.

Finally, we argue that we can efficiently simulate the

interaction of the protocol even when the referee behaves

adaptively. The simulator for the non-adaptive case actually

computes the reduced density matrix of the honest players’

state; we can perform post-selection on the density matrix at

most a polynomial number of times in order to simulate the

distribution of questions and answers between an adaptive

referee and the provers.

C. Related work

In this section, we discuss some relevant work on quantum

analogues of zero knowledge proofs.

In quantum information theory, zero knowledge proofs

have been primarily studied in the context of single prover
quantum interactive proofs. This setting was first formalized

by Watrous [39], and has been an active area of research

over the years. Various aspects of zero knowledge quantum

interactive proofs have been studied, including honest ver-

ifier models [39], [8], computational zero knowledge proof

systems for QMA [7], and more.

In the multiprover setting, Chiesa, Forbes, Gur and

Spooner [10] showed that all problems in NEXP (and

thus MIP) are in PZK-MIP∗[2, poly(n)]. Their approach is

considerably different of ours. They achieve their result by

showing that model of interactive proofs called algebraic
interactive PCPs 5 can be lifted to the entangled provers

setting in a way that preserves zero knowledge, and then

showing that languages in NEXP have zero knowledge

algebraic interactive PCPs.

The results of [10] are, strictly speaking, incomparable

to ours. We show that all languages in MIP∗ have single-

round PZK-MIP∗ protocols with four additional provers,

whereas [10] show that MIP (which is a subset of MIP∗)
have PZK-MIP∗ protocols with two provers and polynomi-

ally many rounds. Improving our result to only two provers

seems to be quite a daunting challenge, as it is not even

known how MIP∗[k] relates to MIP∗[k + 1] – it could

potentially be the case that adding more entangled provers

yields a strictly larger complexity class!

5An interactive PCP is a protocol where the verifier and a single prover
first commit to an oracle, which the verifier can query a bounded number
of times. Then, the verifier and prover engage in an interactive proof. An
algebraic interactive PCP is one where the committed oracle has a desired
algebraic structure. We refer to [10] for an in-depth discussion of these
models.

616

Furthermore, the proof techniques of [10] are very dif-

ferent from ours: they heavily rely on algebraic PCP tech-

niques, as well as the analysis of the low degree test against

entangled provers [31]. Our proof relies on techniques from

fault tolerant quantum computing and the protocol compres-

sion procedure of [25], [19], which in turn rely heavily on

self-testing and history state Hamiltonians.

Another qualitative difference between the zero knowl-

edge protocol of [10] and ours is that the honest prover

strategy for their protocol does not require any entanglement;

the provers can behave classically. In our protocol, however,

the provers are required to use entanglement; this is what

enables the class MIP∗ and PZK-MIP∗ to contain classes

beyond NEXP, such as NEEXP (and beyond).

Recently, Kinoshita [26] showed that a model of “honest-

verifier” zero knowledge QMIP can be lifted to general zero

knowledge QMIP protocols. He also shows that QMIP have

interactive proofs with computational zero knowledge proofs

under a computational assumption.

Coudron and Slofstra prove a similar result to [19]

for multiprover proofs with commuting operator strategies,

showing that this class also contains languages of arbitrarily

large time complexity, if the promise gap is allowed to be ar-

bitrarily small [16]. Their results (achieved via a completely

different method from ours) also show that there are two-

prover zero knowledge proofs for languages of arbitrarily

large time complexity, albeit in the commuting operator

model and with a quantitatively worse lower bound than

Corollary 3.

Finally, Crépeau and Yang [17] refined the notion of zero

knowledge, requiring the simulator to be local, i.e., that there

are non-communicating classical simulators that simulate the

(joint) output distribution of the provers. We note that our

result does not fulfill this modified definition, and we leave it

as an open problem (dis)proving that all MIP∗ can be made

zero knowledge in this setting.

Organization

The paper is organized as follows. We start with some pre-

liminaries in Section II. Then, in Section III, we present our

transformation on MIP∗ protocols. In Section IV, we prove

the zero knowledge property of the transformed protocol.

Acknowledgments

AG thanks Thomas Vidick for discussions on related

topics. WS thanks Matt Coudron, David Gosset, and Jon

Yard for helpful discussions. AG is supported by ERC

Consolidator Grant 615307-QPROGRESS. WS is supported

by NSERC DG 2018-03968.

II. PRELIMINARIES

A. Notation

We denote [n] as the set {1, ..., n}. We assume that all

Hilbert spaces are finite-dimensional. An n-qubit binary

observable (also called a reflection) O is a Hermitian matrix

with ±1 eigenvalues.

We use the terminology “quantum register” to name

specific quantum systems. We use sans-serif font to denote

registers, such as A, B. For example, “register A”, to which

is implicitly associated the Hilbert space HA.

For a density matrix ρ defined on some registers R1 · · ·Rn,

and a subset S of those registers, we write TrS(ρ) to denote

the partial trace of ρ over those registers in S. We write

TrS(ρ) to denote tracing out all registers of ρ except for the

registers in S.

Let σI , σX , σY , σZ denote the four single-qubit Pauli

observables

σI =

(
1 0
0 1

)
, σX =

(
0 1
1 0

)
,

σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
.

We let Pn denote the n-qubit Pauli group, so Pn is the

set of n-qubit unitaries W1 ⊗ · · · ⊗ Wn where Wi ∈
{±σI ,±iσI ,±σX ,±iσX ,±σY ,±iσY ,±σZ ,±iσZ}.

We use two ways of specifying a Pauli observable acting

on a specific qubit.

1) Let W ∈ {I,X, Z} be a label and let R be a

single-qubit register. We write σW (R) to denote the

observable σW acting on R.

2) Let R be an n-qubit register, and let i ∈ {1, . . . , n}.
Let W = Xi (resp. W = Zi). We write σW to denote

the σX (resp. σZ) operator acting on the i-th qubit in

R (the register R is implicit).

We also use W to label Pauli operators that have higher

“weight”. For example, for W = XiZj the operator σW
denotes the tensor product σXi

⊗ σZj
.

Universal set of gates: A universal set of gates is

{H,Λ(X),Λ2(X)}, where H is the Hadamard gate, Λ(X)
is the controlled-X gate (also known as the CNOT gate),

and Λ2(X) is the Toffoli gate [1].

B. Error correcting codes

Quantum error correcting codes (QECCs) provide a way

of encoding quantum information in a form that is resilient

to noise. Specifically, a [[n, k]] quantum code C encodes all

k-qubit states |ψ〉 into an n-qubit state Enc(|ψ〉). We say that

a [[n, k]] QECC has distance d if for any quantum operation

E that acts on at most (d − 1)/2 qubits, the original state

|ψ〉 can be recovered from E(Enc(|ψ〉)). In this case, we

say that C is a [[n, k, d]] QECC.

Throughout this paper, we mostly use codes that encode

1 logical qubit into some number of physical qubits. If Enc
is the encoding map of an [[m, 1]] QECC C and |φ〉 is an

n-qubit state, then we overload notation and write Enc(|φ〉)
to denote the mn qubit state obtained from applying Enc
to every qubit of |φ〉. We refer to the qubits of |φ〉 as

logical qubits, and the qubits of the encoded state Enc(|φ〉)

617

as physical qubits. We call any state |ψ〉 in the code C a

codeword.

Given two QECCs C1 and C2, the concatenated code C1 ◦
C2 is defined by setting EncC1◦C2(ρ) = EncC2(EncC1(ρ)),
i.e. to encode ρ in the concatenated code, we first encode it

using C1, and then encode every physical qubit of EncC1(ρ)
using C2.

1) Inner and outer codes: In our zero knowledge trans-

formation, we use quantum error correcting codes in two

different ways. One use, as described in the proof overview

in Section I-B, is in the transformation from the original

MIP* verifier V to a fault-tolerant version Venc. We call the

error correcting code used in the fault tolerant construction

the inner code, denoted by Cinner.

The other use of quantum error correcting codes is in

the protocol compression of Venc into the zero knowledge

protocol VZK . In Section I-B, we described the protocol

VZK as testing whether the players share a history state |Φ〉
of the protocol corresponding to Venc. Actually, the protocol

tests whether the players share an encoding of the history

state. The qubits of the history state |Φ〉 corresponding to the

state of the verifier Venc are supposed to be encoded using

another error correcting code and distributed to multiple

players (see Section III-B1 for more details). For this, we

use what we call the outer code, denoted by Couter.

The outer code: For the outer code Couter, we require

a stabilizer code that satisfies the following properties [19]:

1) For every qubit i, there exists a logical X and Z
operator that acts trivially on that qubit.

2) The code can correct one erasure in a known location.

The following four-qubit error detection code satisfies both

properties [23].

|0〉 �→ 1√
2
(|0000〉+ |1111〉)

|1〉 �→ 1√
2
(|1001〉+ |0110〉) .

The stabilizer generators for this code are

XXXX,ZIIZ, IZZI . A set of logical operators for

this code are XIIX, IXXI,ZZII, IIZZ. We use

Encouter to denote the encoding map for the outer code

Couter.

The inner code: For the inner code Cinner, we use

the concatenated Steane code SteaneK for some sufficiently

large (but constant) K. We use Encinner to denote the

encoding map for the outer code Cinner. We refer to the

full version of the paper to more details on the concatenated

Steane code.

2) Encodings of gates and simulatable codes: An im-

portant concept in our work is that of simulatable codes.

The motivation for this concept is the observation that for

a distance d code C, the reduced density matrix of any

codeword |ψ〉 ∈ C on fewer than d− 1 qubits is a state that

is independent of |ψ〉, and only depends on the code C. We

generalize this indistinguishability notion to the context of

fault tolerant encodings of gates with a QECC: informally, a

QECC is simulatable if “small width” reduced density matri-

ces of codewords |ψ〉 in the middle of a logical operation are

independent of |ψ〉. Intuitively, simulatability is a necessary

condition for fault tolerant quantum computation; if local

views of an in-progress quantum computation are dependent

on the logical data, then environmental noise can corrupt the

computation.

Let U be a k-qubit gate. If a = (a1, . . . , ak) is a k-tuple

of distinct numbers between 1 and n, we let U(a) be the

gate U applied to qubits (a1, . . . , ak). If ρ is an n-qubit

state, then U(a)ρU(a)† is the result of applying U to ρ in

qubits a1, . . . , ak.

An encoding of a k-qubit gate U in the code C is a

way to transform Enc(ρ) to Enc(U(a)ρU(a)†) by apply-

ing operations on the physical qubits, sometimes with an

additional ancilla state used as a resource. More formally,

an encoding of a k-qubit U in code C is a pair of states

σU and σ′U , and a number
 ≥ 1, along with a mapping

from k-tuples a of distinct physical qubits to sequences of

unitaries O1(a), . . . , O�(a) such that

(O�(a) · · ·O1(a)) (Enc(ρ)⊗ σU) (O�(a) · · ·O1(a))
†

= Enc(U(a)ρU(a)†)⊗ σ′U ,
where (in a slight abuse of notation) the unitaries

O1(a), . . . , O�(a) act only on the physical qubits corre-

sponding to logical qubits a1, . . . , ak, as well as the an-

cilla register holding σU . In this definition, the sequence

O1(a), . . . , O�(a) depends on a. However, in practice a
is only used to determine which physical qubits the gates

O1(a), . . . , O�(a) act on, and otherwise the sequence de-

pends strictly on U . We say that an encoding uses physical
gates G if for every a, the unitaries O1(a), . . . , O�(a) are

gates in G.

If a QECC C can correct arbitrary errors on s qubits, then

the partial trace TrS(Enc(ρ)) is independent of the state ρ
for every set of physical qubits S with |S| ≤ s. If we start

with an encoded state Enc(ρ), and apply an encoded logical

operation U to some k-tuple of qubits a, then we start in

state Enc(ρ)⊗σU and end in state Enc(U(a)ρU(a)†)⊗σ′U .

So as long as we can compute the partial traces of σU and

σ′U , then we can compute TrS(Enc(ρ)) both before and after

the operation. However, the encoded operation is made of

up a sequence of gates, and while we are in the middle of

applying these gates, the system might not be in an encoded

state. We say that an encoding is s-simulatable if we can

still compute the reduced density matrices on up to s qubits

of the state at any point during the encoding of U . The

following definition formalizes this notion:

Definition 5. An encoding (σU , σ
′
U ,
, O1(a), . . . , O�(a)) of

a k-qubit gate in a QECC C is s-simulatable if for all
integers 0 ≤ t ≤
, n-qubit states ρ, and subsets S of the

618

physical qubits of Enc(ρ) ⊗ σU with |S| ≤ s, the partial
trace

TrS((Ot(a) · · ·O1(a))Enc(ρ)⊗ σU (Ot(a) · · ·O1(a))
†)

can be computed in polynomial time from t, a, and S. In
particular, the partial trace is independent of ρ.

In our applications, s will be constant. We also consider

only a finite number of gates U , and since t is bounded

in any given encoding, t will also be constant. The partial

trace in the above definition will be a 2|S| × 2|S| matrix,

where |S| ≤ s. So when we say that the partial trace can be

computed in polynomial time in Definition 5, we mean that

the entries of this matrix are rational, and can be computed

explicitly in polynomial time from a, S, and t.
A crucial component of our zero knowledge arguments is

the notion of simulatable codes. We state now the theorem

we will use to prove zero knowledge. We defer the proof to

the full version of this paper.

Theorem 6. Let U = {H,Λ(X),Λ2(X)}. For every con-
stant s, there exists a [[n, 1]] QECC C where n is constant,
such that C has s-simulatable encodings of U using only U
as physical gates.

If a code C admits a simulatable encoding of a gate U ,

then, applying Definition 5 with t = 0, we see that it must be

possible to compute the partial trace TrS(Enc(ρ)⊗ σU) for

any set of physical qubits S with |S| ≤ s, with no knowledge

of ρ. In particular, it must be possible to compute partial

traces of Enc(ρ) on all but s qubits. We must also be able

to compute the partial traces of the ancilla states σU and

(setting t =
) σ′U , although this is easier in principle, since

we have full knowledge of these states.

C. Quantum interactive protocols

We first define the notion of a protocol circuit, which

is a quantum circuit representation an interaction between

a quantum verifier and one or more provers. A protocol

circuit C with k provers and r rounds is specified by a

tuple (n,m,Γ) where n,m are positive integers and Γ is a

sequence of gates (g1, g2, . . .). This tuple is interpreted in

the following manner. The circuit C acts on these registers:

1) A set of prover registers P1, . . . ,Pk.

2) A set of message registers M1, . . . ,Mk; each register

Mi consists of m qubits. The j’th qubit of register Mi

is denoted by Mij .

3) A verifier register V which consists of n qubits. The

j’th qubit of register V is denoted by Vj .

Each gate gi consists of a gate type, and the label of the

registers that the gate acts on. There are two gate types:

1) A gate from a universal gate set (such as Hadamard,

CNOT, and Toffoli), which can only act on registers

V,M1, . . . ,Mk.

2) A prover gate Pij , which represents the i’th prover’s

unitary in round j. The prover gate Pij can only act

on registers PiMi.

Furthermore, prover i’s gates {Pij} must appear in order;

for example, Pi2 can only appear in the circuit after Pi1

has appeared. A prover gate Pij cannot appear twice in the

circuit with the same label.

Intuitively, a protocol circuit describes an interaction be-

tween a verifier and k provers where the verifier performs a

computation on the workspace register V, and communicates

with the provers through the message registers {Mi}, and

the provers carry out their computations on the registers

{PiMi}. The verifier’s workspace V is initialized in the all

zeroes state, and the {PiMi} registers are initialized in some

entangled state |ψ〉 chosen by the provers. At the end of the

protocol circuit, the first qubit of the workspace register V
is measured in the standard basis to determine whether the

verifier accepts or rejects.

A prover strategy S for a protocol circuit C is specified

by a tuple (d, {Pij}, |ψ〉) where d is a positive integer,

a set of unitary operators Pij for i = 1, . . . , k and j =
1, . . . , r that act on C

d ⊗ (C2)⊗m, and pure states |ψ〉 in

(Cd)⊗k ⊗ (C2)⊗mk. Given a protocol circuit C, we write

ω∗(C) to denote the supremum of acceptance probabilities

of the verifier over all possible prover strategies S.

We now define the complexity class QMIP, which stands

for quantum multiprover interactive proofs. This is the set

of all languages L that can be decided by a quantum

interactive protocol with at most polynomially many provers,

at most polynomially-many rounds, and polynomial-sized

protocol circuits, whose gates are drawn from the gate set

{H,Λ(X),Λ2(X)}.
Definition 7. A promise problem L = (Lyes, Lno) is in the
complexity class QMIPc,s[k, r] if and only if there exists a
polynomial-time computable function V with the following
properties:

1) For every x ∈ Lyes ∪Lno, the output of V on input x
is a description of a k-prover, r-round prover circuit
V (x) = (n,m,Γ) where n,m = poly(|x|).

2) Completeness. For every x ∈ Lyes, it holds that
ω∗(V (x)) ≥ c.

3) Soundness. For every x ∈ Lno, it holds that
ω∗(V (x)) < s.

Furthermore, we say that L has a QMIPc,s[k, r] protocol
V .

Throughout this paper, we interchangeably refer to V (x)
as the protocol circuit, the protocol, or the verifier that is

executing the protocol, depending on the context.

We note that in the negative case (i.e. x ∈ Lno), we

require that the entangled value of V (x) is strictly less

than s. This allows us to meaningfully talk about “zero

619

promise gap” classes such as QMIP1,1[k, r], where in the

Completeness case, the verifier has to accept with proba-

bility 1, whereas in the Soundness case, the verifier has to

reject with some positive probability. Finally, we follow the

convention that QMIP[k, r] is defined as QMIP 2
3 ,

1
3
[k, r].

We also define the class MIP∗, which is defined in the

same way as QMIP except that the protocol is specified

as a classical interaction between a randomized verifier

(modelled as a probabilistic polynomial-time Turing ma-

chine) and quantum provers. Since the verifier is classical,

the communication between the verifier and provers can be

treated as classical. Thus, in a k-prover MIP∗ protocol, we

can equivalently talk about measurement prover strategies S,

where the k provers share an entangled state |ψ〉 ∈ H⊗k for

some Hilbert space H. In each round of the protocol, each

prover receives a classical message from the verifier, and

performs a measurement on their share of |ψ〉 that depends

on the verifier’s message as well as the previous messages

exchanged between that prover and the verifier (but not the

communication with the other provers).

We call prover strategies for a general QMIP protocol

as unitary strategies, to distinguish them from measurement

strategies for MIP∗ protocols. Furthermore, when we speak

of an MIP∗ protocol V , we are referring to the verifier for

the protocol (which is some probabilistic Turing machine).

D. Zero knowledge MIP∗

First, we define the view of an interaction between

a classical, randomized verifier V̂ and a set of k
provers that behave according to some strategy S, as

might occur in an MIP∗ protocol. The view is a ran-

dom variable View(V̂ (x) ↔ S) which is the tuple

(x, r,m1,m2, . . . ,m2r) where x is the input to V̂ , r is

the randomness used by V̂ , and the mi’s are the messages

between the provers and verifier.

Next, we present the definition of zero knowledge MIP∗

protocols, first defined by [11]. We use the abbreviation

“PPT” to denote “probabilistic polynomial-time.”

Definition 8. An MIP∗c,s[k, r] protocol V for a promise
language L = (Lyes, Lno) is statistically zero knowledge

if for all x ∈ Lyes, there exists a prover strategy S (called
the honest strategy) satisfying the following properties:

1) The strategy S is accepted by the protocol V (x) with
probability at least c,

2) For all PPT verifiers V̂ , there exists a PPT sim-
ulator Sim

̂V such that the output distribution of
Sim

̂V (x) is ε(n)-close in total variation distance to
View(V̂ (x)↔ S), for some negligible function ε(n).

Furthermore, the complexity class SZK-MIP∗c,s[k, r] is the
set of languages that have statistical zero knowledge proof
systems.

When a language can be decided by a zero knowledge

proof system with closeness ε(n) = 0, we say that it

admits a perfect zero knowledge proof system. In other

words, the interaction can be simulated exactly. We let

PZK-MIP∗c,s[k, r] denote languages that admit perfect zero

knowledge MIP∗ protocols.

Some subtleties: We address two subtleties regarding

the definitions of QMIP and PZK-MIP∗.
1) The definition of QMIP depends on our choice of gate

set. If we allow the verifier circuits to use arbitrary

single- and two-qubit gates, then our perfect zero

knowledge results may not hold; however, we will

still get the statistical zero knowledge property with

exponentially small error.

2) In a PZK-MIP∗c,s[k, r] protocol V , there may be no

strategy S for the provers that gets accepted with

probability c exactly. Instead, there may be a sequence

of strategies whose success probability converges to c.
Thus, in order for PZK-MIP∗c,s[k, r] to be correctly

defined, we require that there exists a sequence of

honest strategies S1,S2, . . . satisfying:

• The success probability of Si approaches c as i→
∞, and

• For all verifiers V̂ , there exists a simulator Sim
̂V

whose output distribution can be approximated

arbitrarily well by the sequence of honest strate-

gies. In other words, for all δ there exists an

i such that the total variation distance between

View(V̂ (x)↔ Si) and Sim
̂V is at most δ.

This subtlety only arises when considering “zero gap”

classes such as PZK-MIP∗1,1[k, r].

E. Parallel repetition

Parallel repetition of interactive protocols is a commonly

used technique for performing gap amplification. We now

define what this means for 1-round MIP∗ protocols.

Definition 9 (Parallel repetition of a one-round MIP∗ pro-

tocol). Let V denote a 1-round, k-prover MIP∗ protocol.
The m-fold parallel repetition of V is another 1-round, k-
prover MIP∗ protocol V m where m independent instances
of V are executed simultaneously. Let qij denote the ques-
tions from instance i to prover j. Then prover j receives
(q1j , q2j , . . . , qmj) simultaneously, and responds with an-
swers (a1j , a2j , . . . , anj). The answers (ai1, ai2, . . . , aik) is
then given to the i’th verifier instance, and V m accepts if
and only if all instances accept.

The behaviour of ω∗(V m) as a function of n and ω∗(V) <
1 is non-trivial; clearly, if ω∗(V) = 1, then ω∗(V m) = 1
as well. Although one might expect that ω∗(V m) decays

exponentially with m in the case that ω∗(V) < 1, this is not

known in general. Raz [34] showed that such exponential

decay does hold for classical 1-round, 2-prover MIP proof

systems, but extending this to the case of more provers or

MIP∗ proof systems has remained an active area of research.

620

It is an open question for whether the analogue of Raz’s

result holds for MIP∗ protocols (although a polynomial-

decay bound is known [40]).

Bavarian, Vidick, and Yuen [3] showed that an

exponential-decay parallel repetition theorem also holds for

1-round MIP∗ protocols that have the property of being

anchored, and furthermore, every 1-round MIP∗ protocol

can be transformed into an equivalent anchored protocol.

Their result has the additional benefit in that it holds for

any number of provers.

We do not formally define the anchoring property here,

but instead we describe a simple transformation to anchor

any 1-round MIP∗ protocol.

Definition 10 (Anchoring). Let α > 0 be some constant.
Given a 1-round, k-prover MIP∗ protocol V , define its α-

anchored version V⊥ to be the protocol which:
1) Runs the verifier in V to obtain questions (q1, . . . , qk)

for the k provers.
2) Independently choose each coordinate i with probabil-

ity α and replace qi with an auxiliary question symbol
⊥, and send the questions to each prover.

3) If any prover received the auxiliary question ⊥, au-
tomatically accept. Otherwise, accept the provers’
answers only if V would have accepted.

This transformation preserves completeness and sound-

ness: ω∗(V) = 1 if and only if ω∗(V⊥) = 1. In general, we

have the relationship

ω∗(V⊥) = (1− α)kω∗(V) + (1− (1− α)k).
Bavarian, Vidick and Yuen [3] showed the parallel repetition

of anchored games admits an exponential decay in success

probability.

Theorem 11. Let α > 0. Let V be a 1-round, k-prover MIP∗

protocol. Let V⊥ be the α-anchored version of V as defined
in Definition 10. Let m > 0 be an integer. If ω∗(V) = 1,
then ω∗(V m

⊥) = 1. Otherwise,

ω∗(V m
⊥) ≤ exp(−βεγm)

where β is a universal constant depending on α and the
protocol V , ε is defined as 1−ω∗(V), and γ is a universal
constant.

III. OUR ZERO KNOWLEDGE PROTOCOL

In this section we present the zero knowledge transfor-

mation for general MIP∗ protocols. For convenience we

reproduce the statement of Theorem 1.

Theorem 1. For all 0 ≤ s ≤ 1, for all polynomially bounded
functions k, r,

MIP∗1,s[k, r] ⊆ PZK-MIP∗1,s′ [k + 4, 1]

where s′ = 1− (1− s)α for some universal constant α > 0.

Fix a promise language L ∈ MIP∗1,s[k, r]. There exists

a polynomial-time computable function V that on input x
outputs a k-prover, 1-round protocol circuit V (x) such that

if x ∈ L, then ω∗(V (x)) = 1, and otherwise ω∗(V (x)) < s.
Furthermore, since we are dealing with an MIP∗ proof

system, the communication between the verifier and the

provers is classical. Thus, we can assume that the protocol

circuit V has the following structure. All qubits of the

verifier register V are initialized to |0〉. The protocol circuit

proceeds in five phases:

• Verifier Operation Phase 1: All computation in this

phase of the protocol occurs on the verifier register V.

At the end of the computation, the verifier’s messages

to the i’th prover are stored in a subregister Ni of V.

• Copy Question Phase: For each prover i, CNOT gates

are applied bitwise from Ni to bits in the register Mi.

• Prover Operation Phase: Each prover i applies prover

gate Pi to registers PiMi, in sequence.

• Copy Answer Phase: For each prover i, CNOT gates

are applied bitwise from Mi to bits in the register Ni.

• Verifier Operation Phase 2: The remaining computa-

tion in the protocol occurs on the verifier register V, and

the accept/reject decision bit is stored in a designated

output qubit of V.

As mentioned earlier, we assume that the non-prover gates

of the protocol circuit V (x) are drawn from the universal

gate set {H,Λ(X),Λ2(X)}. Figure 1 gives a diagrammatic

representation of this five-phase structure, depicting a pro-

tocol in which a verifier interacts with a single prover.

V

N

P

M

V1

P

V2

Figure 1: A quantum circuit representation of an MIP*

protocol

As described in the Introduction, we first transform

the protocol circuit V (x) into an equivalent protocol cir-

cuit Venc(x) that performs its computations fault-tolerantly.

Then, we use the compression techniques of [25], [19] on

the protocol defined by Venc(x) to obtain a protocol VZK(x)
which has the desired zero knowledge properties.

A. Robustifying protocol circuits

We now describe a polynomial-time transformation that

takes as input the description of a k-prover, 1-round MIP∗

protocol circuit such as V described above, and outputs

621

another k-prover, 1-round protocol circuit Venc that de-

scribes an equivalent MIP∗ protocol, but has additional fault-

tolerance properties.
The non-prover gates of Venc are drawn from the

universal gate set {H ⊗ H,Λ(X),Λ2(X)}.6 The reg-

isters that are involved in the protocol Venc are

{P1, . . . ,Pk,M1, . . . ,Mk,V}. The verifier workspace reg-

ister V can be subdivided into registers A, B, O, and

N1, . . . ,Nk. Intuitively, the register A holds encoded qubits,

the register B holds unencoded qubits, the register O holds

an encoding of the output bit at the end of the protocol, and

the register Ni is isomorphic to Mi for all i.
Let the inner code Cinner be a 192-simulatable code. We

remark that from Theorem 6, such codes exist and each

logical qubit is encoded in m physical bits, for some constant

m.
At the beginning of the protocol Venc, the qubits in reg-

ister V are initialized to zero. In addition to the five phases

of V , there are two additional phases in Venc. First, the

protocol Venc goes through a Resource Generation Phase,

in which the verifier generates many Cinner encodings of

the following states in its private workspace:

1) Toffoli magic states |Toffoli〉 = Λ2(X)(H ⊗ H ⊗
I)|0, 0, 0〉.

2) Ancilla |0〉 qubits.

3) Ancilla |1〉 qubits.

Thus the state of the register V after the Resource Generation

Phase will be a tensor product of encoded magic states,

encoded |0〉 states, encoded |1〉 states, and unencoded |0〉
states.

Now the the verifier of Venc simulates the five compu-

tational phases of V , but as logical operations acting on

data encoded using the inner code Cinner. For the Verifier

Operation Phases and the Copy Question/Answer Phases,

each non-prover gate gi ∈ {H,Λ(X),Λ2(X)} of V is

replaced in Venc with the encoding of gi using the Cinner,

as given by Theorem 6. For example, if gi in V is a

Hadamard gate that acts on some qubit α of V, then its

equivalent will be a sequence of (double) Hadamard gates

acting transversally on the physical qubits of the encoding

of qubit α. If gi in V is a Toffoli gate, then in Venc the

logical gate is applied using the Toffoli gadget. Thus, all of

the gates of the verifier in V are performed in an encoded

manner in Venc.
The Prover Operation Phase proceeds as before; each

prover applies their prover gate on the MP registers in

sequence. We assume that the Prover Operation Phase is

padded with sufficiently many identity gates so that the

number of time steps in between each prover gate application

is at some sufficiently large constant times the block length

of the inner code Cinner.

6The doubled Hadamard gate is used for technical reasons; the second
Hadamard gate can always be applied to unused ancilla qubits if it is not
needed.

Note that the questions to the provers are encoded using

the inner code Cinner; this is not a problem for the provers,

who can decode the questions before performing their orig-

inal strategy, and encode their answers afterwards.

Finally, we assume that at the end of the (encoded) Verifier

Operation Phase 2, the register O stores the logical encoding

of the accept/reject decision bit. After Verifier Operation

Phase 2, the protocol Venc executes the Output Decoding
Phase, where the logical state in register O is decoded (using

the decoder from Cinner) into a single physical qubit Oout.

It is easy to see that this transformation from V to Venc
preserves the acceptance probability of the protocol.

Proposition 12. For all 1-round MIP∗ protocols V , for the
MIP∗ protocol Venc that is the result of the transformation
just described, we have that

ω∗(V) = ω∗(Venc).

1) Micro-phases of Venc: We assume the following struc-

tural format to the protocol circuit Venc: aside from the

major phases of Venc, we can partition the timesteps of the

circuit into “micro-phases”, where each micro-phase consists

of a constant number of consecutive timesteps, and each

micro-phase can be classified according to the operations

performed within it:

• Idling: the gates applied by the verifier during this

micro-phase are all identity gates.

• Resource encoding: gates are applied to a collection

of ancilla |0〉 qubits to form either an encoding of a

|0〉 state, |1〉 state, or a Toffoli magic state.

• Logical operation: the encoding of a single logical

gate is being applied to some encoded blocks of qubits,

possibly along with some unencoded ancilla qubits.

• Output decoding: the output register O of the verifier

circuit is decoded to obtain a single qubit answer. This

is exactly the Output Decoding phase.

For example, the Resource Generation phase consists of a se-

quence of resource encoding micro-phases, applied to blocks

of ancilla qubits. The Verifier Operation phases consist of

sequences of both idling steps and logical operations, applied

to blocks of encoded qubits as well as ancilla qubits. The

timesteps during the Prover Operation phase are classified

as idling steps, because the verifier is not applying any gates

to its private space.

2) Prover reflection times: Given the protocol circuit

Venc of length T , we identify special timesteps during the

protocol corresponding to the timesteps where the provers

apply their prover gate. For every prover i, we define

t�(i) ∈ {0, 1, 2, . . . , T} to be the time in the protocol circuit

when prover i applies their prover gate Pi.

B. A zero knowledge MIP∗ protocol to decide L

Given the transformation from an MIP∗ protocol V to an

equivalent “fault-tolerant” protocol Venc, we now introduce a

622

second transformation that takes Venc and produces another

equivalent MIP∗ protocol VZK that has the desired zero

knowledge properties.

This protocol is obtained by applying the compression

procedure of [25], [19] to Venc. Since we are compressing

interactive protocols (involving verifiers and provers) into

other interactive protocols, to keep things clear we use the

following naming convention:

• Verifiers and provers refer to the parties in Venc (i.e.

the protocol that is being compressed);

• Referees and players refer to the parties in VZK

(i.e. the protocol that is the result of the compression

scheme).

At a high level, the protocol VZK is designed to verify

that the players possess (an encoding of) a history state of

the protocol Venc:

|Φ〉CVMP =
1√
T + 1

T∑
t=0

|unary(t)〉C ⊗ |Φt〉VMP (2)

where T is the number of gates of Venc, unary(t) =
t1t2 · · · tT denotes the unary encoding of time t, i.e.

t� =

{
1 if
 ≤ t

0 otherwise
,

and |Φt〉 is the state of the protocol Venc after t time steps

(called the t’th snapshot state).

We specify some details of the protocol VZK :

• Rounds: 1-round protocol

• Number of players: k + 4 players, which are are

divided into k prover players (labelled PP1, . . . , PPk)

and 4 verifier players (labelled PV1, . . . , PV4).

• Question and answer format: questions to the ver-

ifier players are 6-tuples of the form (W1, . . . ,W6),
where each Wi denotes a two-qubit Pauli observ-

able on some specified pair of qubits, and the six

observables commute. Furthermore, the Pauli ob-

servables are tensor products of operators from the

set {I,X, Z}. An example of a question would

be: (X1X2, Z1Z2, I7Z5, X3Z4, Z3X4, X7I5). Verifier

players’ answers are a 6-tuple of bits (a1, . . . , a6).
Questions to prover player PPi can be one of three

types:

1) Prover reflection, denoted by �i.
2) Question gates, denoted by Qij for j = 1, . . . ,m′,

where m′ is the maximum number of qubits in the

message registers {Mi} in the protocol Venc.

3) Question flag flip, denoted by QFi.

4) Answer gates, denoted by Aij for j = 1, . . . ,m′.
5) Answer flag flip, denoted by AFi.

We notice that even if the Prover players’ original

answers consisted of a single bit, after robustifying the

protocol circuits, the answers become an encoding of

the logical bit.

The distribution of questions and the rules used by the

referee in VZK are essentially identical to the ones used in

the compression protocol in [19].7 Given those, the results

of [19] show that VZK is a complete and sound MIP∗ proof

system for L:

L ∈ MIP∗1,s′ [k + 4, 1]

where s′ = (1−s)β/p(n) for some universal constant β and

some polynomial p(n) that depends on the original protocol

V , and s is the soundness of V .

The details of the the question distribution, the rules and

the soundness analysis are irrelevant for this paper, as we

are only concerned with establishing the zero knowledge

property of VZK . For this, we only need to consider the

interaction between honest players and a potentially cheating

referee R̂.

1) An honest strategy SZK for VZK: We now specify

an honest strategy SZK(x) for the players in VZK(x) in

the case that x ∈ Lyes. Since x ∈ Lyes, by definition we

have that ω∗(V (x)) = 1, and therefore by Proposition 12

we get ω∗(Venc(x)) = 1. Thus there exists a sequence of

finite dimensional unitary strategies {S1(x),S2(x), . . .} for

Venc(x) such that the acceptance probability approaches 1.

For simplicity, we assume that there exists a finite dimen-

sional unitary strategy S(x) for Venc(x) that is accepted with

probability 1; in the general case, we can take a limit and

our conclusions still hold.

The strategy S(x) consists of a dimension d, an entangled

state |ψ〉 on registers P1, . . . ,Pk and M1, . . . ,Mk (where the

registers Pi have dimension d), and a collection of unitaries

{Pi} where Pi acts on registers PiMi. We assume, without

loss of generality, that in under the strategy S in protocol

Venc(x), the state of the message registers {Mi}i are in the

code subspace of Cinner at each time step of the protocol

(where we treat the prover operations as taking one time

step).

Given this, we define the measurement8 strategy SZK(x)
in the following way. For notational simplicity, we omit

mention of the input x when it is clear from context.

The shared entanglement: Let |Φ〉CVMP denote the

history state of the protocol Venc(x) when the provers use

strategy S (as in (2)). The initial state |Φ0〉 is |0〉V⊗|ψ〉MP.

We now construct an distributed history state |Φ′〉C′V′MPF

from |Φ〉 in two steps. First, without loss of generality we

augment a k-partite register F = F1, . . . ,Fk to |Φ〉 so that

7The main difference concerns the questions “Question flag flip” and
“Answer flag flip” to the provers, which do not occur in [25], [19]. These
will be helpful for the analysis of zero knowledge property. We explain
in Appendix A the slight modifications to the protocol from [19] that are
needed.

8Since the protocols V and Venc are general QMIP protocols, the
strategy S is a unitary strategy. Since VZK is a MIP∗ protocol, we specify
SZK as a measurement strategy.

623

serves as flags that indicate which operations the i’th prover

has applied. Thus the augmented history state looks like

|Φ〉 = 1√
T + 1

T∑
t=0

|unary(t)〉C ⊗ |Δt〉VMP ⊗ |f(t)〉F

where |f(t)〉F =
⊗

i|fi(t)〉Fi and |fi(t)〉Fi = |qi(t)〉FQi
⊗

|pi(t)〉FPi
⊗ |ai(t)〉FAi

. For all i ∈ {1, 2, . . . , k}, the func-

tions qi(t), pi(t), ai(t) are boolean functions of the time t,
defined as follows:

qi(t) =

{
1 if t ≥ t�(i)− 1

0 otherwise
,

pi(t) =

{
1 if t ≥ t�(i)

0 otherwise
,

and

ai(t) =

{
1 if t ≥ t�(i) + 1

0 otherwise
.

The flags qi, pi, ai flip from 0 to 1 consecutively: at time

t = t�(i)− 2, all flags for player i are set to 0. By the time

t = t�(i) + 1, all flags for player i are set to 1.

Next, we perform a qubit-by-qubit encoding of the C and

V registers of |Φ〉 using the outer code Couter, to obtain the

encoded history state |Φ′〉 defined on registers C′,V′,M,P.

Each qubit of C and V are encoded into 4 physical qubits.

The allocation of the registers of |Φ′〉 to the k+4 players

are as follows:

1) The register C consists of T qubits. For i = 1, . . . , T ,

let Ci denote the i’th qubit register of C. For j =
1, . . . , 4, let C′ij denote the j’th share of the Couter
encoding of Ci. In the honest case, the j’th verifier

player PVj has the qubits {C′ij}i.
2) Similarly, the registers V′ij denote the j’th share

of the encoding of the register Vi; the subregis-

ters Ai,Bi,Oi,Ni of V are encoded into subregisters

A′ij ,B
′
ij ,O

′
ij ,N

′
ij of V′ respectively. In the honest case,

the j’th verifier player PVj holds qubits {V′ij}i.
3) The prover players’ {PP1, . . . , PPk} represent the

original k players of the protocol V and Venc. In

the honest case, prover player PPi holds registers

{FiPiMi}. Note that these registers are not encoded

and split up like with the clock and verifier registers.

Player measurements: Since VZK is a 1-round MIP∗

protocol, we specify the strategy SZK in terms of measure-

ment operators.

• When the verifier players receive a 6-tuple of commut-

ing Pauli observables (W1, . . . ,W6), they measure each

of the observables σW1 , . . . , σW6 in sequence on the

designated qubits of their share of |Φ′〉, and report the

measurement outcomes (a1, . . . , a6). For example, if

W1 = X1Z2, then the corresponding observable would

be σX ⊗ σZ acting on qubits labelled 1 and 2.

• When prover player PPi receives a prover reflection

question �i, they measure the following observable on

the registers FPi
PiMi:

P ′i = |0〉〈1|FPi
⊗ P †i + |1〉〈0|FPi

⊗ Pi

where Pi acts on PiMi. It is easy to see that P ′i is an

observable with a +1 eigenspace and a −1 eigenspace.

• When prover player PPi receives a “Question gate”

question Qij , they measure the observable σX on the

register Mij , and report the one-bit answer. When PPi

receives an “Answer gate” question Aij , they measure

the observable σZ on the register Mij , and report the

one-bit answer.

• When prover player PPi receives the “Question flag

flip” question QFi, they measure the observable σX
on the register FQi

. When they receive “Answer flag

flip” question AFi, they measure the observable σX on

the register FAi .

The analysis of the compression protocol in [19] implies

that the strategy SZK(x) is accepted in the protocol VZK(x)
with probability 1. We now proceed to argue the zero

knowledge property of the protocol VZK with the honest

player strategy SZK .

IV. ZERO KNOWLEDGE PROPERTY OF VZK

Let R̂(x) be an arbitrary referee (modelled as a prob-

abilistic polynomial-time Turing machine) interacting with

k provers that use the measurement strategy SZK(x) de-

fined above. In general, this referee R̂(x) may try to gain

forbidden knowledge by deviating from the behaviour of

the referee specified by the protocol VZK . In this section,

we show this cannot happen by describing an efficient

simulator Sim(x) whose output distribution is equal to

View(R̂(x)↔ SZK(x)).

A referee R̂ could try to cheat by sampling questions from

a different distribution than the one that is specified in the

VZK protocol. Furthermore, the referee could interact with

the provers adaptively: it could send some messages to a

subset of the provers, get some answers, and depending on

those responses choose questions for another set of provers.

We can assume that a cheating referee does not interact with

the same prover in VZK twice; since the protocol is supposed

to be one round, an honest prover would abort the protocol

if the referee interacted with it multiple times. Similarly,

we assume that a cheating referee only asks questions that

match the format of questions in VZK .

In Section Section IV-A, we show how to simulate the

interaction between R̂ and the players when R̂ is non-
adaptive, meaning that the questions for all players are

picked simultaneously by the referee before interacting

with them. In Section IV-B we show how to perform this

simulation for general adaptive referees R̂.

624

For the remainder of this section, we omit mention of the

input x; we assume that the referee R̂ and the strategy SZK

implicitly depend on x.

We introduce some additional notation.

• Let NV = 4, NP = k denote the number of verifier

players and prover players, respectively.

• Let Ŵ (V,r), and Ŵ (P,r) denote the question for the r’th

verifier player and r’th prover player respectively. The

question Ŵ (V,r) is a 6-tuple (Ŵ
(V,r)
1 , . . . , Ŵ

(V,r)
6) of

commuting two-qubit Pauli observables.

• For r ∈ [NV], for j ∈ {1, . . . , 6}, we overload

notation by also letting Ŵ
(V,r)
j denote the j’th Pauli

observable used by r’th verifier player in the honest

strategy SZK when they receive question Ŵ (V,r) , as

specified in Section III-B1. We also let Ŵ (V,r) denote

the observable that is the product Ŵ
(V,r)
1 · · · Ŵ (V,r)

6

(the order does not matter because the observables

commute). Whether or not Ŵ
(V,r)
j and Ŵ (V,r) are used

to refer to the question or the observables will be clear

from context.

• For r ∈ [NP], we let Ŵ (P,r) also denote the observable

used by prover player PPr in the honest strategy SZK

when they receive question Ŵ (P,r). For example, if

Ŵ (P,r) is a “Question gate” Qrj or a “Question flag

flip” QFr, then as an observable we interpret Ŵ (P,r)

as the corresponding Pauli observable in the honest

strategy SZK . If Ŵ (P,r) is a prover reflection �r, then

as an observable we interpret Ŵ (P,r) as P ′r.

• Let Ŵ =
(
Ŵ (D,r)

)
D∈{V,P},r∈[ND]

denote the tuple of

questions for all players in the protocol. We also use

Ŵ to denote the tensor product of observables

Ŵ =
⊗

D∈{V,P},r∈[ND]

Ŵ (D,r).

• For r ∈ [NV], j ∈ {1, . . . , 6}, we define the observable

W̃
(V,r)
j to be Ŵ

(V,r)
j . For r ∈ [NP], we define the

observable

W̃ (P,r) =

{
σX(FPr) if Ŵ (P,r) = �r
Ŵ (P,r) otherwise

Notice that the observables W̃ (D,r) are simply Pauli

observables (or products of Pauli observables). We

explain the reasoning behind defining the observables

W̃ (D,r) in the next section.

• We also define the projectors corresponding to the

players’ observables. The verifier players output a 6-

tuple of bits (b1, . . . , b6) ∈ {0, 1}6. For r ∈ [NV],
j ∈ {1, . . . , 6}, and bit b ∈ {0, 1}, define

Ŵ
(V,r)
j (b) =

1

2

(
I + (−1)bŴ (V,r)

j

)

which is the projector onto the b subspace of Ŵ
(V,r)
j .

Define

Ŵ (V,r)(b1, . . . , b6) =
6∏

i=1

Ŵ
(V,r)
i (bi).

The prover players only output a single bit, so for r ∈
[NP], define

Ŵ (P,r)(b) =
1

2

(
I + (−1)bŴ (P,r)

)
.

Let a =
(
a(D,r)

)
D∈{V,P},r∈[ND]

denote an answer

vector for all players (where a(V,r) corresponds to a

6-tuple of bits). Then for every tuple of questions Ŵ ,

we define

Ŵ (a) =
⊗

D∈{V,P},r∈[ND]

Ŵ (D,r)(a(D,r)).

We define the projectors W̃ (D,r)(b) and W̃ (D,r) anal-

ogously.

A. Non-adaptive cheating referees

In this section, we show that for every possible com-

bination of (correctly formatted) questions to the players,

the joint distribution of answers of players using the honest

strategy SZK is efficiently simulable.

The reason for defining the observables W̃ (D,r) is as

follows. Ultimately, the goal of the simulator is, for every

question tuple Ŵ , to sample answer vectors a that is

distributed according to the probability density

Tr
(
Encouter(Φ) Ŵ (a)

)
where Φ = |Φ〉〈Φ| is the shared entangled state and Ŵ (a)
also denotes the projectors corresponding to outcome a in

the honest strategy SZK(x) (see Section III-B1). The main

difficulty is that the simulator does not have any control over

the prover reflections, nor the parts of Φ that correspond to

the provers’ private registers (which may be unbounded in

size).

To get around this issue, the key observation we use is the

following: the measurements of the verifier players are Pauli

observables that act on at most a constant number of qubits.

Furthermore, the measurements of the prover players when

they get a question other than the special prover reflection

� are also just Pauli observables on a constant number of

qubits.

We define two notions of support of a question tuple Ŵ .

Then, define the physical support of Ŵ to be the set S′
̂W

of qubit registers that are acted upon nontrivially by Ŵ ,

omitting the prover players’ private Pr registers. The set

S′
̂W

contains subregisters of C′,V′,M,F.

We can also define the logical support of Ŵ , denoted by

the set S
̂W

, which contains subregisters of C,V,M,F that

625

correspond to the registers in S′
̂W

. The logical support set

S
̂W

contains all the Mij and Fi registers that are in S′
̂W

. The

set S
̂W

contains Ct if and only if S′
̂W

contains Ctj for some

j, and similarly contains Vi if and only if S′
̂W

contains Vij

for some j. The difference between the physical and logical

support of Ŵ comes from the fact that the history state

|Φ〉 was encoded using Couter and split between multiple

provers.

Note that the number of qubit registers in S
̂W

is at most

12NV + k. This is because the questions to each verifier

player is a 6-tuple of Pauli observables that act on up to

2 qubits, and each prover player measures at most a single

qubit flag register at a time. Define L = 12NV = 48, which

is the maximum number of verifier player qubits that can be

addressed by Ŵ .

For all Ŵ , the simulator computes a succinct description

of density matrix ρ defined only on the logical registers in

S
̂W

that mimics Φ in a certain sense that is captured by the

following Lemma 15. Before stating the Lemma, however,

we specify what we mean by succinct description of ρ. In

general, ρ will be a density matrix with dimension at least

212NV +k, so the naı̈ve strategy of explicitly storing all the

matrix entires of ρ is not an efficient representation if the

number of prover players k is a growing function. Instead,

we will specify our density matrices ρ and measurement

operators using the following type of efficient representation:

Definition 13 (Efficient representations of operators). Let A
denote a linear operator defined on m qubits. The operator
A has an (w,
)-efficient representation if there exist, for all
i ∈ {1, 2, . . . , w}, a collection of operators {Aij} where
each Aij is defined on some subset Sij ⊆ {1, 2, . . . ,m} of
qubit registers, and

1) For all i ∈ {1, 2, . . . , w}, {Sij}j is a partition of
{1, 2, . . . ,m}.

2) |Sij | ≤
 for all i, j.
3) The explicit matrix representation of Aij can be de-

scribed using 2O(�) bits.
4) A =

∑w
t=1

⊗
j Aij .

The following Claim justifies our definition of “efficient

representation”:

Claim 14. Let A,B be m-qubit operators with (w,
)-
efficient representations {Aij} and {Bij}, respectively.
First, the efficient representations of both operators have bit
complexity w · 2O(�) · poly(m). Second, the trace Tr(AB)
can be computed in time w · 2O(�) · poly(m).

We can now state our main simulation Lemma:

Lemma 15. There is a PPT algorithm SimDensity that
when given a tuple Ŵ of questions, outputs a (3(T +
1)L2, 4L)-efficient representation of a density matrix ρ such
that for all answer vectors a =

(
a(D,r)

)
D∈{V,P},r∈[ND]

, we

have that

Tr
(
Encouter(Φ) Ŵ (a)

)
= Tr

(
Encouter(ρ) W̃ (a)

)
. (3)

Furthermore, the density matrix ρ is defined on the logical
support S

̂W
of Ŵ .

Before proving Lemma 15, we first prove a specialized

version. Let 1 ≤ t1 ≤ t2 ≤ T be such that t2 − t1 ≤ L
and let I(t1, t2) = {t : t1 ≤ t ≤ t2} denote the interval of

time steps between t1 and t2. We show that we can simulate

measurements on the state Encouter(ΦI) where |ΦI(t1,t2)〉
is the post-measurement state

|ΦI(t1,t2)〉 =
1√

t2 − t1 + 1

∑
t∈I(t1,t2)

|unary(t)〉C⊗|Φt〉VMPF

In other words, |ΦI(t1,t2)〉 denotes the part of the history

state between times t1 and t2. Furthermore, when convenient

we will omit mention of the unary encoding of the clock,

and simply refer to the state of the clock register as |t〉.
Lemma 16. There is a PPT algorithm SimInterval that
when given a tuple Ŵ of questions and a pair of times
0 ≤ t1 ≤ t2 ≤ T such that t2−t1 ≤ L, outputs a (3L2, 4L)-
efficient representation of a density matrix ρ such that for all
answer vectors a =

(
a(D,r)

)
D∈{V,P},r∈[ND]

, we have that

Tr
(
Encouter(ΦI(t1,t2)) Ŵ (a)

)
= Tr

(
Encouter(ρ) W̃ (a)

)
.

(4)

Furthermore, the density matrix ρ is defined on the logical
support S

̂W
of Ŵ .

Proof: Let I = I(t1, t2) and S = S
̂W

. Because of

padding, we can assume without loss of generality that the

time interval I belongs entirely to one of the six phases of

the protocol circuit Venc defined in Section III-A.

We can write for all t ∈ I ,

|Φt〉 = |Δt〉VMP ⊗ |f(t)〉F. (5)

Thus, we have

|ΦI〉〈ΦI | = 1

|I|
∑
t,t′∈I

|t〉〈t′|C⊗|Δt〉〈Δt′ |VMP⊗|f(t)〉〈f(t′)|F.

The left hand side of (4) can be written as

Tr
(
Encouter(ΦI) Ŵ (a)

)
=

1

|I|
∑
t,t′∈I

Tr
(
Encouter

(
|t〉〈t′|

⊗ |Δt〉〈Δt′ |
)
⊗ |f(t)〉〈f(t′)| Ŵ (a)

)
(6)

We consider two cases.

626

Case 1.: First, suppose that the following holds for all

r ∈ [NP]: either the r’th prover flag pr(t) stays constant

throughout the interval I , or if it changes, then Ŵ (P,r) �= �
(that is, prover player PPr was not asked a � question).

Fix a t, t′ ∈ I . Let Ŵ �(a) denote the tensor factors of

Ŵ (a) corresponding to the prover players who received a �
question (if none received a � question, then this operator is

the identity). Similarly, let W̃ �(a) denote the tensor factors

of W̃ (a) corresponding to the prover players who received a

� question. Thus, W̃ �(a) is tensor product of σX operators

and identity operators. Under our assumption, any operator

A defined on registers CVMP, we have that

Tr
(
(A⊗ |f(t)〉〈f(t′)|F) Ŵ �(a)

)
= Tr

(
(A⊗ |f(t)〉〈f(t′)|F) W̃ �(a)

)
.

This is because of the following: consider the set J ⊆ [NP]

who received a � question. If J is empty, then Ŵ � = W̃ � =
I,9 so the equation trivially holds. If J is non-empty, then

by assumption for any r ∈ J , the prover flags for r stay

constant on the interval I , so the traces are 0. This implies

that (6) is equal to

1

|I|
∑
t,t′∈I

Tr
(
Encouter

(
|t〉〈t′|

⊗|Δt〉〈Δt′ |
)
⊗ |f(t)〉〈f(t′)| W̃ (a)

)
We now argue that a (1, 4L)-efficient representation of the

following operator

ρS(t, t
′) = TrS (|t〉〈t′| ⊗ |Δt〉〈Δt′ | ⊗ |f(t)〉〈f(t′)|)

can be efficiently computed in polynomial time, where

TrS(·) denotes tracing out all registers except those in S.

Notice that S does not include the register P, and has at

most O(NV + k) qubit registers.

Given this is true, and using the fact that |I| ≤ L, then a

(L2, 4L)-efficient representation of

ρS =
1

|I|
∑
t,t′∈I

ρS(t, t
′)

can be computed in polynomial time, and satisfies (4).

Since TrS (|t〉〈t′|) and TrS (|f(t)〉〈f(t′)|) have (1, 1)-
efficient representations (i.e. these are tensor products of

single qubit operators), it suffices to show that we can

efficiently compute TrS(|Δt〉〈Δt′ |). Assume without loss of

generality that t ≤ t′.
First, we consider the sub-case that all prover flags

{pr(t)} stay constant throughout the interval I . This

means that there exists a sequence of elementary gates

gt, gt+1, . . . , gt′ (i.e., no prover gates) such that

|Δt′ 〉 = gt′gt′−1 · · · gt+1gt|Δt〉.
9We denote the identity matrix as I here in order to avoid confusion with

the interval I .

Let G denote the union of the registers that are acted upon

by the gates gt, . . . , gt′ . Since t′ − t ≤ |I| ≤ L, and each

gate acts on at most 3 qubits, we get that |G| ≤ 3L. Now,

we can write

TrS(|Δt〉〈Δt′ |) = TrS(|Δt〉〈Δt|g†t′ · · · g†t)
= TrG∩S

(
TrS∪G(|Δt〉〈Δt|)g†t′ · · · g†t

)
The density matrix TrS∪G(|Δt〉〈Δt|) is where all registers

except for S and G are traced out. We notice that the number

of qubits of this density matrix, |S ∪G|, is at most 4L. We

can appeal to the following Lemma to get that the explicit

matrix description of TrS∪G(|Δt〉〈Δt|) can be computed in

polynomial time.

Lemma 17. There exists a PPT algorithm SimSnapshot
that on input (x, Y, t) such that

1) x is a binary string
2) Y is a subset of registers used in the honest strategy
SZK(x) (that does not include the prover registers P
nor the prover flags F) that has size at most 4L, and

3) t is an integer between 0 and the length of the protocol
circuit Venc(x)

outputs matrix entries of the density matrix

TrY (|Δt〉〈Δt|)
where |Δt〉 is defined as in (5).

We defer the proof of Lemma 17 to Section IV-C.

The simulator SimInterval can execute SimSnapshot on

(x, S ∪G, t) to obtain the description of TrS∪G(|Δt〉〈Δt|),
and then perform some efficient post-processing to obtain

the explicit matrix description of TrS(|Δt〉〈Δt′ |).
Putting everything together, we get that

ρS(t, t
′) = TrS (|t〉〈t′|)⊗TrS (|Δt〉〈Δt′ |)⊗TrS (|f(t)〉〈f(t′)|)

has a (1, 4L)-efficient representation.

Next, we consider the next sub-case, where the prover flags

{pr(t)} do not stay constant. The interval I lies within the

Prover Operation phase. Because of padding, the interval I
can at most cover a single prover’s operation, so there exists

a unique r∗ ∈ [NP] such that pr∗(t) changes (all others stay

constant). Thus, the pr∗ flag changes from 0 to 1 at time

t�(r
∗). Let t� = t�(r

∗).
By our assumption at the beginning, Ŵ (P,r∗) �= � (the

prover player PPr∗ was not asked the � question). Since S
does not include FPr∗ , for t < t� and t′ ≥ t�, we get that

TrS (|f(t)〉〈f(t′)|) = 0,

Define I− = {t ∈ I : t < t�} and I+ = {t ∈ I : t ≥ t�}.
We then have

ρS =
1

|I|

⎛⎝ ∑
t,t′∈I−

ρS(t, t
′) +

∑
t,t′∈I+

ρS(t, t
′)

⎞⎠ .

627

Notice that all prover flags pr(t) stay constant on I− and

I+. Therefore we can reduce to the previous sub-case to

argue that ρS(t, t
′) can be computed when both t, t′ either

come from I− or I+.

This completes the proof of Case 1.

Case 2.: Next, we consider the case that there is an r∗

for which the prover flag pr∗(t) changes from 0 to 1 during

the interval I , and furthermore Ŵ (P,r∗) = � (the prover

player PPr∗ was asked the � question). Again, this interval

I must lie in the Prover Operation phase and by padding all

other prover flags must be constant throughout the interval

I . Let t� = t�(r
∗).

Since prover player PPr∗ received the � question, they

could not have received questions QFr∗ or AFr∗ , and

therefore FQr∗ and FAr∗ are not part of the logical support

set S. Thus the reduced density matrix of ΦI where we trace

out all registers except for S and P is a convex combination

TrS∪P(ΦI) = TrS∪P

(|I−|
|I| ΦI− +

|I�|
|I| ΦI� +

|I+|
|I| ΦI+

)
where we define the subintervals

• I− = {t ∈ I : t < t� − 1}
• I� = {t ∈ I : t� − 1 ≤ t ≤ t�}
• I+ = {t ∈ I : t ≥ t� + 1}

This is because we are tracing out the Question Flip flag

register FQr∗ and Answer Flip flag register FAr∗ ; so cross-

terms where t and t′ belong to different subintervals above

would disappear.

Therefore (6) is equal to

Tr
(
Encouter(ΦI) Ŵ (a)

)
= Tr

(
Encouter

(|I−|
|I| ΦI− +

|I�|
|I| ΦI� +

|I+|
|I| ΦI+

)
Ŵ (a)

)
We now show how to compute (L2, 4L)-efficient represen-

tations of density matrices ρ−S , ρ
+
S , ρ

�
S such that

Tr(Encouter(ρ
−
S) W̃ (a)) = Tr(Encouter(ΦI−) Ŵ (a)) (7)

Tr(Encouter(ρ
+
S) W̃ (a)) = Tr(Encouter(ΦI+) Ŵ (a)) (8)

Tr(Encouter(ρ
�
S) W̃ (a)) = Tr(Encouter(ΦI�) Ŵ (a)). (9)

Once we have this, then a (3L2, 4L)-efficient representation

of density matrix ρS = |I−|
|I| ρ

−
S + |I�|

|I| ρ
�
S + |I+|

|I| ρ
+
S is

efficiently computable and satisfies (4), and this completes

the proof of Case 2.

We argue that ρ−S and ρ+S have efficient representations.

Notice that the prover flags {pr(t)} are constant on the

intervals I− and I+. Thus from the same arguments as in

Case 1, SimInterval can, when given input Ŵ and a pair of

times (min(I−),max(I−)), efficiently compute a (L2, 4L)-
efficient representation of the density matrix ρ−S defined on S
that satisfies (7). Similarly, SimInterval can also efficiently

compute an efficient representation of ρ+S that satisfies (8).

We now turn to ρ�S . Since we are in Case 2, it must be that

I� = {t�−1, t�} (otherwise, the prover flag for PPr∗ would

stay constant on I). Thus, using that |Φt〉 = |Δt〉 ⊗ |f(t)〉,

|ΦI� 〉 = 1√
2

[
|t� − 1〉|Δt�−1〉|f(t� − 1)〉+ |t�〉|Δt� 〉|f(t�)〉

]
=

1√
2

[
|t� − 1〉 ⊗ |Φt�−1〉+ |t�〉 ⊗ P ′r∗ |Φt�−1〉

]
(10)

Furthermore, since PPr∗ receives the � question in Ŵ , the

measurement operator Ŵ (P,r∗)(a) is simply

1

2

(
I+ (−1)a(P,r∗)

P ′r∗
)
.

Let Ŵ−(P,r∗)(a) be the measurement operator obtained

by taking Ŵ (a) and deleting the factor Ŵ (P,r∗), i.e.,

Ŵ−(P,r∗)(a) is the tensor product of questions of all provers

except PPr∗ . Therefore we can write

Tr
(
Encouter(ΦI�) Ŵ (a)

)
= Tr

(
Encouter(ΦI�) Ŵ−(P,r∗)(a)⊗ Ŵ (P,r∗)(a)

)
=

1

2

(
Tr

(
Encouter(ΦI�) Ŵ−(P,r∗)(a)

)
+ (−1)a(P,r∗)

Tr
(
Encouter(ΦI�) Ŵ−(P,r∗)(a)⊗ P ′r∗

))
(11)

We analyze the first term above. By substituting in the

expression (10) for ΦI� , we get some cross terms of the

form

Tr
(
Encouter(|t� − 1〉〈t�| ⊗ |Φt�−1〉〈Φt�−1|(P ′r∗)†) Ŵ−(P,r∗)(a)

)
= Tr

([
Encouter(|t� − 1〉〈t�| ⊗ |Δt�−1〉〈Δt�−1|P †r∗)

⊗ |f(t� − 1)〉〈f(t�)|
]
Ŵ−(P,r∗)(a)

)
Notice that the operator Ŵ−(P,r∗)(a) does not act on the

prover flag register FPr∗ , and the FPr∗ component of |f(t�−
1)〉〈f(t�)| is |0〉〈1|. Thus, the cross-term vanishes. The first

term of (11) can be written as

1

2
Tr

(
Encouter(|t� − 1〉〈t� − 1| ⊗ |Φt�−1〉〈Φt�−1|

+ |t�〉〈t�| ⊗ |Φt�〉〈Φt� |) Ŵ−(P,r∗)(a)
)

=
1

2
Tr

(
Encouter

(
(|t� − 1〉〈t� − 1|

+ |t�〉〈t�|)⊗ |Φt�−1〉〈Φt�−1|
)
Ŵ−(P,r∗)(a)

)
where in the equality we used that |Φt� 〉 = P ′r∗ |Φt�−1〉
and the operator P ′r∗ commutes with Ŵ−(P,r∗)(a), and

thus vanishes by the cyclity of the trace. Applying similar

628

reasoning to the second term of (10), we remain only with

the cross terms, and we get that it can be written as

1

2
Tr

(
Encouter

(
(|t� − 1〉〈t�|+ |t�〉〈t� − 1|)
⊗ |Φt�−1〉〈Φt�−1|

)
Ŵ−(P,r∗)(a)

)
Putting everything together, we get that (11) can be written

as

1

2
Tr

(
Encouter

(|ζt∗,a〉〈ζt∗,a| ⊗ |Δt�−1〉〈Δt�−1| (12)

⊗ |f(t� − 1)〉〈f(t� − 1)|) Ŵ−(P,r∗)(a)
)

with

|ζt∗,a〉 = 1√
2

[
|t� − 1〉+ (−1)a(P,r∗) |t�〉

]
.

Define

ρ�S = TrS
(|ζt∗,a〉〈ζt∗,a| ⊗ |Δt�−1〉〈Δt�−1|
⊗ |f(t� − 1)〉〈f(t� − 1)|).

Just like in Case 1, the density matrices TrS (|ζt∗,a〉〈ζt∗,a|)
and TrS (|f(t� − 1)〉〈f(t� − 1)|) have (1, 1)-efficient

representations, and by Lemma 17 we have that

TrS (|Δt�−1〉〈Δt�−1|) can be efficiently computed as well.

This shows that ρ�S has a (1, 4L)-efficient representation.

Finally, we have that the Ŵ−(P,r∗)(a) operator in (12)

can be replaced with W̃−(P,r∗)(a). This shows that ρ�S
satisfies (9), and this completes the proof of Case 2.

We now prove Lemma 15.

Proof of Lemma 15: Fix a tuple Ŵ of questions. We

argue that computing an efficient description of a density

matrix ρ that satisfies (3) can be efficiently reduced to

computing efficient descriptions of density matrices ρI for

various intervals I , for which we can use the algorithm

SimInterval from Lemma 16.

Since there are only NV verifier players, and each verifier

player receives a 6-tuple of Pauli observables that have

support on at most 12 physical qubits each, the joint

measurement of the verifier players acts on at most 12NV

physical qubits, and therefore at most 12NV logical qubits

of the underlying encoded clock register.

Let

Ctr = {i ∈ [T] : the i’th logical clock qubit Ci is not in S
̂W
}

denote the set of (logical) clock qubit registers that, after

the outer encoding, are not acted upon by the measurement

corresponding to Ŵ . Thus, for all answer vectors a,

Tr
(
Encouter(Φ) Ŵ (a)

)
= Tr

(
Encouter(TrCtr

(Φ)) Ŵ (a)
)
. (13)

We argue that the density matrix TrCtr
(Φ) is a convex

combination of |ΦI 〉 states for various intervals I:

TrCtr
(Φ) (14)

=
1

T + 1

∑
t,t′

TrCtr
(|unary(t)〉〈unary(t′)|)⊗ |Φt〉〈Φt′ |.

The following Claim easily follows from the structure of

unary encodings:

Claim 18. For all 0 ≤ t, t′ ≤ T , the operator
TrCtr

(|unary(t)〉〈unary(t′)|) is non-zero only when t = t′,
or for all i ∈ Ctr, either both t, t′ > i, or both t, t′ < i.

Given this Claim, we notice that all cross-terms of (14)

involving times t, t′ where t �= t′ and at least one of t, t′

are in Ctr vanish. Thus the only cross-terms that remain are

times t, t′ that come from an interval I ⊆ {0, 1, 2, . . . , T}
of consecutive time-steps where there is no i ∈ Ctr such

that min(I) ≤ i ≤ max(I). Let {0, 1, 2, . . . , T} \ Ctr be

the union of maximal intervals I1, I2, . . . , I� of consecutive

time steps. Thus (14) can be written as∑
t∈Ctr

1

T + 1
TrCtr

(|Φ{t}〉〈Φ{t}|)

+
�∑

j=1

|Ij |
T + 1

TrCtr (|ΦIj 〉〈ΦIj |)

where |Φ{t}〉 = |unary(t)〉 ⊗ |Φt〉 denotes the history state

restricted to the singleton interval {t}. As desired, (14) is

a probabilistic mixture of interval states |ΦI 〉 where each

interval has size at most 6NV ≤ L. The intervals Ij occur

with probability |Ij |/(T +1) and the singleton intervals {t}
for t ∈ Ctr occur with probability 1/(T + 1).

The algorithm SimDensity works as follows: given a

question tuple Ŵ it can compute the set Ctr, and then

compute the intervals I1, . . . , Ij in polynomial time. For

each interval Ij , it invokes the algorithm SimInterval from

Lemma 16 to efficiently compute a (3L2, 4L)-efficient rep-

resentation of the density matrix ρIj supported on S
̂W

that

satisfies

Tr
(
Encouter(ΦIj) Ŵ (a)

)
= Tr

(
Encouter(ρIj) W̃ (a)

)
.

Similarly, for every t ∈ Ctr the algorithm SimDensity
invokes SimInterval to compute a (3L2, 4L)-efficient rep-

resentation of the density matrix ρt that satisfies

Tr
(
Encouter(Φ{t}) Ŵ (a)

)
= Tr

(
Encouter(ρt) W̃ (a)

)
.

There are at most T + 1 density matrices to compute.

SimDensity then can then efficiently compute a (3(T +
1)L2, 4L)-efficient representation of the convex combination

ρ =
∑
t∈Ctr

1

T + 1
ρt +

�∑
j=1

|Ij |
T + 1

ρIj ,

629

which satisfies (3).

With Lemma 15, we prove that VZK has the zero

knowledge property against cheating referees that are non-

adaptive, meaning that the referee samples a question tuple

Ŵ first, sends them to the players, and receives their answers

a.

Lemma 19. For every non-adaptive polynomial-time referee
R̂na, there is a PPT simulator Sim

̂Rna such that the output
distribution of Sim

̂Rna(x) is equal to View(R̂na(x) ↔
SZK(x)).

Proof: Sim
̂Rna starts by sampling the questions to the

players Ŵ =
(
Ŵ (D,r)

)
D∈{V,P},r∈[ND]

from the same joint

distribution as R̂na on input x. This can be performed

efficiently since R̂na is a polynomial-time algorithm and

the questions are sampled in a non-adaptive way.
Then, the simulator Sim

̂Rna executes the algorithm

SimDensity from Lemma 15 on input Ŵ , which outputs

an efficient representation of a density matrix ρ such that

for all answer vectors a =
(
a(D,r)

)
D∈{V,P},r∈[ND]

we have

that

α(a) = Tr
(
Encouter(Φ) Ŵ (a)

)
= Tr

(
Encouter(ρ) W̃ (a)

)
.

Note that α(a) is a probability distribution over answer

vectors. We need to show that we can efficiently sample

an answer vector a from the probability distribution α(a).
We can do that by sampling each bit of a one at a time, and

conditioning the density matrix ρ on the partial outcomes.
Index the players using {1, 2, . . . , NV + k} in some

canonical way. Let a = (a1, . . . , aNV +k) where ai denotes

the answer symbol of the i’th player, which might come

from the alphabet {0, 1, }6 or {0, 1}, depending on whether

the i’th player is a prover player or a verifier player.
We utilize the following important observation: for every

answer vector a, W̃ (a) is equal to the tensor product of

projectors where the projectors corresponding to the prover

players are all single-qubit operators, and the projectors

corresponding to the verifier players may act on up to 12NV

qubits.

For every i ∈ {1, 2, . . . , NV + k}, let W̃ (ai) denote the

projector of the i’th player corresponding to outcome ai,
when the players receive the question tuple Ŵ . Note that

W̃ (a) = W̃ (a1)⊗ · · · ⊗ W̃ (aNV +k).
To sample a1, the simulator can explicitly compute the

probabilities

α(a1) = Tr
(
Encouter(Φ) Ŵ (a1)

)
= Tr

(
Encouter(ρ) W̃ (a1)

)
.

for all a1, where we use α(a1) to denote the marginal

distribution of a1 in α. Since a1 comes from a constant-

sized alphabet, this distribution can be sampled from in

polynomial time. Given a sample a1, we can now sample

a2 conditioned on a1, so we can compute the conditional

distribution

α(a2|a1) =
Tr

(
Encouter(ρ) W̃ (a1)⊗ W̃ (a2)

)
α(a1)

,

and sample from it as well. We can continue in this manner,

until we have sampled a1 · · · aNV +k. This can be done in

polynomial time, because W̃ (a1)⊗ · · · ⊗ W̃ (ai) for all i ∈
{1, . . . , NV + k} has a (1, 12NV)-efficient representation.

The simulator then outputs (x, r, Ŵ , a) where r is the

randomness used by cheating referee R̂na. By construction,

this output is distributed identically to View(R̂na(x) ↔
SZK(x)).

B. General cheating referees

We now show that if that for an arbitrary cheating

referee R̂, there exists simulator whose output is distributed

according to View(R̂(x)↔ SZK(x)).
As mentioned earlier, the difficulty is that R̂ could send

questions to a set of players, and then depending on their

answers, adaptively choose questions for another set of play-

ers, and so on. The arguments from Section IV-A strongly

rely on the fact that the simulator can sample all of the

questions before sampling the answers. In this section, we

show how to simulate the interaction between the referee

and the players in the adaptive scenario.

Lemma 20. For every PPT R̂, there exists a PPT simulator
Sim

̂R such that the output distribution of Sim
̂R(x) is equal

to V iew(R̂(x)↔ SZK(x)).

Proof: A general cheating referee R̂ behaves as follows:

using randomness, it samples a set of players B1 ⊆ P =
{(D, r) : D ∈ {V, P}, r ∈ [ND]}, followed by some

questions ŴB1 for those players. It sends ŴB1 to the B1

players, and receives a partial answer vector aB1 . Based on

its randomness and the answers received, the referee samples

another set of players B2 ⊆ P \ B1 and questions ŴB2

for the B2 players. We assume that B2 is disjoint from

B1 because the players would abort the protocol if they

are interacted more than once. The referee continues in this

manner until it halts.

The general simulator Sim runs the referee R̂ on ran-

domness s to obtain the sample (B1, Ŵ
B1). To simulate the

B1 players’ responses to ŴB1 , the simulator will arbitrarily

complete ŴB1 to a question tuple Ŵ1 for all players, and

then call SimDensity on Ŵ1 to obtain a density matrix

ρ1 defined on registers S
̂W1

. With this density matrix, the

simulator Sim can sample a partial answer vector aB1

with probability Tr(Encouter(ρ1) Ŵ
B1(aB1)). This partial

answer vector can be sampled in the same way as described

in the simulation for the non-adaptive referee in Lemma 19.

Note that this distribution does not depend how the question

630

tuple ŴB1 was completed, since the distribution is non-

signalling.

Based on this sampled answer vector aB1 and the random-

ness s, the simulator can continue executing R̂ to obtain a

sample (B2, Ŵ
B2). The simulator then constructs a question

tuple Ŵ2 that contains both ŴB1 and ŴB2 (which are

question tuples to disjoint sets of players), and invokes

SimDensity to efficiently compute a density matrix ρ2
defined on registers S

̂W2
. The simulator can then sample

a partial answer vector aB2 with probability

Tr
(
ŴB2(aB2)⊗ ŴB1(aB1)Encouter(ρ2)

)
Tr(Encouter(ρ2) ŴB1(aB1))

.

Once again, this partial answer vector can be sampled in

the same way as described in the proof of Lemma 19. In

the end, the simulator can repeat this process and obtain a

sequence (x, s, ŴB1 , aB1 , ŴB2 , aB2 , . . .) that is distributed

identically to View(R̂(x)↔ SZK(x)).

The complete simulation algorithm is described in detail

in Figure 2. It is easy to see that the simulator runs in

polynomial time.

Algorithm: Sim
̂R(x)

1) Set i = 1.

2) Sample randomness s for R̂.

3) Set π = (x, s).
4) While R̂ has not halted:

a) Continue the execution of the referee R̂ on

randomness s, the previous i − 1 samples

(B1, Ŵ
B1 , a(B1)), . . . , (Bi−1, Ŵ

Bi−1 , a(Bi−1)),

to obtain a new sample (Bi, Ŵ
Bi). If Bi

has non-zero intersection with any of the

B1, . . . , Bi−1, add abort to the end of π and

output π.

b) Let Ŵi denote the question tuple that is the

concatenation of ŴB1 , ŴB2 , . . . , ŴBi with ar-

bitrary questions to the players in P \(B1∪· · ·∪
Bi).

c) Execute SimDensity on input Ŵi to obtain a

(O(T), O(1))-efficient representation of the den-

sity matrix ρi supported on registers S
̂Wi

.

d) Sample aBi with probability

Tr
(
Πi−1 ⊗ ŴBi(aBi)Encouter(ρi)

)
Tr (Πi−1 Encouter(ρi))

where

Πi−1 = ŴB1(aB1)⊗ · · · ⊗ ŴBi−1(aBi−1).

e) Add (ŴBi , aBi) to the end of π.

f) Set i = i+ 1.

5) Output π.

Figure 2: The simulator Sim
̂R

C. Simulating snapshots

We now prove Lemma 17. For convenience we recall the

Lemma statement.

Lemma 17. There exists a PPT algorithm SimSnapshot
that on input (x, Y, t) such that

1) x is a binary string
2) Y is a subset of registers used in the honest strategy
SZK(x) (that does not include the prover registers P
nor the prover flags F) that has size at most 4L, and

3) t is an integer between 0 and the length of the protocol
circuit Venc(x)

outputs matrix entries of the density matrix

TrY (|Δt〉〈Δt|)
where |Δt〉 is defined as in (5).

Proof:
Fix the protocol circuit Venc = Venc(x). For convenience,

we omit mention of the input x for the remainder of this

631

proof. Let T denote the length of the circuit Venc. We notice

that our parameters imply that 4L = 192, and therefore

Cinner is a 4L-simulatable code and we denote m as the

blocklength of this code, as defined in Theorem 6.
The protocol circuit acts on registers A,B,O,N,M,P.

Since the set Y does not include any subregister of the

prover register P, we only consider the subregisters of

R = ABONM. At each time t, we say that a group of m
qubit registers Ri1 , . . . ,Rim form an encoded block if and

only if Π|Δt〉 = |Δt〉 where Π is the projector onto the

codespace for the qubits Ri1 , . . . ,Rim . Since the protocol

circuit Venc(x) can be computed in polynomial time, deter-

mining the encoded block of qubits than a physical qubit

belongs to can be efficiently done.
As explained in Section III-A1, we split the phases

of the circuit into micro-phases. For every time t ∈
{0, 1, 2, . . . , T}, let start(t) ≤ t denote the start of the

micro-phase containing time t, and let end(t) ≥ t denote the

end of the micro-phase containing time t. For each time t,
we can partition the qubit subregisters into three categories:

• Active: These are qubits that have been acted upon by a

gate gt′ for some time t′ ∈ {start(t), . . . , t}. Let A(t)
denote the set of active qubit registers at time t.

• Encoded qubits: These are qubits that belong to an

encoded block, and are not active. Let E(t) denote the

set of encoded qubit registers at time t.
• Unencoded qubits: These are unencoded ancilla qubits

in the state |0〉 or in the state |1〉, and are not active.

Let U0(t) and U1(t) denote the sets of unencoded qubit

registers in the state |0〉 an |1〉, respectively, at time t.

Unencoded qubits are in a “known” state throughout the

entire circuit Venc in the sense that their state is independent

of the input x. In fact, for all t the state |Δt〉 can be written

as

|Δt〉 = |Σt〉A(t)E(t) ⊗ |0 · · · 0〉U0(t) ⊗ |1 · · · 1〉U1(t)

where |Σt〉 corresponds to the registers that are either active

or encoded, and the remaining qubits are unencoded ancillas.
By construction, the protocol circuit Venc satisfies the

following invariant: at the beginning and end of every micro-

phase of the circuit, all qubit subregisters are either encoded,

or unencoded. Qubits can only be active within a micro-

phase.
We now argue that the description of TrY (|Δt〉〈Δt|) can

be efficiently computed for all t. We argue this for each

micro-phase separately. Let t0 = start(t).
Idling phase: During an idling phase, all qubits are

either encoded or unencoded, and none are active. The re-

duced density matrix TrY (|Δt〉〈Δt|) thus consists of either

at most |Y | unencoded |0〉 and |1〉 ancilla qubits, and the

reduced density matrix of some encoded blocks on at most

|Y | ≤ 4L qubits. By Theorem 6, the reduced density matrix

of the encoded blocks is efficiently computable, and thus

TrY (|Δt〉〈Δt|) is efficiently computable.

Resource encoding: In a resource encoding phase, a

constant number of unencoded ancilla bits in |Δt0 〉 will

be transformed into an encoded resource state in |Δend(t)〉,
and the rest of the qubits are either in an encoded block or

unencoded ancilla qubits. Thus the reduced density matrix

TrY (|Δt〉〈Δt|) is a tensor product of the reduced density

matrix of some encoded blocks (which is efficiently com-

putable by Theorem 6), unencoded ancilla qubits, and the

reduced density matrix of the intermediate state of a resource

encoding circuit acting on a constant number of ancillas

(which is efficiently computable). Thus TrY (|Δt〉〈Δt|) is

efficiently computable.

Logical operation: In a logical operation micro-

phase, either a logical Hadamard, logical CNOT, or log-

ical Toffoli are being implemented on some encoded

code blocks as well as some unencoded ancilla qubits.

Let U ∈ {H,Λ(X),Λ2(X)} be the logical gate, and

O1, O2, . . . , Ot−t0 denote the first t − t0 gates of the

encoding of U . We have that

|Δt〉 = Ot−t0 · · ·O1|Δt0 〉.
Since all qubits of |Δt0 〉 are correctly encoded, this cor-

responds to the simulation in the middle of the application

of a logical gate, and again by Theorem 6, TrY (|Δt〉〈Δt|)
can also be efficiently computable.

Output decoding: In the honest strategy SZK(x), the

state |Δt0 〉 can be written as a tensor product

|Δt0 〉 = Encinner(|1〉)O⊗|Σt0 〉E(t0)⊗|0 · · · 0, 1 · · · 1〉U(t0).
This is because by assumption the strategy SZK(x) causes

the protocol circuit Venc to accept with probability 1, and

therefore the register O at the beginning of the Output

Decoding phase will store an encoding of |1〉.
Therefore, the reduced density matrix TrY (|Δt〉〈Δt|) is

a tensor product of the reduced density matrix of a de-

coding circuit acting on Encinner(|1〉) (which is efficiently

computable), the reduced density matrix of |Σt0 〉 on at

most |Y | ≤ 4L qubits (which is efficiently computable by

Theorem 6), and a constant number of unencoded ancilla

qubits. Thus TrY (|Δt〉〈Δt|) is efficiently computable.

D. Completing the proof of Theorem 1

If the completeness and soundness of the original MIP∗

protocol for L are 1 and s respectively, then the soundness of

the resulting zero knowledge protocol VZK for L has com-

pleteness 1 (i.e. perfect completeness) and has soundness s′

that is polynomially related to 1− s:

s′ ≤ 1− (1− s)β
p(n)

for some universal constant β and polynomial p.

Our zero knowledge transformation is not immediately

gap preserving, in the sense that if 1−s is a constant, the new

632

soundness s′ is only separated from 1 by an inverse polyno-

mial. Since the standard definition of the complexity classes

QMIP, MIP∗, and PZK-MIP∗ have constant completeness-

soundness gaps, our result does not immediately show that

MIP∗ ⊆ QMIP ⊆ PZK-MIP∗.
To remedy this, we employ the gap amplification tech-

niques described in Section II-E. Suppose that the soundness

s′ of VZK is at most 1− 1/q for some polynomial q. First,

we apply the anchoring transformation to VZK to obtain a

new protocol VZK,⊥ such that

ω∗(VZK,⊥) = α+ (1− α)ω∗(VZK)

for some constant α. Then, we use Theorem 11 of Bavarian,

Vidick and Yuen [3] to argue that the parallel repetition of

VZK,⊥ has the desired soundness properties. In the case that

ω∗(VZK) = 1, then ω∗(V m
ZK,⊥) = 1 for all m. Otherwise,

for some polynomial m that depends on q, k, α, and VZK ,

we have that ω∗(V m
ZK,⊥) ≤ 1− (1− s)γ for some universal

constant γ. Thus, the soundness of V m
ZK,⊥ is polynomially

related to the original completeness-soundness gap 1 − s,
and it also decides L.

It remains to argue that the amplified protocol V m
ZK,⊥ still

has the perfect zero knowledge property. In general, this is a

delicate issue, since it is known that parallel repetition does

not preserve zero knowledge in a black box manner [20],

[5], [33].

In our case, however, since the referee is constrained to

interacting with each prover only once, we can simulate the

interaction in the amplified protocol V m
ZK,⊥ by essentially

running many copies of the simulator Sim
̂R described in

Figure 2 in parallel. Notice that the honest strategy for

V m
ZK,⊥ consists of sharing m copies of the history state,

and performing independent measurements on each of these

copies. It is not hard to see that the interaction in V m
ZK,⊥

can be simulated efficiently.

The number of provers involved in the protocol executed

by V m
ZK,⊥ is k+4, and the protocol is 1-round, which implies

that

L ∈ PZK-MIP∗1,s′′ [k + 4, 1].

where s′′ ≤ 1 − (1 − s)γ . This concludes the proof of

Theorem 1.

APPENDIX

The structure and format of the protocol VZK is essen-

tially the same as the protocols that arise from protocol

compression in [19]. However, we list the few differences

and provide explanations for why the soundness of the

protocol is unaffected by these changes.

1) The outer code for VZK is a 4-qubit error detecting

code, instead of the 7-qubit Steane code. As mentioned

in Section II, the soundness analysis of [19] only

requires two properties from the outer code, and those

properties are satisfied by the 4-qubit error detecting

code. This is why we are able to have fewer additional

provers than in the protocol compression result of [19].

2) The questions to the verifier players in VZK are

six tuples of commuting two-qubit Pauli observables,

whereas in [19] they are triples. This is because the

verifier players are in charge of measuring the clock

qubits as well as the snapshot qubits, whereas in [19]

the clock measurements were delegated to a different

set of players. However the clock measurements are

also just Pauli measurements, so we can simply merge

the snapshot and clock measurements together.

3) In the protocol VZK , the referee may ask questions

QFi or AFi to prover player PPi, which does not

occur in the compression protocol of [19]. The referee

will ask these questions when it decides to check the

propagation of the gate at time t�(i)−1 (in which case

it will send question QFi to PPi), or at time t�(i)+1
(in which case it will send question AFi to PPi). The

check performed by the referee is the identical to that

when it tests the propagation of the prover gate �i.
For completeness, in the honest strategy the prover

player PPi measures a σX on a designated “question

flag” register (when asked question QFi), or measures

a σX on a designated “answer flag” register (when

asked question AFi).

Soundness is unaffected. If there was no valid history

state before the addition of the QF and AF questions,

then there is no valid history state with them.

REFERENCES

[1] Dorit Aharonov. A simple proof that Toffoli and Hadamard
are quantum universal. CoRR, abs/0301040, 2003.

[2] László Babai, Lance Fortnow, and Carsten Lund. Non-
deterministic exponential time has two-prover interactive pro-
tocols. Computational Complexity, 1:3–40, 1991.

[3] Mohammad Bavarian, Thomas Vidick, and Henry Yuen.
Hardness amplification for entangled games via anchoring.
In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 303–316, 2017.

[4] John Stewart Bell. On the Einstein Podolsky Rosen paradox.
Physics, 1(3):195–200, 1964.

[5] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does
parallel repetition lower the error in computationally sound
protocols? In 38th Annual Symposium on Foundations of
Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 374–383, 1997.

[6] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi
Wigderson. Multi-prover interactive proofs: How to remove
intractability assumptions. In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 113–131, 1988.

633

[7] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous.
Zero-knowledge proof systems for QMA. In IEEE 57th An-
nual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 31–40, 2016.

[8] André Chailloux and Iordanis Kerenidis. Increasing the
power of the verifier in quantum zero knowledge. In IARCS
Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2008, December
9-11, 2008, Bangalore, India, pages 95–106, 2008.

[9] Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas
Vidick. Test for a large amount of entanglement, using few
measurements. Quantum, 2:92, September 2018.

[10] Alessandro Chiesa, Michael A. Forbes, Tom Gur, and
Nicholas Spooner. Spatial isolation implies zero knowledge
even in a quantum world. In 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 755–765, 2018.

[11] Richard Cleve, Peter Høyer, Benjamin Toner, and John Wa-
trous. Consequences and limits of nonlocal strategies. In
19th Annual IEEE Conference on Computational Complexity
(CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages
236–249, 2004.

[12] Andrea Coladangelo. Parallel self-testing of (tilted) EPR pairs
via copies of (tilted) CHSH and the magic square game.
Quantum Information & Computation, 17(9&10):831–865,
2017.

[13] Andrea Coladangelo, Alex Bredariol Grilo, Stacey Jeffery,
and Thomas Vidick. Verifier-on-a-leash: new schemes for
verifiable delegated quantum computation, with quasilinear
resources. IACR Cryptology ePrint Archive, 2019:247, 2019.

[14] Stephen A Cook. A hierarchy for nondeterministic time
complexity. Journal of Computer and System Sciences,
7(4):343–353, 1973.

[15] Matthew Coudron and Anand Natarajan. The Parallel-
Repeated Magic Square Game is Rigid. CoRR,
abs/1609.06306, 2016.

[16] Matthew Coudron and William Slofstra. Complexity lower
bounds for computing the approximately-commuting operator
value of non-local games to high precision. In preparation.

[17] Claude Crépeau and Nan Yang. Non-locality in interactive
proofs. arXiv preprint arXiv:1801.04598, 2018.

[18] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-
mechanical description of physical reality be considered com-
plete? Phys. Rev., 47:777–780, May 1935.

[19] Joseph F. Fitzsimons, Zhengfeng Ji, Thomas Vidick, and
Henry Yuen. Quantum proof systems for iterated exponential
time, and beyond. CoRR, abs/1805.12166, 2018.

[20] Oded Goldreich and Hugo Krawczyk. On the composition of
zero-knowledge proof systems. SIAM J. Comput., 25(1):169–
192, 1996.

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof systems. SIAM J.
Comput., 18(1):186–208, 1989.

[22] Daniel Gottesman. Stabilizer Codes and Quantum Error
Correction. PhD thesis, California Institute of Technology,
1997.

[23] Markus Grassl, Th Beth, and Thomas Pellizzari. Codes for
the quantum erasure channel. Physical Review A, 56(1):33,
1997.

[24] Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive
proof for NEXP sound against entangled provers. In 53rd An-
nual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012,
pages 243–252, 2012.

[25] Zhengfeng Ji. Compression of quantum multi-prover interac-
tive proofs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 289–302, 2017.

[26] Yusuke Kinoshita. Analysis of quantum multi-prover zero-
knowledge systems: Elimination of the honest condition and
computational zero-knowledge systems for QMIP. CoRR,
abs/1902.10851, 2019.

[27] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical
and Quantum Computation. American Mathematical Society,
Boston, MA, USA, 2002.

[28] Matthew McKague. Self-testing in parallel with CHSH.
Quantum, 1:1, April 2017.

[29] Anand Natarajan and Thomas Vidick. A quantum linearity
test for robustly verifying entanglement. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 1003–1015, 2017.

[30] Anand Natarajan and Thomas Vidick. Low-degree testing
for quantum states, and a quantum entangled games PCP for
QMA. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 731–742, 2018.

[31] Anand Natarajan and Thomas Vidick. Two-player entangled
games are np-hard. In 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA, pages 20:1–20:18, 2018.

[32] Anand Natarajan and John Wright. NEEXP in MIP*. arXiv
preprint arXiv:1904.05870, 2019.

[33] Rafael Pass. Parallel repetition of zero-knowledge proofs and
the possibility of basing cryptography on np-hardness. In
21st Annual IEEE Conference on Computational Complexity
(CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
96–110, 2006.

[34] Ran Raz. A parallel repetition theorem. SIAM J. Comput.,
27(3):763–803, 1998.

634

[35] Ben W. Reichardt, Falk Unger, and Umesh V. Vazirani. Clas-
sical command of quantum systems. Nature, 496(7446):456–
460, 2013.

[36] William Slofstra. Tsirelson’s problem and an embedding
theorem for groups arising from non-local games. arXiv
preprint arXiv:1606.03140, 2016.

[37] William Slofstra. The set of quantum correlations is not
closed. In Forum of Mathematics, Pi, volume 7. Cambridge
University Press, 2019.

[38] Thomas Vidick, John Watrous, et al. Quantum proofs.
Foundations and Trends R© in Theoretical Computer Science,
11(1-2):1–215, 2016.

[39] John Watrous. Limits on the power of quantum statistical
zero-knowledge. In 43rd Symposium on Foundations of
Computer Science (FOCS 2002), 16-19 November 2002,
Vancouver, BC, Canada, Proceedings, page 459, 2002.

[40] Henry Yuen. A parallel repetition theorem for all entangled
games. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 77:1–77:13, 2016.

635

