2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

Non-deterministic Quasi-Polynomial Time is Average-case Hard for ACC Circuits

Lijie Chen
CSAIL

MIT
Cambridge, USA
lijieche @mit.edu

Abstract—Following the seminal work of [Williams, J. ACM
2014], in a recent breakthrough, [Murray and Williams, STOC
2018] proved that NQP (non-deterministic quasi-polynomial
time) does not have polynomial-size ACC circuits.

We strengthen the above lower bound to an average case one,
by proving that for all constants c, there is a language in NQP,
which is not (1/2 4 1/log® n)-approximable by polynomial-
size ACC® circuits. In fact, our lower bound holds for a larger
circuit class: 2'°2° "-size ACCP circuits with a layer of threshold
gates at the bottom (ACC o THR circuits), for all constants
a. Our work also improves the average-case lower bound
for NEXP against polynomial-size ACC' circuits by [Chen,
Oliveira, and Santhanam, LATIN 2018].

Our new lower bound builds on several interesting compo-
nents, including:

« Barrington’s theorem and the existence of an NC'-
complete language which is random self-reducible.

The sub-exponential witness-size lower bound for NE
against ACC® and the conditional non-deterministic PRG
construction in [Williams, SICOMP 2016].

An “almost” almost-everywhere MA average-case lower
bound (which strengthens the corresponding worst-case
lower bound in [Murray and Williams, STOC 2018]).

A PSPACE-complete language which is same-length
checkable, error-correctable and also has some other nice
reducibility properties, which builds on [Trevisan and
Vadhan, Computational Complexity 2007]. Moreover, all
its reducibility properties have corresponding low-depth
non-adaptive oracle circuits.

Like other lower bounds proved via the “algorithmic ap-
proach”, the only property of ACC° o THR exploited by us is
the existence of a non-trivial SAT algorithm for ACC® o THR
[Williams, STOC 2014]. Therefore, for any typical circuit class
%, our results apply to them as well if the corresponding non-
trivial SAT (in fact, Gap-UNSAT) algorithms are discovered.

Keywords-ACC; average-case lower bounds; circuit lower
bounds

I. INTRODUCTION
A. Background and Motivation

Proving unconditional circuit lower bounds for explicit
functions (with the ultimate goal of proving NP ¢ P/ .1, is
one of the holy grails of theoretical computer science. Back
in the 1980s, there was a number of significant progress
in proving circuit lower bounds for AC" (constant depth
circuits consisting of AND/OR gates of unbounded fan-
in) [11, [21, [3], [4] and AC’[p] [5], [6] (AC® circuits
extended with MOD,, gates) for a prime p. But this quick

1281

development was then met with an obstacle—there were
little progresses in understanding the power of AC’ [m] for
a composite m, despite it had been conjectured that they
cannot even compute the majority function. In fact, it was
a long-standing open question in computational complexity
that whether NEXP (non-deterministic exponential time) has
polynomial-size ACC" circuits!, until a seminal work by
Williams [8] from a few years ago, which proved NEXP
does not have polynomial-size ACC circuits, via a new
algorithmic approach to circuit lower bounds [9].

This circuit lower bound is an exciting new development
after a long gap, especially for it surpasses all previous
known barriers for proving circuits lower bounds: relativiza-
tion [10], algebrization [11], and natural proofs [12]2. More-
over, the underlying approach, the algorithmic method [9],
puts many important classical complexity results together,
ranging from non-deterministic time hierarchy theorem [15],
[16], IP = PSPACE [17], [18], hardness vs random-
ness [19], to PCP Theorem [20], [21].

While this new circuit lower bound is a significant break-
through after a long gap, it still has some drawbacks when
comparing to the previous lower bounds. First, it only holds
for the gigantic class NEXP, while our ultimate goal is to
prove lower bound for a much smaller class NP. Second, it
only proves a worst-case lower bound, while previous lower
bounds and their subsequent extensions often also worked in
the average-case; and it seems hard to adapt the algorithmic
approach to the average-case settings.

Motivated by the above limitations, subsequent works
extend the worst-case NEXP ¢ ACC’ lower bound in
several ways.> In 2012, by refining the connection be-
tween circuit analysis algorithms and circuit lower bounds,

Tt had been stressed several times as one of the most embarrassing open
questions in complexity theory, see [7].

2There is no consensus that whether there is a PRG in ACC° (so it is not
clear whether the natural proof barrier applies to ACC®). A recent work
has proposed a candidate construction [13], which still needs to be tested.
But we can say that if there is a natural proof barrier for ACC?, then this
lower bound has surpassed it. (We also remark here that there is a recent
proposal on how to get a natural proof for ACC? circuit lower bounds via
torus polynomials [14].)

3There are some other works [22], [231, [24], [25] proved several circuit
lower bounds uncomparable to NEXP ¢ ACCP, and [26] improved the
dependence on depth by showing NEXP does not have ACCY circuits of
o(logn/loglogn) depth.

2575-8454/19/$31.00 ©2019 IEEE IEEE
DOI 10.1109/FOCS.2019.00079 (@ computer
soclety

Williams [27] proved that (NEXP N coNEXP),; does not
have polynomial-size ACC" circuits. Two years later, by
designing a fast #SAT algorithm for ACC’ o THR circuits,
Williams [28] proved that NEXP does not have polynomial-
size ACC" o THR circuits. Then in 2017, building on [27],
Chen, Oliveira and Santhanam [29] proved that NEXP is
not 1 J 2 + 1/ polylog(n)-approximable by polynomial-size
ACC" circuits. Recently, in an exciting new breakthrough,
with a new easy-witness lemma for NQP, Murray and
Williams [30] proved that NQP does not have polynomial-
size ACC” o THR circuits.

B. Our Results

In this work, we strengthen all the above results by
proving an average-case lower bound for NQP against
ACC? o THR circuits.

Theorem 1.1. For all constants a,c, there is an inte-
ger b, such that NTIME[21°8" "] is not (1/2 + 1/log®n)-
approximable by 28" size ACC® o THR circuits. The
same holds for (NﬂCON)TIME[QlOgb "])1 in place of
NTIME[2'g" n]4.

In other words, the conclusion of the above theorem is
equivalent to that there is a language L in NTIME[QIOgb]
(resp. (NNCON)TIME[2'°¢" "] ;) which is not (1/2 +
1/log® n)-approximable by 2'°¢" " size AC,4, [m,] o THR
circuits, for all constants d,, m,. We also remark that our
new circuit lower bound builds crucially on another classical
complexity gem: the Barrington’s theorem [31] together with
a random self-reducible NCl-complete language [32], [33].

Either NQP ¢ P, o1, or MCSP ¢ ACC": MCSP is the
Minimum Circuit Size Problem such that, given a truth-table
T : {0, 1}2n and an integer 0 < s < 2™, asks whether there
is a circuit C' of size at most s which computes the given
truth-table 1" (see [34] and the references therein for more
information on this problem).

Applying Theorem 1.1, we also resolve an open question
from [34]. [34] proved (among many other results) that
MAJ € (AC°)MCSP and showed that either NEXP ¢
P/poly or MCSP ¢ ACC’, by combing with Williams’
celebrated lower bounds NEXP ¢ ACC° [8]. It is asked
that whether one can further show either NQP ¢ P, .1, or
MCSP ¢ ACC". We answer that affirmatively by proving
the following corollary of Theorem I.1.

Corollary 1.2. Either NQP ¢ P, 1, or MCSP ¢ AcC’.

See the full version for a proof of the above corollary.

From Modest-Improvement on Gap-UNSAT Algorithms
to Average-Case Lower Bounds: Like other lower bounds
proved via the “algorithmic approach” [9], the only property
of ACC” o THR circuits exploited by us is the non-trivial
satisfiability algorithm for them [28]. Hence, our results also

4See Definition I1.9 for a formal definition of (NNcoN)TIME[T'(n)] /1.

apply to other natural circuit classes if the corresponding
algorithms are discovered.

We first define the Gap-UNSAT problem: given a circuit
C, the goal is to distinguish between the case that C' is
unsatisfiable and the case that C' has at least 1/3 - 27
satisfying assignments.’ Then formally, we have:

Theorem 1.3. For a circuit class € €
{TCO, Formula, P, 1y}, if for a constant € > 0, there is a
2" time non-deterministic Gap-UNSAT algorithm for
2" _size € circuits, then for all constants a and ¢, NQP is
not (1/2 + 1/n¢)-approximable by 2'°%" "-size € circuits.

Remark 1.4. Since the circuits classes listed above can
compute majority, we can use better hardness amplification
to prove a (1/2+ 1/n)-inapproximability result, instead of
the (1/2+ 1/log®n) one. See the proof of Theorem 1.3 for
the detail. We also remark that if we only want the original
(1/241/ log® n)-inapproximability, the above theorem holds
for all circuit classes € closed under composition of AC’
at the top (that is, AC’ o€ C).

Remark L.5. One may ask whether the potentially (1/2 +
1/n°)-inapproximability lower bounds from Theorem 1.3 can
be used to construct PRG for the corresponding classes
(that is, whether it boosts a “non-trivial” derandomization
algorithm to a much faster PRG construction). While the
answer is yes, such a bootstrapping result for these circuit
classes is already implicit in [9], [27], see the full version
for details.

Therefore, we essentially strengthen the similar
algorithmic-to-circuit-lower-bounds connections in [30]
from worst-case lower bounds against NQP to average-case
lower bounds against NQP. We remark that our connection
actually does not rely on the “easy-witness lemma”, as it
is not clear how one can get an average-case easy witness
lemma (i.e., NQP can be approximated by P, ., implies
all NQP verifiers have succinct witnesses). Rather, we
use a different approach similar to [27] and prove the
average case lower bound directly, without going through
the easy-witness lemma.

A Simpler Proof for the New Easy Witness Lemma for
NP and NQP of [30]: As an interesting by-product of
our new ideas, we give a simpler proof for new easy-
witness lemma for NP and NQP of [30] (Lemma 1.6 and
Lemma 1.7). The proof from [30] crucially depends on
a certain “bootstrapping” argument (Lemma 3.1 of [30]),
while we provide a more direct and simpler proof without
involving that bootstrapping. We think this new proof is an
independent contribution of this work.

Lemma 1.6 (Easy-Witness Lemma for NP, Lemma 1.2

3So this problem is weaker than both the SAT problem, and the CAPP
problem which asks you to estimate the accepting probability of C' given
a random assignment.

1282

of [30]). For all k > 1, there exists a constant b such that
if NP C SIZE[nk), then every L € NP has witness circuits

of size at most nb.°

Lemma L7 (Easy-Witness Lemma for NQP, Lemma 1.3
of [30]). For all k Zk 1, there exists a constant b such that
if NQP C SIZE[2'°8" "], then every L € NQP has witness

. . . b
circuits of size at most 2'°¢' ",

The proof of the above two lemmas can be found in the
full version of this paper.

C. Intuition

In the following we discuss the intuition of our new
average-case lower bounds. For the simplicity of arguments,
we will sketch a proof for NQP is not (1 — §)-approximable
by polynomial-size ACC” circuits, for a universal constant
0 (9 can be think of as 1/1000).

Main Difficulty: The Absence of an Easy-Witness Lemma
Under the Approximability Assumption

First, it is instructive to see why it is hard to generalize
the previous proofs for worst-case lower bound against
ACC" [8], [30] to prove an average-case lower bound against
ACC’.

The first step of the NQP ¢ ACC’ lower bound by
Murray and Williams [30], is applying the so called easy
witness lemma. The easy witness lemma states: assuming
NQP c ACC, for every language L in NQP with a verifier
V(x,y), whenever V(x,-) is satisfiable, it has a succinct
witness y which is the truth-table of a small ACC" circuit.
Then they apply a similar argument as in [9], [8] to contra-
dict the non-deterministic time hierarchy theorem [16], using
the non-trivial SAT algorithm for ACC? circuits in [8].

Now for proving the average-case lower bound for NQP,
we can only start with the assumption that NQP can be
(1 — &)-approximated by polynomial-size ACC’ circuits.
As already explained by [29], we cannot apply the easy
witness lemma even if we start from the much stronger
assumption that NEXP can be (1 — ¢)-approximated by
ACC: the proofs of both the original and the new easy-
witness lemma [35], [30] completely break when we only
have the approximability assumption.

Review of [29]’s Approach

In order to get around the above difficulty, [29] start from
a worst-case lower bound against ACC” [27], and then apply
a worst-case to average-case hardness amplification. Their
approach works roughly as follows:

1) By [27], there is a language L € (NEXPNCcoNEXP) /;,
which doesn’t have a poly(n) size ACC circuit.

To simplify the presentation, we do not specify the relations between
b and k here, but it is easy to see that one can take b = @(k3), just as
in [30].

1283

2) Using the locally-list-decodable codes of [36], [37], one
can compute a language L € (NEXP N coNEXP),,,
which cannot be (1/2 + 1/logn)-approximated by
a poly(n) size ACC® circuits. That is, we treat the
truth-table of L, as a message z € {0,1}>" of the
locally-list-decodable codes, and set L,, to compute
the codeword of z for an appropriate m = m(n). (Note
that here it is important to work with a language L in
(NEXPNCONEXP) /1, as otherwise we don’t know how
to compute the truth-table of L in NEXP.)

In particular, the above L € NEXP;. They then get rid
of the advice bit via an enumeration trick, and therefore
prove the average case lower bound for NEXP.

Unfortunately, it seems very hard to generalize the above
approach to prove an average-case lower bound for NQP:
the second step of the above approach breaks, as we no
longer can afford to compute an error correcting code on the
entire truth-table of a particular input length, which takes (at
least) exponential time.

Therefore, we have to take a different approach, which
proves the average-case lower bound directly, without going
through the worst-case to average-case hardness amplifica-
tion. In order to do that, it is helpful to review the proof of
the new easy-witness lemma in [30].

The New Easy-Witness Lemma: “Almost” Almost-
Everywhere (a.a.e.) MA Lower Bound and i.o. Non-
deterministic PRG (NPRG)

(An instantiation of) the new easy-witness lemma of [30]
states that if NQP C P, ., then all verifiers for NQP
languages have succinct (polynomial-size) witness. For the
sake of contradiction, we now suppose NQP C P,
and some verifier for a language L € NQP doesn’t have
poly(n)-size witness. That is, there is a polynomial-time
verifier V(z,y) with |z| =n and y = 2loe" n for a constant
b, such that for an infinite number of n’s, there is an
xn € {0,1}™ such that V(z,,-) is satisfiable, but for any
Yn such that V(z,,,y,) = 1, we have SIZE(y,,) =),

Now, y,, can be interpreted as a truth-table of a function
on { = logb n variables, and we have SIZE(y,,) > gu('?)
Therefore, given such a y,,, using the well-known hardness-
to-pseudorandomness connection [38], one can construct
a pseudorandom generator G,, with seed length O(¢),
running time 200 and it fools all circuits of size 2‘”51/{7,
for all constants a.

Scaling everything properly by setting S = 2”1“’, it
follows that for an infinite number of S, if we are given
the x,, (of length |z, | = S1/a) as advice, we can guess a
Yn such that V(z,,y,) = 1, and compute the PRG G,,,.
This would be a non-deterministic PRG with seed length
O(logb S), running time 90(log” 5), and fooling all S-size
circuits.

The key ingredient of [30] is an ‘“almost” almost-
everywhere (a.a.e.) MA circuit lower bound, which builds

3)

on the MA circuit lower bound by Santhanam [39].” For
the simplicity of arguments, we now pretend that we have
an almost-everywhere MA circuit lower bound. Specifically,
for each c¢, there is an integer ¥ = k(c) such that there is
a language L¢ in MATIME[n*], such that SIZE(LS) > n®
for all sufficiently large n.

The crucial idea is that, using the above i.0o. NPRG,
one can non-deterministically derandomize L€ on an infi-
nite number of input length n’s (as the string y, can be
non-deterministically guess-and-verified). To derandomize
MATIME([n*], it suffices to use the PRG which fools circuits
of size S = n2*. Therefore, by setting a = 2k, we have a
language L* € NTIME[21°gb+1 "] /n» such that it agrees with
L¢ on an infinite number of input lengths. Since ¢ can be
an arbitrary integer, we conclude that NTIME[2'8""" 7]
is not in P /poly- Thus, we obtain a contradiction to our
assumption (the n bits of advice can be got rid of easily).

Our Approach: “Almost” Almost-Everywhere Average-Case
MA Lower Bound and i.o. NPRG

A natural attempt to adapt the above approach, is to start
with an MA a.a.e. average-case circuit lower bound, and try
to derandomize it non-deterministically via an i.o. NPRG.

More precisely, assume that NQP can be (1 — 90)-
approximated by ACC' circuits for the sake of contradiction.
Suppose we have a language L € MAQP such that for all
sufficient large n, heur; _5-SIZE(L,,) > n“().3 Then with
an appropriate i.0. NPRG, there is a language L* € NQP
which agrees with L on an infinite number of input lengths,
which contradicts our assumption as this L* cannot be
approximated by polynomial-size ACC'.

An “Almost” Almost-Everywhere Average-Case MA
Lower Bound: In order to implement this idea, the first
obvious challenge is to strengthen the worst-case “almost”
almost-everywhere MA circuit lower bounds [30] to an
average-case one. This could be solved by combing ideas
from the average-case circuit lower bound for MA [39],
together with a new construction of a PSPACE-complete
language.

Roughly speaking, the MA circuit lower bounds in [39]
and [30] make crucial use of a PSPACE-complete language
by [40], which admits several nice properties, including
being same-length checkable, downward self-reducible, and
paddable (see Definition I1.2 for details). We modify the con-
struction from [40] to obtain a PSPACE-complete language
LPSPACE wwhich is in addition robust: that is, if it is hard in
the worst-case, then it is also hard in the average-case. We

7[30], [39]’s lower bounds are actually for MA with advice bits. We
ignore the advice bits issue for the sake of simplicity in the intuition part.
See the end of the this section for some discussions on how to deal with
the advice bits.

8heur;_5-SIZE(Ly,) is the minimum size of a circuit computing cor-
rectly at least a (1 — §) fraction of inputs to Ly,. See Section II-A2 for a
formal definition.

think this new language LPSPACE is of independent interest

and may be useful for other problems.

i.o. Non-deterministic PRG: The next challenge is more
serious, how do we construct the required i.0. NPRG? One
starting point is the (unconditional) witness-size lower bound
for NE. That is, [27] showed that there is unary language in
NE, whose verifier does not have 2" -size AC4, [m,] witness
(¢ = e(d,, m,)). Therefore, let the verifier be V' (z,y) with
|z] = n and |y| = 2™; on an infinite number of n’s, V/(1", -)
is satisfiable, yet for all y such that V(1™,y) = 1, y is not
the truth-table of a 2" -size ACd*$m*] circuit.

Further assuming P € ACC", [27] showed that the
above implies an i.0. NPRG for general circuits. Note that
P c ACC" implies the Circuit-Evaluation problem has an
ACC? circuit, and consequently P /poly collapses to ACC’.
Therefore, for a y with V' (1",y) = 1, y cannot be computed
by a 2" -size general circuit as well, which means one can
substitutive y into the known hardness-to-pseudorandomness
construction [19], [38], and get a quasi-polynomial time i.o.
NPRG.

However, starting with our assumption NQP can be
(1 — &)-approximated by ACC, it is not clear how to show
P/ pory collapses to ACC’. So we have to take a more
sophisticated approach. To make the situation worse, per-
forming worst-case to average-case hardness amplification
requires majority [41], [42], which means we don’t even
know how to get a PRG fooling ACC" circuits, from a y
which is only worst-case hard for ACC’.

i.o. Non-deterministic PRG for Low-Depth Circuits:
So we want to work with a stronger circuit class, for
which at least hardness amplification is possible, like NC'.
Fortunately, there is an NCl-complete problem which admits
a nice random self-reduction [31], [32], [33]. By our assump-
tion, this problem can clearly be (1 — d)-approximated by
ACC? circuits. Utilizing this random self-reduction, and the
fact that approximate-majority can be computed in AC” [1],
[43], we can show that this NC'-complete problem has
a poly(n)-size ACC’ circuits. This in particular means
NC' collapses to ACC’. More specifically, there are two
constants d,, m,, such that any depth d general (fan-in two)
circuit has an equivalent 20(9)_size AC,, [m,] circuit.

Now, get back to the verifier V. It follows that for an
infinite number of n’s, V(1™,-) is satisfiable and for any y
such that V(1",y) = 1, y is not the truth-table of an n°-
depth circuit. This is enough to obtain a quasi-polynomial
time i.0. non-deterministic PRG which fools polylog(n)-
depth circuits.

However, in order to non-deterministically derandomize
a general MA algorithm, a PRG for polylog(n)-depth NC
circuits is not enough. Suppose the MA algorithm A takes an
input z, guesses a string y, and flips some random coins r; in
order to obtain a non-deterministic simulation, we actually
want to fool circuits Cy(r) := A(z, y,), for all possible y.
The circuit Cy could well be a general circuit, which does

1284

not necessarily have low depth.

An Average-Case Hard MA Language with a Low-Depth
Computable Predicate: The next key observation is that we
don’t really need the language in MA to be average-case hard
for general circuits; to obtain a contradiction, it suffices to
require it cannot be approximated by low-depth circuits, as
our assumption is that NQP can be (1 — ¢)-approximated
by ACC? circuits, which is contained in NC'.

This brings us to our final technical component—an MA
language L' with a low-depth computable predicate, and
is average-case hard for low-depth circuits. That is, suppose
the MA algorithm A takes an input z, guesses a string ¥,
and flips some random coins r; we require that A(x,y,r)
(A(z,y,r) is called the predicate of the MA algorithm) is
computable by a uniform low-depth circuit. Now, clearly
the circuit Cy(r) := A(z,y,r) is a low-depth circuit, and
therefore our i.0. NPRG can be used to achieve an i.o.
derandomization of Lh2rd which results in a contradiction
to our assumption.

The construction of such an MA language is the technical
centerpiece of this paper; the key observation is that for our
PSPACE-complete problem LPSPAE all its nice properties:
being same-length checkable, downward self-reducible, and
paddable, have corresponding low-depth uniform oracle cir-
cuits. For instance, the instance checker in the same-length
checkable property (see Definition II1.2), can actually be
implemented by a uniform TC® non-adaptive oracle circuit.
Using these low-depth circuits in the previous proof for
average-case a.a.e. MA circuit lower bounds, together with
other additional ideas, we can exhibit the language Lh,

A Technicality: Dealing with Advice Bits: In the above
discussion, we (intentionally) omitted a technical detail—the
a.a.e. MA lower bound proved in [30] is actually for
MA /0 (10g n)- Therefore our i.o. derandomization of the MA
algorithm also needs to use these O(logn) advice bits. But
then, we only have NQP o105) is average-case hard for
polynomial-size ACC” circuits. And the enumeration trick
from [29] requires the advice to be o(logn).

Luckily, we further relax the definition of an “almost”
almost-everywhere circuit lower bound, which is weak
enough for us to prove such an MA average-case lower
bound with only one bit of advice, but also strong enough
to allow us to prove the average-case circuit lower bound.
Then we can apply the enumeration trick from [29] to get
the desired lower bound for NQP, without advice.

II. PRELIMINARIES
We use GF(p") to denote the finite field of size p”, where
p is a prime and r is an integer.
A. Complexity Classes and Basic Definitions

We assume knowledge of basic complexity theory
(see [7], [44] for excellent references on this subject).

1285

1) Basic Circuit Families: A circuit family is a collection
of circuits {C), : {0,1}" — {0,1}}nen. A circuit class is
a collection of circuit families. The size of a circuit is the
number of wires in the circuit, and the size of a circuit family
is a function of the input length that upper-bounds the size of
circuits in the family. The depth of a circuit is the maximum
number of wires on a path from an input gate to the output
gate.

We will mainly consider classes in which the size of each
circuit family is bounded by some polynomial; however, for
a circuit class ¢, we will sometimes also abuse notation
by referring to ¢ circuits with various other size or depth
bounds.

AC? is the class of circuit families of constant depth
and polynomial size, with AND, OR and NOT gates, where
AND and OR gates have unbounded fan-in. For an integer
m, the function MOD,,, : {0,1}* — {0,1} is one if and
only if the number of ones in the input is not divisible by
m. The class AC’[m] is the class of constant-depth circuit
families consisting of polynomially-many unbounded fan-in
AND, OR and MOD,,, gates, along with unary NOT gates.
We denote ACC® = U,,>2AC"[m].

The function majority, denoted as MAJ : {0,1}* —
{0, 1}, is the function that outputs 1 if the number of ones in
the input is no less than the number of zeros, and outputs 0
otherwise. TC" is the class of circuit families of constant
depth and polynomial size, with unbounded fan-in MAJ
gates. NC" for a constant k is the class of O(log® n)-depth
and poly-size circuit families consisting of fan-in two AND
and OR gates and unary NOT gates.

We say a circuit family {C), }nen is uniform, if there is
a deterministic algorithm A, such that A(1™) runs in time
polynomial of the size of C,,, and outputs C,,.°

We also use NC circuits to denote circuits with fan-in
two AND and OR gates and unary NOT gates. For a circuit
class ¥, we say a circuit C" is a € oracle circuit, if C7 is
also allowed to use a special oracle gate (which can occur
multiple times in the circuit, but with the same fan-in), in
addition to the usual gates allowed by % circuits. We say an
oracle circuit is non-adaptive, if on any path from an input
gate to the output gate, there is at most one oracle gate.

We say a circuit class ¢ is typical, if given the description
of a circuit C' of size s, for indices i, < n and a bit b, the
following functions

_|C, C(flf 1y--

<y Li—1,T5 D b, Lit1y-- .,xn),

and
0(1‘1, .

. 7xi—1ab7 LTid1y- - a'rn)

all have € circuits of size s, and their corresponding circuit
descriptions can be constructed in poly(s) time. That is, €
is typical if it is closed under both negation and projection.

9That is, we use the P uniformity by default.

2) Notations: We say a circuit C : {0,1}" — {0,1} ~-
approximates a function f : {0,1}" — {0,1}, if C(z) =
f(z) for a ~ fraction of inputs from {0,1}". If a circuit
C does not y-approximates a function f, we say f is not
~-approximable by C.

For a function f : {0,1}" — {0,1}, we define SIZE(f)
(resp. DEPTH(f)) to be the minimum size (resp. depth)
of an NC circuit computing f exactly. Similarly, for an
error parameter v > 1/2, we define heur,-SIZE(f) (resp.
heur,-DEPTH(f)) to be the minimum size (resp. depth) of
an NC circuit ~y-approximating f.

We say a language L can be ~(n)-approximated by &, if
there is a circuit family {C,, }nen € € such that C,, v(n)-
approximates L,, for all sufficiently large n. We also say a
class of language .Z can be 7y(n)-approximated by %, if all
languages L € . can be ~(n)-approximated by €.

We say that a language L is not ~(n)-approximable by
a circuit class € if it cannot be ~(n)-approximated by €.
That is, for each {C),}nen € E, there is an infinite number
of n’s, such that L, is not «(n)-approximable by C,,. We
say a class of language .Z is not -y(n)-approximable by a
circuit class €, if there is a language L € . which is not
~(n)-approximable by %

B. Pseudorandom Generators for Low-Depth Circuits

The following PRG construction follows directly from the
local-list-decodable codes with low-depth decoder [45], [36],
[37], and the hardness-to-pseudorandomness transformation
of [19].

Theorem I1.1. Let § > 0 be a constant. There are universal
constants ¢ and g, and a function G : {0,1}* x {0,1}* —
{0, 1}* such that, if Y : {0,1}* — {0,1} does not have ¢°-
depth NC circuit, then for S = 207", and for all NC circuit
C' with depth log(S),

Pr

reialyulC(GY:z)) =1] =

P C(x) =1]| < 1/5,
P lC@) =1 <1/
where w = 9. That is, G(Y,-) 1/S-fools all log S-depth
NC circuits. Moreover, G is computable in 2000 time.

We provide a proof for the above theorem the full version
for completeness.

C. A PSPACE-complete Language with Low-complexity
Reducibility Properties

A fundamental results often used in complexity theory
is the existence of a PSPACE-complete language [40]
satisfying strong reducibility properties, including the time-
hierarchy theorem for BPP with one bit of advice [46], the
fixed polynomial circuit lower bound MA /; C SIZE(n¥) for
any k [39], and the recent new witness lemmas for NQP and
NP [30].

1286

The key technical ingredient of our new average-case
lower bound is a modified construction of the PSPACE-
complete language in [40], which satisfies the additional “ro-
bust” and “error correctable” properties, which are useful for
proving average-case lower bound'?. Moreover, we observe
that the “reducers” in these reducibility properties of our
PSPACE-complete languages are of low-complexity circuit
classes (i.e., uniform polylog(n)-depth circuits). We believe
this new construction would be of independent interest, and
may be useful to further improvement.

We first define these reducibility properties.

Definition IL2. Let L : {0,1}* — {0, 1} be a language, we
define the following properties:

o L is € downward self-reducible if there is a constant

c such that for all sufficiently large n, there is an n°

size uniform % circuit A’ such that for all z € {0,1}",

Abn—1(z) = L, ().

L is robust if there are constants ¢ and § > 0 such that

for all sufficiently large n and £ > 2*"5, SIZE(L,) <

(heury /o, .-SIZE(L,,) - e~1h)e.

L is paddable, if there is a polynomial time computable

projection Pad (that is, each output bit is either a

constant or only depends on 1 input bit), such that

for all integers 1 < n < m and z € {0,1}", we

have z € L if and only if Pad(z,1™) € L, where

Pad(z,1™) always has length m.

L is € weakly error correctable if there is a constant

c such that for all sufficiently large n, for every oracle

O : {0,1}™ — {0,1} which 0.99-approximates L,,,

there is an n° size € oracle circuit D?, such that D

exactly computes L,,.

L is same-length checkable if there is a probabilistic

polynomial-time oracle Turing machine M with output

in {0,1,7}, such that, for any input z,

— M asks its oracle queries only of length |z|.

— If M is given L as an oracle, then M outputs L(z)
with probability 1.

— M outputs 1 — L(z) with probability at most 1/3 no
matter which oracle is given to it.

We call M an instance checker for L. Moreover, we say
L is ¥ same length checkable, if there is an instance
checker M which can be implemented by uniform
polynomial-size % oracle circuits.

Remark IL.3. Note that the paddable property implies that
SIZE(L,,) and DEPTH(L,,) are non-decreasing.

The following PSPACE-complete language is given
by [39] (modifying a construction of Trevisan and Vad-
han [40]).

10The error correctable property here is stronger than the piecewise
random self-reducible property in [39].

Theorem IL4 ([40], [39]). There is a PSPACE-complete
language Lty which is paddable, 7C° downward self-
reducible, and same-length checkable. 1

Based on the above language LTy, we construct a mod-
ified PSPACE-complete language LPSPACE which is also
robust and NC* weakly error correctable. Moreover, with
a careful analysis, we observe that the instance checker
for LPSPACE can be implemented in uniform TC. That is,
LPSPACE j5 TC" same length checkable.

Theorem IL5. There is a PSPACE-complete language
LPSPACE which is paddable, TC° downward self-reducible,
7C° same-length checkable, robust and NC? weakly error
correctable. Moreover, all the corresponding oracle circuits
for the above properties are in fact non-adaptive: that is, on
any path from an input gate to the output gate, there is at
most one oracle gate.

D. Average-Case Hard Languages with Low Space

We also need the following folklore result, which can
be proved by applying standard worst-case to average-
case hardness amplification [47] to a hard language in
SPACE][s(n)°(")] obtained via diagonalization.

Theorem IL6. Let n < s(n) < 20" be space-
constructible. There is a universal constant c and a language
L € SPACE[s(n)°] that heur, ;o1 /n3-SIZE(Ly,) > s(n)
Sor all sufficiently large n.

E. MAN coMA and NP N coNP Algorithms

We first introduce convenient definitions of an (MA N
coMA)TIME[T(n)] or (NNcoN)TIME[T (n)] algorithm,
which simplifies the presentation.

Definition IL.7. Let 7 : N — N be a time-constructible
function. A language L is in (MA N coMA)TIME[T (n)], if
there is a deterministic algorithm A(x,y, z) (which is called
the predicate) such that:

e A takes three inputs z, y, z such that |z| = n,
lyl = |z| = O(T'(n)) (y is the witness while z is the
collection of random bits), runs in O(T(n)) time, and
outputs an element from {0, 1, 7}.

o (Completeness) There exists a y such that

Pr[A(z,y.2) = L(@)] > 2/3.
¢ (Soundness) For all y,
Pr{A(z,y,z) =1— L(z)] < 1/3.

Remark IL.8. (MA N coMA) languages with advice are
defined similarly, with A being an algorithm with the cor-
responding advice.

11 [40] doesn’t explicitly state the TGO downward self-reducible property,
but it is evident from their proof.

Definition I1.9. Let 7' : N — N be a time-constructible
function. A language L is in (NNCoN)TIME[T (n)], if there
is an algorithm A(z,y) (which is called the predicate) such
that:

o A takes two inputs z, y such that |z| = n, |y| =
O(T(n)) (y is the witness), runs in O(T'(n)) time, and
outputs an element from {0, 1, 7}.

o (Completeness) There exists an y such that

Ala,y) = L(x).
¢ (Soundness) For all y,

Remark I1.10. (NNcoN)TIME[T (n)] languages with ad-
vice are defined similarly, with A being an algorithm with
the corresponding advice.

Note that by above definition, the semantic of (MA N
coMA) ; is different from MA,; N coMA ;. A language
in (MA N coMA),; has both an MA/; algorithm and a
COMA/1 algorithm, and their advice bits are the same.
While a language in MA,; N coMA/; can have an MA
algorithm and a cOMA ; algorithm with different advice
sequences. Similar relationship holds for (NP N coNP)
and NP/l N CONP/l.

1. A COLLAPSE THEOREM FOR NC*

In this section we prove our collapse theorem for NC'. In
Section III-A we introduce the NCl-complete language by
Barrington, together with its random-self reduction. Next in
Section III-B we define a special encoding of the input to
that language. The purpose here is to make sure the random-
self reduction can be implemented as a projection, which is
crucial for the proof. Finally, in Section III-C, we prove the
needed collapse theorem.

We remark that we can also prove a similar collapse
theorem for TC: if uniform TC® can be approximated by
ACCO, then TC® collapses to ACC'. We include this in the
full version as it may be of independent interest, and it does
not rely on Barrington’s theorem.

A. A Random Self-reducible NC*-Complete Problem

We first define the following problem, iterated group
product over S5 (the group of all permutations on [5], we
use id to denote the identity permutation), denoted as Wg_,
as follows:

Iterated group product over S5 (Wg,)

Given n permutations mi, ma, ..

HZL:1 mg.

.,my, € S5, compute

1287

From the classical Barrington’s theorem [31], we know
this function is NCl-complete under projection. Formally,
we have:

Lemma IIL1 ([31]). For any depth-d NC circuit C on n
input bits, there is a projection P : {0,1}" — {0, 1}20(d),
such that C(z) =1 if and only if Ws,(P(z)) = id, for all
€ {0, 1},

The above problem is random self reducible [32], [33],
which is crucial for the proof of our collapse theorem. Here
we recall its random self reduction:

The random self reduction of Wg,

Given an input m = (mqy,ms,...,my) € (S5)" to
Ws,. We draw n + 1 i.i.d. random elements

@ = (u1,u2,...,Un, Unt1) from S5, and consider the
following input to W, :

Rand(ni, @) := (ulmlugl, ugmgu3_17 . ,unmnu;}rl).

For all possible 1, over the randomness in ,
Rand(m, @) distributes as a uniform random input to
Wy, . Moreover, we have:

W, (1) = up ' - W, (Rand (i, @)) - tn 1.

B. A Special Encoding

It may seems Lemma III.1 and the random self-reduction
are already sufficient for the collapse theorem we want, but
there are still some technical problems remained.!?

« First, we have to encode Wy, as a Boolean function.
A naive way would be to construct a bijection between
[120] and S5, and then divide the input into blocks of 7
bits, each representing one element in S5. The problem
is that most of the Boolean inputs would be invalid
in this encoding; and therefore this would make it a
promise problem only defined on a negligible fraction
of inputs, which is not suited for our purpose.

e Second, a straightforward implementation of the ran-
dom self-reduction actually requires NC® circuits, as
one needs to implement product of two elements in
Ss. This would collapse NC! to ACC® o THR o NC°,
rather than ACC" o TH R; and we don’t know yet how
to do circuit analysis of ACC” o THRoNGC faster than
brute-force.

A Special Encoding for the Second Issue: We first deal
with the second issue via a special encoding of the group
elements. Let N = |S5| = 120. For each ¢ € [N], let ¢; €
{0,1}" be the vector with i-th bit being 1 while others are
all zero. We identify S5 with [V] (that is, we fix a bijection

12We remark similar issues arise in [36] as well.

between S5 and [N]), and use e, to represent the element
a € S5. Now the problem is formally defined as follows:

Iterated group product over S5 (Wg,)

Given n Vectors €., €mys - - -5 €m, € {0, 1},
n
compute a = [[;_, m; and output e,.

The advantage of this special encoding is that for all p, q €
Ss, there is a projection P, , : {0,1}" — {0,1}* (in fact,
a permutation), such that for all a € S5, P, 4(ea) = €p.q.q-
This is crucial to make sure the random self-reduction can
be implemented as a projection, and our collapse theorem
doesn’t introduce any additional sub-circuits at the bottom
(so we can collapse NC' to ACC” o THR instead of ACC’ o
THR o NC°).

Slightly abusing notation, we sometimes use p - e, - ¢ to
denote ep.q.q.

A Redundant Encoding for the First Issue: But the
first issue remains: W, is still a promise problem, as we
require all vectors to be one of the e,’s. We use a redundant
encoding to make this problem defined on all possible inputs.

Let Sgooq be the set of all e,’s for a € S5 (that is, all
vectors in {0, 1} with hamming weight 1), and Sp.q¢ be all
other vectors in {0, 1}7.

We define the following problem Redundant-Wig,:

Iterated group product over S5 with a
redundant encoding (Redundant-Wyg,)

We are given n? {0, 1} vectors {m; ;} (i j)efn]x[n]-
For each i € [n], let j; be the first integer such that
m; j, € Sgood-

e We call the input a bad input, if there is no such
ji for some ¢, and we just output the all-zero
vector of length N in this case.

« Otherwise, we call the input a good input, and the
goal is to compute a = []!"_; m; j, and output e,.

C. NC' Collapses to AC° o € if Uniform NC' can be
Approximated by €

We define Approx-MAJ,, be the function that outputs 1
(resp. 0) if at least a 2/3 fraction of the inputs are 1 (resp.
0), and is undefined otherwise. To establish our collapse
theorem, we need the following standard construction for
approximate-majority in AC.

Lemma IIL2 ([51], [52], [43]). Approx-MAJ, can be
computed by poly(n)-size uniform ACs circuits.

Now we are ready to show that for a general circuit
class &, NC! collapses to AC’ o €, if uniform NC' can
be approximated by ¥

1288

Theorem IIL3. Let € be a typical circuit class, S : N —
N be a size parameter. There is a universal constant §
such that suppose all languages in uniform NC' can be
(1 — b)-approximated by S-size € circuit families. Then
any depth-d NC circuit C on n input has an equivalent
poly(S(2°(4), n)-size AC3 o € circuit.

Proof: Let 6 = 1/480, and D be a depth-d NC
circuit on n input. By Lemma IIL.1, there is a projection
P : {0,1}" — {0,1} where ¢ = 294 such that
D(x) = Ws, (P(x))ig (for a € Ss, (eq)ig = 1 if and only
if a = id). Without loss of generality, we can assume n is
sufficiently large and d > logn.

Construction of The Circuit C Approximating
Redundant-Ws,: Now, let ¢t = ¢/120 (that is, Wg, on ¢
bits computes the iterated group product of ¢ permutations
from S5). Consider the Redundant-Wg, problem on #2
vectors, clearly it is in uniform NC!.

Note that Redundant-Wg, has 120 output bits, so we
can construct 120 ¢ circuits {C;}ie[n), each (1 — §)-
approximates an output bit of Redundant-Wg,. We denote
C(z) € {0,1}* as the vector consists of C;(z)’s.

By a simple union bound, we have

Pr [Redundant-Wg, (z) = C(z)] > 1 — 46 - 120 > 0.75,

where z is a random input to Redundant-Wg, from
{O 1}1204‘,2.

Implementation of the Random Self Reduction: Now,
we know that for a random input to Redundant-Wg., it is
a good input to Redundant-Wg, with probability at least

t
1—t-(> > 0.99,

when n (and therefore t) is sufficiently large.

Now we define the function First : {0, 1}'29" — 8,504 U
{L}. Given an input 7 = (mq1,ma,...,m;) € ({0,1}V)?,
letting j be the first integer that m; € Sgood, We define
First(m) = m,;. If there is no such j, we define First(ni) =
1.

For each m € Sgo04, We define M,, be the uniform
distribution over the set {First(z) = m : z € {0,1}129%}
Note that a sample from M,,, can be generated as follows:

| Sbadl
2120

o For j € [t], let p; be the probability that a random
sample W = (w1, wa, ..., w:) < M,, satisfies that j
is the first integer that w; € Sgooq (note that we must
have w; = m).

We first draw j € [t] according to the probabilities p;’s.
Then a sample W = (wy,wa,...,w) < M,, can be
generated as follows: for k € [j — 1], we set wy to
be a uniform sample from Spaq; We set w; = m; for
ke{j+1,74+2,...,t}, we set wy to be a uniform
sample from {0, 1}7.

1289

One can observe that when the randomness of the above
process is fixed, each bit of the sample depends on at most
one bit of m (that is, it is a projection).

Next, given a valid input m (my, ma,...,my)
to Wg,, we draw ¢t + 1 iid. random elements «
(u1,uz,...,us, usq) from Ss, and consider the following
input to W, :

Rand(m, @) := (u1m1u2_17 UQm2U3_1, . ,utmtu;rll).

Note that for all 1w € S}, Rand(m, @) distributes
uniformly random on set S 4. Moreover,

W, (111) = up ' - W, (Rand(m, @) - g1

Next, consider the following distribution to

Redundant-Wg, :
M,

input

@ = (MRand(m, @), » MRand(,i)s> " * - » MRand(m, @),)-

It is easy to see that it distributes identically to a random
good input to Redundant-Wg, .

Let r be the randomness used to generate a sample
from M gz, according to the previously discussed sampler
for M,,. Specifically, there is a set R and a function
Gen(m, u,r), such that Gen(mi, @, r) distributes identical
to M, ¢ when 7 is drawn from R.

= t
Therefore, for any 11 € Sjo,4, We have

Pr

78 t+1 peR
u<—Sg°od

Construction of the Final Circuit E: Now, one can see
that @ is fixed, Rand(ni, @) is a projection of 77:. And when
r is fixed, Gen(m, @, r) is also a projection of Rand(rm,).
Therefore, when both % and r are fixed, Gen(m, i,) is a
projection of .

Now, we pick T = 100 - n i.i.d. samples @', 42, ...,
form S'TL and 7', 72,...,77 from R. For each j € [T],

good? . ;
we define the circuit

Cy(w) = ((uf)” "

By previous discussion, C; can be computed by a &
circuit of size S; = poly(S(2°®),n). Moreover, for each
x € {0,1}"™, over the randomness of @’/ and r7, we have

Pr[C;(z) = D(z)] > 0.7.

aﬂ’

L C(Gen(P(x). @.17)) i,)

Therefore, we set our final circuit to be an approximate-
majority of these 7' circuits Cy,Cy,...,Cr. By a simple
Chernoff bound, there exists a fixed choice of all the @’’s and
rJ’s, such that the resulting circuit £ computes D exactly.
By Lemma II1.2, F is an AC30% circuit of size poly(S;) =
poly(S(2°9(49)), n), which completes the proof. [|

Remark IIl.4. We remark that the above theorem only
requires that some special languages in uniform NC* can be
approximated by € circuits (the languages corresponding to
the output bits of Redundant-Ws,).

Pr [Wg, () = uy " - C(Gen(m, @,7)) - ugs1] > 0.7.

IV. AN 1.0. NON-DETERMINISTIC PRG FOR LOW-DEPTH
CIRCUITS

In this section we construct the required i.0. non-
deterministic PRG for low-depth circuits, assuming NQP
can be approximated by ACC” o THR circuits.

In Section IV-A we recall the witness-size lower bound
for ACC” [27], and observe that the proof generalizes to
ACC® o THR. Then in Section IV-B, we construct the
required conditional i.o. NPRG.

A. Witness-Size Lower Bound for NE

The following lemma is implicit in [27] (with the new
PCP construction of [48] and the SAT algorithm for ACC’
THR circuits from [28]) (see also Section 3 of [29]).

Lemma IV.1 (Essentially Theorem 9 of [29], combing with
the algorithm in [28]). For all constants a,d,, my, there is
an integer b and a polynomial-time verifier V(x,y) with
lz| = log®n, |y| = 218" such that for an infinite number
of n’s, V(llogb”,-) is satisfiable, and V(ll‘)gb”,y) =1
implies y cannot be computed by a 2'°8" "-size ACq, [m,] o
THR circuit.

Remark IV.2. We remark that this is the only part of our ar-
gument where special properties (the existence of non-trivial
circuit-analysis algorithms) of ACC® o THR is exploited:
for a typical circuit class €, the proof of the above lemma
only requires a non-trivial algorithm for Gap-UNSAT of
AC’ o @.

B. The PRG Construction

Now we show that under the assumption that uniform
NC' can be (1 — 0)-approximated by ACC® o THR, we
have an i.0. NPRG for low-depth circuits.

Theorem IV.3. (Conditional i.o. NPRG for Low-Depth
Circuits) There is a universal constant § such that for
all constants a,d,,m,, there is an integer b such that if
uniform NC' can be (1 — &)-approximated by 2'°8" ™-size
AC,, [m.]o THR circuit families, then for an infinite number
of n’s, there is a non-deterministic PRG which works as
follows:

o Let { = logb n, there is a polynomial time algorithm
V(x,y) with |z| = € and |y| = 2¢, computable in 2°©)
time.

o V(1¢,) is satisfiable, and the PRG guesses a y such
that V(14,y) = L.

o The PRG then computes a function G : {0, 1300 —
{0,132 " which 1/21°8" ™ fools all log® n depth NC
circuits. Moreover, G, is computable in 2°) time.

Proof: Let § be the universal constant in Theorem III.3.
We can without of loss generality assume that n is a
sufficiently large integer.

1290

Construction of the “Hardness Certifier” V' for Low-
Depth Circuits: We first combine the collapse theorem with
the witness-size lower bound to construct a hardness certifier
V.

By Theorem III.3 and our assumption, we know that for
a depth-d NC circuit on n bits, there is an equivalent 264" -
size ACg, 4¢,[m»] o THR circuit for universal constants c,
and cg4.

Let a; be an integer to be specified later, and d; = d, +
cq- Now we apply Lemma IV.1 with parameters a1, di, m..
Then there is another constant b; = by (a1, dy, m,) such that
there is a polynomial-time algorithm V’(x,y) with |z| =
log” n, |y| = 298" " such that for infinite n’s, we have
V/(11°8" n) is satisfiable, and V'(1°6"* ™ 4) = 1 implies
y cannot be computed by a 2'°¢"! "_size ACg4, [m,] o THR
circuit.

Let d = log¥n for a constant k to be specified later.
A depth-d NC circuit has an equivalent 2°1°8"" " _gjze
AC,, [my] o THR circuit. Now, we set a; = ak + 1 (hence
log™ n > ¢.log® n) so that on these infinite n’s, for a y
of length 2°8" ™ with V/(1°¢" ™) = 1, we know that y
cannot be computed by a log® n-depth NC circuits.

Construction of the NPRG: Now we can plug this
y into a standard construction of a PRG. Let c3,g and
G : {0,1}* x {0,1}* — {0,1}* be the constants and the
function in Theorem II.1. Now, on these infinite n’s, we
guess a y such that V’(llogb1 " y) = 1, and computes the
corresponding PRG G,.

By Theorem IL1, the PRG G, : {0,1}los""n —
{0,1}5", where S’ = glog™" n_ 1/5"-fools log S’-depth NC
circuit, and is computable in poly(|y|) < 200" n) time.
Now we can set k so that log S’ = log®" n > log® n (that
is, k = 2a/c9) and b = g - by, which completes the proof
(the final verifier V takes x,y with |z| = ¢ = log®n and
ly| = 2¢, and simulates V' with z = 18" " and the first
218" bits of). =

Remark IV.4. The guarantee on the above algorithm is that
on an infinite number of n’s. The algorithm computes a
PRG Gy with all y such that V(e o) = 1. That is,
on different such valid y’s, it could compute different PRG
Gy's.

V. AVERAGE-CASE “ALMOST” ALMOST EVERYWHERE
LOWER BOUNDS FOR MA

In this section we prove the average-case circuit lower
bounds for MA (in fact, MA N coMA), which is the most
important technical component of our proof. In Section V-A
we introduce some definitions and lemmas which will be
helpful for our proof. In Section V-B, we prove an average-
case MA N coMA a.a.e. lower bound for general circuits. In
Section V-C, we generalize it to an average-case MANCOMA
a.a.e. lower bound for low-depth circuits, and with a low-
depth computable predicate.

A. Preliminaries

We first prove some folklore lemmas and introduce some
notations. The following lemma is a direct corollary of
Theorem IL.6.

Lemma V.1. For all constants a, there is} an integer h =
h(a) and a language L€ in SPACE(2'°¢" ") such that for
all sufficiently large n, heur, ;51 x, -SIZE(L428) > 2log"

The following is a simple corollary of the above lemma.

Corollary V.2. For all constants a, there is an integer h =
h(a) and a language L% in SPACE(2'°e" ™) such that
for all sufficiently large n, heur; o, 1,-DEPTH(L{?€) >
log® n.

B. An Average-Case MA N coMA a.a.e. Lower Bound for
General Circuits

Now we are ready to prove our average-case lower bound
for MA N coMA, which is “almost” almost-everywhere. We
first state a simpler version of our result with O(logn)
advice bits. This is an average-case strengthening of the
worst-case MA “almost” almost everywhere lower bound
in [30].

Theorem V.3. For all constants a, there are in-
tegers b and ¢, and a language L € (MA N
COMA)T/ME(ZO(IOgb"))/O(IOgn), such that for all suffi-
ciently large n € N and m = {210’56 ”W, either

o heury o1 1/n-SIZE(L,) > 218" ", or
o heUr, 341 i -SIZE(Ly,) > 208 ™,

Remark V4. This “almost almost-everywhere” condition
states that, in a precise sense, L is hard on at least “half”
of the input lengths.

Proof- Let LPSPACE be the language specified by The-
orem II.5. By Lemma V.1 with parameter a, there is a
constant h and a language 196 € SPACE(2!°¢" ") such
that heur, 1 /,,-SIZE(L328) > 21°¢" " for all sufficiently
large n. Since LPSPACE js PSPACE-complete, there is a
constant ¢; such that L8 can be reduced to LPSPACE on
input length 21°8°" 7 in 200°8™ ") time. We set ¢ > ¢;.

The Algorithm: Given an input x of length n and let
m = {QIOgC ”], we first provide an informal description of
the MA N coMA algorithm which computes the language L.
There are two cases:

1) When SIZE(LPSPACE) < 2loe’n_ That is, when
L,PnSPACE is easy. In this case, we guess-and-verify a
circuit for LTF;LSPACE of size 2°8" " and use that to
compute L4728,

Otherwise, we know L,PRSPACE is hard. On input of
length m, we are given an advice y which is the largest
integer such that LESPACE < 2108"n We guess-and-
verify a circuit for LZSPACE, and compute it (that is,

2)

1291

compute
the rest).

Intuitively, the above algorithm computes an average-case
hard function because either it computes the average-case
hard language L92& on inputs of length n, or it computes
the average-case hard language LZSPACE on inputs of length
m (LPSPACE is robust). A formal description of the algorithm
is given in Algorithm 1, while the algorithm for setting the
advice bits is given in Algorithm 2 (note that a y,, may be
set twice).

LSSPACE on the first y input bits while ignoring

Algorithm 1: The MA N coMA algorithm for the
average-case hard language L

Given an input = with length n = |z|;

Given an advice integer y = y,, € [—1,n] NZ;

Let m = [21°gc "];

Let ng = no(n) be the integer such that
{21°gc "01 = n; if no such integer exists, ng = —1;

if y = —1 then
L Output 0 and terminate

if y = 0 then

(y = 0 indicates we are in the case that
SlZE(L!,)nSPACE) < 210gb n.);

Compute a z of length m in 2°00°8° ™) time such
that L8 (7) = L,PHSPACE(z);

Guess a circuit C' of 218" " size;

Let M be the instance checker for LPSPACE;

Flip an appropriate number of random coins, let
them be r;

Output M (z,7);

s W N =

w

10
11
12

13
14
15

else

(y > 0 indicates we are in the case that
SlZE(LZSPACE) > Qlogb nO.);

Let z be the first y bits of x;

Guess a circuit C' of 9log" no size;

Let M be the instance checker for LESPACE;

Flip an appropriate number of random coins, let
them be 7;

Output M (z,7);

16
17
18
19

20

The Algorithm Satisfies the MA N cOMA Promise: We
first show the algorithm satisfies the MA N cOMA promise
(Definition I1.7). The intuition is that it only tries to guess-
and-verify a circuit for LPSPACE when it exists, and the
properties of the instance checker (Definition I1.2) ensure
that in this case the algorithm satisfies the MA N coMA
promise. Let y = y,, there are three cases:

1) y = —1. In this case, the algorithm computes the all
zero function, and clearly satisfies the MA N coMA
promise.

2) y = 0. In this case, from Algorithm 2, we know that

Algorithm 2: The algorithm for setting advice bits
of Algorithm 1

1 All y,,’s are set to —1 by default;

2 forn=1— oo do

Let m = [2105°]

if SIZE(LPSPACE) < glog”n then
| Set yn =0;

else

L

SIZE(LPSPACE) < 2108”1 for i, = [21056 ™. Therefore,
at least one guess of the circuit is a correct circuit
for LPSPACE and on that guess, the algorithm outputs
Ld2g () = LPSPACE () with probability at least 2/3, by
the property of the instance checker (Definition I1.2).
Still by the property of the instance checker, on all
possible guesses, the algorithm outputs 1 — L428(z) =
1— LPSPACE () with probability at most 1/3. Hence, the
algorithm correctly computes L48 on inputs of length
n, with respect to Definition I1.7.

y > 0. In this case, from Algorithm 2, we know that

ne # —1,n = ngb no |, SIZE(LPSPACE) - glog”no,

and SlZE(LPSPACE) < 21°2" no_ Therefore, at least one
guess of the circuit is a correct circuit for LPSPACE
and on that guess, the algorithm outputs LPS ACE(2)
(z = z(x) is the first y bits of x) with probablhty
at least 2/3, by the property of the instance checker
(Definition II.2).

Still by the property of the instance checker, on all
possible guesses, the algorithm outputs 1 — LSSPACE(Z)
with probability at most 1/3. Hence, the algorithm
correctly computes LZSPACE(Z(:E)) on inputs of length
n, with respect to Definition I1.7.

N S e W

Set
Yum = max{y : SIZE(LPSPACE) < glog”n).

3)

The Algorithm Computes an “Almost” Almost Every-
where Average-Case Hard Language: Next we show that the
algorithm indeed computes an average-case hard language.
Let n be a sufficiently large integer and m = {21°gc ”].
According to Algorithm 2, there are two cases.

o SIZE(LPSPACE) < 2los’n I this case, Algorithm 2
sets ¥y, = 0. And by previous analysis, we know that
L, computes the average-case hard language Ld8,
and therefore heury/s1/,-SIZE(L,) > log"n a5 p
is sufficiently large.

SIZE(LPSPACE) 208" " We set b so that 2!°¢" " >
9log™* (m) (we can set b > 3ac). Let y be the largest
integer such that SIZE(LPSPACE) < 2log"n By Re-
mark I1.3, we have y < m.

Note that SIZE(LPSFACE) < (y 4 1)¢- SIZE(LPSPACE)

y+1
for a universal constant d (because LPSPACE is down-

1292

ward self-reducible). Therefore,
. d
S|ZE(LESPACE) > S|ZE(L;3_|31ACE)/ ’7210g n—‘ > QQ(log” n).

Now, on an input of length m, clearly we have ng(m) =
n # —1 and y,, # —1 by Algorithm 2. Therefore, L,
either computes L4 or LPSPACE (since y,, # —1)
The first case is already dlscussed In the second case,
we know y,, = y and heury sy /n-SIZE(L,,) =
heur1/2+1/m-SIZE(LPSPACE)

Now, since SIZE(LPSPACE) < 2Y, we have y >
Q(log® n). Let ¢; and &, be the corresponding constants
of the robust property of LPSPACE For ¢ > 2’?/61, we
have

SIZE(LPSPAE) < (heur, sy .-SIZE(LPSPACE).c~1yer,

and hence
heur, /o .-SIZE(LESPAE) > ¢ - SIZE(LPSPACE) /e
>c. 2Q(logb n)
We set b so that 3t > Q (log‘s1 > log(m)

(that is, we can set b > 2¢/01), and then set
1/m. It follows that heur1/2+1/m SIZE(LPSPACE) >

2S2(log n /210g n o> 2S2(10g n) > 210g (m) which com-
pletes the whole proof.

b n)

C. An Average-Case MA N coMA a.a.e. Lower Bound for
Low Depth Circuits

Now we are ready to prove the technical centerpiece of
this paper, an (MA N coMA)/; language with a low-depth
computable predicate, and is average-case hard for low-
depth circuits.

By significantly relaxing the “almost” almost everywhere
requirement, we are able to construct an average-case hard
language with only one bit of advice, yet still enough for
our final average-case circuit lower bound proof.

Theorem V.5. For all constants a, there are integersbb and
¢, and a language L € (MA N coMA) TIME(20(e" ™)) |
(specified by Algorithm 3 and Algorithm 4), such that for
all sufficiently large T € N and n = 27, either

. heUro,gg'DEPTH(Ln) > loga n, or

e heuryg9-DEPTH(L,,) > log"m, for an m
(210gcn’ 210gC n+1) A N.

€

Remark V.6. We remark that in the real proof, we slightly
deviate from the intuition section of the introduction: we
actually don’t need the precise condition that the corre-
sponding predicate is low-depth computable as it is not
required by the proof (the proof only requires that the
instance checker part (the composed circuit DS e (%))
is computable by low-depth circuits). Still, it is not hard

to make the entire predicate corresponding to Algorithm 3

low-depth computable.

Algorithm 3: The MA N coMA algorithm for the
language L which is average-case hard for low-depth
circuits

Given an input x with length n = |z|;

Given an advice integer y = y,, € {0,1};

Let m = [21°gc "W;

Let ng = ng(n) be the largest integer such that
210gC no < n;

Let mg = 28" "0,

Let { = n — mg;

if y = 0 then
L Output 0 and terminate

if n is a power of 2 then

10 (we are in the case that
DEPTH(LPSPACE) < log” n.);

11 Compute a z in 200°8°) time such that
L% (z) = LPSPACE();

12 Guess an NC circuit C' of logb n depth;

13 Compute in poly(m) time a TC” oracle circuit
DY\ e, Which implements the instance checker
for LTIZSPACE;

14 Flip an appropriate number of random coins, let
them be 7;

15 | Output DS o (2,7);

16 else

17 (we are in the case that
DEPTH(LPSPACE) > 1og” ng and £ is the largest
integer such that DEPTH(LESPACE) < logb n9.);

18 Let z be the first ¢ bits of x;

19 Guess an NC circuit C of logb ng depth;

20 Compute in poly(¢) time a TC” oracle circuit
Dzhecker which implements the instance checker
for L;’SPACE;

21 Flip an appropriate number of random coins, let
them be 7;

22 | Output DG o (2,7);

Proof of Theorem V.5: Let LPSPACE be the language

specified by Theorem IL.5. By Corollary V.2 with parameter
a, there is a language L9128 ¢ SPACE(21°gh ™) for a constant
h such that heury /o415,
-DEPTH(L428) > log® n for all sufficiently large n. Since
LPSPACE g PSPACE-complete, there is a constant ¢; such
that Ld28 can be reduced to LPSPACE on input length
olog® n i 90(0g™ 1) ime We set ¢ > c¢;, and recall
that heur, /o, 1/,-DEPTH(L32€) > log”n, and therefore
heuro_gg'DEPTH(Lijag) > IOga n.

1293

Algorithm 4: The algorithm for setting advice bits
for Algorithm 3

1 All y,,’s are set to 0 by default;
2 for r=1— 0o do
Let n =27;
Let m = 21°gC";
if DEPTH(LPSPACE) < log® n then
‘ Set y, = 1;
else
Let
¢ = max{¢ : DEPTH(LSPACE) < log”n};
Set Ymye =13

e NN & s W

The Algorithm: Let 7 € N be sufficiently large. Given
an input x of length n = 27 and let m = 2'°5° ", we first
provide an informal description of the MANCOMA algorithm
which computes the language L. There are two cases:

1) When DEPTH(LPSPACE) < log”n. That is, when
LfnSPACE is easy. In this case, we guess-and-verify a
circuit for LPSPACE of depth log® n, and use that to

compute L4728,

Otherwise, we know Lf,f’PACE is hard. Let ¢ be the

largest integer such that DEPTH(LPSPACE) < log®n.

On input of length m; = m + ¢, we guess-and-verify

a circuit for LESPACE, and compute it (that is, compute

LESPACE on the first ¢ input bits while ignoring the

rest). Note that by Remark I1.3, we have 0 < £ < m

and therefore m + ¢ is not a power of 2.

2)

Intuitively, the above algorithm computes an average-
case hard function because either it computes the average-
case hard language L4928 on inputs of length n, or it
computes the average-case hard language L?SPACE on inputs
of length m (LPSPACE js NC* weakly error correctable). A
formal description of the algorithm is given in Algorithm 3,
while the algorithm for setting the advice bits is given in
Algorithm 4. It is not hard to see that a y,, can only be set
once in Algorithm 4.

Now we verify that the above algorithm computes a
language satisfying our requirements.

The Algorithm Satisfies the MA N coMA Promise:
Again, by Algorithm 4, the algorithm tries to guess a circuit
for LPSPACE only if that circuit exists. Therefore, by a similar
argument as in the proof of Theorem V.3, the algorithm
satisfies the MA N cOMA promise. Moreover, L,, computes
L3928 if y,, = 1 and n is a power of 2, and LPSPACE if ¢, = 1
and n is not a power of 2.

The Algorithm Computes an “Almost” Almost Every-
where Average-Case Hard Language for Low Depth Cir-
cuits: Next we show that the algorithm indeed computes
an average-case hard language. Let 7 be a sufficiently large
integer, n = 27, and m = 2'°¢° ™. According to Algorithm 4,

there are two cases:

o DEPTH(LPSPACE) < log® n. In this case, Algorithm 4
sets y, = 1. And by previous analysis, we know that
L, computes the average-case hard language L9728,
and therefore heurg g9-DEPTH(L,,) > log”n as n is
sufficiently large.

o« DEPTH(LPSPACE) > Jog”n. We set b so that log®n >

log?*(2m) (we can set b > 3ac). Let £ be the largest
integer such that DEPTH(LPSPACE) < log’n. By
Remark I1.3, we have ¢/ < m.
Note that DEPTH(L{?TAE) < dlog(¢ + 1) +
DEPTH(LFSPACE) for a universal constant d (because
LPSPACE js TCY downward self-reducible, and the cor-
responding TC" oracle circuit is non-adaptive). There-
fore,

DEPTH(L?SPACE) > DEPTH(LZSFFIACE) —dlog(¢+1)
> Q(logb n).

Now, on inputs of length m; = m + ¢, we have
Ym, = 1 by Algorithm 4. Therefore, L,,, computes
LZPSPACE, and therefore heurgg9-DEPTH(L,,,) =
heurolgg-DEPTH(LKPSPACE).

Since LPSPACE js NC* weakly error correctable, and
the corresponding NC® oracle circuit is non-adaptive.
There is a universal constant d such that

DEPTH(L?SPACE) < dlog® g_‘_heuro'gg_DEPTH(LESPACE)

Therefore, by our choice of b, it follows

heUf0.99'DEPTH(L§SPACE)
>DEPTH(LFSPACE) — dlog® ¢
>0(log" n) — O(log** n) > Q(log’ n).

Finally, note that Q(log’n) > Q(log®*(2m)) >

log”(my). We have heurggg-DEPTH(L,,,) =

heurg g9-DEPTH(LPSPACE) > 1og%(m;), which
completes the proof.

|

Finally, using a similar trick as in the proof of The-

orem V.5, we can also reduce the number of advice in

Theorem V.3 to 2 bits.

Corollary V.7. For all constants a, there are integers b and
¢, and a language L € (MA N coMA) TIME(200°&"m)y |
such that for all sufficiently large T € N and n = 27, either
. heUfQ_gg-SIZE(Ln) > 9log” ", or
o heuryg9-SIZE(L,,) > 2°¢"™ for an m €
(2103;C n glog® n+1) A N.

VI. A PSPACE-COMPLETE LANGUAGE WITH NICE
REDUCIBILITY PROPERTIES

In this section we construct a PSPACE-complete lan-
guage with the needed nice reducibility properties.

In Section VI-A, we introduce the necessary definitions
for the construction of this section. In Section VI-B, we
review the original construction in [40]; and in Section VI-C,
we briefly discuss what adaption is required to make it
suitable for our purpose. In Section VI-D, we construct the
needed PSPACE-complete language.

A. Notations and Boolean Encodings of Field Elements

We first need to introduce some notations. Let pow(n) be
the smallest power of 2 which is no less than n.

Let F,, be GF(2PO"(™). Note that for all n < m, either
F,, = F,,, or F,, is a sub-field of FF,,. An element from
F,, can be encoded in pow(n) bits via a natural bijection
¢, between F,, and GF(2)P°"("). We encode them in a
consistent way that for any 2° < pow(n), the first 2¢ bits
of the encoding correspond to an element from GF(22Z).

That is, for all n < m and an element a from IF,,, the first
pow(n) bits of ¢,,,(a) equals ¢, (a). Note that all these fields
F,, (ie., a degree pow(n) irreducible GF(2)-polynomial)
and bijections ¢, can be constructed deterministically in
poly(n) time [53].

Let be an integer, F' = GF(22), and K = GF(22"").
K is an extension field of F', and there exists an element
a € K (which can be found in poly(2¢) time) such that all
element x € K can be uniquely written as * = y - a + 2,
where y, z € F.

B. Review of the Construction in [40]

We need the following lemma from [40], which builds on
the proof of IP = PSPACE theorem [17], [18].

Lemma VI.1. For some polynomials t and m, there is a
collection of functions { fn; : (Fn)"™) = Fp }neni<m(n)
with the following properties:

1) (Self-Reducibility) For i < m(n), fn; can be evaluated
with oracle access to fy iy1 in poly(n) time. fp)
can be evaluated in poly(n) time, and in fact it is
computable by a poly(n)-size uniform TC° circuit.

2) (PSPACE-hardness) For every language L in
PSPACE, there is a polynomial-time computable
function ¢ and g, such that for all n € N and
2 € {0,117 L(z) = fuimolg(e)), and €(17) is
bounded by a polynomial in n (which depends on L).

3) (Low Degree) f, ; is a polynomial of total degree at
most poly(n).

Remark VI.2. In [40], the field F,, is just GF(2"), we
make it slightly larger in order to establish the padability."?
We formulate the second property in a slightly different way
than [40] for convenience. Also, it is easy to see that in the
construction of [40], t(n,i) and m(n) are both increasing
functions in n.

3The problem with the original encoding is, GF(2™) is not a sub-field
of GF(2"+1) for n > 2.

1294

The polynomial [y, mn)y in [40] is very simple, and it
is easy to see that it can be computed by a poly(n)-size
uniform TC circuit.

More specifically, for all i < m(n), f, ;(x) has £ = t(n,)
variables, and it is defined in terms of f,, ;41 using one of
the following rules:

Three rules of defining f, ;(x)

fri(z1, ... 20)

=frit1(@1, .-, 20,0) - friv1(z1,. .., 20, 1). €))
fri(z1, ... 20)

=1— (1= frit1(z1,...,20,0)) - (1 = friv1(z1,..., 2, 1)).

2

(@1, . x)

=z foit1(z1,..., 1, @)+
(1 —2k) - frit1(z1,...,0,...,20). 3)

C. Technical Challenges to Adapt [40] for Our Purpose

The original language in [40] just computes f, ; in the
order of first increasing in m and then decreasing in ¢. By
Lemma VI.1, this can be easily seen to be downward self-
reducible and error correctable (as polynomials are error
correctable). To make it further paddable, [46], [39] simply
use a padding construction so that now on a single input
length, the language computes f,; and all polynomials
which come before it.

In order to construct a PSPACE-complete language
which is both error correctable and paddable, there are some
technical challenges:

« First, after the padding construction, the language now
is not a single polynomial, but a bunch of different
polynomials. We need to do some interpolation to
“wrap” them into a single polynomial again. One obvi-
ous problem is that these polynomials are over different
fields and may have different numbers of variables, we
resolve that by a careful choice of the fields (for all
n < m, F, is a sub-field of F,,), and adding dummy
variables.

« Another problem is that a simple interpolation would
actually destroy the padability. Suppose we have k
polynomials gi, ¢, ...,g; : F" — F of degree D. We
can construct a single polynomial G, : F**! — F
with degree D + k, such that G (i,z) = g¢;(z), via
a simple interpolation. But the issue here is that then
Gj_1 cannot be reduced to Gy easily (so it is not
paddable). We resolve this via a different choice of
interpolation. Specifically, we define G, : F" xFF — F

k
as Gr(z,y1, Y2, -, Uk) = iy Gi(T) - Yi.

« Finally, the polynomials are over a large alphabet [,,,
and we have to turn them into Boolean functions. This
step is standard as one can just make use of Walsh-
Hadamard codes.

The next step is to argue that the reducibility properties of
the constructed new language actually have low complexity
oracle circuits implementations. For padability it is trivial.
For weakly error correctability and the robust property, it is
still straightforward from the local decoders of Reed-Muller
codes and Walsh-Hadamard codes. The main difficulty here
is to argue this for same-length checkability and for down-
ward self-reducibility.

Same-length Checkability.: This actually looks counter-
intuitive at first—the instance-checker in [40], [46],
[39] actually simulates the interactive proof protocol for
PSPACE [17], [18]. Since it is an interactive proof protocol,
it appears that this checking process should proceed one step
after another step (that is, highly sequentially), and it should
not have a highly parallelizable implementation such as TC?
oracle circuits.

The key observation is that, despite the fact that we are
simulating an interactive proof protocol, the prover’s strategy
is already committed to the given oracle. This enables us to
check different stages of the interactive proof protocol in the
same time, and from which we can construct a TC oracle
circuit for the instance checker.

Downward Self-reducibility.: ~ Downward self-
reducibility is a bit tricky. When Gj and Gpyq are
over the same field, downward self-reducibility follows
from the way that the f, ;’s are constructed. But when Gy,
and Gy are over different fields Fog and Fpe (Foig is a
sub-field of Fpey), it is not clear how to evaluate G given
an oracle access to G. To circumvent this issue, suppose
Gy : ngk — Foiq is a degree d = poly(n) polynomial, we

wish to extent it to a polynomial Hy, : Fgggf — Frew.

For this purpose, we construct n + k + 1 intermediate
polynomials H™, H{™, ... H!™ such that H™ : F},, x
ngk*i — Fhew 18 cpnstructed by extending Gy to the
domain [}, X Fgﬁjk_z. Note that HM = Hj,. We simply
insert the polynomials H{'", Hy",..., H)" , between Gj,
and Gj,+1. Note that for each i € [n+k]|, given oracle access
to HiM,, it is easy to evaluate H"* by interpolation. Also,
Gi41 can be evaluated easily given oracle access to Hy,
as now they are over the same field F,.,,, and H(i)nt can be

easily evaluated given oracle access to Gy, via interpolation.

It remains to ensure that adding these H\"’s does not
hurt other properties we want. It is straightforward to verify
that padability, weakly error correctability, and the robust
property still hold, and a careful examination shows that
these intermediate polynomials H"’s are also same-length
checkable.

1295

D. The Construction of the PSPACE-complete Language

Now we are ready to construct the needed PSPACE-
complete language, we first restate the theorem for conve-
nience.

Reminder of Theorem ILI.5 There is a PSPACE-complete
language LPSPACE which is paddable, 7C° downward self-
reducible, TC° same-length checkable, robust, and NC?
weakly error correctable. Moreover, all the corresponding
oracle circuits for the above properties are in fact non-
adaptive: that is, on any path from an input gate to the
output gate, there is at most one oracle gate.

Proof of Theorem 11.5:

In the following, we roughly follows the ideas outlined in
Section VI-C. Our construction is a careful modification of
the construction from [40], together with an application of
Walsh-Hadamard codes to turn the polynomials into Boolean
functions.

Construction of Interpolated Polynomial Gy.: First, we
order all polynomials in the following order

7f2,07”'

Let g; be the k-th polynomial in the above list. Suppose
gk 18 fni. Let d = d(k) be the maximum number of vari-
ables of a polynomial in g1, g2, . . ., gx. By introducing some
dummy variables at the end, we can make all polynomials
g1, 92, - .., g, have d variables. Moreover, since all fields
Fy,F,...,F,,_; are sub-fields of F,, (or equal to F,,), we
can treat all g1, go, ..., gx as polynomials from F¢ — IF,,.

Now, we introduce k& more variables y1,%2,..., Y%, and
define the following polynomial Gy, : Fit+ -,

J1m@)s frm@y =1 -5 [1,0, fo,m(2)s - - -

k
G,y 42, yk) == Y _ gi() - Y-
1=1

Since all g;’s are of total degree at most poly(n), Gy is
also of total degree poly(n).

Construction of Field-Transferring Polynomial H. ,':‘2
One issue is that when Gy and G4 are over different
fields, it is not clear how one can compute G4 with oracle
access to G (that is, how to implement the downward self-
reducibility). To circumvent this, we construct a series of
field-transferring polynomials'* between Gy and Gy to
help the process of making the field larger.

Since G+ is over a larger field than G, it must be the
case that n = 27 for an integer 7 and ¢ = 0. Let Foy =
F, = GF(2?") and Fpe, = Fiyy = GF(22T+1), we know
that G, is over Fog and Gj41 is over Fiey.

We want to construct a polynomial Hj, : Fétk —

new
which extends G}. Note that it is unique, as Gy is of

new

14We are slightly extending the notion of polynomials here, as in those
intermediate polynomials, different variables could be over different fields.
Still, one can view them as the evaluation of a polynomial on a certain
domain.

) fn,m(n)7 s

)

1296

D = poly(n) degree, while Fyq has size at least 2". If
we simple insert Hj, after Gy, it is still not clear how to
evaluate Hj, given oracle access to G. Therefore, we move
the polynomial variables from F, 4 to Fe, one after another
instead of moving them all together.
Let H,'C”E : Fi_ x FF=1 5 F... be the polyno-

X Iﬁ‘g[g k=i, Clearly

new old
mial extending G, to the domain F
H LHEH/C = H.

Moreover, to compute /1 ,':2 given oracle access to I }2271’
one can simply interpolate the i-th coordinate. That is, given
(y<ir yir 2) € Figy, x 41 one queries HY (y<i @, 2)
for x € {0,1,..., D} to interpolate a polynomial p(x) :
Folg — Frew which equals H}:,ti—1(y<i7 x, z). Then we have
H™(y<i yi, z) =p(yi).

Converting Gy, and H\"™ into Boolean Functions via
Walsh-Hadamard Codes.: Next, we need to turn the poly-
nomials G, and H ,';‘tl into Boolean functions. We do this by
applying Walsh-Hadamard codes.

Let ¢ = pow(n). We use the bijection ¢ = ¢,, between
F,, and GF(2)¢ described in Section VI-A.

We define F}, : FitF x GF(2)" — GF(2) as,

e Fr(z,7) = (9(Gi(2)), 1),

where (¢(Gj(z)), r) is the inner product between ¢(Gj(z))
and r over GF(2).

F}, can be easily interpreted as a Boolean function on
{0,1}%) where e(k) = (d+k +1) - £.

We call a k special, if G, and Gy are over different
fields. In this case, we know that F,,,; = GF(2%*), and
H'% is from F, x Fitk=i -, ;. Similarly, we define
Fyrans Fi, , x FITk=i x GF(2)% — GF(2) as

Fim(2,7) o= (nr1 (H5(2)), 7).

Fj™"s can be interpreted as a Boolean function on
{0,1}%*9 where e(k,i) = (d +k +i+2)- L.

Note that for a special k, we have that e(k) < e(k,0) <
e(k,1) <...<e(k,d+k—-1) <e(k,d+ k) <e(k+1).

Now, for each input length m, let £ be the largest integer
such that e(k) < m and ¢ be the largest integer such that
e(k,i) < m. If there is no such k, LPSPACE just computes
the all-zero function. If k is not special, we set Lf;LSPACE to
compute F}, on its first e(k) bits; otherwise we set LFSPACE
to compute Fj"3"° on its first e(k, 1) bits.

In the following we verify that LPSPACE has all the desired
properties.

LPSPACE s Paddable.: Note that it suffices to verify
the padability between n and m = n + 1. There are several
non-trivial cases (we ignore the trivial case when LFSPACE
and LPSPACE compute the same function).

1) LPSPACE computes Fy, and LPSPACE computes Fj 1.
2) LFSPACE computes Fy,, LPSPACE computes FI3" for a
special k.

i
new

3) LPSPACE computes Flgf';?”s, LPSPACE computes Fyrane, for
aspecial kand 0 <i<d+k—1. '

4) LPSPACE computes F,g';”jk LPSPACE
a special k.

computes Fj1 for

We only discuss the first case, other cases follow by
similar arguments. Note that in this case Fj, and Fjq are
over the same field, and we have

Fk(x7y17y27"'7yk7z) = Fk+1($7ylay27"'7yk7oaz)

by the definition of F}; and Fj4 ;. The padability is then evi-
dent with our encoding of the fields F,,’s (see Section VI-A).

To make the presentation clean, when verifying the re-
maining properties, we first discuss the case when LfnSPACE
computes the function Fj, and then argue the additional
cases when LF>PACE computes the function Frans.

LPSPACE s Robust.: Supposing Lf,;c’PACE computes the
function F}j, we only need to show this property for the
Boolean function Fj. By the well-known local-list-decoders
of the Walsh-Hadamard codes [54] and of the Reed-Muller
codes [47], this property follows directly.

LPSPACE s NC? Weakly Error Correctable.: This fol-
lows from the well-known local-decoders of the Reed-
Muller codes and the Walsh-Hadamard codes [47]. Walsh-
Hadamard codes have NC' local decoders [54], while the
computational bottleneck of the local decoder of Reed-
Muller is solving a system of linear equations over F,,.
Solving a system of linear equation can be done by an
O(log® n) depth arithmetic circuit with field operations over
F,, and a field operation over [F,, can be implemented by
a uniform TC? circuit [55] (and therefore a uniform NC'
circuit). Hence, the whole local decoder can be implemented
by a uniform NC? circuit, and this property follows.

Handling F}3™.: Consider the function Fj"3" con-
structed from the function H ,'6”2 (e, X Fgﬁg R Frew
(recall that now k is special; [F.e,, and [Fy 4 are the (different)
fields of Gy and Gy respectively). H ,'Q"'; can indeed be
interpreted as a polynomial FZ, x F! , x FEEF=1 o | .
Recall that there is an element o € K such that all element
x € K can be uniquely written as © = y-a+z fory,z € F.

We consider the following polynomial H}' : Tl x Y, x
Fgfdrk*i — Fhew, defined as
~licn,§(yvz>w): Iicriti(y'a+zaw)7

where y, z €]Ff)ld and w €]Fgfdr k=i and the operators in ¥ -

a+ z are coordinate-wise scalar multiplication and addition.

H™ has the same degree of H,™, and is indeed the
same function as H ,'C”tL Therefore, the robust property and
weakly error correctability can be established similarly when
LESPACE computes Fa".

LPSPACE ¢ TC" Same-length Checkable.: Suppose we
want to check whether Fy(x,y,r) = 1 given an oracle O
which is supposed to compute Fj (the case for checking
whether Fj(x,y,r) = 0 is analogous). Suppose g = fn.i»

and let ¢ = pow(n). Note that given an oracle for F}, one
can ask it ¢ times to get Gi(x,y) for any valid z,y.

We first query the oracle O to get Gi(x,y), and re-
ject immediately if it is not consistent with Fj(z,y,7).
Since Gi(z,y) Zle gx(z) - yi, we mnext ask the
oracle O to get g1(x) = Gi(z,1,0,...,0),g2(x) =
Gr(z,0,1,0,...),...,95(x) = Gg(z,0,0,...,0,1). We
reject immediately if these queried values are not consistent
with G (z,y). Now we can use the original instance checker
n [40], [46] to check whether these obtained g¢;(x)’s are
correct.

Therefore, now it suffices to show that the instance
checker of [40], [46] can be implemented by a uniform poly-
nomial size TC? circuit. Suppose we want to check the value
of fr.i(z) for some n and i, given oracle access to alleged
polynomials fy, s, fni41,- -, frn,m(n), Which are supposed
to compute the polynomials fr, i, fn,it1; - - fn,m(n) (by the
way we order polynomials, these alleged polynomials are
accessible given the oracle O).

For all i < m(n), f,(x) has £ = t(n,i) variables,
recall that it is defined in terms of f,, ;1 using one of the
Equations (1), (2), and (3).

Let D = poly(n) be a degree bound on all the polyno-
mials fi i, frit1s- -5 frn,mn)- Suppose we want to check
whether f, ;(x1,...,2¢) = T;, the instance checker works
as follows:

o For case (1) and case (2), we first query the oracle
polynomials f,, ;41 on points (z1,...,z¢, 2) for z €
{0,1,2,..., D}, and interpolate a polynomial P;(z)
of degree D, which is supposed to be the polynomial
fn,i-‘rl(-%.h ey Xy, Z)

— We first check whether P;(0) - P;(1) = T; in case
(1), or 1— (1 - P;(0)) - (1 - (1)) = T} in case (2),
and reject immediately if they are not satisfied.

— We pick a random value z; € I, and proceed to
check whether fy, ;+1(z1,...,2¢, 2;) = Pi(2;).

o For case (3), we first query the oracle polynomials
fri41 on points (Z1,...,%k—1,%, Tht1,...,2¢) for
z € {0,1,2,...,D}, and interpolate a polynomial
P;(z) of degree D, which is supposed to be the
polynomial f,, i11(z1,..., k-1, 2, Tht1,--.,Tp).

— We first check whether xj, - P;(1)+ (1 —) - P;(0) =
T;.

— We pick a random value z; € F,,, and proceed to
check whether f, ;+1(z1,...,Tk—1, 2, Tht1,

. .,.Z‘g) = R(Z,)

« Finally, when we reach the stage of checking whether
Jnm) (@1, 22, - Zenmn))) = D) We simply
evaluate the polynomial f;, ,,(») on the given point and
reject it is not equal to Tiy,(p)-

The correctness of the instance checker follows directly

from the proof of IP = PSPACE [17], [18]. Now we show
it can be implemented in uniform TC.

1297

First notice that we can draw all the random values
ZiyZi+1,- -+ Zm(n) i0 the beginning, and each interpolated
polynomials P; are completed determined by the input
x1,T2,- - ., Ty, the random values z;’s, and the oracle poly-
nomial f, ;’s. By Lagrange’s formula and [55], all P;’s can
be computed by uniform TC® non-adaptive oracle circuits
with the oracle O.

After constructing the polynomials, one can see the
instance checker only needs to perform some additional
consistency checks. Note that we have T; 1 = P;(2;), so all
consistency checks only involve at most two polynomials P;
and P;y;, and they can be easily implemented by uniform
TC circuits, again by [55].

Handling F}".: When LESPACE computes F'a"s, the
only complication’ is that now all these polynomials zf,m» are
over the domain [F? _, x Fﬁ@t for some ¢. The above argument
still works with minor modifications.

LPSPACE s TC® Downward Self-reducible.: Finally, we
show how to compute LPSPACE given an oracle to LESPACE,
Note that we can ignore the trivial case where both LPSPACE
and LPSPACE compute the same function. We first consider

the case that LPSPACE and LPSPACE compute the function F,
and Fj,_, respectively.

To compute Fy(z,y,r), it suffices to compute G (z,y).
Computing G (z,y) can be in turn reduced to computing
g1(x), g2(2), ..., gk (x). Recall that these g;(x)’s are defined
by one of the rules (1), (2) and (3), we can see either g;(x)
is itself computable by a uniform TC? circuit (it is Jn.m(n)
for some n), or it can be computed by a uniform TC® non-
adaptive oracle circuit with g;_; as the oracle [55].

Given oracle access to Fj_1, we also get the access
to polynomials g (x), g2(x),. .., gx—1(z), and therefore we
can compute each ¢1(x),g2(x),...,gx(z) with a uniform
TC® non-adaptive oracle circuit with the oracle Fjy_;.
Combing them with another TCP circuit on the top, we can
compute Fy(z, y,) with a uniform TC® non-adaptive oracle
circuit with the oracle Fj_1, which completes the proof.

Handling F}'3".:
involving F}ra"s.

There are three non-trivial cases

1) LPSPACE computes Fy,
special k.

2) LESPACE computes Fjr2ns, LPSPACE computes F27% for
aspecialkandogiéd—i—k—l. '

3) LP>PICE computes Fi3s,, Li>PAE computes Fyq for
a special k.

LPSPACE computes F13™ for a

Note that the third case can be handled similarly as the
case involves F}, and F},_;. For the first two cases, LF>PACE
can be computed easily given an oracle to L

PSPACE yia
interpolation, by the way we define F}"2"’s.

m—1

1298

VII. NQP 1S NOT 1/2 + 0(1)-APPROXIMABLE BY
POLYNOMIAL S1zE ACC o THR CIRCUITS

In this section we prove that NQP is not (1/2 +
1/ polylog(n))-approximable by polynomial-size ACC’ o
THR circuits.

In Section VII-A we introduce some definitions and lem-
mas which will be helpful for our proof. In Section VII-B,
we prove a (1 — d)-inapproximability result for (NQP N
coNQP) (1) against ACC o THR circuits. And in Sec-
tion VII-C, we apply mild to strong hardness amplification
to obtain a (1/2 + 1/ polylog(n))-inapproximability result
for (NQPNcoNQP) /(1) against ACC o THR circuits, and
then apply an enumeration trick to get rid of that advice, and
prove the same lower bound for NQP.

A. Preliminaries

We first introduce some definitions. For an integer a € N,
we use bin(a) to denote the Boolean string representing a in
binary (from the most significant bit to the least significant
bit).

Given two integers m,n € N, we construct an integer
pair(m, n) as follows. First letting ¢ = |bin(n)|, we dupli-
cate each bits in bin(¢) and to get a string zje, of length
2 - |bin(¢)| (for example, if bin(¢) = 101, we get 110011).
Then we let z = bin(m) obin(n) o 01 o zjen, where o means
concatenation, and define pair(m,n) as the integer with
binary representation z.

It is easy to see that pair(m,n) < O(mn?). Also, given
the integer pair(m,n), one can easily decode the pair of
number m and n.

B. (1 —0) Average-Case Lower Bounds

We first show that there is a function in (NQP N
coNQP) , which is not (1 — d)-approximable by ACC' o
THR circuits, for a universal constant ¢.

Theorem VIIL.1. For all constants a, there is an in-
teger b, a wuniversal constant § > 0, such that
(NﬁcoN)TIME[QlOgb”}/Q is not (1 — d)-approximable by
2log” 1 sizo ACC® o THR circuits.

Remark VIL2. In other words, the conclusion of the above
theorem is equivalent to that there is a language L in
(NNcoN) T/ME[2logb " 2 which is not (1 — §)-approximable
by 2'°8" ™ size ACy, [my] o THR circuits, for all constants
dy, My

We will prove a weaker theorem first, and then show it

implies Theorem VII.1.

Theorem VIL.3. For all constants a,d,, m,, there is an
integer b, a universal constant 6 > 0, and a language L
in (NNCON)TIME[2'5" ") ;5 such that L is not (1 — §)-
approximable by 2'°%" "-size AC4, [m.,] o THR circuits.

Proof:

Let b be an integer to be specified later and ¢ be the univer-
sal constant in Theorem IV.3. Now for the sake of contra-
diction, suppose all languages in (NﬁCON)TIME[QlOgb "] /2
have a 2!°8" "_size AC4, [m.] o THR circuit family which
computes it correctly on a 1 — § fraction of inputs for all
sufficiently large input length n.

We first apply Theorem V.5. Let b; and ¢; be such that
there is a language L € (MA N coMA)TIME (2!) .,
specified by Algorithm 3 and Algorithm 4, such that for all
sufficiently large 7 € N and n = 27, either

« heur go-DEPTH(L) > log®* n, or

o heury gg-DEPTH(L") > log®*m, for an m €
(2logcl n’ 210gcl n+1) N N.

Now we try to derandomize L' non-deterministically,
and get a contradiction. In the following we always assume
n is sufficiently large.

By Theorem IV.3, there is a constant by, such that the
following holds for an infinite number of n’s (we call them
good n’s):

o Let Sderand(n) = 210g2blc% n,

e There is a polynomial time algorithm V' (z,y) with
|| log”? n and |y| = 2°€"" computable in
20(log"2 n) (ime,

o V(198”7) is satisfiable, and for all y such that
V(llogb2 n y) 1, Gy {07 I}O(logb2 n) N
{0, 1}5erns(?) js a PRG which 1/Sgerand(n2) fools all

log Sderand(n) depth NC circuits, and computable in
90(log" n) time.

Now, for all these good n’s. Let ni be the largest power
of 2 which is no greater than n.

We first provide an informal description of our non-
deterministic algorithm. There are two cases according to
Theorem V.5.

« When heurg go-DEPTH(L) > log®* n;. On inputs

of length n, we apply the PRG with parameter n, and
try to compute Lﬁ‘fl'd on the first n; bits in 20(0&" n)
time.
When heurg go-DEPTH(Lh2rd) > log?* m, for an m €
(2log™ m1 glog™ mi+1) NN, Now, on an input of length
ny = pair(m,n) = O(mn?), we apply the PRG with
parameter n, and try to compute L' on the first m
bits in 208" n) < 90(I0g" n2) ime,

Formally, the algorithm is specified in Algorithm 5, with
a key sub-routine given in Algorithm 6. The advice bits y,,
and z, are set by Algorithm 7. It is not hard to see that a
Yn O a 2z, can only be set once.

Analysis of the algorithm.: 1t is easy to see that
L e NTIME[210gb2+1”]/2; we set b > by + 1. Then by our
assumption, L can be (1 — §)-approximated by 2'°8" "-size
AC,, [m,] circuits on all sufficiently large input length n. In
particular, it also implies that L can be (1 —§)-approximated
by O(log®n)-depth NC circuits on all sufficiently large
input length n.

1299

Algorithm 5: Non-deterministic Derandomization of
Lhard

1

2

w

10

11
12

=T CHEEN E

Given an input z with length n = |z;

Given advice bits y = y,, € {0,1} and
z =z, €{0,1};

if y = 0 then

Let nq be the largest power of 2 which is no
greater than n;

(y = 0 indicates we are in the case that
heurg go-DEPTH(L") > log®* ny and n is
good.);

Let w be the first nq bits of x;

Derand(w, z,, n);

else

Parse n as two integers (mq,ng) (that is,
n = pair(mo,no));

(y = 1 indicates we are in the case that
heurg g9-DEPTH(L!d) > 2108" ™o and ng is
good.);

Let w be the first mg bits of x;

Derand(w, z,, no);

Algorithm 6: Derand(z, z, no)

1

Given an input x with length n = |z
no;

(z is supposed to be the advice for L' on input
length n and ng is suppose to be good.);

(In the following the algorithm tries to derandomize
Algorithm 3 with the corresponding advice z.);

if z = 0 then
L Output 0 and terminate

,z€{0,1} and

According to whether n is a power of 2 and
Algorithm 3, compute z and ¢ such that
Lhard(z) = LPSPACE(2), and guess an NC circuit C
of depth D = D(n);

Compute in poly(¢) time a TC” instance checker

? PSPACE.
Dchecker for LZ ’

Guess a Yparg Such that V(11082 m0 g) = 1;
for w + {0,1,7} do
Pw =

P
rre{O,l}o

if p1 > 0.66 then
L Output 1 and terminate

if po > 0.66 then
L Output 0 and terminate

(logb2 "0) [Dglecker (‘1‘7 Gyhard (’)”)) = w}’

Output ?;

Algorithm 7: The algorithm for setting advice bits
of Algorithm 5

1 All y,’s and z,’s are set to 0 by default;

2 Let adv = {adv,, } ,en be the advice sequence for
Lhard;

3forn=1— oo do

4 if n is good then

5 Let nq be the largest power of 2 which is no

greater than n;

6 if heury g9-DEPTH(L") > log>* n; then
7 Yn = 0;

8 Zn = advy,,;

9 else

10 Let m be an integer from

(210gcl 1 glog” m+1) N N such that
heurg.go-DEPTH(L) > log?® m;

1 ng = pair(m,n);
12 Yn, = 1;
13 Zn, = alVy,;

Analysis of Derand(x, z,ng).: Next, we say an execu-
tion of Derand(x, z,ng) is correct, if z is the correct advice
of L'lflrd, ng is good, and 2!°8° "ot1 > |z| = p. We first
show that on a correct execution of Derand(z, z, ng)- it non-
deterministically computes L"2d(z) (with respect to Defini-
tion 11.9). We can assume the corresponding z = 1 because
otherwise it is trivial. Note that in both cases (whether 7
is a power of 2 in Algorithm 3), we have ¢ < 2!°8" » and
D < log” n. Therefore, DS is equivalent to a depth

checker 5])
O(log™ n + log" n) < logS(ng) = log?'“in, circuit
(log® ng + 1 > logn). Hence, since ng is good, for any
Yhard such that V<1logb2 n07yhard) = 1, Gyhard 1/5(77‘0)_
fools DS, and it follows that Derand(z, z,ng) non-
deterministically computes L"2(z).
Contradiction.: Finally, we show the above is a con-
tradiction. Since there are infinite good n’s, either Line 7 or
Line 12 of Algorithm 7 is executed for an infinite number

of times. We consider the following two cases.

o For an infinite number of good n’S
heur g9-DEPTH(L) > log?*n,. In this case,
L,, computes L for all these n’s, and therefore
heuro,gg'DEPTH(Ln) = heuro_gg-DEPTH(L?Lalrd) >
log? ny = w(log® n), contradiction.

o For an infinite number of good n’S
heuro_gg-DEPTH(LL‘fl'd) < log*n,. In this case,
L,, computes L' for all these ny = mna(n)’s,
and therefore heurg 99-DEPTH(L,,,) =

heuro,gg'DEPTH<L};€rd) > logQam > w(loga TLQ)

(m < ny < O(mn?), m > 29008 1)) - contradiction.

Now, we show Theorem VII.3 implies Theorem VII.1.
Proof of Theorem VIII: Let b > 1 be an integer
to be specified later, and J be the universal constant in
Theorem VIL.3.

For the sake of contradiction, suppose all languages in
(NOCON)TIME[QIOgb "] /2 have a 2log” n_gize ACC” o THR
circuit family which computes it correctly on a 1 —¢ fraction
of inputs for all sufficiently large input length n.

In particular, the uniform NC' languages considered in the
proof of Theorem III.3 (see Remark IIL.4) can be (1 — ¢)-
approximated by 2!°8" "-size AC,_ [m,] o THR circuit fami-
lies, for two constants d,, mo. Therefore, by Theorem II1.3,
there exist constants ¢, ¢q such that any depth d-NC circuit
has an equivalent 2°%"-size ACy, ., [mo] o THR circuit.

Note there is a universal constant c¢,, such that, for all
constants d, and m,, a 21°8" "_gjze AC,, [m«] o THR circuit
has an equivalent ¢, - log® n-dzepth NC circuit, which in
turn has an equivalent 2% 198" "_size ACy_ 1., [mo]oTHR
circuits.

Finally, by Theorem VIL3, there is a language L €
(NNcoN) TIME[2!°g” "] /2 (now we set b) such that L is not

(1—0)-approximable by 210ga2+1 "-size ACq,+c,[mo]o THR
circuits. By the previous discussion, it follows that L is also
not (1 — &)-approximable by 2!°8" "_size AC4, [m,] o THR
circuits for all constants d,, m,, contradiction. |

Remark VIL.4. We remark here that the above proof is in
fact non-constructive: it doesn’t give an explicit bound on
the integer b.

C. 1/2 + 1/ polylog(n) Average-Case Lower Bounds

Finally, we prove Theorem I.1 from Theorem VII.1 and
hardness amplification.
We first define black-box hardness amplification.

Definition VIL5. A (1/2 — ¢, §)-black-box hardness ampli-
fication from input length & to input length n = n(k) is a
pair (Amp, Dec) where Amp is an oracle Turing machine
that computes a (sequence of) boolean function on n bits,
Dec is a randomized oracle Turing machine on k bits
which also takes an advice string of length a = a(k), and
for which the following holds. For every pair of functions
f:{0,1}* — {0,1} and h : {0,1}™ — {0,1} such that

- f
(o Bn (@) = Amp? ()] > 1/2 4 ¢,

there is an advice string o € {0, 1} such that

mgﬂ}k[Dech(x, o) = f(z)] >1-4.

Next we state the hardness amplification result we need. '’
5Theorem VIL6 can be proved by combing the local-decoder of

the direct-product codes [45], and the local-decoder of Walsh-Hadamard
Codes [54].

1300

Theorem VIL.6 ([45]). For all constants 6 > 0, and a
real ¢ = k=°W), there is a (1/2 — &, 8)-black-box hardness
amplification from input length k to input length n = O(k?)
with oracle Turing machine pair (Amp, Dec). Moreover,
Amp’ (z) can be computed in poly(n,1/¢) time for all
x € {0,1}", and Dec’ can be implemented by a constant-
depth circuit of size poly(n,1/e), with unbounded fan-in
AND, OR gates and majority gates of fan-in ©(1/¢).

Remark VIL7. Since a majority gate of ©(1/¢) fan-in
can be computed by an exp(1/e)-size AC" circuit, the
decoder can also be implemented by an AC° circuit of size
poly(n, exp(1/e)).

We first prove the following lemma with 2 bits of advice.

Lemma VIL8. For all constants a,c, there is an integer b
and a language L in (NNcoN) TIME[2°8" "2 such that L
is not (1/241/ log® n)-approximable by 2'°&" "-size ACC’ o
THR circuits.

Proof: By Theorem VII.1, there is an integer b; and a
language L’ in (NﬁCON)TIME[QIOgb1 "] /2 such that L' is not
(1— 6)-approximable by 2!°5"* "_size ACC” o THR circuits,
for a universal constant ¢, and a constant a; to be specified
later.

Let b = b; + 1. Applying Theorem VII.6, we construct
another language L, such that on input length of n
n(k) = O(k?) (we can assume without of loss of generality
that the function n : N — N is injective), L,, computes
the function AmpL’“ with ¢ = 1/log®n. Clearly, L is in
(NﬂCON)T|ME[210g "] /2.

By theorem VIL.6. For all constants d,,m,, if L,
AmpL;“ can be (1/2+e¢)-approximated by a AC,4, [m,]JoTHR
of size 218" ™. Then L} can be (1 — §)-approximated by an

(k . eXp(l/E))O(l) . zlog“ "< 2log“ n+0(log® n)

size ACg4, 4¢,[m«] o THR circuit, for a universal constant c,.

Finally, we set a; 2ac. Then clearly 28" % >
2log” n+0(log"n) Now, for all constants d,,m.,, we know
that L' is not (1 — ¢&)-approximable by 298" *_size
ACg, tc,[ms] o THR circuits, and hence L is not (1/2 +
1/log® n)-approximable by 2!°8° "-size ACy, [m,] o THR
circuits. This implies that L is not (1/2 + 1/log®n)-
approximable by 298" "_size ACC" o THR circuits. [

Now, Theorem I.1 follows from the same argument as
in [29].

Proof of Theorem I.1: By Lemma VILS, there is an
integer b and a language L' € (NﬂcoN)TIME[2lOgb "] /2 such
that L' is not (1/2 + 1/ log®® n)-approximable by glog™
size ACC" o THR circuits. Let wg, w1, ws, w3 € {0,1}2 be
an enumeration of the set {0, 1}2.

NQP Lower Bounds.: We first prove the case
for NTIME'[QIOgb "]. We define another language L €
NTIME[2'°¢" "] as follows: on an input of length n, let

1301

n' = |n/4] and k = n — 4 -0/, L, simulates the non-
deterministic algorithm for L;l, with advice wy, on the first
n’ bits of input.

By the construction of L’, for all constants dy, m,, there
is an infinite number of pairs (n;, a;) € Nx{0,1,2,3} such
that the non-deterministic algorithm for L;_ with advice
w,, computes a function which is not (1/2 +1 / log®* n;)-
approximable by 2108’ ni gize AC,, [m,] o THR circuits.
By the construction of L, L(4.p,4+4,) computes a function
which is not (1/2 + 1/log*’n;) < (1/2 4+ 1/log®n)-
approximable by 2log” ni > olog"n gjze ACg4, [m4] o THR
circuits. Therefore, L is not (1/2 — 1/log®)-approximable
by 2'°&" n_gize ACC o THR circuits.

(NQPNcoNQP) 1 Lower Bounds.: Now we prove the
case for (NﬁCON)TIME[QIOgb”}/l. We first define another
language L € (NﬂcoN)TIME[Qlogb "] /1 as follows: for an
input length n, let n’ = |n/4] and k = n—4-n'. We set the
advice bit a,, = 1 if and only if wy, is the correct advice for
input length n’ of language L'. When a,, = 1, L,, simulates
L, with advice wy, on the first n’ bits of input; Otherwise,
L,, computes the all-zero function. A similar argument as
the previous case completes the proof.]

VIII. GENERALIZATION TO OTHER NATURAL CIRCUIT
CLASSES

Most of our arguments are pretty generic, the only part
that makes use of special properties of ACC’oTHR circuit is
Lemma IV.1, which builds on the non-trivial SAT algorithm
for this circuit class from [28]. (A non-trivial Gap-UNSAT
algorithm also suffices in the argument.)

Therefore, as long as we have a non-trivial SAT or CAPP
algorithm for a circuit class ¢, then our argument can also
be used to imply an average-case circuit lower bound against
% . In this section we sketch the proof for Theorem 1.3.

Reminder of Theorem 1.3. For a circuit class € €
{TC°, Formula, P/ poty}, if for a constant € > 0, there is

a 2" time non-deterministic Gap-UNSAT algorithm for
21" size € circuits, then for all constants a,c, NQP is not
(1/2 + 1/n°)-approximable by 2'°8" "-size € circuits.

Proof Sketch of Theorem 1.3:

We first discuss how to prove a (1 — d)-inapproximability
result, for a universal constant 5. When ¢ = TC? or
Formulas, the proofs are exactly the same as the case for
ACC' o THR. (when ¥ = Formulas, we don’t even need
Theorem IIL.3 to get a collapse from NC').

When ¢ = P/ ,.1y, we can no longer use Theorem V.5.
But a similar argument can proceed with Corollary V.7.

After that, we can use the same hardness-amplification in
Theorem VII.6, but since now % can compute majority, we
can prove a (1/2 4+ 1/n¢)-inapproximability result, instead
of a (1/2+1/log"n) one. |

IX. OPEN QUESTIONS

There are several interesting questions stemming from this
work:

e Can we prove more average-case lower bounds for
NQP (or even NP) with the techniques in this paper?
Recall that the well-known open question of construct-
ing an explicit rigid matrix is just construct an average-
case hard function for low-rank matrices. Can we
construct an NP explicit rigid matrix for any non-
trivial regimes of parameters by refining our approach?
This would require us to both tighten our algorithm-to-
circuit-lower-bounds connection and to find sufficient
algorithms for certain tasks on low-rank matrices.

Or less ambitiously, can we construct an NP explicit
function which cannot be approximated by w(y/n)
degree 5 polynomials?

We can only prove a 1/2 + 1/ polylog(n) inapprox-
imability lower bound for NQP against ACC® o THR.
Can this be improved to a 1/2 + 1/poly(n) one?
This could potentially lead us to an unconditional non-
deterministic PRG for ACC®, with poly-logarithmic
seed length (the best non-deterministic PRG for Acc’
has seed length n — n'=% [29]).

ACKNOWLEDGMENT

I would like to thank my advisor, Ryan Williams, for his
continuing support and countless valuable discussions during
this work, for his suggestion to use a random self-reducible
NC'-complete problem to simplify the proof, also for many
comments on an early draft of this paper.

I am grateful to Roei Tell for several detailed discussions
on the proof and helpful suggestions on the presentation, in
particular, for the discussion which leads to the alternative
perspective in the full version. I am also grateful to Chi-
Ning Chou for suggestions on an early draft of this paper,
and Mrinal Kumar for discussions on the complexity of the
local-list decoder of Reed Solomon codes. I also would like
to thank Hanlin Ren for catching an issue in the previous
construction of the PSPACE-complete language.

I want to thank Josh Alman, Chi-Ning Chou, Shuichi
Hirahara, Xuangui Huang, Nutan Limaye, Igor Carboni
Oliveira, Zhao Song and Emanuele Viola for helpful dis-
cussions during this work, and FOCS reviewers for useful
comments.

REFERENCES

[1] M. Ajtai, “$1-formulae on finite structures,” Annals of Pure
and Applied Logic, vol. 24, no. 1, pp. 1-48, 1983.

[2] M. L. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits,
and the polynomial-time hierarchy,” Mathematical Systems
Theory, vol. 17, no. 1, pp. 13-27, 1984. [Online]. Available:
https://doi.org/10.1007/BF01744431

1302

[3] A. C. Yao, “Separating the polynomial-time hierarchy by
oracles (preliminary version),” in 26th Annual Symposium on
Foundations of Computer Science, Portland, Oregon, USA,
21-23 October 1985, 1985, pp. 1-10. [Online]. Available:
https://doi.org/10.1109/SFCS.1985.49

[4] J. Hastad, “Almost optimal lower bounds for small depth

circuits,” Advances in Computing Research, vol. 5, pp. 143—

170, 1989.

[51 A. A. Razborov, “Lower bounds on the size of bounded

depth circuits over a complete basis with logical addition,”

Mathematical Notes of the Academy of Sciences of the USSR,

vol. 41, no. 4, pp. 333-338, 1987.

[6] R. Smolensky, “Algebraic methods in the theory of lower

bounds for boolean circuit complexity,” in Proceedings of

the 19th Annual ACM Symposium on Theory of Computing,

1987, New York, New York, USA, 1987, pp. 77-82. [Online].

Available: https://doi.org/10.1145/28395.28404

[7] S. Arora and B. Barak, Computational Complexity - A

Modern Approach. Cambridge University Press, 2009.

[Online]. Available: http://www.cambridge.org/catalogue/

catalogue.asp?isbn=9780521424264

[8] R. Williams, “Nonuniform ACC circuit lower bounds,” Jour-

nal of the ACM (JACM), vol. 61, no. 1, p. 2, 2014.

[9] , “Improving exhaustive search implies superpolynomial
lower bounds,” SIAM Journal on Computing, vol. 42, no. 3,
pp. 1218-1244, 2013.
[10] T. P. Baker, J. Gill, and R. Solovay, “Relativizations of the P
=? NP question,” SIAM J. Comput., vol. 4, no. 4, pp. 431-442,
1975. [Online]. Available: https://doi.org/10.1137/0204037
[11] S. Aaronson and A. Wigderson, “Algebrization: A new
barrier in complexity theory,” TOCT, vol. 1, no. 1, pp.
2:1-2:54, 2009. [Online]. Available: http://doi.acm.org/10.
1145/1490270.1490272

[12] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput.

Syst. Sci., vol. 55, no. 1, pp. 24-35, 1997. [Online].
Available: https://doi.org/10.1006/jcss.1997.1494
[13] D. Boneh, Y. Ishai, A. Passelegue, A. Sahai, and

D. J. Wu, “Exploring crypto dark matter: - new simple
PRF candidates and their applications,” in Theory of
Cryptography - 16th International Conference, TCC 2018,
Panaji, India, November 11-14, 2018, Proceedings, Part I,
2018, pp. 699-729. [Online]. Available: https://doi.org/10.
1007/978-3-030-03810-6_25
[14] A. Bhrushundi, K. Hosseini, S. Lovett, and S. Rao, “Torus
polynomials: An algebraic approach to ACC lower bounds,”
in 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, 2019, pp. 13:1-13:16. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ITCS.2019.13
[15] J. L. Seiferas, M. J. Fischer, and A. R. Meyer, “Separating
nondeterministic time complexity classes,” J. ACM, vol. 25,
no. 1, pp. 146-167, 1978. [Online]. Available: https:
//doi.org/10.1145/322047.322061

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

S. Zak, “A turing machine time hierarchy,” Theor. Comput.
Sci., vol. 26, pp. 327-333, 1983. [Online]. Available:
https://doi.org/10.1016/0304-3975(83)90015-4

C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan,
“Algebraic methods for interactive proof systems,” J. ACM,
vol. 39, no. 4, pp. 859-868, 1992. [Online]. Available:
https://doi.org/10.1145/146585.146605

A. Shamir, “IP = PSPACE,” J. ACM, vol. 39, no. 4, pp.
869-877, 1992. [Online]. Available: https://doi.org/10.1145/
146585.146609

N. Nisan and A. Wigderson, “Hardness vs randomness,”
J. Comput. Syst. Sci., vol. 49, no. 2, pp. 149-167, 1994.
[Online]. Available: https://doi.org/10.1016/S0022-0000(05)
80043-1

S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy, “Proof verification and the hardness
of approximation problems,” J. ACM, vol. 45,
no. 3, pp. 501-555, 1998. [Online]. Available:

http://doi.acm.org/10.1145/278298.278306

S. Arora and S. Safra, “Probabilistic checking of proofs:
A new characterization of NP,” J. ACM, vol. 45, no. 1,
pp. 70-122, 1998. [Online]. Available: http://doi.acm.org/10.
1145/273865.273901

J. Alman, T. M. Chan, and R. R. Williams, ‘“Polynomial
representations of threshold functions and algorithmic
applications,” in [EEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, 2016, pp. 467-476. [Online]. Available:
https://doi.org/10.1109/FOCS.2016.57

S. Tamaki, “A satisfiability algorithm for depth two circuits
with a sub-quadratic number of symmetric and threshold
gates,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 23, p. 100, 2016. [Online]. Available:
http://eccc.hpi-web.de/report/2016/100

R. Williams, “Limits on representing boolean functions
by linear combinations of simple functions: Thresholds,
relus, and low-degree polynomials,” in 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San
Diego, CA, USA, 2018, pp. 6:1-6:24. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CCC.2018.6

L. Chen and R. Williams, “Stronger connections between
circuit analysis and circuit lower bounds, via PCPs of prox-
imity,” 2019, to appear in the proceedings of CCC 2019.

S. Chen and P. A. Papakonstantinou, “Depth-reduction for
composites,” in IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, 2016, pp. 99—108.
[Online]. Available: https://doi.org/10.1109/FOCS.2016.20

R. Williams, “Natural proofs versus derandomization,” SIAM
J. Comput., vol. 45, no. 2, pp. 497-529, 2016. [Online].
Awvailable: https://doi.org/10.1137/130938219

1303

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

, “New algorithms and lower bounds for circuits
with linear threshold gates,” in Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, 2014, pp. 194-202. [Online]. Available:
http://doi.acm.org/10.1145/2591796.2591858

R. Chen, L. C. Oliveira, and R. Santhanam, “An average-case
lower bound against ACC®” in LATIN 2018: Theoretical
Informatics - 13th Latin American Symposium, Buenos
Aires, Argentina, April 16-19, 2018, Proceedings, 2018,
pp- 317-330. [Online]. Available: https://doi.org/10.1007/
978-3-319-77404-6_24

C. Murray and R. R. Williams, “Circuit lower bounds for
nondeterministic quasi-polytime: an easy witness lemma for
NP and NQP.,” in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018, 2018, pp. 890-901.
[Online]. Available: https://doi.org/10.1145/3188745.3188910

D. A. M. Barrington, “Bounded-width polynomial-size
branching programs recognize exactly those languages
in NC'” J. Comput. Syst. Sci., vol. 38, no. 1, pp.
150-164, 1989. [Online]. Available: https://doi.org/10.1016/
0022-0000(89)90037-8

L. Babai, “Random oracles separate PSPACE from the
polynomial-time hierarchy,” Inf. Process. Lett., vol. 26, no. 1,
pp- 51-53, 1987. [Online]. Available: https://doi.org/10.1016/
0020-0190(87)90036-6

J. Kilian, “Founding cryptography on oblivious transfer,”
in Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago,
Illinois, USA, 1988, pp. 20-31. [Online]. Available: https:
//doi.org/10.1145/62212.62215

A. Golovnev, R. Ilango, R. Impagliazzo, V. Kabanets,
A. Kolokolova, and A. Tal, “ACo[p] lower bounds against
MCSP via the coin problem,” 2019, to appear in the pro-
ceedings of ICALP 2019.

R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search
of an easy witness: exponential time vs. probabilistic
polynomial time,” J. Comput. Syst. Sci., vol. 65, no. 4, pp.
672-694, 2002. [Online]. Available: https://doi.org/10.1016/
S0022-0000(02)00024-7

S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and
G. N. Rothblum, “Verifying and decoding in constant
depth,” in Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA,
June 11-13, 2007, 2007, pp. 440-449. [Online]. Available:
https://doi.org/10.1145/1250790.1250855

D. Gutfreund and G. N. Rothblum, “The complexity
of local list decoding,” in Approximation, Random-
ization and Combinatorial — Optimization. Algorithms
and Techniques, 11th International Workshop, APPROX
2008, and 12th International Workshop, RANDOM
2008, Boston, MA, USA, August 25-27, 2008.
Proceedings, 2008, pp. 455-468. [Online]. Available:
https://doi.org/10.1007/978-3-540-85363-3_36

(38]

(39]

(40]

[41]

[42]

(43]

[44]

[45]

[40]

(47]

(48]

(49]

(501

C. Umans, “Pseudo-random generators for all hardnesses,”
J. Comput. Syst. Sci., vol. 67, no. 2, pp. 419-440, 2003.
[Online]. Available: https://doi.org/10.1016/S0022-0000(03)
00046-1

R. Santhanam, “Circuit lower bounds for merlin—arthur
classes,” SIAM J. Comput., vol. 39, no. 3, pp. 1038-1061,
2009. [Online]. Available: https://doi.org/10.1137/070702680

L. Trevisan and S. P. Vadhan, ‘“Pseudorandomness and
average-case complexity via uniform reductions,” Computa-
tional Complexity, vol. 16, no. 4, pp. 331-364, 2007. [Online].
Available: https://doi.org/10.1007/s00037-007-0233-x

R. Shaltiel and E. Viola, “Hardness amplification proofs
require majority,” SIAM J. Comput., vol. 39, no. 7, pp.
3122-3154, 2010. [Online]. Available: https://doi.org/10.
1137/080735096

A. Grinberg, R. Shaltiel, and E. Viola, “Indistinguishability
by adaptive procedures with advice, and lower bounds
on hardness amplification proofs,” in 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, 2018, pp. 956-
966. [Online]. Available: https://doi.org/10.1109/FOCS.2018.
00094

E. Viola, “On approximate majority and probabilistic
time,” Computational Complexity, vol. 18, no. 3, pp.
337-375, 2009. [Online]. Available: https://doi.org/10.1007/
s00037-009-0267-3

O. Goldreich, Computational complexity - a conceptual per-
spective. Cambridge University Press, 2008.

R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson,
“Uniform direct product theorems: Simplified, optimized,
and derandomized,” SIAM J. Comput., vol. 39, no. 4,
pp. 1637-1665, 2010. [Online]. Available: https://doi.org/10.
1137/080734030

L. Fortnow and R. Santhanam, “Hierarchy theorems for
probabilistic polynomial time,” in 45th Symposium on
Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings, 2004, pp. 316-324.
[Online]. Available: https://doi.org/10.1109/FOCS.2004.33

M. Sudan, L. Trevisan, and S. P. Vadhan, ‘“Pseudorandom
generators without the XOR lemma,” J. Comput. Syst. Sci.,
vol. 62, no. 2, pp. 236-266, 2001. [Online]. Available:
https://doi.org/10.1006/jcss.2000.1730

E. Ben-Sasson and E. Viola, “Short PCPs with projection
queries,” in International Colloquium on Automata, Lan-
guages, and Programming. Springer, 2014, pp. 163-173.

R. O’Donnell, “Hardness amplification within NP,” J.
Comput. Syst. Sci., vol. 69, no. 1, pp. 68-94, 2004. [Online].
Available: https://doi.org/10.1016/j.jcss.2004.01.001

A. Healy, S. P. Vadhan, and E. Viola, “Using nondeterminism
to amplify hardness,” SIAM J. Comput., vol. 35, no. 4, pp.
903-931, 2006. [Online]. Available: https://doi.org/10.1137/
S0097539705447281

1304

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

M. Ajtai and M. Ben-Or, “A theorem on probabilistic
constant depth computations,” in Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, April 30
- May 2, 1984, Washington, DC, USA, 1984, pp. 471-474.
[Online]. Available: https://doi.org/10.1145/800057.808715

M. Ajtai, “Approximate counting with uniform constant-depth
circuits,” in Advances In Computational Complexity Theory,
Proceedings of a DIMACS Workshop, New Jersey, USA,
December 3-7, 1990, 1990, pp. 1-20.

V. Shoup, “New algorithms for finding irreducible
polynomials over finite fields,” in 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988, 1988, pp. 283-290. [Online].
Available: https://doi.org/10.1109/SFCS.1988.21944

O. Goldreich and L. A. Levin, “A hard-core predicate for
all one-way functions,” in Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17,
1989, Seattle, Washigton, USA, 1989, pp. 25-32. [Online].
Available: https://doi.org/10.1145/73007.73010

A. Healy and E. Viola, “Constant-depth circuits for
arithmetic in finite fields of characteristic two,” in STACS
2006, 23rd Annual Symposium on Theoretical Aspects
of Computer Science, Marseille, France, February 23-25,
2006, Proceedings, 2006, pp. 672—-683. [Online]. Available:
https://doi.org/10.1007/11672142_55

R. Tell, “Quantified derandomization of linear threshold
circuits,” in Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, 2018, pp. 855-
865. [Online]. Available: http://doi.acm.org/10.1145/3188745.
3188822

L. Chen and R. Tell, “Bootstrapping results for threshold
circuits “just beyond” known lower bounds,” in Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019, 2019, pp. 34—41. [Online]. Available: https:
//doi.org/10.1145/3313276.3316333

M. L. Carmosino, R. Impagliazzo, V. Kabanets, and
A. Kolokolova, “Learning algorithms from natural proofs,”
in 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, 2016,
pp. 10:1-10:24. [Online]. Available: https://doi.org/10.4230/
LIPIcs.CCC.2016.10

