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Abstract—We study the problem of finding monotone subse-
quences in an array from the viewpoint of sublinear algorithms.
For fixed k ∈ N and ε > 0, we show that the non-adaptive
query complexity of finding a length-k monotone subsequence
of f : [n] → R, assuming that f is ε-far from free of such
subsequences, is Θ((log n)�log2 k�). Prior to our work, the
best algorithm for this problem, due to Newman, Rabinovich,
Rajendraprasad, and Sohler (2017), made (log n)O(k2) non-
adaptive queries; and the only lower bound known, of Ω(log n)
queries for the case k = 2, followed from that on testing
monotonicity due to Ergün, Kannan, Kumar, Rubinfeld, and
Viswanathan (2000) and Fischer (2004).

Keywords-property testing; algorithms; lower bounds; one-
sided testing; monotone patterns; forbidden patterns

I. INTRODUCTION

For a fixed integer k ∈ � and a function (or sequence)

f : [n]→ �, a length-k monotone subsequence of f is a tuple

of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and

f(i1) < · · · < f(ik). More generally, for a permutation

π : [k] → [k], a π-pattern of f is given by a tuple of

k indices i1 < · · · < ik such that f(ij1) < f(ij2)
whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A sequence

f is π-free if there are no subsequences of f with order

pattern π. Recently, Newman, Rabinovich, Rajendraprasad,

and Sohler [1] initiated the study of property testing for

forbidden order patterns in a sequence. Their paper was

the first to analyze algorithms for finding π-patterns in

sublinear time (for various classes of the permutation π);

additional algorithms and lower bounds for several classes

of permutations have later been obtained by Ben-Eliezer and

Canonne [2].

Of particular interest of π-freeness testing is the case where

π = (12 . . . k), i.e., π is a monotone permutation. In this case,

avoiding length-k monotone subsequence may be equivalently

rephrased as being decomposable into k − 1 monotone non-

increasing subsequences. Specifically, a function f : [n]→ �

is (12 . . . k)-free if and only if [n] can be partitioned into k−1
disjoint sets A1, . . . , Ak−1 such that, for each i ∈ [k − 1],
the restriction f |Ai

is non-increasing. When interested in

algorithms for testing (12 . . . k)-freeness that have a one-
sided error,1 the algorithmic task becomes the following:

1An algorithm for testing property P is said to have one-sided error if
the algorithm always outputs “yes” if f ∈ P (perfect completeness).

For k ∈ � and ε > 0, design a randomized
algorithm that, given query access to a function
f : [n] → � guaranteed to be ε-far from being
(12 . . . k)-free,2 outputs a length-k monotone sub-
sequence of f with probability at least 9/10.

The task above is a natural generalization of monotonicity

testing of a function f : [n] → � with algorithms that

make a one-sided error, a question which dates back to the

early works in property testing, and has received significant

attention since in various settings (see, e.g., [3]–[10], and the

recent textbook [11]). For the problem of testing monotonicity,

Ergün, Kannan, Kumar, Rubinfeld, and Viswanathan [12]

were the first to give a non-adaptive algorithm which tests

monotonicity of functions f : [n]→ � with one-sided error

making O(log(n)/ε) queries. (Recall that an algorithm is

non-adaptive if its queries do not depend on the answers to

previous queries, or, equivalently, if all queries to the function

can be made in parallel.) Furthermore, they showed that

Ω(logn) queries are necessary for non-adaptive algorithms.

Subsequently, Fischer [13] showed that Ω(logn) queries are

necessary even for adaptive algorithms. Generalizing from

monotonicity testing (when k = 2), Newman et al. gave

in [1] the first sublinear-time algorithm for (12 . . . k)-freeness

testing, whose query complexity is (log(n)/ε)O(k2). Their

algorithm is non-adaptive and has one-sided error; as such, it

outputs a length-k monotone subsequence with probability at

least 9/10 assuming the function f is ε-far from (12 . . . k)-
free. However, other than the aforementioned lower bound

of Ω(logn) which follows from the case k = 2, no lower

bounds were known for larger k.

The main contribution of this work is to settle the

dependence on n in the query complexity of testing for

(12 . . . k)-freeness with non-adaptive algorithms making one-

sided error. Equivalently, we settle the complexity of non-

adaptively finding a length-k monotone subsequence under

the promise that the function f : [n] → � is ε-far from

(12 . . . k)-free.

Theorem I.1. Let k ∈ � be a fixed parameter. For any
ε > 0, there exists an algorithm that, given query access
to a function f : [n] → � which is ε-far from (12 . . . k)-

2A function f : [n] → � is ε-far from π-free if any π-free function
g : [n]→ � satisfies Pri∼[n][f(i) �= g(i)] ≥ ε.
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free, outputs a length-k monotone subsequence of f with
probability at least 9/10. The algorithm is non-adaptive and
makes (log n)�log2 k� · poly(1/ε) queries to f .

Our algorithm thus significantly improves on the

(log(n)/ε)O(k2)-query non-adaptive algorithm of [1]. Fur-

thermore, its dependence on n is optimal; indeed, in the

next theorem we prove a matching lower bound for all fixed

k ∈ �.

Theorem I.2. Let k ∈ � be a fixed parameter. There exists
a constant ε0 > 0 such that any non-adaptive algorithm
which, given query access to a function f : [n]→ � that is
ε0-far from (12 . . . k)-free, outputs a length-k monotone sub-
sequence with probability 9/10, must make Ω((log n)�log2 k�)
queries. Moreover, one can take ε0 = 1/(4k).

We further note that the lower bound holds even for the more

restricted case where f : [n]→ [n] is a permutation.

A. Related work

Testing monotonicity of a function over a partially ordered

set X is a well-studied and fruitful question, with works

spanning the past two decades. Particular cases include when

X is the line [n] [8]–[10], [12], [13], the Boolean hypercube

{0, 1}d [3], [14]–[23], and the hypergrid [n]d [24]–[26]. We

refer the reader to [11, Chapter 4] for more on monotonicity

testing, or for an overview of the field of property testing

(as introduced in [27], [28]) in general.

This paper is concerned with the related line of work on

finding order patterns in sequences and permutations. For the

exact case, Guillemot and Marx [29] showed that an order

pattern π of length k can be found in a sequence f of length

n in time 2O(k2 log k)n; in particular, the problem of finding

order patterns is fixed-parameter tractable (in the parameter

k). Fox [30] later improved the running time to 2O(k2)n. A

very recent work of Kozma [31] provides the state-of-the-art

for the case where k = Ω(log n). In the sublinear regime,

the most relevant works are the aforementioned papers of

Newman et al. [1] and Ben-Eliezer and Canonne [2]. In

particular, [1] shows an interesting dichotomy for testing

π-freeness: when π is monotone, the non-adaptive query

complexity is polylogarithmic in n for fixed k and ε, whereas

for non-monotone π, the query complexity is Ω(
√
n). Two

related questions are that of estimating the distance to mono-
tonicity and the length of the longest increasing subsequence
(LIS), which have also received significant attention from

both the sublinear algorithms perspective [32]–[34], as well

as the streaming perspective [35]–[39]. In particular, Saks

and Seshadhri gave in [34] a randomized algorithm which,

on input f : [n] → �, makes poly(log n, 1/δ) queries and

outputs m̂ approximating up to additive error δn the length

of the longest increasing subsequence of f . This paper also

studies monotone subsequences of the input function, albeit

from a different (and incomparable) end of the problem.

Loosely speaking, in [34] the main object of interest is a

very long monotone subsequence (of length linear in n), and

the task at hand is to get an estimate for its total length,

whereas in our setting, there are Ω(n) disjoint copies of short
monotone subsequences (of length k, which is a constant

parameter), and these short subsequences may not necessarily

combine to give one long monotone subsequence.

B. Our techniques: Upper bound

We now give a detailed overview of the techniques

underlying our upper bound, Theorem I.1, and provide some

intuition behind the algorithms and notions we introduce.

The starting point of our discussion will be the algorithm

of Newman et al. [1], which we re-interpret in terms of

the language used throughout this paper; this will set up

some of the main ideas behind our structural result (stated

in Section II), which will be crucial in the analysis of the

algorithm.

For simplicity, let ε > 0 be a small constant and let k ∈ �
be fixed. Consider a function f : [n] → � which is ε-far

from (12 . . . k)-free. This implies that there is a set T ⊆ [n]k

of εn/k disjoint (12 . . . k)-patterns. Specifically, the set T is

comprised of k-tuples (i1, . . . , ik) ∈ [n] where i1 < · · · < ik
and f(i1) < · · · < f(ik) and each i ∈ [n] appears in at

most one k-tuple in T .3 A key observation made in [1] is

that if, for some c ∈ [k − 1], (i1, . . . , ic, ic+1, . . . , ik) and

(j1, . . . , jc, jc+1, . . . , jk) are two k-tuples in T which satisfy

ic < jc+1 and f(ic) < f(jc+1), then their combination

(i1, . . . , ic, jc+1, . . . , jk)

is itself a length-k monotone subsequence of f . Therefore,

in order to design efficient sampling algorithms, one should

analyze to what extent parts of different (12 . . . k)-tuples from

T may be combined to form length-k monotone subsequences

of f .

Towards this goal, assign to each k-tuple (i1, . . . , ik) in T
a distance profile dist-prof(i1, . . . , ik) = (d1, . . . , dk−1) ∈
[η]k−1, where η = O(log n).4 This distance profile is a

(k − 1)-tuple of non-negative integers satisfying

2dj ≤ ij+1 − ij < 2dj+1 j ∈ [k − 1] ;

and let gap(i1, . . . , ik) = c ∈ [k − 1] be the smallest

integer where dc ≥ dj for all j ∈ [k − 1] (i.e., dc denotes

an (approximately) maximum length between two adjacent

indices in the k-tuple). Suppose, furthermore, that for a

particular c ∈ [k − 1], the subset Tc ⊆ T of k-tuples whose

gap is at c satisfies |Tc| ≥ εn/k2 (such a c ∈ [k − 1]

3To see why such T exists, take T to be a maximal set of disjoint
(12 . . . k)-patterns. Suppose |T | < εn/k and consider the function g given
by greedily eliminating all (12 . . . k)-patterns in f , and note that g is
(12 . . . k)-free and differs on f in less than εn indices.

4We remark that the notion of a distance profile is solely used for the
introduction and for explaining [1], and thus does not explicitly appear in
subsequent sections.
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must exist since the Tc’s partition T ). If (i1, . . . , ik) ∈ Tc

and dist-prof(i1, . . . , ik) = (d1, . . . , dk), then the probability

that a uniformly random element � of [n] “falls” into that

gap is

Pr
�∼[n]

[ic ≤ � ≤ ic+1] ≥
2dc

n
. (1)

Whenever this occurs for a particular k-tuple (i1, . . . , ik)
and � ∈ [n], we say that � cuts the tuple (i1, . . . , ik). Note

that the indices ic+1, . . . , ik are contained within the interval

[�, � + k · 2dc+1] and the indices i1, . . . , ic are contained

within the interval [�−k ·2dc+1, �]. As a result, if we denote

by δd(�) ∈ [0, 1], for each d ∈ [η], the density of k-tuples

from Tc lying inside [� − k · 2d+1, � + k · 2d+1] (i.e., the

fraction of this interval comprised of elements of Tc), we

have

E
�∼[n]

[ ∑
d∈[η]

δd(�)
]

=
∑
d∈[η]

∑
(i1,...,ik)∈Tc

dist-prof(i1,...,ik)c=d

Pr�∼[n] [ic ≤ � ≤ ic+1]

2 · k · 2d+1

� |Tc|
n

� ε. (2)

For any � achieving the above inequality, since η = O(log n),
there exists some d∗ ∈ [η] such that δd∗(�) � ε/ log n.

Consider now the set of k-tuples Tc,d∗(�) ⊆ Tc contributing

to δd∗(�), i.e., those k-tuples in Tc which are cut by � and lie

in [�− k · 2d∗+1, �+ k · 2d∗+1]. Let rmed = median{f(ic) :
(i1, . . . , ik) ∈ Tc,d∗(�)}, and

TL = {(i1, . . . , ic) : (i1, . . . , ik) ∈ Tc,d∗(�), f(ic) ≤ rmed} ,
TR = {(ic+1, . . . , ik) : (i1, . . . , ik) ∈ Tc,d∗(�), f(ic) ≥ rmed} ,
where we note that TL and TR both have size at least

|Tc,d∗(�)|/2. If the algorithm finds a c-tuple in TL and a

(k− c)-tuple in TR, by the observation made in [1] that was

mentioned above, the algorithm could combine the tuples

to form a length-k monotone subsequence of f . At a high

level, one may then recursively apply these considerations

on [� − k · 2d∗+1, �] with TL and [�, � + k · 2d∗+1] with

TR. A natural algorithm then mimics the above reasoning

algorithmically, i.e., samples a parameter � ∼ [n], and tries to

find the unknown parameter d∗ ∈ [η] in order to recurse on

both the left and right sides; once the tuples have length 1, the

algorithm samples within the interval to find an element of TL

or TR. This is, in essence, what the algorithm from [1] does,

and this approach leads to a query complexity of (log n)O(k2).

In particular, suppose that at each (recursive) iteration, the

parameter c, corresponding to the gap of tuples in T , always

equals 1. Note that this occurs when all (12 . . . k)-patterns

(i1, . . . , ik) in T have dist-prof(i1, . . . , ik) = (d1, . . . , dk−1)
with

d1 ≥ d2 ≥ · · · ≥ dk−1. (3)

Then, if k is at k0, a recursive call leads to a set TL

containing 1-tuples, and TR containing (k0 − 1)-tuples. This

only decreases the length of the subsequences needed to

be found by 1 (so there will be k − 1 recursive calls),

while the algorithm pays for guessing the correct value

of d∗ out of Ω(logn) choices, which may decrease the

density of monotone k0-subsequences within the interval

of the recursive call by a factor as big as Ω(log n).5 As a

result, the density of the length-k0 monotone subsequence in

the relevant interval could be as low as ε/(log n)k0 , which

means that (log n)Ω(k0) samples will be needed for the k0-

th round according to the above analysis, giving a total

of (log n)Ω(k2) samples (as opposed to O((log n)�log2 k�),
which is the correct number, as we prove).

In order to overcome the above difficulty, we consider

a particular choice of a family T of length-k monotone

subsequences given by the “greedy” procedure (see Figure 4).

Loosely speaking, this procedure begins with T = ∅ and

iterates through each index i1 ∈ [n]\T . Each time, if (i1) can

be extended to a length-k monotone subsequence (otherwise

it continues to the next available index), the procedure sets i2
to be the first index, after i1 and not already in T , such that

(i1, i2) can be extended to a length-k monotone subsequence;

then, it finds an index i3 which is the next first index after

i2 and not in T such that (i1, i2, i3) can be extended; and so

on, until it has obtained a length-k monotone subsequence

starting at i1. It then adds the subsequence as a tuple to T ,

and repeats. This procedure eventually outputs a set T of

disjoint, length-k monotone subsequences of f which has

size at least εn/k2, and satisfies another crucial “interleaving”

property (see Lemma II.1):

(�) If (i1, . . . , ik) and (j1, . . . , jk) are k-patterns

from T and c ∈ [k − 1] satisfy j1 < i1, jc < ic,

and ic+1 < jc+1, then f(ic+1) < f(jc+1).

Moreover, a slight variant of (1) guarantees that for

any (i1, . . . , ik) ∈ Tc with dist-prof(i1, . . . , ik) =
(d1, . . . , dk−1),

Pr
�∼[n]

[
ic + 2dc/3 ≤ � ≤ ic+1 − 2dc/3

]
� 2dc

n
.

Whenever the above event occurs, we say � ∼ [n] cuts
(i1, . . . , ik) at c with slack, and note that i1, . . . , ic lie in

[� − k · 2dc+1, �] and ic+1, . . . , ik in [�, � + k · 2dc+1]. We

denote, similarly to the above, δd(�) ∈ [0, 1] to be the density

of k-tuples from Tc which are cut with slack by �, and

conclude (2). We then utilize (�) to make the following

claim: suppose two k-tuples (i1, . . . , ik), (j1, . . . , jk) ∈
Tc satisfy dist-prof(i1, . . . , ik) = (d1, . . . , dk−1), and

dist-prof(j1, . . . , jk) = (d′1, . . . , d
′
k−1), where dc ≤ d′c −

a log k, for some constant a which is not too small. If

(i1, . . . , ik) and (j1, . . . , jk) are cut at c with slack, this

5Initially, the density of T within [n] is ε, and the density of TL or TR

in [�− k · 2d∗+1, �] and [�, �+ k · 2d∗+1] is ε/ logn.
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means that � lies roughly in the middle of ic and ic+1 and of

jc and jc+1, and since the distance between ic and ic+1 is

much smaller than that between jc and jc+1, the index j1 will

come before i1, the index jc will come before ic, but the index

ic+1 will come before jc+1. By (�), f(ic+1) < f(jc+1) (cf.

Lemma II.11). In other words, the value, under the function

f , of (c+ 1)-th indices from tuples in Tc,d(�) increases as

d increases.
As a result, if � ∈ [n] satisfies

∑
d∈[η] δd(�) � ε, and

δd(�) 
 ε for all d ∈ [η], that is, if the summands in (2)

are spread out, an algorithm could find a length-k monotone

subsequence by sampling, for many values of d ∈ [η], indices

which appear as the (c + 1)-th index of tuples in Tc,d(�).
We call such values of � the starts of growing suffixes (as

illustrated in Figure 5). In Section III-B, we describe an

algorithm that makes Õ(log n/ε) queries and finds, with

high probability, a length-k monotone subsequence if there

are many such growing suffixes (see Lemma III.1). The

algorithm works by randomly sampling � ∼ [n] and hoping

that � is the start of a growing suffix; if it is, the algorithm

samples enough indices from the segments [�+2d, �+2d+1]
to find a (c + 1)-th index of some tuple in Tc,d(�), which

gives a length-k monotone subsequence.
The other case corresponds to the scenario where � ∈ [s]

satisfies
∑

d∈[η] δd(�) � ε, but the summands are concen-
trated on few values of d ∈ [η]. In this case, we may consider

a value of d∗ ∈ [η] which has δd∗(�) � ε, and then look

at the intervals [� − k · 2d∗+1, �] and [�, � + k · 2d∗+1]. We

can still define TL and TR, both of which have size at least

|Tc,d∗ |/2 and have the property that any c-tuple from TL can

be combined with any (k − c)-tuple from TR. Additionally,

since δd∗(�) � ε, we crucially do not suffer a loss in the

density of TL and TR in their corresponding intervals – a

key improvement over the Ω(logn) loss in density incurred

by the original approach we first discussed. We refer to these

intervals as splittable intervals (cf. Figure 6), and observe that

they lead to a natural recursive application of these insights to

the intervals [�−k ·2d∗+1, �] and [�, �+k ·2d∗+1]. The main

structural result, given in Theorem II.3, does exactly this, and

encodes the outcomes of the splittable intervals in an object

we term a k-tree descriptor (see Section II-C) whenever

there are not too many growing suffixes. Intuitively, a k-tree

descriptor consists of a rooted binary tree G on k leaves, as

well as some additional information, which corresponds to a

function f : [n]→ � without many growing suffixes. Each

internal node v in G corresponds to a recursive application

of the above insights, i.e., v has k0 leaves in its subtree,

a parameter cv ∈ [k0 − 1] encoding the gap of sufficiently

many k0-tuples, and a collection of disjoint intervals of the

form [�−k ·2d∗ , �+k ·2d∗ ] where � cuts (12 . . . k0)-patterns

with slack at cv and satisfies (2); the left child of v has c
leaves and contains the (12 . . . c)-patterns in TL and intervals

[� − k · 2d∗ , �]; the right child of v has k0 − c leaves and

contains the (12 . . . (k0 − c))-patterns in TR and intervals

[�, �+ k · 2d∗ ] (see Figure 7).

The algorithm for this case is more involved than the

previous, and leads to the O((log n)�log2 k�)-query com-

plexity stated in Theorem I.1. The algorithm proceeds in

r0 = 1+�log2 k� rounds, maintaining a set A ⊆ [n], initially

empty:

• Round 1: For each i ∈ [n], include i in A independently

with probability Θ(1/(εn)).
• Round r, 2 ≤ r ≤ r0: For each i ∈ A from the previous

round, and each j = 1, . . . , O(log n), consider the

interval Bi,j = [i−2j , i+2j ]. For each i′ ∈ Bi,j , include

i′ in A independently with probability Θ(1/(ε2j)).

At the end of all rounds, the algorithm queries f at all indices

in A, and outputs a (12 . . . k)-pattern from A, if one exists.

Recall the case considered in the sketch of the al-

gorithm of [1], when the function f has all (12 . . . k)-
patterns (i1, . . . , ik) in T satisfying dist-prof(i1, . . . , ik) =
(d1, . . . , dk−1) with d1 ≥ d2 ≥ . . . ≥ dk−1. In this case, the

k-tree descriptor G consists of a rooted binary tree of depth

k. The root has a left child which is a leaf (corresponding

to 1-tuples of first indices of some tuples in T , stored in

TL) and a right child (corresponding to suffixes of length

(k − 1) of some tuples in T , stored in TR) is an internal

node. The root node corresponds to one application of the

structural result, and the right child corresponds to a (k− 1)-
tree descriptor for the tuples in TR. Loosely speaking, as

d2 ≥ . . . ≥ dk−1 the same reasoning repeats k − 1 times,

and leads to a path of length k − 1 down the right children

of the tree, the right child of the (k − 1)-th internal node

corresponding to a 1-tuple (i.e., a leaf).6

To gain some intuition, we analyze how the algorithm

behaves on these instances. Suppose that in round 1, the

algorithm samples an element i ∈ [n] which is the k-th index

of a 1-tuple stored in the right-most leaf of G. In particular,

this index belongs to the set TR of the (k − 1)-th internal

node, as a second index of a cut (12)-pattern in the (k− 1)-
th recursive call of the structural result. Similarly, i also

belongs to that set TR of the (k − 2)-th internal node, as a

part the third index of a cut (123)-pattern in the (k − 2)-th
recursive call. We may continue with all these inclusions to

the root, i.e., i is the k-th element of some (12 . . . k)-pattern

in T , which is cut in the first call to the structural result.

Round 2 of the algorithm will consider the k − 1 intervals

Bi,d′k−1
, Bi,d′k−2

, . . . , Bi,d′1 , where d′j = dj+Θ(log k), since

it iterates through all O(log n) intervals of geometrically

increasing lengths.7 One can check that for each j ∈ [k− 1],
the interval Bi,d′j contains [�j−k ·2dj , �j ], where �j is some

index which cut the (k−j+1)-tuple (ij , . . . , ik) with slack in

6This is somewhat inaccurate, as in each step, after forming TL and
TR, we apply the greedy algorithm again and obtain new sets T ′L and T ′R,
which may violate the assumption d1 ≥ d2 ≥ . . . ≥ dk . We ignore this
detail at the moment to simplify the explanation.

7Note that the intervals Bi,d′j
and Bi,d′j+1

may be the same, for instance

when dj = dj+1.
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the j-th recursive call of the structural result. Recall that the

set TL of 1-tuples has density Ω(ε) inside [�j−k ·2dj , �j ] and

may be combined with any (k−j)-tuple from TR. Following

this argument, in the second round of the algorithm, A will

include some index of TL (for each j ∈ [k − 1]), and these

indices combine to form a (12 . . . k)-pattern – that is, with

high probability, after two rounds, the algorithm succeeds in

finding a monotone subsequence of length k.
Generalizing the above intuition for all possible distance

profiles necessitates the use of 1 + �log2 k� rounds, and

requires extra care. At a high level, consider an arbitrary

k-tree descriptor G for Ω(εn) many (12 . . . k)-patterns in

f . Denote the root u, and consider the unique leaf w of

G where the root-to-w path (u1, . . . , uh) with u1 = u and

uh = w, satisfies that at each internal node ul, the next

node ul+1 is the child with larger number of leaves in its

subtree.8 We call such a leaf a primary index of G. The

crucial property of the primary index is that the root-to-leaf

path of w, (u1, u2, . . . uh), is such that the siblings of the

nodes on this path9 have strictly fewer than k/2 leaves in

their subtrees.
The relevant event in the first round of the algorithm is

that of sampling an index i ∈ [n] which belongs to a 1-tuple

of the primary index w of G. This occurs with probability

at least 1− 1/(100k), since we sample each element of [n]
with probability Θ(1/(εn)) while there are at least Ω(εn)
many (12 . . . k)-patterns. Now, roughly speaking, letting

(u1, . . . , uh) be the root-to-w path in G, and (u′2, . . . , u
′
h) be

the sibling nodes, the subtrees of G rooted at u′2, . . . , u
′
h will

be tree descriptors for the function f restricted to Bi,j’s and

within these interval, the density of tuples is at least Ω(ε).
As a result, the second round of the algorithm, recursively

handles each subtree rooted at u′2, . . . , u
′
h with one fewer

round. Since the subtrees have strictly fewer than k/2 leaves,

�log2 k� − 1 rounds are enough for an inductive argument.

Moreover, since the total number of nodes is at most 2k
and each recursive call succeeds with probability at least

1 − 1/(100k), by a union bound we may assume that all

recursive calls succeed.
Unrolling the recursion, the query complexity

Θ((log n)�log2 k�) can be explained with a simple

combinatorial game. We start with a rooted binary tree G
on k leaves. In one round, whenever G is not simply a leaf,

we pick the leaf w which is the primary index of G, and

replace G with a collection of subtrees obtained by cutting

out the root-to-w path in G. These rounds “pay” a factor

of Θ(log n), since the algorithm must find intervals on

which the collection of subtrees form tree descriptors of f

8Ties are broken by picking the left child.
9For example, if (u1, . . . , uh) is the root-to-w path where u1 is the root

and uh = w, the sibling nodes along the path are given by u′2, u
′
3, . . . , u

′
h,

where u′l is the sibling of ul. Namely, if the l-th node on the root-to-w
path is a left child of the (l − 1)th node, then u′l is the right child of
the (l − 1)-th node. Analogously, if the l-th node is a right child of the
(l − 1)-th node, then u′l is the left child of the (l − 1)-th node.

(restricted to these intervals). In the subsequent rounds, we

recurse on each subtree simultaneously, picking the leaf of

the primary index in each, and so on. After �log2 k� many

rounds, the trees are merely leaves, and the algorithm does

not need to pay the factor Θ(log n) to find good intervals,

as it may simply sample from these intervals.

The execution of the above high-level plan is done in

Section III-C, where Lemma III.2 is the main inductive

lemma containing the analysis of the main algorithm (shown

in Figure 11 and Figure 12).

C. Our techniques: Lower bound

In order to highlight the main ideas behind the proof of

Theorem I.2 (the lower bound on the query complexity), we

first cover the simpler case of k = 2. This case corresponds to

a lower bound of Ω(logn) on the number of queries needed

for non-adaptive and one-sided algorithms for monotonicity

testing. Such a lower bound is known, even for adaptive

algorithms with two-sided error [12], [13]. We rederive

and present the well-known non-adaptive one-sided lower

bound in our language; after that, we generalize it to the

significantly more involved case k > 2. For the purpose of

this introduction, we give an overview assuming that both n
and k are powers of 2; as described in Section IV, a simple

“padding” argument generalizes the result to all n and k.

For any n ∈ � which is a power of 2 and t ∈ [n], consider

the binary representation Bn(t) = (bt1, b
t
2, . . . , b

t
log2 n) ∈

{0, 1}log2 n of t, where t = bt1 · 20 + bt2 · 21 + · · · +
btlog2 n · 2log2 n−1. For i ∈ [log2 n], the bit-flip operator,

Fi : [n] → [n], takes an input t ∈ [n] with binary repre-

sentation Bn(t) and outputs the number Fi(t) = t′ ∈ [n]
with binary representation obtained by flipping the i-th bit

of Bn(t). Finally, for any two distinct elements x, y ∈ [n],
let M(x, y) ∈ [log2 n] be the index of the most significant

bit in which they differ, i.e., the largest i where bxi 
= byi .

As usual for lower bounds on randomized algorithms, we

rely on Yao’s minimax principle [40]. In particular, our lower

bounds proceed by defining, for each n and k (which are

powers of 2), a distribution Dn,k supported on functions

f : [n] → � which are all ε-far from (12 . . . k)-free. We

show that any deterministic and non-adaptive algorithm which

makes fewer than q queries, where q = ck(log2 n)
log2 k and

ck > 0 depends only on k, fails to find a (12 . . . k)-pattern in

a random f ∼ Dn,k, with probability at least 1/10. Note that

any deterministic, non-adaptive algorithm which makes fewer

than q queries is equivalently specified by a set Q ⊆ [n]
with |Q| < q. Thus, the task of the lower bound is to design

a distribution Dn,k supported on functions f : [n] → �,

each of which is ε-far from (12 . . . k)-free, such that for any

Q ⊆ [n] with |Q| < ck(log2 n)
log2 k the following holds

Pr
f∼Dn,k

[
∃i1, . . . , ik ∈ Q : i1<···<ik and

f(i1)<···<f(ik)

]
≤ 9

10
. (4)
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2i

2i−1

Figure 1. Example of a function fi lying in the support of Dn,2. One
may view the domain as being divided into intervals of length 2i (displayed
as intervals lying between dotted red lines) and the permutation f↓ flipped
across adjacent intervals of length 2i−1 inside a segment of length 2i

(displayed as intervals lying between dotted blue lines). Note that all (12)-
patterns in fi above have the ith bit flipped.

LOWER BOUND FOR k = 2 (MONOTONICITY). The case of

k = 2 relies on the following idea: for any i ∈ [log2 n], one

can construct a function (in fact, a permutation) fi : [n]→ [n]
which is 1/2-far from (12)-free, and furthermore, all pairs

of distinct elements (x, y) ∈ [n]2 where x < y and fi(x) <
fi(y) satisfy M(x, y) = i. One can construct such a function

fi : [n]→ [n], for any i ∈ [log2 n] in the following way. First,

let f↓ : [n] → [n] be the decreasing permutation, f↓(x) =
n+1−x for any x ∈ [n]. Now take fi to be f↓ ◦Fi, where ◦
denotes function composition, that is, fi(x) = f↓(Fi(x)) for

any x ∈ [n]. Finally, set Dn,2 to be the uniform distribution

over the functions f1, f2, . . . , flogn (see Figure 1).
Towards proving (4) for the distribution Dn,2, we introduce

the notion of binary profiles captured by a set of queries.

For any fixed Q ⊆ [n], the binary profiles captured in Q are

given by the set

bin-prof(Q) = {i ∈ [log2 n] : ∃x, y ∈ Q s.t. M(x, y) = i}.
Since all (12)-patterns (x, y) of fi have M(x, y) = i,
the probability over f ∼ Dn,2 that an algorithm whose

set of queries is Q, finds a (12)-pattern in f is at most

|bin-prof(Q)|/ log2 n. We show that for any set Q ⊆ [n],
|bin-prof(Q)| ≤ |Q| − 1. This completes (4), and proves the

lower bound of 9
10 log2 n for k = 2.

The proof that |bin-prof(Q)| ≤ |Q|−1 for any set Q ⊂ [n],
i.e., the number of captured profiles is bounded by the number

of queries, follows by induction on |Q|. The base case |Q| ≤
2 is trivial. When |Q| > 2, let imax = max bin-prof(Q).
Consider the partition of Q into Q0 and Q1, where

Q0 = {x ∈ Q : bximax
= 0} and Q1 = {y ∈ Q : byimax

= 1}.
Since bin-prof(Q) = bin-prof(Q0) ∪ bin-prof(Q1) ∪
{imax}, we conclude that |bin-prof(Q)| ≤ |bin-prof(Q0)|+
|bin-prof(Q1)|+1 ≤ |Q0|−1+|Q1|−1+1 = |Q|−1, where

the second inequality follows from the inductive hypothesis.

GENERALIZATION TO k > 2: PROOF OF THEOREM I.2. We

now provide a detailed sketch of the proof of Theorem I.2.

2ih

2ih−1

fi1,...,ih−1

Figure 2. Example of a function fi1,...,ih lying in the support of Dn,k ,

where k = 2h. Similarly to the case of k = 2 (shown in Figure 1), the
domain is divided into intervals of length 2ih (shown between red dotted
lines), and functions are flipped across adjacent intervals of length 2ih−1

within an interval of length 2ih (shown between blue dotted lines). Inside
each grey region is a recursive application of the construction, fi1,...,ih−1

,
after shifting the range.

The main objects and notions used are defined, while leaving

technical details to Section IV. Let k = 2h for h ∈ �; the

case h = 1 corresponds to the previous discussion.

We first define the distributions Dn,k supported on permu-

tations f : [n] → [n] which are Ω(1/k)-far from (12 . . . k)-
free. Recall that the function fi in the case k = 2 was

constructed by “flipping” bit i in the representation of f↓,
that is, fi = f↓ ◦ Fi. Generalizing this construction, for any

i1 < i2 < · · · < ih ∈ [log2 n] we let fi1,...,ih : [n] → [n]
denote the result of flipping bits i1, i2, . . . , ih in the repre-

sentation of f↓:

fi1,...,ih := f↓ ◦ Fih ◦ . . . ◦ Fi1 .

It can be shown that fi1,...,ih is (1/k)-far from (12 . . . k)-free

(see Figure 2). We take Dn,k as the uniform distribution over

all functions of the form fi1,...,ih , where i1 < · · · < ih ∈
[log2 n].

Towards the proof of (4) for the distribution Dn,k, we

generalize the notion of a binary profile. Consider any k-tuple

of indices (x1, . . . , xk) ∈ [n]k satisfying x1 < · · · < xk. We

say that (x1, x2, . . . , xk) has h-profile of type (i1, . . . , ih) if,

for every j ∈ [k − 1], M(xj , xj+1) = iM(j−1,j).

For instance, when h = 3 (i.e. k = 8) the tuple

(x1, . . . , xk) has h-profile of type (i1, i2, i3) if the sequence

(M(xj , xj+1))
7
j=1 is (i1, i2, i1, i3, i1, i2, i1). See Figure 3 for

a visual demonstration of a 3-profile.10

It can be shown that for any i1 < · · · < ih ∈ [log2 n],
the function f = fi1,...,ih has the following property. If

x1 < · · · < xk ∈ [n] satisfy f(x1) < · · · < f(xk), i.e., the

k-tuple (x1, . . . , xk) is a (12 . . . k)-pattern of fi1,...,ik , then

(x1, . . . , xk) has an h-profile of type (i1, . . . , ih). We thus

proceed similarly to the case k = 2. For any Q ⊆ [n], we

10Unlike the case k = 2, not all tuples (x1, . . . , xk) with x1 < . . . < xk

have an h-profile. For what follows we will only be interested in tuples
that do have a profile.
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2i3

2i2

2i1

x1 x2 x3 x4 x5 x6 x7 x8

Figure 3. Example of a function fi1,i2,i3 in the support of Dn,8, with a
k-tuple (x1, . . . , x8) whose h-profile has type (i1, i2, i3).

define the set of all h-profiles captured by Q as follows

bin-profh(Q) =

{
(i1, . . . , ih) :

∃x1,...,xk∈Q s.t. x1<···<xk

and (x1,...,xk) has h-profile
of type (i1,...,ih)

}
.

The proof that |bin-profh(Q)| ≤ |Q| − 1 for any Q ⊆ [n]
follows by induction on h. The base case h = 1 was covered

in the discussion on k = 2. For h > 1, we define subsets

∅ = Blog2 n+1 ⊆ Blog2 n ⊆ . . . ⊆ B1 = Q,

where, given Bi+1, the set Bi ⊇ Bi+1 is an arbitrary maximal

subset of Q containing Bi+1, so that no two elements x 
=
y ∈ Bi satisfy M(x, y) < i. Additionally, for each j ∈
[log2 n] we let

Nj =
{
(i2, . . . , ih) :

1≤j<i2···<ih≤log2 n and
(j,i2,...,ih)∈bin-profh(Q)

}
.

The key observation is that Nj ⊆ bin-profh−1(Bj \Bj+1).
To see this, note first that any (j, i2, . . . , ih) ∈ bin-profh(Q)
also satisfies (j, i2, . . . , ih) ∈ bin-profh(Bj). Indeed, sup-

pose that a tuple (x1, . . . , xk) with x1 < · · · < xk ∈ Q
has h-profile (j, i2, . . . , ih). By the maximality of Bj , we

know that for every 1 ≤ � ≤ k there exists y� ∈ Bj such

that either x� = y� or M(x�, y�) < j. This implies that

{y1, . . . , yk} ⊆ Bj has h-profile (j, i2, . . . , ih).

Now, suppose that y1, . . . , yk ∈ Bj satisfies y1 < . . . <
yk and has h-profile of type (j, i2, . . . , ih) in Bj . For any

1 ≤ t ≤ k/2 we have M(y2t−1, y2t) = j. Therefore, at most

one of y2t−1, y2t is in Bj+1, and hence, for any such t there

exists zt ∈ {y2t−1, y2t} \Bj+1 ⊆ Bj \Bj+1. It follows that

(z1, . . . , zk/2) ∈ Bj \Bj+1 has (h− 1)-profile (i2, . . . , ih).
This concludes the proof that Nj ⊆ bin-profh−1(Bj \Bj+1).

We now use the last observation to prove that

|bin-profh(Q)| ≤ |Q| − 1. Note that

bin-profh(Q) =

log2 n⋃
j=1

{(j, i2, . . . , ih) : (i2, . . . , ih) ∈ Nj}

and Q =
⋃log2 n

j=1 (Bj \ Bj+1), where both unions are

disjoint unions. By the induction assumption, |Nj | ≤
|bin-profh−1(Bj \Bj+1)| < |Bj \Bj+1| for any j if Nj is

non-empty; If Nj is empty, then |Nj | ≤ |bin-profh−1(Bj \

Bj+1)| ≤ |Bj \Bj+1| trivially holds. Hence

|Q| =
log2 n∑
j=1

|Bj \Bj+1| >
log2 n∑
j=1

|Nj | = |bin-profh(Q)|,

where the strict inequality follows because if bin-profh(Q) is

non-empty then Nj is non-empty for some j. This completes

the proof.

D. Organization

We start by introducing the notation that we shall use

throughout the paper in Section I-E. In Section II we

prove our main structural result, and formally define the

notions that underlie it: namely, Theorem II.3, along with

the definitions of growing suffixes and representation by

tree descriptors (Definitions II.4 and II.7). Section III then

leverages this dichotomy to describe and analyze our testing

algorithm, thus establishing the upper bound of Theorem I.1

(see Theorem III.1 for a formal statement). Finally, we

complement this algorithm with a matching lower bound

in Section IV, where we prove Theorem I.2.

While Section III crucially relies on Section II, these two

sections are independent of Section IV, which is mostly

self-contained.

E. Notation and Preliminaries

We write a � b if there exists a universal positive constant

C > 0 such that a ≤ Cb, and a � b if we have both

a � b and b � a. At times, we write poly(k) to stand for

O(kC), where C > 0 is a large enough universal constant.

Unless otherwise stated, all logarithms will be in base 2.

We frequently denote I as a collection of disjoint intervals,

I1, . . . , Is, and then write S(I) for the set of all sub-intervals

which lie within some interval in I. For two collections of

disjoint intervals I0 and I1, we say that I1 is a refinement
of I0 if every interval in I1 is contained within an interval

in I0. (We remark that it is not the case that intervals in I1
must form a partition of intervals in I0.) For a particular

set A ⊆ [n] and an interval I ⊆ [n], we define the density
of A in I as the ratio |A ∩ I|/|I|. Given a set S, we write

x ∼ S to indicate that x is a random variable given by a

sample drawn uniformly at random from S, and P(S) for

the power set of S. Given a sequence f of length n, we shall

interchangeably use the notions (12 . . . k)-copy, (12 . . . k)-
pattern, and length-k increasing subsequence, to refer to

a tuple (x1, . . . , xk) ∈ [n]k such that x1 < . . . < xk and

f(x1) < . . . < f(xk).

II. STRUCTURAL RESULT

A. Rematching procedure

Let f : [n] → � be a function which is ε-far from

(12 . . . k)-free. Let T be a set of k-tuples representing

monotone subsequences of length k within f , i.e.,

T ⊆
{
(i1, . . . , ik) ∈ [n]k : i1<···<ik and

f(i1)<···<f(ik)

}
,
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and for such T let E(T ) be the set of indices of subsequences

in T , so

E(T ) =
⋃

(i1,...,ik)∈T
{i1, . . . , ik}.

Observation II.1. If f : [n] → � is ε-far from (12 . . . k)-
free, then there exists a set T ⊆ [n]k of disjoint length-k
increasing subsequences of f such that |T | ≥ εn/k.

To see why the observation holds, take T to be a maximal

disjoint set of such k-tuples. Then we can obtain a (12 . . . k)-
free sequence from f by changing only the entries of E(T )
(e.g. for every i ∈ E(T ) define f(i) = f(j) where j is the

largest [n] \ E(T ) which is smaller than i. If there is no

j ∈ [n]\E(T ) where j < i, let f(i) = max�∈[n] f(�)). Since

f is ε-far from being (12 . . . k)-free, we have |E(T )| ≥ εn,

thus |T | ≥ εn/k.

In this section, we show that from a function f : [n]→ �

which is ε-far from (12 . . . k)-free and a set T0 of disjoint,

length-k monotone subsequences of f , a greedy rematching

algorithm finds a set T of disjoint, length-k monotone sub-

sequences of f where E(T ) ⊆ E(T0) with some additional

structure, which will later be exploited in the structural

lemma and the algorithm. The greedy rematching algorithm,

GreedyDisjointTuples, is specified in Figure 4; for

convenience, in view of its later use in the algorithm, we

phrase it in terms of an arbitrary parameter k0, not necessarily

the (fixed) parameter k itself.

Lemma II.1. Let k0 ∈ �, f : [n]→ �, and let T0 ⊆ [n]k0

be a set of disjoint monotone subsequences of f of length
k0. Then there exists a set T ⊆ [n]k0 of disjoint k0-tuples
with E(T ) ⊆ E(T0) such that the following holds.

1) The set T holds disjoint monotone subsequences of
length k0.

2) The size of T satisfies |T | ≥ |T0|/k0.
3) For any two (i1, . . . , ik0

), (j1, . . . , jk0
) ∈ T and any

� ∈ [k0 − 1], if i1 < j1, i� < j� and i�+1 > j�+1 then
f(i�+1) > f(j�+1).

Proof of Lemma II.1: We show that the subrou-

tine GreedyDisjointTuples(f, k0, T0), described in

Figure 4, finds a set T with E(T ) ⊆ E(T0) satisfy-

ing properties 1, 2, and 3. Property 1 is clear from the

description of GreedyDisjointTuples(f, k0, T0). For

2, suppose |T | < |T0|/k0, then, there exists a tuple

(i1, . . . , ik0) ∈ T0 with {i1, . . . , ik0} ∩ E(T ) = ∅. Since

GreedyDisjointTuples(f, k0, T0) increases the size

of T throughout the execution, {i1, . . . , ik0
} ∩ T = ∅ at

every point in the execution of the algorithm. This is a

contradiction; when i = i1, a monotone subsequence disjoint

from T would have been found, and i1 included in T . Finally,

for 3, consider the iteration when i = i1, and note that at

this moment, T ∩ {i1, . . . , ik0 , j1, . . . , jk0} = ∅. Suppose

that i� < j�, j�+1 < i�+1; if f(j�+1) ≥ f(i�+1), then

(i1, . . . , i�, j�+1, . . . , jk0
) is an increasing subsequence in

Subroutine GreedyDisjointTuples (f, k0, T0)

Input: A function f : [n] → �, integer k0 ∈ �, and a set
T0 of disjoint monotone subsequences of f of length k0.
Output: a set T ⊆ [n]k0 of disjoint monotone subsequences
of f of length k0.

1) Let T = ∅ and i be the minimum element in E(T0).
Repeat the following.

i. Let i1 ← i. If there exists j2, . . . , jk0 ∈ E(T0) \
E(T ) such that (i1, j2, . . . , jk0) is an increasing
subsequence of f , pick i2, . . . , ik0 ∈ E(T0) \
E(T ) recursively as follows: for � = 2, . . . , k0,
let i� be the smallest element in E(T0) \ E(T )
for which there exist j�+1, . . . , jk0 ∈ E(T0) \
E(T ) such that (i1, . . . , i�, j�+1, . . . , jk0) is an
increasing subsequence of f .

ii. If (i1, . . . , ik0) is a monotone subsequence found
by (i), set T ← T ∪ {(i1, . . . , ik0)}.

iii. Let i be the next element of E(T0) \ E(T ), if
such an element exists; otherwise, proceed to 2.

2) Output T .

Figure 4. Description of the GreedyDisjointTuples subroutine.

E(T0) \ E(T ), which means that j�+1 would have been

preferred over i�+1, a contradiction.

Definition II.2 (c-gap). Let (i1, . . . , ik0
) be a monotone

subsequence of f and let c ∈ [k0 − 1]. We say that
(i1, . . . , ik0

) is a c-gap subsequence if c is the smallest integer
such that ic+1 − ic ≥ ib+1 − ib for all b ∈ [k0 − 1].

Note that for a set T of disjoint length-k0 monotone

subsequences of f , we may partition the k0-tuples of T
into (T1, . . . , Tk0−1) where for each c ∈ [k0 − 1], Tc holds

the c-gap monotone subsequences of T . As these sets form

a partition of T , the following lemma is immediate from

Lemma II.1.

Lemma II.3. Let f : [n] → �, and let T0 be a set of
disjoint length-k0 monotone subsequences of f . Then there
exist c ∈ [k0 − 1] and a family T ⊆ [n]k0 of disjoint
monotone subsequences of f , with E(T ) ⊆ E(T0) such
that the following holds.

1) The subsequences in T are all c-gap subsequences.
2) |T | ≥ |T0|/k20 .
3) For any two (i1, . . . , ik0

), (j1, . . . , jk0
) ∈ T and any

� ∈ [k0 − 1], if i1 < j1, i� < j� and i�+1 > j�+1 then
f(i�+1) > f(j�+1).

B. Growing suffixes and splittable intervals

We now proceed to set up notation and prepare for the main

structural theorem for sequences f : [n]→ � which are ε-far

from (12 . . . k)-free. In order to simplify the presentation

of the subsequent discussion, consider fixed k ∈ � and

ε ∈ (0, 1), as well as a fixed sequence f : [n] → � which

is ε-far from (12 . . . k)-free. We will, at times, suppress
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polynomial factors in k by writing poly(k) to refer to a large

enough polynomial in k, whose degree is a large enough

universal constant. By Observation II.1 and Lemma II.3,

there exists an integer c ∈ [k − 1] and a set T of disjoint

monotone subsequences of f which have a c-gap, satisfying

|T | ≥ εn/poly(k) and property 3 from Lemma II.3. For the

rest of the subsection, we consider a fixed setting of such

c ∈ [k − 1] and set T .
We will show (in Theorem II.2) that one of the following

two possibilities holds. Either there is a large set of what

we call growing suffixes (see Definition II.4 for a formal

definition), or there are disjoint intervals which we call split-
table (see Definition II.5 for a formal definition). Intuitively,

a growing suffix will be given by the suffix (a, n] and will

have the property that by dividing (a, n] into Θ(log2(n−a))
segments of geometrically increasing lengths, there are many

monotone subsequences (i1, . . . , ik) of f lying inside (a, n]
where each it belongs to a different segment. In the other

case, an interval [a, b] is called splittable if it can be divided

into three sub-intervals of roughly equal size, which we

refer to as the left, middle, and right intervals, with the

following property: the left interval contains a large set TL

of (12 . . . c)-patterns, the right interval contains a large set

TR of (12 . . . (k−c))-patterns, and combining any (12 . . . c)-
pattern in TL with any (12 . . . (k − c))-pattern in TR yields

a (12 . . . k)-pattern.
For each index a ∈ [n], let ηa = �log2(n − a)�. Let

S1(a), . . . , Sηa
(a) ⊆ [n] be disjoint intervals given by

St(a) = [a+ 2t−1, a+ 2t) ∩ [n]. The collection of intervals

S(a) = (St(a) : t ∈ [ηa]) partitions the suffix (a, n] into

intervals of geometrically increasing lengths (except possibly

the last interval, which may be shorter), and we refer to the

collection S(a) as the growing suffix at a.

Definition II.4. Let α, β ∈ [0, 1]. We say that an index
a ∈ [n] starts an (α, β)-growing suffix if, when considering
the collection of intervals S(a) = {St(a) : t ∈ [ηa]}, for
each t ∈ [ηa] there is a subset Dt(a) ⊆ St(a) of indices
such that the following properties hold.

1) We have |Dt(a)|/|St(a)| ≤ α for all t ∈ [ηa], and∑ηa

t=1 |Dt(a)|/|St(a)| ≥ β.
2) For every t, t′ ∈ [ηa] where t < t′, if b ∈ Dt(a) and

b′ ∈ Dt′(a), then f(b) < f(b′).

Intuitively, our parameter regime will correspond to

the case when α is much smaller than β, specifically,

α ≤ β/poly(k), for a sufficiently large-degree polynomial

in k. If a ∈ [n] starts an (α, β)-growing suffix with

these parameters, then the ηa segments, S1(a), . . . , Sηa
(a),

contain many monotone subsequences of length k which

are algorithmically easy to find (given access to the start a).

Indeed, by (2), it suffices to find a k-tuple (i1, . . . , ik) such

that i1 ∈ Dt1 , . . . , ik ∈ Dtk , for some t1, . . . , tk ∈ [ηa] with

t1 < . . . < tk (see Figure 5). By (1), the sum of densities

is at least β, yet each density is less than α ≤ β/poly(k).

a

Figure 5. Depiction of an (α, β)-growing suffix at index a ∈ [n] (see
Definition II.4). The labeled segments St(a) are shown, as well as the
subsets Dt(a). Notice that for all j, all the elements in Dt(a) lie below
those in Dt+1(a). In Section III-B, we show that if an algorithm knows
that a starts an (α, β)-growing suffix, for α ≤ β/poly(k), then sampling
poly(k)/β many random indices from each St(a) finds a monotone pattern
with probability at least 9/10.

I

L RM

T (L)

T (R)

Figure 6. Depiction of a (c, α, β)-splittable interval, as defined in
Definition II.5. The interval I is divided into three adjacent intervals,
L,M , and R, and the disjoint monotone sequences are divided so that
T (L) contains the indices (i1, . . . , ic) and T (R) contains the indices
(ic+1, . . . , ik). Furthermore, we have that every (i1, . . . , ic) ∈ T (L) and
(jc+1, . . . , jk) ∈ T (R) have f(ic) < f(jc+1), so that any monotone
pattern of length c in E(T (L)) may be combined with any monotone
pattern of length k− c in E(T (R)) to obtain a monotone pattern of length
k within I .

In other words, the densities of D1(a), . . . , Dηa
(a) within

S1(a), . . . , Sηa
(a), respectively, must be spread out, which

implies, intuitively, that there are many ways to pick suitable

i1, . . . , ik.

Definition II.5. Let α, β ∈ (0, 1] and c ∈ [k0 − 1]. Let
I ⊆ [n] be an interval, let T ⊆ Ik0 be a set of disjoint,
length-k0 monotone subsequences of f lying in I , and define

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix

of a k0-tuple in T}, and

T (R) = {(j1, . . . , jk0−c) ∈ Ik0−c : (j1, . . . , jk0−c) is a

suffix of a k0-tuple in T}.

We say that the pair (I, T ) is (c, α, β)-splittable if |T |/|I| ≥
β; f(ic) < f(j1) for every (i1, . . . , ic) ∈ T (L) and
(j1, . . . , jk0−c) ∈ T (R); and there is a partition of I into
three adjacent intervals L,M,R ⊆ I (that appear in this
order, from left to right) of size at least α|I|, satisfying
T (L) ⊆ Lc and T (R) ⊆ Rk0−c.

A collection of disjoint interval-tuple pairs
(I1, T1), . . . , (Is, Ts) is called a (c, α, β)-splittable

collection of T if each (Ij , Tj) is (c, α, β)-splittable and
the sets (Tj : j ∈ [s]) partition T .

We now state the main theorem of this section, whose

proof will be given in Section II-E.
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Theorem II.2. Let k, k0 ∈ � be positive integers satisfying
1 ≤ k0 ≤ k, and let δ ∈ (0, 1) and let C > 0. Let f : [n]→
� be a function and let T0 ⊆ [n]k0 be a set of δn disjoint
monotone subsequences of f of length k0. Then there exists
an α ≥ Ω(δ/k5) such that at least one of the following
conditions holds.

1) Either there exists a set H ⊆ [n], of indices that
start an (α,Ckα)-growing suffix, satisfying α|H| ≥
δn/poly(k, log(1/δ)); or

2) There exists an integer c with 1 ≤ c < k0, a set T , with
E(T ) ⊆ E(T0), of disjoint length-k0 monotone subse-
quences, and a (c, 1/(6k), α)-splittable collection of
T , of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts),
such that

α
s∑

h=1

|Ih| ≥
|T0|

poly(k, log(1/δ))
.

We remark that the above theorem is stated with respect

to the two parameters, k0 and k, for ease of applicability. In

particular, in the next section, we will apply Theorem II.2

multiple times, and it will be convenient to have k be fixed

and k0 be a varying parameter. In that sense, even though

the monotone subsequences in question have length k0, the

relevant parameters that Theorem II.2 lower bounds only

depend on k.

Consider the following scenario: f : [n]→ � is a sequence

which is ε-far from (12 . . . k)-free, so by Observation II.1,

there exists a set T0 of disjoint, length-k monotone sub-

sequences of f of size at least εn/k. Suppose that upon

applying Theorem II.2 with k0 = k and δ = ε/k, (2) holds.

Then, there exists a (c, 1/(6k), α)-splittable collection of a

large subset of disjoint, length-k monotone subsequences

T into disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts). For

each h ∈ [s], the pair (Ih, Th) is (c, 1/(6k), α)-splittable,

so let Ih = Lh ∪Mh ∪ Rh be the left, middle, and right

intervals of Ih; furthermore, let T
(L)
h be the (12 . . . c)-patterns

in Lh which appear as prefixes of Th, and T
(R)
h be the

(12 . . . (k−c))-patterns in Rh which appear as suffixes of Th

in Rh. Thus, the restricted function f|Lh
: Lh → � contains

|Th| disjoint (12 . . . c)-patterns, and f|Rh
: Rh → � contains

|Th| disjoint (12 . . . (k− c))-patterns. This naturally leads to

a recursive application of Theorem II.2 to the function f|Lh

with k0 = c, and to the function f|Rh
with k0 = k − c, for

all h ∈ [s].

C. Tree descriptors

We now introduce the notion of tree descriptors, which

will summarize information about a function f after applying

Theorem II.2 recursively. Then, we state the main structural

result for functions that are ε-far from (12 . . . k)-free. The

goal is to say that every function which is ε-far from

(12 . . . k)-free either has many growing suffixes, or there

exists a tree descriptor which describes the behavior of many

disjoint, length-k monotone subsequences in the function.

The following two definitions make up the notion of a tree

descriptor representing a function. Figure 7 shows an example

of Definitions II.6 and II.7.

Definition II.6. Let k0 ∈ � and δ ∈ (0, 1). A (k0, δ)-
weighted-tree is a pair (G, 
), where

• G = (V,E,w) is a rooted binary tree with edges labeled
by a function w : E → {0, 1}. Every non-leaf node
has two outgoing edges, e0, e1 with w(e0) = 0 and
w(e1) = 1. The set of leaves V� ⊆ V satisfies |V�| = k0,
and ≤G is the total order defined on the leaves by the
values of w on a root-to-leaf path.11

• 
 : V → [�log(1/δ)�] is a function that assigns a
positive integer to each node of G.

In the next definition, we show how we use weighted trees

to represent a function f and a set of disjoint, length-k0
monotone subsequences.

Definition II.7. Let k, k0 ∈ � be such that 1 ≤ k0 ≤ k, let
α ∈ (0, 1), let I ⊆ � be an interval, and let f : I → �

be a function. Let T ⊆ Ik0 be a set of disjoint monotone
subsequences of f . A triple (G, 
, I) is called a (k, k0, δ)-tree

descriptor12 of (f, T, I), if (G, 
) is a (k0, δ)-weighted tree,
I is a function I : V → P(I) (where V = V (G)), and the
following recursive definition holds.

1) If k0 = 1 (so T ⊆ I),

• The graph G = (V,E,w) is the rooted tree with
one node, r, and no edges.

• The function 
 : V → [�log(1/δ)�] (simply map-
ping one node) satisfies 2−�(r) ≤ |T |/|I| ≤
2−�(r)+1.

• The map I : V → S(I) is given by I(r) = {{t} :
t ∈ T}.

2) If k0 > 1,

• The graph G = (V,E,w) is a rooted binary tree
with k0 leaves. We refer to the root by r, the left
child of the root (namely, the child incident with
the edge given 0 by w) by vleft, and the right child
of the root (the child incident with the edge given
1) by vright. Let c be the number of leaves in the
subtree of vleft, so vright has k0 − c leaves in its
subtree.

• Write I(r) = {I1, . . . , Is}. Then I1, . . . , Is are
disjoint sub-intervals of I , and, setting Ti =
(Ii)

k0 ∩ T , the pairs (I1, T1), . . . , (Is, Ts) form a

11Specifically, for l1, l2 ∈ V� at depths d1 and d2, with root to leaf paths
(r, u(1), . . . , u(d1−1), l1) and (r, v(1), . . . , v(d2−1), l2), then l1 ≤G

l2 if, and only if, (w(r, u(1)), w(u(1), u(2)), . . . , w(u(d1−1), l1)) ≤
(w(r, v(1)), w(v(1), v(2)), . . . , w(v(d2−1), l2)) in the natural partial order
on {0, 1}∗.

12We shall sometimes refer to this as a k0-tree descriptor, in particular
when k, δ are not crucial to the discussion.
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(c, 1/(6k), 2−�(r))-splittable collection of T , and

2−�(r)
s∑

h=1

|Ih| ≥
|T |

poly(k, log(1/δ))k
.

• For each h ∈ [s] there exists a partition
(Lh,Mh, Rh) of Ih that satisfies Definition II.5,
such that the sets T

(L)
h , of prefixes of length c of

subsequences in Th, and T
(R)
h , of suffixes of length

k0−c of subsequences in Th, satisfy T
(L)
h ⊆ (Lh)

c

and T
(R)
h ⊆ (Rh)

k0−c. Moreover, the following
holds.
The tuple (Gleft, 
left, Ih, left) is a (k, c, δ)-tree de-
scriptor of f , T

(L)
h , and Lh, where Gleft is the

subtree rooted at vleft, 
left is the restriction of

 to the subtree Gleft, and Ih, left is defined by
Ih, left(v) := {J ∈ I(v) : J ⊆ Lh} for all v ∈ Gleft.
Analogously, the tuple (Gright, 
right, Ih, right) is a
(k, k0 − c, δ)-tree descriptor of f , T (R)

h , and Rh,
where Gright, 
right, Ih, right are defined analogously.

We remark that it is not the case that for every function

f : I → � defined on an interval I , and for every T ⊆ Ik0

which is a set of disjoint, length-k0 monotone subsequences

of f , there must exist a k0-tree descriptor which represents

(f, T, I). The goal will be to apply Theorem II.2 recursively

whenever we are in (2), and to find a sufficiently large set

T of disjoint length-k monotone subsequences, as well as a

k-tree descriptor which represents (f, T, I).

D. The structural dichotomy theorem

We are now in a position to state the main structural

theorem of far-from-(12 . . . k)-free sequences, which guaran-

tees that every far-from-(12 . . . k)-free sequence either has

many growing suffixes, or can be represented by a tree

descriptor. The algorithm for finding a (12 . . . k)-pattern will

proceed by considering the two cases independently. The

first case, when a sequence has many growing suffixes, is

easy for algorithms; we will give a straight-forward sampling

algorithm making roughly Ok(log n/ε) queries. The second

case, when a sequence is represented by a tree descriptor is

the “hard” case for the algorithm.

Theorem II.3 (Main structural result). Let k ∈ �, ε > 0, and
let f : [n]→ � be a function which is ε-far from (12 . . . k)-
free. Then one of the following holds, where C > 0 is a
large constant.

• There exists a parameter α ≥ ε/poly(k, log(1/ε))k,
and a set H ⊆ [n] of indices which start an (α,Ckα)-
growing suffix, with

α|H| ≥ εn

poly(k, log(1/ε))k
,

1 2 3 4

r

v0 v1

i1 j2 l3 h4

Figure 7. Depiction of a tree descriptor (G, �, I) representing (f, T, I),
as defined in Definitions II.6 and II.7. The graph G displayed above is a
rooted tree with four leaves, which are ordered and labeled left-to-right. The
root node r, filled in black, has its corresponding intervals from I(r) shown
below the sequence as three black intervals. Each of the black intervals in
I(r) is a (2, α, β)-splittable interval, for α ≈ 1/3 and β ≥ 1/6. Then, the
root has the left child v0, filled in red, and the right child v1, filled in blue.
The red intervals are those belonging to I(v0), and the blue intervals are
those belonging to I(v1). Each black interval in I(r) has a left part, which
contains intervals in I(v0), and a right part, which contains intervals in I(v1).
The red and blue intervals in I(v0) and I(v1) are also (1, α, β)-splittable,
and the left part of the red intervals contains indices which will form the 1
in the monotone pattern of length 4, and the right part of the red intervals
contains indices which will form the 2. Likewise, the left part of blue
intervals will contain the indices corresponding to 3, and the right part of
the blue intervals will contain indices corresponding to 4. The regions where
the indices from T lie are shown above the sequence, where the indices 1–4
of some monotone pattern in T lie in regions which are progressively darker.
In order to see how a monotone subsequence may be sampled given that
(G, �, I) is a tree descriptor for (f, T, I) with sufficiently large T , consider
indices i1 and j2 that belong to some subsequences from T , and lie in
different shaded regions of the same red interval, within a black interval;
and furthermore, l3 and h4 belong to some subsequence from T , and lie
in different shaded regions of the same blue interval, within the same black
interval as i1 and j2; then, the subsequence (i1, j2, l3, h4) is a monotone
subsequence even though (i1, j2, l3, h4) /∈ T .

• or there exists a set T ⊆ [n]k of disjoint monotone
subsequences of f satisfying

|T | ≥ εn

poly(k, log(1/ε))k2

and a (k, k, β)-tree descriptor (G, 
, I) which represents
(f, T, [n]), where β ≥ ε/poly(k, log(1/ε))k

2

.

Proof: We shall prove the following claim, by induction,

for all k0 ∈ [k]. Here C > 0 is a large constant, and C ′ > 0
is a large enough constant such that α ≥ δ/(C ′k5) in the

statement of Theorem II.2, applied with the constant C.

Claim II.8. Let K = C ′k5 and let P (·, ·) be the func-
tion from the statement of Theorem II.2; so P (x, y) =
poly(x, log y), and we may assume that P is increasing in
both variables. Let A(·, ·) and B(·, ·) be increasing functions,
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such that

A(k0, 1/δ) ≥ 12k�log(Kk0/δ)� · P (k, 1/δ) ·A(k0 − 1,K/δ)

A(1, 1/δ) = 1/δ

B(k0, 1/δ) ≥ 2 · P (k,K/δ) · (2k�log(KB(k0 − 1,K/δ)/δ)�)2k0

·B(k0 − 1,K/δ)

B(1, 1/δ) = 1/δ (5)

Note that there exists such A(·, ·) and B(·, ·) with
A(k, 1/δ) = (poly(k, log(1/δ)))k and B(k, 1/δ) =
(poly(k, log(1/δ)))k

2

.
Let I ⊆ � be an interval, let g be a sequence g : I →

�, let T0 ⊆ Ik0 be a set of disjoint length-k0 monotone
subsequences, and define δ := |T0|/|I|. Then

1) Either there exists α ≥ δ/Kk0 , which is an integer
power of 1/2, along with a set H ⊆ I of (α,Ckα)-
growing suffix start points such that

α|H| ≥ δ|I|
A(k0, 1/δ)

,

2) Or there exists a set T ⊆ Ik0 of disjoint k0-tuples
satisfying E(T ) ⊆ E(T0) and

|T | ≥ |T0|
B(k0, 1/δ)

and a (k, k0, α)-tree descriptor (G, 
, I) for (g, T, I),
where α ≥ δ/B(k0, 1/δ).

Note that since f is ε-far from (12 . . . k)-free, there is a

set T0 ⊆ [n]k of at least εn/k disjoint length-k monotone

subsequences. By applying the above claim for k0 = k, T0,

[n] and f , the theorem follows. Thus, it remains to prove

the claim; we proceed by induction.

• if k0 = 1: Note that here T0 is a subset of I . We define

the (k, 1, δ)-tree descriptor (G, 
, I) which represents

f, T = T0, I in the natural way:

– G = (V,E) is a rooted tree with one node: V =
{r} and E = ∅.

– 
 : V → � is given by 
(r) = �log(1/δ)�, so

2−�(r) ≤ |I ∩ T |/|I| ≤ 2−�(r)+1.

– I : V → S(I) is given by I(r) = {{t} : t ∈ T}.
• if 2 ≤ k0 ≤ k: By Theorem II.2, there exists α ≥ δ/K

such that one of (1) and (2), from the statement of the

theorem, holds.

– If (1) holds, there is a set H ⊆ I of (α,Ckα)-
growing suffix start points with

α|H| ≥ δ|I|
P (k, 1/δ)

;

note that we may assume that α is an integer power

of 1/2.13

13to be precise and to ensure that we can take α to be an integer power
of 2, it might be better to apply Theorem II.2 with constant 2C, to allow
for some slack; this does not change the argument.

– Otherwise, (2) holds, and we are given an integer

c ∈ [k0 − 1], a set T of disjoint length-k0 mono-

tone subsequences, with E(T ) ⊆ E(T0), and a

(c, 1/(6k), α)-splittable collection of T into disjoint

interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥
|T0|

P (k, 1/δ)
=

δ|I|
P (k, 1/δ)

.

Recall that by definition of splittability, |Th|/|Ih| ≥
α for every h ∈ [s].

If (1) holds, we are done; so we assume that (2) holds.

For each h ∈ [s], since (Ih, Th) is a (c, 1/(6k), α)-
splittable pair, there exists a partition (Lh,Mh, Rh) that

satisfies the conditions stated in Definition II.5. Let T
(L)
h

be the collection of prefixes of length c of subsequences

in Th, and let T
(R)
h be the collection of suffixes of

length k0 − c of subsequences in Th.

We apply the induction hypothesis to each of the pairs

(Lh, T
(L)
h ) and (Rh, T

(R)
h ). We consider two cases for

each h ∈ [s].

1) (1) holds for either (Lh, T
(L)
h ) or (Rh, T

(R)
h ).

This means that there exists βh, which is an

integer power of 1/2, and which satisfies βh ≥
α/Kmax{c,k0−c} ≥ α/Kk0−1 ≥ δ/Kk0 , and a set

Hh ⊆ Ih of start points of (βh, Ckβh)-growing

subsequences, such that (using |Rh|, |Lh| ≥
|Ih|/(6k))

βh|Hh| ≥
α|Ih|

6k ·A(k0 − 1, 1/α)

2) Otherwise, (2) holds for both (Lh, T
(L)
h ) and

(Rh, T
(R)
h ). Setting β = α/B(k0 − 1, 1/α), this

means that there exists a (k, c, β)-tree descriptor

(G
(L)
h , 


(L)
h , I

(L)
h ), for (g,Lh, Lh) where Lh ⊆

(Lh)
c is a set of length-c monotone subsequences,

such that E(Lh) ⊆ E(T
(L)
h ) and

|Lh| ≥
|T (L)

h |
B(k0 − 1, 1/α)

, (6)

and, similarly, there exists a (k, k0 − c, β)-tree de-

scriptor (G
(R)
h , 


(R)
h , I

(R)
h ) for (g,Rh, Lh), where

Rh ⊆ (Rh)
k0−c is a set of length-(k0 − c) mono-

tone subsequences, such that E(Rh) ⊆ E(T
(R)
h )

and

|Rh| ≥
|T (R)

h |
B(k0 − 1, 1/α)

. (7)

For convenience, we shall assume that |Lh| =
|Rh|, by possibly removing some elements of

the largest of the two (and reflecting this in the

corresponding tree descriptor).
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Suppose first that∑
h : first case holds for h

|Ih| ≥
1

2
·

s∑
h=1

|Ih|.

Since each βh is an integer power of 1/2, there are

at most �log(Kk0/δ)� possible values for βh. Hence,

there exists some β (with β ≥ δ/Kk0) such that the

collection S, of indices h ∈ [s] for which the first case

holds for h and βh = β, satisfies∑
h∈S

|Ih| ≥
1

2�log(Kk0/δ)� ·
s∑

h=1

|Ih|.

Let H =
⋃

h∈S Hh. Then H is a set of start points of

(β,Ckβ)-growing suffixes, with

β|H| ≥ α

6k ·A(k0 − 1, 1/α)
·
∑
h∈S

|Ih|

≥ α

12k�log(Kk0/δ)� ·A(k0 − 1, 1/α)
·

s∑
h=1

|Ih|

≥ δ|I|
12k�log(Kk0/δ)� · P (k, 1/δ) ·A(k0 − 1, 1/α)

≥ δ|I|
A(k0, 1/δ)

,

where the last inequality follows from (5). This proves

the claim in this case.

Next, we may assume that∑
h : second case holds for h

|Ih| ≥
1

2
·

s∑
h=1

|Ih|.

Note that the number of quadruples

(G
(L)
h , 


(L)
h , G

(R)
h , 


(R)
h ) (whose elements are as above)

is at most (2c)2c(2(k0 − c))2(k0−c)(�log(1/β)�)2k0 ≤
(2k�log(1/β)�)2k0 , since the number of trees on

l vertices is at most ll, and we have at most

�log(1/β)� possible weights to assign to each of the

vertices. It follows that there exists such a quadruple

(G∗L, 

∗
L, G

∗
R, 


∗
R) such that if S is the set of indices h

that were assigned this quadruple, then

α ·
∑
h∈S

|Ih| ≥
α

(2k�log(1/β)�)2k0

∑
2nd case holds for h

|Ih|

≥ α

2 · (2k�log(1/β)�)2k0

s∑
h=1

|Ih|

≥ |T0|
2 · P (k, 1/δ) · (2k�log(1/β)�)2k0

.

(8)

We form a set Th of monotone length-k0 subsequences

by matching elements from Lh with elements from Rh

for each h ∈ S; that they can be matched follows

from the assumption that |Lh| = |Rh|, and that

these form monotone subsequences follows from the

assumptions on Lh,Rh. Set T := ∪h∈STh. Note that

(Ih, Th) is (k0, c, β)-splittable by (6) and (7) (using

β = α/B(k0 − 1, 1/α)). Let (G, 
) be the (k, k0, β)-
weighted-tree obtained by taking a root r, with weight


(r) = �log(1/β)�, adding the tree (G∗L, 

∗) as a

subtree to its left (i.e. the root of this tree is joined to r
by an edge with value 0) and adding the tree (G∗R, 


∗)
as a subtree to its right. Now, we form a (G, 
, I)-tree

descriptor by setting

I(v) =

⎧⎪⎨⎪⎩
{Ih : h ∈ S} v = r⋃

h∈S I
(L)
h (v) v ∈ G∗L⋃

h∈S I
(R)
h (v) v ∈ G∗R.

We claim that (G, 
, I) is a (k, k0, β)-tree descriptor for

(g, T , I). Indeed, ((Ih, Th))h∈S is a (c, 1/(6k), 2−�(r))-
splittable collection of T , and, by (8) and because |T0| ≥
|T |

2−�(r)
∑
h∈S

|Ih| ≥
α

2
·
∑
h∈S

|Ih|

≥ |T |
4 · P (k, 1/δ) · (2k�log(1/β)�)2k0

=
|T |

poly(k, log(1/δ))k
.

The remaining requirements in the recursive defni-

tion of a tree descriptor (see Definition II.7) fol-

low as (G∗L, 

∗, I(L)

h ) is a (k, c, β)-tree descriptor for

(g,Lh, Lh) and (G∗L, 

∗, I(R)

h ) is a (k, k0 − c, β)-tree

descriptor for (g,Rh, Rh) for every h ∈ S. Since

β = α/B(k0 − 1, 1/α) ≥ δ/B(k0, 1/δ), it follows

that (G, 
, I) is a (k, k0, δ/B(k0, 1/δ))-tree descriptor

for (g, T , I).
It remains to lower-bound the size of T . Using (7) and

(8), we have

|T | =
∑
h∈S

|Rh| ≥
1

B(k0 − 1, 1/α)
·
∑
h∈S

|Th|

≥ α

B(k0 − 1, 1/α)
·
∑
h∈S

|Ih|

≥ |T0|
2 · P (k, 1/δ)(2k�log(1/β)�)2k0B(k0 − 1, 1/α)

≥ |T0|
B(k0, 1/δ)

.

This completes the proof of the inductive claim in this

case.

E. Proof of Theorem II.2

We now prove Theorem II.2. For the rest of this section, let

k, k0 ∈ �, with 1 ≤ k0 ≤ k, be fixed, and let f : [n] → �

be a fixed function. Let T0 be a set of δn disjoint monotone

subsequences of f of length k0. We apply Lemma II.3 to the

set T0; this specifies an integer c ∈ [k0 − 1] and a subset T
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of at least δn/k2 disjoint monotone subsequences of length

k0 satisfying the conclusion of Lemma II.3.

Definition II.9. Let (i1, . . . , ik0
) ∈ [n]k0 be a monotone

subsequence with a c-gap. We say that (i1, . . . , ik0
) is at

scale t if 2t ≤ ic+1− ic ≤ 2t+1, where t ∈ {0, . . . , �log n�}.
Definition II.10. Let (i1, . . . , ik0

) ∈ [n]k0 be a monotone
subsequence with a c-gap. For γ ∈ (0, 1), we say that � ∈ [n]
γ-cuts (i1, . . . , ik0) at c with slack if

ic + γ(ic+1 − ic) ≤ � ≤ ic+1 − γ(ic+1 − ic). (9)

We hereafter consider the parameter setting of γ := 1/3.

For � ∈ [n], t ∈ {0, . . . , �log n�}, and any subset U ⊂ T of

disjoint (12 . . . k0)-patterns in f let

At(�, U) = {(i1, . . . , ik0
) ∈ U :

(i1,...,ik0
) is at

scale t and is γ-cut
at c with slack by �

} (10)

We note that for each (i1, . . . , ik0
) ∈ At(�, U), the index ic+1

is in [�, � + 2t+1], and since At(�, U) is made of disjoint

monotone sequences, |At(�, U)| ≤ 2t+1.

Lemma II.11. For every � ∈ [n], t ∈ {0, . . . , �log n�}, and
U ⊂ T ,
• Every (i1, . . . , ik0

) ∈ At(�, U) satisfies

�− (k − 1)2t+1 ≤ i1, . . . , ic ≤ �− γ2t

�+ γ2t ≤ ic+1, . . . , ik0
≤ �+ (k − 1)2t+1.

• Let t1 ≥ t2+1+log(1/γ)+ log(c+1), (i1, . . . , ik0) ∈
At1(�, U) and (j1, . . . , jk0

) ∈ At2(�, U). Then
f(jc+1) < f(ic+1).

Proof: Fix any � ∈ [n], t ∈ {0, . . . , �log n�} and U ⊂ T .

To establish the first bullet, consider any (i1, . . . , ik0
) ∈

At(�, U). By definition of a c-gap sequence, we have

i1 ≥ ic+1 − c(ic+1 − ic) ≥ �− (k − 1)2t+1,

using ic+1 − ic ≤ 2t+1 and ic+1 ≥ �. By (9), we have

ic ≤ � − γ2t (using ic+1 − ic ≥ 2t). The first inequality

follows as i1 < · · · < ic. The inequality for ic+1, . . . , ik0

follows similarly.

For the second bullet, let (i1, . . . , ik0) ∈ At1(�, U) and

(j1, . . . , jk0
) ∈ At2(�, U) and suppose that 2t1 ≥ 2t2+1 · (c+

1)/γ. We have ic ≤ � − γ2t1 and jc ≥ � − 2t2+1 (using

(9) and (10)), from which it follows that jc > ic. Similarly,

i1 < ic ≤ � − γ2t1 and j1 ≥ � − (c − 1)2t2+1, implying

that j1 > i1, and ic+1 ≥ � + γ2t1 and jc+1 ≤ � + 2t2+1,

which implies that ic+1 > jc+1. The inequality f(jc+1) <
f(ic+1) follows from the assumption that T satisfies (3) from

Lemma II.3.

The proof of Theorem II.2 will follow by

considering a random � ∼ [n] and the sets

A1(�, T ), . . . , A�logn�(�, T ). By looking at how the

sizes of the sets A1(�, T ), . . . , Alogn−1(�, T ) vary, we will

be able to say that � is the start of a growing suffix, or

identify a splittable interval. Towards this goal, we first

establish a simple lemma; here v(�, U) is defined to be∑�logn�
t=0 |At(�, U)|/2t.

Lemma II.12. Let U ⊂ T be any subset and � ∼ [n] be
sampled u.a.r. Then E�∼[n][v(�, U)] ≥ |U |

3n .

Proof: Fix a sequence i = (i1, . . . , ik0
) ∈ U , and let

t(i) ∈ {0, . . . , �log n�} be its scale. Then, the probability

(over a uniformly random � in [n]) that i belongs to

At(i)(�, U) is lower bounded as

Pr
�∼[n]

[i ∈ At(i)(�, U)] ≥ (1− 2γ)2t(i)

n
=

2t(i)

3n
.

Therefore,
∑logn−1

t=0

∑
i∈U : t(i)=t Pr�∼[n][i ∈

At(�, U)]/2t ≥ |U |/(3n), or, equivalently,

since we have Pr�∼[n][i ∈ At(�, U)] = 0

for t 
= t(i), E�∼[n]

[∑logn−1
t=0

|At(�,U)|
2t

]
=

E�∼[n]

[∑logn−1
t=0

∑
i∈U

�{i∈At(�,U)}
2t

]
≥ |U |

3n , establishing

the lemma.

We next establish an auxiliary lemma that we will use in

order to find growing suffixes.

Lemma II.13. Let � ∈ [n] and U ⊂ T be such that every
t ∈ {0, . . . , �log n�} satisfies |At(�, U)|/2t ≤ β. Then, if
�′ ∈ [n] is any index satisfying

max{ic : (i1,...,ik0
)∈At(�,U),

t∈{0,...,�logn� } ≤ �′ ≤ �, (11)

then �′ is the start of an (4β, v(�, U)/(12 log k))-growing
suffix.

Proof: Let Δ = 1 + log(1/γ) + log(c + 1), and

notice that 3 ≤ Δ ≤ 3 log k. Then, there exists a set

T ⊆ {0, . . . , �log n�} such that

1) All distinct t, t′ ∈ T satisfy |t− t′| ≥ Δ; and,

2)
∑

t∈T
|At(�,U)|

2t ≥ 1
Δ+1

∑logn−1
t=0

|At(�,U)|
2t = v(�,U)

Δ+1 .

(Such a set exists by an averaging argument.) Now, consider

the sets, for t ∈ {0, . . . , �log n�},

Dt(�) =

{
{ic+1 : (i1, . . . , ik0

) ∈ At(�, U)} if t ∈ T
∅ o.w.

Considering any �′ ∈ [n] satisfying (11), we have the

following for all t ∈ {0, . . . , �log n�} with Dt(�) 
= ∅:
�− 2t+1 ≤ �′ ≤ �; minDt(�) ≥ �+2t/3; and maxDt(�) ≤
�′ + 2t+1. Therefore, Dt(�) ⊂ St−1(�

′) ∪ St(�
′) ∪ St+1(�

′).
(Recall that St(a) = [a + 2t−1, a + 2t).) For each t ∈ T ,

let n(t) ∈ {t − 1, t, t + 1} satisfying |Dt(�) ∩ Sn(t)(�
′)| ≥

|Dt(�)|/3, and notice that all n(t) ∈ {0, . . . , �log n�} are

distinct since Δ ≥ 3.

The first condition in Definition II.4 holds as the den-

sities of Dt(�) ∩ Sn(t)(�
′) in the corresponding inter-

vals Sn(t)(�
′) are upper bounded by |Dt(�)|/|Sn(t)(�

′)| ≤
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|At(�, U)|/2t−2 ≤ 4β, and the sum of these densities satisfies∑
t∈T

|Dt(�) ∩ Sn(t)(�
′)|

|Sn(t)(�′)|
≥

∑
t∈T

|Dt(�)|
3 · 2t =

∑
t∈T

|At(�, U)|
3 · 2t

≥ v(�, U)

3(Δ + 1)
,

which is at least v(�, U)/(12 log k). The second condition

in Definition II.4 holds, because for any choice of b ∈
Dt(�), b

′ ∈ Dt′(�) with t < t′, we have t′ ≥ t + Δ (by

the choice of T ), and hence f(b) < f(b′) by the second

item of Lemma II.11.

Lemma II.14. For every η > 0, there exists a subset U ⊂ T
such that every (i1, . . . , ik0

) ∈ U has ic as the start of an
(1, η)-growing suffix, and every � ∈ [n] satisfies v(�, T \U) ≤
12η log(k).

Proof: Define sets Uj , elements �j , and k0-tuples

(ij,1, . . . , ij,k0
) recursively as follows. Set U0 := ∅, and given

a set Uj−1, if v(�, T \ Uj−1) ≤ 12η log k for every � ∈ [n],
stop; otherwise, let �j ∈ [n] be such that v(�j , T \ Uj−1) >
12η log k and define Uj = Uj−1 ∪ {(ij,1, . . . , ij,k0

)}, where

ij,c = max{ic : (i1,...,ik0
)∈T\Uj and

(i1,...,ik0
) is γ-cut by �}.

Let j∗ be the maximum j for which Uj was defined, and set

U := Uj∗ . Every k0-tuple in U is of the form (ij,1, . . . , ij,k0)
for some j ≤ j∗. By Lemma II.13, applied with � = �j ,

U = T \ Uj−1, ij,c, it follows that ij,c is the start of an

(1, η)-growing suffix, for every j for which Uj was defined.

Lemma II.14 follows.

We let C > 0 be a large enough constant. Let U ⊂ T
be the set obtained from Lemma II.14 with η = Ck, and

suppose that |U | ≥ |T |/2. Then, we may let α = 1 and H =
{ic : (i1, . . . , ik0) ∈ U}. Notice that every index in H is the

start of an (α,Ckα)-growing suffix, and since |H| ≥ |T |/2,

we obtain the first item in Theorem II.2. Suppose then, that

|U | < |T |/2, and consider the set V = T \U . By definition of

V , we now have v(�, V ) ≤ 12Ck log k for every � ∈ [n]. Let

b0 be the largest integer which satisfies 2b0 ≤ 12Ck log k and

b1 be the smallest integer which satisfies 2−b1 ≤ δ/(12k2),
so 2b0 � 2b1 � k2/δ. For −b0 ≤ j ≤ b1, consider the

pairwise-disjoint sets

Bj =
{
� ∈ [n] : 2−j ≤ v(�, V ) ≤ 2−j+1

}
, (12)

and note that by Lemma II.12, since |V | ≥ |T |/2 ≥ δn/2k2,

1

n

b1∑
j=−b0

|Bj | · 2−j+1 ≥ 1

n

∑
�∈[n]

v(�, V ) ≥ δ

6k2
.

Thus, denoting μ := δ
6k2(b1+b0+1) � δ

k2 log(k/δ) , there is an

integer −b0 ≤ j∗ ≤ b1 that satisfies

|Bj∗ | · 2−j∗ ≥ μn. (13)

Lemma II.15. There exists a deterministic algorithm,
GreedyDisjointIntervals(f,B, j), which
takes three inputs: a function f : [n] → �, a set
B ⊆ [n] of integers, and an integer j ∈ [−b0, b1],
and outputs a collection I of interval-tuple pairs
or a subset H ⊆ B. An execution of the algorithm
GreedyDisjointIntervals(f,Bj∗ , j

∗) where μ, Bj∗

and j∗ are defined in (13), satisfies one of the following two
conditions, where C > 0 is a large constant.
• The algorithm returns a set H ⊆ B of indices that start

a (4 · 2−j∗/(Ck log k), 2−j∗/(12 log k))-growing suffix,
and |H| ≥ 2j

∗−1μn; or
• The algorithm returns a (c, 1/(6k), 2−j∗/(8Ck2 log k))-

splittable collection (I1, T1), . . . , (Is, Ts), where∑s
h=1 |Ih| ≥ 2j

∗−2μn.

Subroutine GreedyDisjointIntervals(f,B, j)

Input: A function f : [n]→ �, a set B ⊆ [n] and an integer
j, such that every � ∈ B satisfies 2−j ≤ v(�, V ) ≤ 2−j+1.
Output: a set of disjoint intervals-tuple pairs
(I1, T1), . . . , (Is, Ts) or a subset H ⊆ B.

1) Let I be a collection of interval-tuple pairs, which is
initially empty.

2) Consider the map q : B → {0, . . . , 	log n
} ∪ {⊥}
defined by

q(�) =

⎧⎨
⎩
⊥ if

∀t∈{0,...,�logn�},
|At(�,V )|

2t
< 2−j

Ck log k

max
{
t : |At(�,V )|

2t
≥ 2−j

Ck log k

}
o.w.

.

3) Let H = {� ∈ B : q(�) = ⊥}, and return H if
|H| ≥ |B|/2.

4) Otherwise, let D ← B \H and repeat the following
until D = ∅:
• Pick any � ∈ D where q(�) = max�′∈D q(�′),

and let t = q(�).
• Let I ← [�− k2t+1, �+ k2t+1] ∩ [n] and T ′ ←

At(�, V ).
• Obtain T ′′ from T ′ as follows: find a value ν such

that at least |T ′|/2 of tuples (i1, . . . , ik0) ∈ T ′

satisfy f(ic) ≤ ν, and at least |T ′|/2 of tuples
(i1, . . . , ik0) ∈ T ′ satisfy f(ic+1) > ν (ν
could be taken to be the median of the multiset
{f(ic) : (i1, . . . , ik0) ∈ T ′}). Recombine these
prefixes and suffixes (matching them in one-to-
one correspondence) to obtain a set of disjoint
k0-tuples T ′′ of size |T ′′| ≥ |T ′|/2.

• Append (I, T ′′) to I, and let D ← D \ [�− 2 ·
k2t+1, �+ 2 · k2t+1].

5) return I.

Figure 8. Description of the GreedyDisjointIntervals subroutine.

Proof: It is clear that the algorithm always terminates,

and outputs either a collection I of interval-tuple pairs or

a subset H ⊆ B. Suppose that the input of the algorithm,

(f,Bj∗ , j
∗), satisfies (13), and consider the two possible
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types of outputs.

If the algorithm returns a set H ⊆ Bj∗ (in step 3),

then we have |H| ≥ |B|
2 ≥ 1

2 · 2j
∗
μn (the second

inequality by (13)). (To see why the elements of H start

(4 ·2−j∗/(Ck log k), 2−j∗/(12 log k))-growing suffixes (Def-

inition II.4), notice that we may apply Lemma II.13 with

�′ = � and β = 2−j∗/(Ck log k).)
If, instead, the algorithm returns a collection I =

((Ih, Th) : h ∈ [s]) in step 5, we have that, by construction,

each Th is obtained from a set T ′h = At(�, V ) for some �
with q(�) 
= ⊥. Consequently, for all h ∈ [s] we have

|Th|
|Ih|

≥ |T ′h|
2|Ih|

≥ |Aq(�)(�, V )|
4k · 2q(�)+1

≥ 1

8k
· 2−j∗

Ck log k
. (14)

(from the definition of q(�)). To argue that
∑s

h=1 |Ih| is

large, observe that, since we did not output the set H ,

we must have had |D| > |Bj∗ |/2. Since, when adding

(Ih, Th) (corresponding to some �h) to I we remove at

most 4k2q(�)+1 = 2|Ih| elements from D, in order to

obtain an empty set D and reach step 5 we must have∑s
h=1 |Ih| ≥ |Bj∗ |/4, which is at least 2j

∗
μn/4 by (13).

Moreover, the sets Ih are disjoint: this is because of our

choice of maximal q(�) in step 4, which ensures that after

removing [�−2k2q(�)+1, �+2k2q(�)+1] in step 4 there cannot

remain any �′ ∈ D with [�′−k2q(�
′)+1, �′+k2q(�

′)+1]∩Ih 
=
∅.

Thus, it remains to prove that I is a

(c, 1/(6k), 2−j∗/(8Ck2 log k))-splittable collection. To

do so, consider any (Ih, Th) ∈ I. The first condition

in Definition II.5 of splittable pairs, namely that

|Th|/|Ih| ≥ 2−j∗/(8Ck2 log k) holds due to (14). Recalling

step 4, we have Ih = [� − k2t+1, � + k2t+1] for some �,
where t = q(�), and Th obtained from T ′h = At(�, V ). Set

Lh := [�− k2t+1, �− γ2t],

Mh := (�− γ2t, �+ γ2t),

Rh := [�+ γ2t, �+ k2t+1].

This is a partition of Ih into three adjacent intervals whose

size is at least |Ih|/(6k) (recall that γ = 1/3). Moreover, for

every (i1, . . . , ik0
) ∈ T ′h, the c-prefix (i1, . . . , ic) is in (Lh)

c

while the (k0−c)-suffix (ic+1, . . . , ik0
) is in (Rh)

k0−c, by the

first item of Lemma II.11. Since Th is obtained from a subset

of these very prefixes and suffices, the conclusion holds for Th

as well. Moreover, our construction of Th from T ′h guarantees

that the last requirement in Definition II.5 holds: for every pre-

fix (i1, . . . , ic) of a tuple in Th and suffix (j1, . . . , jk0−c) of a

tuple in Th, we have f(ic) < f(j1). This shows that (Ih, Th)
is (c, 1/(6k), 2−j∗/(8Ck2 log k))-splittable, and overall that

I is a (c, 1/(6k), 2−j∗/(8Ck2 log k))-splittable collection as

claimed.

Theorem II.2 follows by executing

GreedyDisjointIntervals(f,Bj∗ , j
∗). If

the algorithm outputs a set H ⊆ Bj∗ , set

α = 4 ·2−j∗/(Ck log k), so we have identified a subset H of

(α,C ′αk)-growing suffixes (where C ′ = C/48) satisfying

α|H| ≥ δn/poly(k, log(1/δ)) = |T0|/poly(k, log(1/δ))
(using the definition of μ before (13)). Otherwise, set

α = 2−j∗/(8Ck2 log k), and the algorithm outputs a

(c, 1/(6k), α)-splittable collection {(I1, T1), . . . , (Is, Ts)}
of the set T ′ := ∪h∈[s]Th. Clearly, E(T ′) ⊆ E(T ),
and moreover, α

∑s
h=1 |Ih| ≥ δn/poly(k, log(1/δ)) =

|T0|/poly(k, log(1/δ)). In fact, 2−j∗ = Ω(δ/k2) and so

α ≥ Ω(δ/(k4 log k)).

III. THE ALGORITHM

A. High-level plan

We now present the algorithm for finding monotone

subsequences of length k.

Theorem III.1. Consider any fixed value of k ∈ �.
There exists a non-adaptive and randomized algorithm,
Samplerk(f, ε), which takes two inputs: query access to a
function f : [n] → � and a parameter ε > 0. If f is ε-far
from (12 . . . k)-free, then Samplerk(f, ε) finds a (12 . . . k)-
pattern with probability at least 9/10. The query complexity
of Samplerk(f, ε) is at most

1

ε

(
log n

ε

)�log2 k�
· poly(log(1/ε)) .

The particular dependence on k and log(1/ε) obtained

from Theorem III.1 is on the order of (k log(1/ε))O(k2).

The algorithm is divided into two cases, corresponding to the

two outcomes from an application of Theorem II.3. Suppose

f : [n]→ � is a function which is ε-far from being (12 . . . k)-
free. By Theorem II.3 one of the followin holds, where C > 0
is a large constant.

• Case 1: there exist α ≥ ε/polylog(1/ε) and a set

H ⊆ [n] of (α,Ckα)-growing suffixes where α|H| ≥
εn/polylog(1/ε), or

• Case 2: there exist a set T ⊆ [n]k of disjoint,

length-k monotone sequences, that satisfies |T | ≥
εn/(polylog(1/ε)), and a k-tree descriptor (G, 
, I)
which represents (f, T, [n]).

Theorem III.1 follows from analyzing the two cases indepen-

dently, and designing an algorithm for each.

Lemma III.1 (Case 1). Consider any fixed value of
k ∈ �, and let C > 0 be a large enough constant.
There exists a non-adaptive and randomized algorithm,
Sample-Suffixk(f, ε) which takes two inputs: query
access to a function f : [n] → � and a parameter ε > 0.
Suppose there exist α ∈ (0, 1) and a set H ⊆ [n] of (α,Ckα)-
growing suffixes satisfying α|H| ≥ εn/polylog(1/ε),14

then Sample-Suffixk(f, ε) finds a length-k monotone

14Here we think of k as fixed, so polylog(1/ε) is allowed to depend on
k. In this lemma, the expression stands for (k log(1/ε))k .
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subsequence of f with probability at least 9/10. The query
complexity of Sample-Suffixk(f, ε) is at most

log n

ε
· polylog(1/ε).

Lemma III.1 above, which corresponds to the first case of

Theorem II.3, is proved in Section III-B.

Lemma III.2 (Case 2). Consider any fixed value of
k ∈ �. There exists a non-adaptive, randomized al-
gorithm, Sample-Splittablek(f, ε) which takes two
inputs: query access to a sequence f : [n] → � and
a parameter ε > 0. Suppose there exists a set T ⊆
[n]k of disjoint, length-k monotone subsequences of f
where |T | ≥ εn/polylog(1/ε),15 as well as a (k, k, α)-
tree descriptor (G, 
, I) that represents (f, T, [n]), where
α ≥ ε/polylog(1/ε), then Sample-Splittablek(f, ε)
finds a length-k monotone subsequence of f with
probability at least 9/10. The query complexity of
Sample-Splittablek(f, ε) is at most

1

ε

(
log n

ε

)�log2 k�
· polylog(1/ε).

Proof of Theorem III.1 assuming Lemmas III.1
and III.2: The algorithm Samplerk(f, ε)
executes both Sample-Suffixk(f, ε) and

Sample-Splittablek(f, ε); if either algorithm

finds a length-k monotone subsequence of f , output such

a subsequence. We note that by Theorem II.3, either case

1, or case 2 holds. If case 1 holds, then by Lemma III.1,

Sample-Suffix(f, ε) outputs a length-k monotone

subsequence with probability at least 9/10, and if case 2

holds, then by Lemma III.2, Sample-Splittablek(f, ε)
outputs a length-k monotone subsequence with probability at

least 9/10. Thus, regardless of which case holds, a length-k
monotone subsequence will be found with probability at

least 9/10. The query complexity then follows from the

maximum of the two query complexities.

B. Proof of Lemma III.1: an algorithm for growing suffixes

We now prove Lemma III.1. Let C > 0 be a large constant,

and let k ∈ � be fixed. Let ε > 0 and f : [n] → � be a

function which is ε-far from (12 . . . k)-free. Furthermore, as

per the assumption of case 1 of the algorithm, we assume that

there exists a parameter α ∈ (0, 1) as well as a set H ⊆ [n] of

(α,Ckα)-growing suffixes, where α|H| ≥ εn/polylog(1/ε).
The algorithm, which underlies the result of Lemma III.1,

proceeds by sampling uniformly at random an index

a ∼ [n], and running a sub-routine which we call

Growing-Suffix, with a as input. The sub-routine is

designed so that if a is the start of an (α,Ckα)-growing

suffix then the algorithm will find a length-k monotone

15in this case the polylog(1/ε) term stands for (k log(1/ε))O(k2)

Subroutine Growing-Suffix (f, α0, a)

Input: Query access to a function f : [n]→ �, a parameter
α0 ∈ (0, 1), and an index a ∈ [n].
Output: a subset of k indices i1 < · · · < ik where f(i1) <
· · · < f(ik), or fail.

1) Let ηa = �log(n− a)� and consider the sets Sj(a) =
(a+ �j−1, a+ �j ] ∩ [n] for all j ∈ [ηa] and �j = 2j .

2) For each j ∈ [ηa], let Aj ⊆ Sj(a) be obtained by
sampling uniformly at random T := 1/α0 times from
Sj(a).

3) For each j ∈ [ηa] and each b ∈ Aj , query f(b) .
4) If there exist indices i1, . . . , ik ∈ A1 ∪ · · · ∪ Aηi

satisfying i1 < · · · < ik and f(i1) < · · · < f(ik),
return such indices i1, . . . , ik. Otherwise, return fail.

Figure 9. Description of the Growing-Suffix subroutine.

subsequence of f with probability at least 99/100. The sub-

routine, Growing-Suffix, is presented in Figure 9.

Lemma III.3. Let f : [n]→ � be a function, let α, α0, β ∈
(0, 1) be parameters satisfying β ≥ Ckα and α0 ≤ α,
and suppose that a ∈ [n] starts a (α, β)-growing suffix
in f . Then Growing-Suffix(f, α0, a) finds a length-k
monotone subsequence of f with probability at least 99/100.

Proof: Recall, from Definition II.4, that if a ∈ [n]
is the start of a (α, β)-growing suffix of f then there

exist a collection of sets, D1(a), . . . , Dηa(a) and param-

eters δ1(a), . . . , δηa
(a) ∈ (0, α], where every j ∈ [ηa]

has Dj(a) ⊆ Sj(a), |Dj(a)| = δj(a) · |Sj(a)|, and∑ηa

j=1 δj(a) ≥ β. Further, if, for some j1, . . . , jk ∈ [ηi],
we have j1 < · · · < jk and for all � ∈ [k], Aj� ∩Dj�(a) 
= ∅,
then the union Dj1(a) ∪ . . . ∪ Djk(a) contains a length-k
monotone subsequence. In view of this, for each j ∈ [ηa],
consider the indicator random variable

Ej := 1{Aj ∩Dj(a) 
= ∅},

and observe that by the foregoing discussion

Growing-Suffix(f, α0, a) samples a length-k monotone

subsequence of f whenever
∑ηa

j=1 Ej ≥ k. We note that the

Ej’s are independent, and that

Pr[Ej = 1] = 1− (1− δj(a))
T ≥ min

{
T · δj(a)

10
,
1

10

}
.

Let J ⊆ [ηa] be the set of indices satisfying T · δj(a) ≥ 1
(recall that T = 1/α0). Then, if |J | ≥ Ck we have

E

⎡⎣ ηa∑
j=1

Ej

⎤⎦ ≥ Ck

10
,

since every variable j ∈ J contributes at least 1/10. On the

other hand, if |J | ≤ Ck/2, then, since δj(a) ≤ α for every
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j, we have
∑

j∈[ηa]\J δj(a) ≥ β − |J | · α ≥ β/2 (using

β ≥ Ckα) so that

E

⎡⎣ ηa∑
j=1

Ej

⎤⎦ ≥ E

⎡⎣ ∑
j∈[ηa]\J

Ej

⎤⎦ ≥ T

10
· β
2
≥ Ck

20
.

In either case, E[
∑

j∈[ηa]
Ej ] ≥ Ck/20, and since the events

Ei are independent, via a Chernoff bound we obtain that∑
j Ej is larger than k with probability at least 99/100.

Subroutine Sample-Suffixk (f, ε)

Input: Query access to a function f : [n] → �, and a
parameter ε ∈ (0, 1).
Output: a subset of k indices i1 < · · · < ik where
f(i1) < · · · < f(ik), or fail.

1) Repeat the following for all j = 1, . . . , O(log(1/ε)),
letting αj = 2−j :

• For tj = αj · polylog(1/ε)/ε iterations, sam-
ple a ∼ [n] uniformly at random and run
Growing-Suffix(f, αj ,a), and if it returns
a length-k monotone subsequence of f , return
that subsequence.

2) If the algorithm has not already output a monotone
subsequence, return fail.

Figure 10. Description of the Sample-Suffix subroutine.

With this in hand, we can now establish Lemma III.1.

Proof of Lemma III.1: First, note that the query

complexity of Sample-Suffixk(f, ε) is

O(log(1/ε))∑
j=1

tj ·O(log n/αj) =
log n · polylog(1/ε)

ε
.

Consider the iteration of j where αj ≤ α ≤ 2αj (note that

since α ≥ ε/polylog(1/ε), there exists such j). Then, since

|H| ≥ ε/(α · polylog(1/ε)), we have that tj ≥ Cn/|H|
(for a sufficiently large constant C). Thus, with probability

at least 99/100, some iteration satisfies a ∈ H . When this

occurs, Growing-Suffix(f, αj ,a) will output a length-

k monotone subsequence with probability at least 99/100,

by Lemma III.3, and thus by a union bound we obtain the

desired result.

C. Proof of Lemma III.2: an algorithm for splittable intervals

We now prove Lemma III.2. We consider a fixed setting

of k ∈ � and ε > 0, and let f : [n]→ � be any sequence

which is ε-far from being (12 . . . k)-free. Furthermore, as

per case 2 of the algorithm, we assume that there exists a

set T ⊆ [n]k of disjoint length-k monotone subsequences of

f where

|T | ≥ εn

polylog(1/ε)
,

and (G, 
, I) is a (k, k, α)-tree descriptor which represents

(f, T, [n]), where α ≥ ε/polylog(1/ε). In what follows, we

describe a sub-routine, Sample-Splittablek(f, ε) in

terms of two parameters ρ, q ∈ �. The parameter ρ > 0 is

set to be sufficiently large and independent of n, satisfying

ρ ≥ ε

polylog(1/ε)
. (15)

One property which we will want to satisfy is that if we

take a random subset of [n] by including each element

independently with probability 1/(ρn), we will include

an element belonging to E(T ) with probability at least

1−1/(Ck), for a large constant C > 0. The parameter q will

be an upper bound on the query complexity of the algorithm,

which we set to a high enough value satisfying: q =

O

(
1
ρ

(
logn
ρ

)�log2 k�)
≤ 1

ε ·
(

logn
ε

)�log2 k�
· polylog(1/ε).

Subroutine Sample-Splittablek (f, ε)

Input: Query access to a sequence f : [n] → �, and a
parameter ε ∈ (0, 1).
Output: a subset of k indices i1 < · · · < ik where f(i1) <
· · · < f(ik), or fail.

1) Let r = 	log2 k
 and run
Sample-Helper(r, [n], ρ), to obtain a set
A ⊆ [n].

2) If |A| > q, return fail; otherwise, for each a ∈ A,
query f(a). If there exists a monotone sequence of
f of length k, then return that subsequence. If not,
return fail.

Figure 11. Description of the Sample-Splittable subroutine.

Subroutine Sample-Helper (r, I, ρ)

Input: An integer r ∈ �, an interval I ⊆ [n], and a
parameter ρ ∈ (0, 1).
Output: a subset of A ⊆ I .

1) Let A0 = ∅. For every index a ∈ I , let A0 ←
A0 ∪ {a} with probability 1/(ρ|I|).

2) If r = 0, return A0.
3) If r > 0, proceed with the following:

• For every index a ∈ A0, consider the O(log n)
intervals given by Ba,j = [a−�j , a+�j ], for j =
1, . . . , O(log n) and �j = 2j , and let Ra,j ←
Sample-Helper(r − 1, Ba,j , ρ).

• Let A be the set

A←
⋃

a∈A0, j=O(logn)

Ra,j .

• return the set (A0 ∪A) ∩ I .

Figure 12. Description of the Sample-Helper subroutine.

The descriptions of the main algorithm

Sample-Splittablek and the sub-routine

Sample-Helper, are given in Figure 11 and
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Figure 12. Note that, for any r ∈ �, if we let Dr

be the distribution of |A|, where A is the output of a

call to Sample-Helper(r, [n], ρ). Then, we have that

D0 = Bin(n, ρ), and for r > 0, Dr is stochastically

dominated by the random variable

y0∑
i=1

O(logn)∑
j=1

x
(i,j)
r−1 ,

where y0 ∼ Bin(n, 1/(ρn)) and x
(i,j)
r−1 ∼ Dr−1 for all i ∈ �

and j ∈ [O(log n)] are all mutually independent. As a result,

for r ≥ 1,

E [|A|] ≤ 1

ρ
· log n · E

x∼Dr−1

[x],

and since Ex∼D0 [x] = 1/ρ, we have:

E [|A|] ≤ 1

ρ

(
log n

ρ

)r

.

We may then apply Markov’s inequality to conclude that

|A| ≤ q with probability at least 99/100. As a result, we

focus on proving that the probability that the set A contains

a monotone subsequence of f of length k is at least 99/100.

This would imply the desired result by taking a union bound.

In addition to the above, we define another algorithm,

Sample-Helper∗, in Figure 13, which will be a helper
sub-routine. We emphasize that Sample-Helper∗ is not

executed in the algorithm itself, but will be useful in order

to analyze Sample-Helper.

Subroutine Sample-Helper∗ (r, I, ρ, I)
Input: An integer r ∈ �, an interval I ⊆ [n], a parameter
ρ ∈ (0, 1), and a collection of disjoint intervals I of [n].
Output: two subsets A,A0 ⊆ I .

1) Let A0 = ∅. For every index a ∈ I which lies inside
an interval in I, let A0 ← A0 ∪ {a} with probability
1/(ρ|I|).

2) If r = 0, return A0.
3) If r > 0, proceed with the following:

• For every index a ∈ A0, consider the O(log n)
intervals given by Ba,j = [a − �j , a + �j ],
for j = 1, . . . O(log n), and �j = 2j , and
let (Ra,j ,Ra,j,0) ← Sample-Helper∗(r −
1, Ba,j , ρ, I).

• Let A to be the set

A←
⋃

a∈A0, j=O(logn)

Ra,j .

• return the set (A ∩ I,A0 ∩ I).

Figure 13. Description of the Sample-Helper∗ subroutine.

Before proceeding, we require a “coupling lemma.” Its

main purpose is to prove the intuitive fact that if I0, I1 are

collections of disjoint intervals, and the latter is a refinement

of the former (namely, each intervals in I1 is contained in

an interval of I0), then Sample-Helper∗(r, [n], ρ, I0) is

more likely to find a length-k monotone subsequence than

Sample-Helper∗(r, [n], ρ, I1) does.

Lemma III.4. Let r ∈ � be an integer, f : [n] → �

a function, ρ ∈ (0, 1) a parameter, and I0 and I1
collections of disjoint intervals in [n], such that each
interval in I1 lies inside an interval from I0. Denote by
(A(i),A

(i)
0 ) the random pair of sets given by the output

of Sample-Helper∗(r, [n], ρ, Ii), for i = 0, 1. Lastly, let
E : P([n])×P([n])→ {0, 1} be any monotone function; that
is, it satisfies E(S1, S2) ≤ E(S′1, S′2) for any S1 ⊆ S′1 ⊆ [n]
and S2 ⊆ S′2 ⊆ [n]. Then,

Pr[E(A(0),A
(0)
0 ) = 1] ≥ Pr[E(A(1),A

(1)
0 ) = 1].

Proof: Consider an execution of

Sample-Helper∗(r, [n], ρ, I0) which outputs a pair

(A(0),A
(0)
0 ). Let A(1) and A(1) be the subsets of A(0)

and A(0), respectively, obtained by running a parallel

execution of Sample-Helper∗(r, [n], ρ, I1), which

follows the execution of Sample-Helper∗(r, [n], ρ, I0),
but whenever an element which is not in an interval of I1
is considered, it is simply ignored (i.e. it is not included

in A(0) or in A
(0)
0 and no recursive calls based on such

elements are made). It is easy to see that this coupling

yields a pair (A(1),A
(1)
0 ) with the same distribution as

that given by running Sample-Helper∗(r, [n], ρ, I1). As

E(·, ·) is increasing, if E(A(0),A
(0)
0 ) holds then so does

E(A(1),A
(1)
0 ). The lemma follows.

The following corollary is a direct consequence

of Lemma III.4. Specifically, we use the

facts that Sample-Splittablek(f, ε) calls

Sample-Helper(�log2 k�, [n], ρ), which is equivalent to

calling Sample-Helper(�log2 k�, [n], ρ, {[n]}), and that

finding a (12 . . . k)-pattern in I is a monotone event.

Corollary III.5. Let I be any collection of disjoint intervals
in [n]. Suppose (A,A0) is the random pair of sets given by
the output of Sample-Helper∗(�log2 k�, n, ρ, I), then,

Pr[Sample-Splittablek(f,ε) finds a
(12 . . . k)-pattern of f ] ≥

Pr[A contains a (12 . . . k)-pattern in f|I ].

Definition III.6. Let k0 ∈ � be a positive integer, and let
(G, 
) be a k0-tree descriptor (for this definition we do not
care about the third component of the descriptor, I). We say
that p ∈ [k0] is the primary index of (G, 
) if the leaf with
rank p under ≤G is the unique leaf whose root-to-leaf path
(u1, . . . , ud) satisfies the following: for each d′ ∈ [d − 1],
denoting the left and right children of ud′ by vl and vr,
respectively, ud′+1 is vl if the number of leaves in the subtree
rooted at vl is at least the number of leaves in the subtree
rooted at vr, and otherwise, ud′+1 is vr.
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From Corollary III.5, we note that Lemma III.2 follows

from the following lemma.

Lemma III.7. Let k, k0, n ∈ � satisfy 1 ≤ k0 ≤ k, let C
be a large enough constant, and let α, ρ ∈ (0, 1) be such
that ρ ≥ Cα and α ≥ ρ/polylog(1/ρ). Let f : [n]→ � be
a function, let I be a collection of disjoint intervals in [n],
for each I ∈ I let TI ⊆ Ik0 be a set of disjoint, length-k0
monotone subsequence of f , and suppose that∑

I∈I
|TI | ≥ αn/4.

Suppose that (G, 
) is a (k, k0, α)-weighted-tree such that
for every I ∈ I there exists a function II : V (G) → S(I),
such that (G, 
, II) is a tree descriptor that represents
(f, TI , I). Given any r ∈ � satisfying �log2 k0� ≤ r,
let (A,A0) be the pair of sets output by the sub-routine
Sample-Helper∗(r, [n], ρ, I). With probability at least
1− k0/(100k), there exist indices i1, . . . , ik0

∈ [n] with the
following properties.

1) (i1, . . . , ik0
) is a length-k0 monotone subsequence of

f .
2) There is an interval I ∈ I such that i1, . . . , ik0 ∈

I ∩ E(TI).
3) i1, . . . , ik0

∈ A and ip ∈ A0, where p is the primary
index of (G, 
).

Proof:
The proof proceeds by induction on k0. Consider the

base case, when k0 = 1. In this case, �log2 k0� = 0, so

for any r ≥ 0, Sample-Helper∗(r, [n], ρ, I) runs step 1.

As a result, Sample-Helper∗(r, [n], ρ, I) samples each

element inside an interval of I independently with probability

1/(ρn). In order to satisfy the requirements of the lemma

in this case, we need A0 to contain an element of ∪I∈ITI .

By the assumption on the size of this union, and because

each of the elements of the union lives inside some interval

from I, such an element will exist with sufficiently high

probability via a Chernoff bound.

For the inductive step, assume that Lemma III.7 is fulfilled

whenever k0 < K, for K ∈ � satisfying 1 < K ≤ k,

and we will prove, assuming this inductive hypothesis, that

Lemma III.7 holds for k0 = K. So consider a setting k0 = K.

Let I, (G, 
) and II be as in the statement of the lemma.

Denote the root of (G, 
) by vroot, and its left and right

children by vleft and vright. Let c be the number of leaves

in the subtree (Gleft, 
left) rooted at vleft, so k0 − c is the

number of leaves in the subtree (Gright, 
right) rooted at vright.
We shall assume that c ≥ k0 − c; the other case follows by

an analogous argument.

For each I ∈ I, the collection of pairs (J, TI,J), where

J ∈ II(vroot) and TJ = TI ∩ Jk0 is the restriction of TI to

J , is a (c, 1/(6k), α)-splittable collection of I . Let J be the

collection of all such intervals J (note that they are pairwise

disjoint and that J is a refinement of I). Let (LJ ,MJ , RJ)

be the partition of J into left, middle and right intervals,

respectively, and let T
(L)
J and T

(R)
J be sets of c-prefixes

and (k0 − c)-suffixes of k0-tuples from TI,J , as given by

Definition II.5. Set L = {LJ : J ∈ J }, R = {RJ : J ∈ J },

T (L) =
⋃

J∈J T
(L)
J , and T (R) =

⋃
J∈J T

(R)
J . Note that

(Gleft, 
left, IJ,left) is a (k, c, α)-tree descriptor for (f, TJ , J),
with appropriate IJ,left. Similarly, (Gright, 
right, IJ,right) is a

(k, k0 − c, α)-tree descriptor for (f, TJ , J), with appropriate

IJ,right.
We consider an execution of

Sample-Helper∗(r, [n], ρ, I) which outputs a random

pair of sets (A,A0). Let A(L) and A
(L)
0 be the subsets

of A and A0, respectively, obtained by running a parallel

execution of Sample-Helper∗(r, [n], ρ,L), where, as

in the proof of Lemma III.4, we follow the execution of

Sample-Helper∗(r, [n], ρ, I), but whenever an element

which is not in L is considered, we ignore it. As stated above,

this coupling yields a pair (A(L),A
(L)
0 ) with the distribution

given by running Sample-Helper∗(r, [n], ρ,L).
For a ∈ A

(L)
0 , and any j ∈ [O(log n)], let

(A(a,j),A
(a,j)
0 ) be the output of the recursive call (in-

side the execution of Sample-Helper∗(r, [n], ρ, I)) of

Sample-Helper∗(r − 1, Ba,j , ρ,R).
We define the collection:

S =

{
(S0, S) :

S0⊆S⊆E(T (L)),
∃i1,...,ic∈S, a (12 . . . c)-pattern with ip ∈ S0,

∃J∈J s.t. i1,...,ic∈LJ

}
.

For each (S0, S) ∈ S, we let a(S0, S) ∈ E(T (L)) be some

ip ∈ S such that there exist c−1 indices i1, . . . , ip−1, ip+1, ic,

such that (i1, . . . , ic) forms a (12 . . . c)-pattern in S, and

i1, . . . , ip ∈ LJ for some J ∈ J . Let seg(S0, S) be this

interval J , and let len(S0, S) ∈ [O(log n)] be the smallest

j for which RJ ⊆ Ba,j , where a = a(S0, S).
Let EL be the event that(

A(L) ∩ E(T (L)),A
(L)
0 ∩ E(T (L))

)
∈ S,

and let EL(S0, S) be the event that

A(L) ∩ E(T (L)) = S0 A
(L)
0 ∩ E(T (L)) = S,

so EL = ∪(S0,S)∈SEL(S0, S), and the events EL(S0, S) are

pairwise disjoint.

By the induction hypothesis, applied with the family

{LJ : J ∈ J } and the corresponding sets T
(L)
J (using∑

J∈J |T
(L)
J | = ∑

J∈J |TJ | ≥ αn/4), we have

Pr[EL] ≥ 1− c/(100k).

Let ER(a, j) be the event that a ∈ A0, and in the

recursive run of Sample-Helper∗(r − 1, Ba,j , ρ,R) in-

side Sample-Helper∗(r, [n], ρ, I), there exist indices

i′1, . . . , i
′
k0−c such that

• (i′1, . . . , i
′
k0−c) form a length (k0 − c)-monotone subse-

quence.
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• i′1, . . . , i
′
k0−c ∈ E(T

(R)
J ), where J is the interval in J

with i ∈ J .

• i′1, . . . , i
′
k0−c ∈ A(a,j) and i′q ∈ A

(a,j)
0 , where q is the

primary index of (Gright, 
right).

Let FR(a, j) be the event that in a run of

Sample-Helper∗(r − 1, Ba,j , ρ,R), there exist

i′1, . . . , i
′
k0−c as above. Fix some (S0, S) ∈ S, and

let a = a(S0, S), J = seg(S0, S) and j = len(S0, S). We

claim that

Pr[ER(a, j) | EL(S0, S)] = Pr[FR(a, j)].

Indeed, by conditioning on EL(S0, S) we know that a ∈ A0,

so there will be a recursive run of Sample-Helper∗(r −
1, Ba,j , ρ,R), and moreover the event EL(S0, S) will have

no influence on the outcomes of this run.

Note that |T (R)
J | ≥ α|RJ | ≥ α|Ba,J |/4. By the induction

hypothesis, applied with the interval Ba,J in place of [n],

the family {RJ} and the corresponding set T
(R)
J , and the

tree (Gright, 
right), we find that Pr[FR(a, j)] ≥ 1 − (k0 −
c)/(100k). We note that if both EL(S0, S) and ER(a, j)
hold, then there are indices i1, . . . , ic, i

′
1, . . . , i

′
k0−c such that

• (i1, . . . , ic) is a length-c monotone subsequence

in E(T
(L)
J ), and (i′1, . . . , i

′
k0−c) is a length-c

monotone subsequence in E(T
(R)
J ). In particular,

(i1, . . . , ic, i
′
1, . . . , i

′
k0−c) is a length-k0 monotone sub-

sequence that lies in E(Tj).
• i1, . . . , ic, i

′
1, . . . , i

′
k0−c ∈ A and ip ∈ A0 (recall that p

is the primary index of both G and Gleft).

I.e. if these two events hold, then the requirements ot the

lemma are satisfied. It follows that the requirements ot the

lemma are satisfied with at least the following probability,

using the fact that the events EL(S0, S) are disjoint.∑
(S0,S)∈S

Pr[ER(a(S0, S),len(S0, S)) and EL(S0, S)]

≥
∑

(S0,S)∈S
Pr[FR(a(S0, S),len(S0, S))]Pr[EL(S0, S)]

≥
(
1− k0 − c

100k

)
·

∑
(S0,S)∈S

Pr[EL(S0, S)]

≥
(
1− k0 − c

100k

)
·Pr[EL]

≥
(
1− k0 − c

100k

)
·
(
1− c

100k

)
≥ 1− k0

100k
.

This completes the proof of Lemma III.7.

IV. LOWER BOUNDS

In this section, we prove our lower bound for non-

adaptive testing of (12 . . . k)-freeness with one-sided error,

Theorem I.2. Below we give a precise quantitative version of

our lower bound statement for the case where k and n are

both a power of 2, from which one can derive the general

case, as we shall explain soon.

Theorem IV.1. Let k ≤ n ∈ � be powers of 2 and let
0 < p < 1. There exists a constant ε0 > 0 such that any non-
adaptive algorithm which, given query access to a function
f : [n] → � that is ε0-far from (12 . . . k)-free, outputs a
length-k monotone subsequence with probability at least p,
must make at least p

(
log2 n
log2 k

)
queries. Moreover, one can take

ε0 = 1/k.

As is usual for arguments of this type, to prove The-

orem IV.1 we follow Yao’s minimax principle [40]. We

construct a distribution Dn,k over sequences that are (1/k)-
far from (12 . . . k)-free, such that any deterministic algorithm,

that makes fewer than p
(
log2 n
log2 k

)
queries, fails to find a

(12 . . . k)-copy in a sequence drawn from this distribution,

with probability larger than 1 − p. Here, a deterministic

non-adaptive algorithm that makes q queries amounts to

deterministically picking a q-element subset Q of [n] in

advance (without seeing any values in the sequence), and

querying all elements of Q.

Handling general k and n.: We first explain how to

prove our general lower bound, Theorem I.2, using the lower

bound distribution Dn,k of the case where n and k are

powers of 2, given in Theorem IV.1, as a black box. The

reduction relies on standard “padding” techniques. Given

integers k, n with k ≤ n, write k = 2h+ t for h, t ∈ � with

t < 2h, and let k′ = 2h. Let n′ be the largest power of 2
which is not larger than nk′/k, and note that n′ ≥ n/4 and

k′ ≤ n′. We construct our lower bound distribution Dn,k

as follows. Given any f ′ : [n′]→ � in Dn′,k′ , we partition

the set {n′ + 1, n′ + 2, . . . , n} into t consecutive intervals

I1, . . . , It, each of size at least n′/k′, and extend f ′ to a

sequence f : [n]→ � satisfying the following conditions.

• f(x) = f ′(x) for any x ∈ [n′].
• f is decreasing within any Ii, that is, f(x) > f(y) for

x < y ∈ Ii.
• f(x) < f(y) for any x ∈ [n′] and y ∈ I1, and for any

x ∈ Ii and y ∈ Ij where i < j.

Clearly, we can construct such a sequence f from any given

sequence f ′. Moreover, it is possible to make sure that the

values f(x) with x ∈ [n] are distinct, and thus by relabeling f
can be taken to be a permutation. Furthermore, any (12 . . . k′)-
copy in f ′ can be extended to a (12 . . . k)-copy in f by

appending exactly one arbitrary element from each Ii to it,

for a total of t = k − k′ additional elements.

Building on the fact that f ′ is (1/k′)-far from (12 . . . k′)-
free and that n′ ≥ n/4 and n − n′ ≥ n(k − k′)/k, we

conclude that f is (1/4k′)-far from (12 . . . k)-free. Form a

distribution Dn,k by picking a random f according to the

distribution ∼ Dn′,k′ and extending it to a sequence f ′ as

above.

The rest of this section is devoted to the proof of Theo-

rem IV.1.
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A. Basic binary profiles and monotonicity testing

In a sense, the proof of our lower bound, Theorem IV.1, is

a (substantial) generalization of the non-adaptive lower bound

for testing monotonicity. In order to introduce the machinery

required for the proof, we present, in this subsection, a

simple proof of the classical Ω(logn) non-adaptive one-

sided lower bound for monotonicity testing [12] using basic

versions of the tools we shall use for the full proof. Then,

in Subsection IV-B we proceed to present our tools in their

full generality, and provide the proof of Theorem IV.1.

Intuitively, one way to explain why monotonicity testing

requires Ω(log n) queries relies on the following reasoning.

There exist Ω(log n) different distance “profiles” our queries

should capture; and it can be shown that in general, a small

set of queries cannot capture many types of different profiles

all at once. At a high level, our new lower bound is an

extension of this argument, which uses a more general type

of profiles. We start, then, with a formal definition of the

basic profiles required for the case of monotonicity testing.

Below we restate the required definitions related to the binary

representation of numbers in [n].

Definition IV.1 (Binary representation). For any n ∈ �
which is a power of 2 and t ∈ [n], the binary representa-

tion Bn(t) of t is the unique tuple (bt1, b
t
2, . . . , b

t
log2 n) ∈

{0, 1}log2 n satisfying t = bt1 · 20 + bt2 · 21 + · · · +
btlog2 n · 2log2 n−1. For i ∈ [log2 n], the bit-flip operator,
Fi : [n] → [n], is defined as follows. Given t ∈ [n] with
Bn(t) = (bt1, . . . , b

t
logn), we set Fn(t) = t′ where t′ ∈ [n]

is the unique integer satisfying Bn(t
′) = (bt1, . . . , b

t
i−1, 1−

bti, b
t
i+1, . . . , b

t
logn). Finally, for any two distinct elements

x, y ∈ [n], let M(x, y) ∈ [log2 n] denote the index of the
most significant bit in which they differ, i.e., the largest i
with bxi 
= byi .

Note that the bit-flip operator Fi is a permutation on [n].

The construction.: We start by providing our lower

bound construction Dn,2, supported on sequences that are

far from (12)-free.

Let f↓ : [n] → [n] denote the (unique) decreasing per-

mutation on [n], i.e., the function f↓(x) = n + 1 − x for

any x ∈ [n]. For any i ∈ [log n], define fi : [n] → [n] to

be the composition of f↓ with the bit-flip operator Fi, that

is, fi(x) = f↓(Fi(x)) for any x ∈ [n]. Note that fi is a

permutation, as a composition of permutations. See Figure 1

for a visualization of the construction. Finally, define Dn,2 as

the uniform distribution over the sequences f1, f2, . . . , flogn.

The next lemma characterizes the set of all (1, 2)-patterns

in fi.

Lemma IV.2. Let i ∈ [log n]. A pair x < y ∈ [n] forms a
(1, 2)-copy in fi if and only if M(x, y) = i.

Proof: Let x < y ∈ [n]. If M(x, y) > i, then Fi(x) <
Fi(y) holds and so fi(x) = f↓(Fi(x)) > f↓(Fi(y)) = fi(y),

implying that (x, y) is not a (1, 2)-copy. If M(x, y) < i then

x and y share the bit in index i of the binary representation,

and thus flipping it either adds 2i−1 to both x and y or

decreases 2i−1 from both of them. In both cases, Fi(x) <
Fi(y), and like the previous case we get fi(x) > fi(y).
Finally, if M(x, y) = i then one can write x = z+0·2i−1+x′

and y = z+1·2i−1+y′, where z corresponds to the log n−i
most significant bits in the binary representation (which are

the same in x and y), and x′, y′ < 2i−1 correspond to the i−1
least significant bits. Therefore, Fi(x) = z + 1 · 2i−1 + x′ >
z + 0 · 2i−1 + y′ = Fi(y) and thus fi(x) = f↓(Fi(x)) <
f↓(Fi(y)) = fi(y), as desired.

We conclude that each of the sequences fi is (1/2)-far

from (12)-free.

Lemma IV.3. For any i ∈ [log n], the sequence fi contains
a collection C of n/2 disjoint (1, 2)-copies.

Proof: For any x ∈ [n] whose binary representa-

tion Bn(x) = (bx1 , . . . , b
x
logn) satisfies bxi = 0, we have

M(x, Fi(x)) = i. By Lemma IV.2, (x, Fi(x)) is thus a

(1, 2)-copy. Picking

C = {(x, Fi(x)) : x ∈ [n], bxi = 0},
and noting that the pairs in C are disjoint, the proof follows.

Binary Profiles.: We now formally define our notion of

binary profiles, and describe why they are useful for proving

lower bounds for problems of this type.

Definition IV.4 (Binary profiles captured). Let n ∈ � be
a power of 2 and let Q ⊆ [n]. The set of binary profiles

captured by Q is defined as

bin-prof(Q) = {i ∈ [log n] : ∃x, y ∈ Q s.t. M(x, y) = i}.
The next lemma asserts that the number of binary profiles

that set captures does not exceed (or even match) the size

of the set.

Lemma IV.5. Let Q ⊆ [n] be a subset of size q > 0. Then
|bin-prof(Q)| ≤ q − 1.

Proof: We proceed by induction on q. For q ≤
2, the statement clearly holds. Otherwise, let imax =
max bin-prof(Q) be the maximum index of a bit in which

two elements x, y ∈ Q differ. For j = 0, 1, define

Qj = {x ∈ Q :
the binary representation of x
is Bn(x)=(bx1 ,...,b

x
log n),

and bximax
=j

}.

Clearly, for any x ∈ Q0 and y ∈ Q1, we have M(x, y) =
imax. We can thus write bin-prof(Q) as

bin-prof(Q) = bin-prof(Q0) ∪ bin-prof(Q1) ∪ {imax},
from which we conclude that |bin-prof(Q)| ≤
|bin-prof(Q0)| + |bin-prof(Q1)| + 1 ≤ |Q0| − 1 +
|Q1| − 1+ 1 = |Q| − 1, where the second inequality follows

from the induction hypothesis.
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Proof for the case k = 2 using binary profiles.: After

collecting all the ingredients required to prove the case k = 2
of Theorem IV.1, we now conclude the proof. Fix 0 < p < 1,

let n be a power of two, and consider the distribution Dn,2

defined above, supported on sequences that are (1/2)-far

from (12)-free (see Lemma IV.3). Let Q ⊆ [n] be any subset

of size at most p log n. It suffices to show that, for f ∼ Dn,2,

the probability that Q contains a (12)-copy in f is less than

p. By Lemma IV.2, Q contains a (12)-copy with respect to fi
if and only if i ∈ bin-prof(Q). Thus, the above probability

is equal to |bin-prof(Q)|/ log n, which, by Lemma IV.5, is

at most (|Q| − 1)/ log n < p, as desired.

B. Hierarchical binary profiles and the lower bound

To prove Theorem IV.1 in its full generality, we signif-

icantly extend the proof presented in Subsection IV-A for

the case k = 2, relying on a generalized hierarchical (and

more involved) notion of a binary profile. Let n > k ≥ 2
be powers of 2, and write k = 2h (so h ∈ �). We show

that there exist
(
log2 n

h

)
=

(
log2 n
log2 k

)
different types of binary

h-profiles (see Definition IV.6) with the following properties.

First, a subset Q ⊆ [n] can capture at most |Q| − 1 such

profiles (Lemma IV.15 below, generalizing Lemma IV.3);

and second, for each such profile there exists a sequence

(in fact, a permutation) that is (1/k)-far from (12 . . . k)-free,

such that any set of queries Q that finds (12 . . . k)-pattern

with respect to this sequence must capture the given profile

(Lemma IV.11 below, generalizing Lemma IV.2).

Hierarchical binary profiles.: While the proof for the

case k = 2 relied on a rather basic variant of a binary profile,

our lower bound for general k requires a more sophisticated,

hierarchical type of profile, described below.

Definition IV.6 (binary h-profiles). Let (x1, . . . , xk) ∈ [n]k

be a k-tuple of indices satisfying x1 < · · · < xk. For an
h-tuple (i1, . . . , ih) ∈ [log2 n]

h satisfying i1 < · · · < ik, we
say that (x1, . . . , xk) has h-profile of type (i1, . . . , ih) if,

M(xj , xj+1) = iM(j−1,j) for every j ∈ [k − 1].

For example, when h = 3 (and k = 8), a tuple

(x1, . . . , x8) ∈ [n]8 with x1 < . . . < x8 has binary 3-

profile of type (i1, i2, i3) if the sequence (M(xj , xj+1))
7
j=1

is (i1, i2, i1, i3, i1, i2, i1). See Figure 3 for a visual depiction

of such a binary 3-profile.

Similarly to the case k = 2, given a set of queries Q ⊆ [n],
we shall be interested in the collection of h-profiles captured

by Q.

Definition IV.7 (Binary h-profiles captured). Let n ≥ k ≥ 2
be powers of 2 where k = 2h. For any Q ⊆ [n], we denote
the set of all h-profiles captured by Q by

bin-profh(Q) =

{
(i1, . . . , ih) :

there exist x1,...,xk∈Q with
x1<···<xk and (x1,...,xk)

has h-profile of type (i1,...,ih)

}
.

The next lemma is one of the main ingredients of our

proof, generalizing Lemma IV.5. It shows that a set Q of

queries cannot capture |Q| or more different h-profiles.

Lemma IV.8. Let h, n ∈ � where n ≥ 2h is a power of 2.
For any ∅ 
= Q ⊆ [n], we have |bin-profh(Q)| ≤ |Q| − 1.

Proof: We proceed by induction on h. The case h = 1
was settled in Lemma IV.5. Suppose now that h > 1, and

define ∅ = Blogn+1 ⊆ Blogn ⊆ . . . ⊆ B1 = Q as follows.

Set Blogn+1 = ∅, and given Bi+1, define the set Bi ⊇ Bi+1

as an arbitrary maximal subset of Q containing Bi+1 which

does not have two elements with M(x, y) < i.
Additionally, for each j ∈ [log2 n], define

Nj =
{
(i2, . . . , ih) :

1≤j<i2···<ih≤log2 n and
(j,i2,...,ih)∈bin-profh(Q)

}
.

Claim IV.9. Let j < i2 < . . . < ih ∈ [log n], and suppose
that (j, i2, . . . , ih) ∈ bin-profh(Q). Then (j, i2, . . . , ih) ∈
bin-profh(Bj).

Proof: Suppose that a tuple (x1, . . . , xk) with x1 <
· · · < xk ∈ Q has h-profile (j, i2, . . . , ih). By the maximality

of Bj , we know that for every 1 ≤ � ≤ k there exists y� ∈ Bj

such that either x� = y� or M(x�, y�) < j. Indeed, if this

were not the case, then B′j := Bj ∪{x�} would be a set that

strictly contains Bj and does contain two elements x 
= y
with M(x, y) = j, a contradiction to the maximality of Bj .

By definition of a profile, we conclude that {y1, . . . , yk} ⊆
Bj has h-profile (j, i2, . . . , ih).

Claim IV.10. For any j ∈ [log n], we have Nj ⊆
bin-profh−1(Bj \Bj+1).

Proof: Suppose that (i2, . . . , ih) ∈ Nj , then

(j, i2, . . . , ih) ∈ bin-profh(Q). By the previous lemma, we

know that (j, i2, . . . , ih) ∈ bin-profh(Bj). Therefore, there

exists a tuple (y1, . . . , yk) where y1 < . . . < yk ∈ Bj , that

has h-profile of type (j, i2, . . . , ih).
For any t ∈ k/2, it holds that M(y2t−1, y2t) = j.

Therefore, at most one of y2t−1, y2t is in Bj+1, and hence, for

any such t there exists zt ∈ {y2t−1, y2t}\Bj+1 ⊆ Bj \Bj+1.

Consider the tuple (z1, . . . , zk/2), whose elements are con-

tained in Bj \ Bj+1. It follows from our choice of zt
that M(zt, zt+1) = M(y2t, y2t+2) for any t ∈ [k/2], from

which we conclude that (z1, . . . , zk/2) has (h − 1)-profile

(i2, . . . , ih). In other words, (i2, . . . , ih) ∈ bin-profh(Bj \
Bj+1), as desired.

We are now ready to finish the proof of Lemma IV.8.

Observe that bin-profh(Q) and Q can be written as the

following disjoint unions:

bin-profh(Q) =

log2 n⋃
j=1

{(j, i2, . . . , ih) : (i2, . . . , ih) ∈ Nj}

and Q =
⋃log2 n

j=1 (Bj \Bj+1). It follows from the last claim
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and the induction assumption that

|Nj | ≤ |bin-profh−1(Bj \Bj+1)| ≤ |Bj \Bj+1|, (16)

where for j with Nj 
= ∅ there is a strict inequality. Now, if

Nj is empty for all j then, trivially, |bin-profh(Q)| = 0 ≤
|Q| − 1. Otherwise, there exists some non-empty Nj , for

which (16) yields a strict inequality, and we get

|Q| =
log2 n∑
j=1

|Bj \Bj+1| >
log2 n∑
j=1

|Nj | = |bin-profh(Q)|,

establishing the proof of the Lemma IV.8.

The construction.: For any i1 < i2 < . . . < ih ∈ [log n],
we define fi1,...,ih : [n]→ [n] as

fi1,...,ih := f↓ ◦ Fih ◦ . . . ◦ Fi1 ,

where, as before, ◦ denotes function composition. In

other words, for any x ∈ [n] we have fi1,...,ih(x) =
f↓(Fih(Fih−1

(. . . (Fi1(x) . . . )))). Note that fi1,...,ih is in-

deed a permutation, as a composition of permutations. (See

Figure 2, which visually describes the construction of fi1,...,ih
recursively, as a composition of Fih with fi1,...,ih−1

.) We

take Dn,k to be the uniform distribution over all sequences

of the form fi1,...,ih with i1 < i2 < . . . < ik. The size of

the support of Dn,k is
(
log2 n

h

)
=

(
log2 n
log2 k

)
.

Structural properties of the construction.: Recall that

our lower bound distribution Dn,k is supported on the

family of permutations fi1,...,ih , where i1 < . . . < ih ∈
[log n], described above. We now turn to show that these

fi1,...,ih satisfy two desirable properties. First, to capture

a (12 . . . k)-copy in (fi1,...,ih), our set of queries Q must

satisfy (i1, . . . , ih) ∈ bin-profh(Q) (Lemma IV.11). And

second, each such fi1,...,ik is (1/k)-far from (12 . . . k)-free

(Lemma IV.15).

Lemma IV.11. Let (x1, . . . , xk) ∈ [n]k be a k-tuple where
x1 < . . . < xk, and let f = fi1,...,ih be defined as above.
Then f(x1) < f(x2) < . . . < f(xk) (i.e., (x1, . . . , xk) is
a (12 . . . k)-copy with respect to fi1,...,ih) if and only if
(x1, . . . , xk) has binary h-profile of type (i1, i2 . . . , ih). Fur-
thermore, fi1,...,ih does not contain increasing subsequences
of length k + 1 or more.

Proof: The proof is by induction on h, with the base

case h = 1 covered by Lemma IV.2; in particular, it follows

from Lemma IV.2 that fi has no increasing subsequence

of length 3, since there exist no x < y < z ∈ [n] with

M(x, y) = M(y, z) = i.
For the inductive step, we need the following claim, which

generalizes Lemma IV.2.

Claim IV.12. A pair x < y ∈ [n] satisfies fi1,...,ih(x) <
fi1,...,ih(y) if and only if M(x, y) ∈ {i1, . . . , ih}.

Proof: Let Fi1,...,ih = Fih ◦ . . . ◦ Fi1 . Since fi1,...,ih =
f↓ ◦ Fi1,...,ih , it suffices to show that Fi1,...,ih(x) >

Fi1,...,ih(y) if any only if M(x, y) ∈ {i1, . . . , ih}. To do

so, we prove the following two statements.

• For any x < y ∈ [n], Fi(x) > Fi(y) if and only if

M(x, y) = i.
• For any x < y ∈ [n], M(Fi(x), Fi(y)) = M(x, y).

Indeed, using these two statements, the proof easily follows

by induction: the value of M(x, y) never changes regardless

of which bit-flips we simultaneously apply to x and y. Now,

applying any of the bit-flips Fi to x and y, where i 
=
M(x, y), does not change the relative order between them,

while applying FM(x,y) does change their relative order. This

means that a change of relative order occurs if and only if

M(x, y) ∈ {i1, . . . , ih}, which settles the claim.
The proof of the first statement was essentially given, word

for word, in the proof of Lemma IV.2. The second statement

follows by a simple case analysis of the cases where i is

bigger than, equal to, or smaller than M(x, y), showing that

in any of these cases, M(Fi(x), Fi(y)) = M(x, y).
Suppose now that (x1, . . . , xk) ∈ [n]k is a tuple with

x1 < . . . < xk and a binary h-profile of type (i1, . . . , ih)
is a (12 . . . k)-copy in fi1,...,ih . By definition of a bi-

nary h-profile, we have that M(xj , xj+1) ∈ {i1, . . . , ih}
for any j ∈ [k − 1], which, by the claim, implies

that fi1,...,ih(xj) < fi1,...,ih(xj+1). It thus follows that

(x1, . . . , xk) is a (12 . . . k)-copy in fi1,...,ih , as desired.
Conversely, suppose that a tuple (x1, . . . , xk) ∈ [n]k

with x1 < . . . < xk is a (12 . . . k)-copy in fi1,...,ik . We

need to show that (x1, . . . , xk) has binary h-profile of type

(i1, . . . , ih), that is, M(xj , xj+1) = iM(j−1,j) for every

j ∈ [k − 1]. Define r = argmaxj{M(xj , xj+1)}, and note

that r is unique; otherwise, we would have x < y < z ∈ [n]
so that M(x, y) = M(y, z), a contradiction.

Claim IV.13. M(xr, xr+1) = ih.

Proof: By Claim IV.12, we know that M(xr, xr+1) ∈
{i1, . . . , ih}. Suppose to the contrary that M(xr, xr+1) ≤
ih−1. Then, M(xj , xj+1) ≤M(xr, xr+1) ≤ ih−1 for every

j ∈ [k−1], and by Claim IV.12, for any j ∈ [k−1] we have

fi1,...,ih−1
(xj) ≤ fi1,...,ih−1

(xj+1), that is, (x1, x2, . . . , xk)
is a (12 . . . k)-copy in fi1,...,ih−1

. This contradicts the last

part of the inductive hypothesis.

Claim IV.14. r = k/2.

Proof: Without loss of generality, suppose to the contrary

that r > k/2 (the case where r < k/2 is symmetric). As the

tuple (x1, . . . , xr) is an increasing subsequence for fi1,...,ih ,

we have M(xj , xj+1) ∈ {i1, . . . , ih} for any j ∈ [r − 1].
By the maximality and uniqueness of r, M(xj , xj+1) < ih
for any j ∈ [r − 1]. Thus, it follows from Claim IV.12 that

(x1, . . . , xr) is a (12 . . . r)-copy in fi1,...,ih−1
, contradicting

the last part of the inductive hypothesis.
It thus follows from the two claims that

M(xk/2, xk/2+1) = ih. Since M(xj , xj+1) ∈
{i1, . . . , ih−1} for any j ∈ [k−1]\{k/2}, we conclude, again
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from Claim IV.12, that (x1, . . . , xk/2) and (xk/2+1, . . . , xk)
both induce length-(k/2) increasing subsequences in

fi1,...,ih−1
. By the inductive hypothesis, they both have

binary (h − 1)-profile (i1, . . . , ih−1). Combined with the

last two claims, we conclude that (x1, . . . , xk) has binary

h-profile (i1, . . . , ih), as desired.

It remains to verify that fi1,...,ih does not contain an

increasing subsequence of length k+1. If, to the contrary, it

does contain one, induced on some tuple (x1, . . . , xk+1) ∈
[n]k+1 where x1 < . . . < xk+1, then, applying the

last two claims to the length-k two tuples (x1, . . . , xk)
and (x2, . . . , xk+1), we conclude that M(xk/2, xk/2+1) =
M(xk/2+1, xk/2+2) = ih. However, as discussed above,

there cannot exist x < y < z ∈ [n] with M(x, y) = M(y, z)
– a contradiction.

It remains to prove that each fi1,...,ih is indeed (1/k)-far

from (12 . . . k)-free. After we spent quite some effort to

characterize all (12 . . . k)-copies in fi1,...,ih , this upcoming

task is much simpler.

Lemma IV.15. Let n ≥ k ≥ 2 be powers of two and write
k = 2h. The sequence fi1,...,ih : [n] → [n], defined above,
contains n/k disjoint (12 . . . k)-copies.

Proof: Fix i1 < . . . < ih as in the statement of the

lemma. We say that x, y ∈ [n] with binary representations

Bn(x) = (bx1 , . . . , b
x
logn) and Bn(y) = (by1, . . . , b

y
logn) are

(i1, . . . , ih)-equivalent if bxi = byi for any i ∈ [log n] \
{i1, . . . , ih}. Clearly, this is an equivalence relation, parti-

tioning [n] into n/k equivalence classes, each of size exactly

k = 2h. Moreover, it is straightforward to verify that the

elements x1 < x2 < . . . < xk of any equivalence class

satisfy M(xj , xj+1) ∈ {i1, . . . , ih} for any j ∈ [k − 1], and

thus, by Claim IV.12, (x1, . . . , xk) constitutes a (12 . . . k)-
copy in fi1,...,ik .

It now remains to connect all the dots for the proof of

Theorem IV.1.

Proof of Theorem IV.1: Fix 0 < p < 1, let n ≥ k
be powers of 2, and write k = 2h. As before, we follow

Yao’s minimax principle [40], letting Dn,k be the uniform

distribution over all
(
log2 n

h

)
=

(
log2 n
log2 k

)
sequences (in fact

permutations) fi1,...,ih : [n] → [n], where i1 < . . . < ih ∈
[log n]. Recall that, by Lemma IV.15, this distribution is

supported on sequences that are (1/k)-far from (12 . . . k)-
free.

It suffices to show that, for f ∼ Dn,k, the probability for

any subset Q ⊆ [n] of size at most p
(
log2 n

h

)
to capture a

(12 . . . k)-copy in f is less than p. Indeed, by Lemma IV.11,

Q captures a copy in fi1,...,ih if and only if (i1, . . . , ih) ∈
bin-profh(Q), so the success probability for any given Q is

exactly |bin-profh(Q)|/
(
log2 n

h

)
< |Q|/

(
log2 n

h

)
≤ p for any

Q ⊆ [n] with |Q| ≤ p
(
log2 n

h

)
, where the first inequality

follows from Lemma IV.8. The proof of Theorem IV.1

follows.
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