
Exponentially Faster Massively Parallel Maximal Matching

Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris

University of Maryland
soheil@cs.umd.edu, hajiagha@cs.umd.edu, davidgharris29@gmail.com

Abstract—
The study of approximate matching in the Massively Parallel

Computations (MPC) model has recently seen a burst of
breakthroughs. Despite this progress, however, we still have a
far more limited understanding of maximal matching which
is one of the central problems of parallel and distributed
computing. All known MPC algorithms for maximal matching
either take polylogarithmic time which is considered inefficient,
or require a strictly super-linear space of n1+Ω(1) per machine.

In this work, we close this gap by providing a novel analysis
of an extremely simple algorithm. This affirmatively resolves
the conjecture of Czumaj et al. [STOC’18] that a variant of
this algorithm might work. The algorithm edge-samples the
graph, randomly partitions the vertices, and finds a random
greedy maximal matching within each partition. We show that
this algorithm drastically reduces the vertex degrees. This,
among some other results, leads to an O(log logΔ) round
algorithm for maximal matching with O(n) space (or even
mildly sublinear in n using standard techniques).

As an immediate corollary, we get a 2 approximate minimum
vertex cover in essentially the same rounds and space. This is
the best possible approximation factor under standard assump-
tions, culminating a long line of research. It also leads to an
improved O(log logΔ) round algorithm for 1+ ε approximate
matching. All these results can also be implemented in the
congested clique model within the same number of rounds.

I. INTRODUCTION

The success of modern parallel frameworks such as

MapReduce [19], Hadoop [36], or Spark [38] has resulted

in an active area of research over the past few years for

understanding the true computational power of such sys-

tems. The Massively Parallel Computations (MPC) model,

which provides a clean abstraction of these frameworks, has

become the standard theoretical model for this purpose (see

Section II-B for the model).

In this work, we consider the maximal matching problem

in the MPC model. It is one of the most fundamental graph

problems in parallel and distributed computing with far

reaching practical and theoretical implications. The study of

maximal matching can be traced back to PRAM algorithms

of 1980s [31, 24, 3] and has been studied in various

computational models since then.

Soheil Behnezhad and Mohammad Hajiaghayi were supported in part
by NSF CAREER award CCF-1053605, NSF AF:Medium grant CCF-
1161365, NSF BIGDATA grant IIS-1546108, and NSF SPX grant CCF-
1822738. Soheil Behnezhad was also supported in part by a Google PhD
Fellowship.

In the MPC model, maximal matching is particularly im-

portant; an algorithm for it directly gives rise to algorithms

for 1+ε approximate maximum matching, 2+ε approximate

maximum weighted matching, and 2 approximate minimum
vertex cover with essentially the same number of rounds and

space. Each of these problems has been studied on its own

[18, 5, 21, 6, 7, 14, 34, 2, 13].

Known bounds: For many graph problems, including

maximal matching, O(log n) round MPC algorithms can

be achieved in a straightforward way by simulating PRAM
algorithms [31, 24, 3] using nΩ(1) space. This bound was

recently improved by Ghaffari and Uitto [22] to Õ(
√
logΔ)

rounds with the same memory. The main goal, however, is

to obtain significantly faster (i.e., subpolylogarithmic round)

algorithms by further utilizing MPC’s additional powers.

Currently, the only known such algorithm for maximal

matching is that of Lattanzi et al. [28] which requires

O(1/δ) rounds using a space of O(n1+δ). Their algorithm’s

round complexity, however, blows up back to Θ(log n) as

soon as memory becomes O(n). In comparison, due to a

breakthrough of Czumaj et al. [18], we have algorithms for

1 + ε approximate matching that take O(log log n) rounds

using a space of O(n) [18, 21, 6]. Unfortunately, this

progress on approximate matching offers no help for maxi-

mal matching or related problems. In fact, these algorithms

also require up to Ω(log n) rounds to maintain maximality.

Our contribution: In this paper, we give MPC algorithms

for maximal matching that are exponentially faster than

the state-of-the-art (we describe our precise results in Sec-

tion I-A). We achieve this by providing a novel analysis of

an extremely simple and natural algorithm.

The algorithm edge-samples the graph, randomly parti-

tions the vertices into disjoint subsets, and finds a greedy

maximal matching within the induced subgraph of each

partition. This partitioning is useful since each induced

subgraph can be sent to a different machine. We show that if

we commit the edges of each of these greedy matchings to

the final output, the vertex degrees in the residual graph are

drastically dropped. Czumaj et al. [18] had conjectured that

a variant of this algorithm might work and left its analysis

1625

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00098

as one of their main open problems:1

“Finally, we suspect that there is a simpler al-
gorithm for the problem [...] by simply greedily
matching high-degree vertices on induced sub-
graphs [...]. Unfortunately, we do not know how
to analyze this kind of approach.” [18]

We summarize our results and their implications in Sec-

tion I-A and give a high-level overview of the analysis in

Section I-B.

A. Main Results

Theorem 1 (main result). Given an n-vertex graph
G with m edges and max degree Δ, there exists a
randomized MPC algorithm for computing a maximal
matching that
(1) takes O(log logΔ) rounds using O(n) space per

machine,
(2) or takes O(log 1

δ) rounds using O(n1+δ) space per
machine, for any parameter δ ∈ (0, 1).

The algorithm succeeds w.e.h.p.a and requires an opti-
mal total space of O(m).

aWe say an event occurs with exponentially high probability
(w.e.h.p.) if it occurs with probability 1− e−nΩ(1)

.

Theorem 1 part (1) provides the first subpolylogarithmic

round MPC algorithm for maximal matching that does

not require a super-linear space in n. In fact, it improves

exponentially over the prior algorithms in this regime, which

all take polylogarithmic rounds [31, 28, 22]. Furthermore,

Theorem 1 part (2) exponentially improves over the δ-

dependency of Lattanzi et al.’s algorithm [28] which requires

O(1/δ) rounds using O(n1+δ) space.

Theorem 2. Given an n-vertex graph G with m edges and
max degree Δ, there exists an MPC algorithm for computing
a maximal matching that takes O(log logΔ+ log log log n)
rounds and uses n/2Ω(

√
logn) space per machine. The

algorithm succeeds w.e.h.p. and uses a total space of
O(m+ n1+γ) for any constant γ > 0.

Theorem 2 further improves the space per machine to

mildly sublinear with the same round complexity (ignoring

the lower terms). We comment that the n/2Ω(
√
logn) space

usage here goes below the n/ poly log n space that has com-

monly been considered for problems such as approximate

matching [18, 21, 6] and graph connectivity [8].

Other implications: Our algorithm also has a few other

implications when used as a black-box.

1A more detailed variant of the algorithm was also described in the
following TCS+ talk by Artur Czumaj (starts from 1:03:23): https://youtu.
be/eq0jwAnJu9c?t=3803.

Corollary 1. By a well-known reduction, the set of matched
vertices in a maximal matching is a 2-approximation of
minimum vertex cover. As such, all algorithms of Theorems 1
and 2 can be applied to the 2-approximate minimum vertex
cover problem as well.

The problem of whether an approximate vertex cover

can be found faster in MPC with O(n) space was first

asked by Czumaj et al. [18]. Subsequent works showed

that indeed O(log log n) algorithms are achievable and the

approximation factor has been improved from O(log n) to

O(1) to 2 + ε [5, 21, 6]. Corollary 1 reaches a culminating

point: If we restrict the machines to run a polynomial-time

algorithm, which is a standard assumption (see [25, 4]),

no algorithm can achieve a better approximation under the

Unique Games Conjecture [26].

Corollary 2. By known reductions [15, 29], Theorem 1
directly implies an O(log logΔ) round algorithm for max-
imal matching in the congested clique model. It also leads
to O(log logΔ) round congested clique algorithms for 2-
approximate vertex cover, 1 + ε approximate maximum
matching, and 2+ε approximate maximum weighted match-
ing by known reductions.

Prior to our work, the fastest algorithm for maximal

matching in the congested clique model requried polylog-

arithmic time [31, 22]. Corollary 2 exponentially improves

over this bound.

Corollary 3. For any constant ε ∈ (0, 1), Theorem 1 can
be used to give algorithms for 1 + ε approximate matching
and 2 + ε approximate maximum weighted matching in
asymptotically the same number of rounds and space.

The reduction from maximal matching (and in fact, any

O(1) approximate matching) to 1+ε approximate matching

is due to an algorithm by McGregor [32] (see [6]) and the

reduction to 2 + ε approximate weighted matching is due

to an algorithm by Lotker et al. [30] (see [18]). We also

note that if the space is O(n polylog n), then our algorithm

can be used in a framework of Gamlath et al. [20] to get

an O(log logΔ) round algorithm for 1 + ε approximate

maximum weighted matching.

Corollary 3 also strengthens the round-complexity of the

results in [18, 21, 6] from O(log log n) to O(log logΔ)
using O(n) space. To our knowledge, the algorithms of

[18, 21, 6] do require Ω(log log n) rounds even when

Δ = poly log n since they switch to an O(logΔ) round

algorithm at this threshold. Corollary 3, however, implies

an O(log log log n) round algorithm on such graphs.

B. High Level Technical Overview

As discussed above, if the space per machine is n1+Ω(1),

we already know how to find a maximal matching efficiently

[28]. The main problem, roughly speaking, is that once the

1626

space becomes O(n), the computational power of a single
machine alone does not seem to be sufficient to have a

significant effect on the whole graph. More concretely, the

known algorithms that work based on ideas such as edge-

sampling the graph into a single machine and finding a

matching there [28, 14, 2], all require Ω(log n) rounds of

repeating this procedure if the space is O(n).
Vertex partitioning [25, 10, 18, 6, 21, 17], which in the

context of matching was first used by [18], helps in utilizing

several machines. The general idea is to randomly partition

the vertices and find a matching in the induced subgraph of

each partition individually in a different machine. It turns out

that the choice of the internal matching algorithm over these

induced subgraphs, has a significant effect on the global

progress made over the whole graph. This is, in fact, the

fundamental way that the algorithms within this framework

differ [18, 6, 21].

We show that greedy maximal matching, which is perhaps

the simplest matching algorithm one can think of, has

several desirable structural properties that make it a perfect

candidate for this purpose. This procedure iterates over

the edges for some given ordering π, and at the time of

processing each edge, adds it to the matching iff none of

its incident edges are part of the matching so far. In other

words, it is the lexicographically-first MIS of the line graph

of G. We give a brief overview of our algorithm first, then

describe the key ideas behind its analysis.

The algorithm: Our main algorithm, which is formalized

as Algorithm 1, uses three randomization steps, all of which

are necessary for the analysis:

• An ordering π over the edges is chosen uniformly at

random.

• Each edge of the graph is sampled independently with

some probability p.

• For some k, the vertex set V is partitioned into disjoint

subsets V1, . . . , Vk where the partition of each vertex is

chosen independently at random.

After these steps, for any i ∈ [k], we put the edge-sampled

induced subgraph of Vi into machine i and compute a greedy

maximal matching Mi according to ordering π. We note that

the choice of k and p in Algorithm 1 ensure that the induced

subgraphs fit the memory of a machine.

The analysis outline: Observe that M =
⋃

i∈[k] Mi is a

valid matching since the partitions are vertex disjoint. The

key to our results, and the technically interesting part of

our paper, is to show that if we commit the edges of M to

the final maximal matching, then the degree of almost all

vertices drops to Δ1−Ω(1) in the residual graph. The main

challenge here is to bound the vertex degrees across the

partitions.

To do this, for any vertex v and any partition i ∈ [k], we

let Zv,i denote the number of neighbors of v in partition

i that remain unmatched in greedy matching Mi. Note

that Zv,i is a random variable of the three randomizations

involved in the algorithm, and that
∑

i∈[k] Zv,i is precisely

equal to the remaining degree of vertex v. We show the

abovementioned degree reduction guarantee through a con-

centration bound on random variable Zv,i.
Let us first outline how a concentration bound on Zv,i

can be useful. Suppose, wishfully thinking, that Zv,i =
(1 ± o(1))E[Zv,i] for every i ∈ [k] with high probability.

By symmetry of the partitions, we have E[Zv,i] = E[Zv,1]
for every i ∈ [k]. This means that all random variables

Zv,1, . . . , Zv,k take on the same values ignoring the lower

terms. Now, if E[Zv,1] is small enough that k · E[Zv,1] <
Δ1−Ω(1), we get the desired bound on residual degree of v.

Otherwise, due to the huge number of unmatched neighbors

in its own partition, we show that v must have been matched

and, thus, cannot survive to the residual graph!
Unfortunately, Zv,i is a rather complicated function and

it is not straightforward to prove such sharp concentration

bounds on it. Recall that Chernoff-Hoeffding bounds work

only on sum of independent random variables. Furthermore,

concentration bounds obtained by Azuma’s or other “dimen-

sion dependent” inequalities seem useless for our purposes:

because the partition of every vertex in the graph may

potentially affect Zv,i, these would give bounds on the order

of Zv,i = E[Zv,i] ± Õ(
√
n). As E[Zv,i] should be on the

order of Δ, this is useless when Δ is small.
Instead of an exponential concentration bound, we aim for

a weaker concentration bound by proving an upper bound

on the variance of Zv,i. To achieve this upper bound, we

use a method known as the Efron-Stein inequality (see

Proposition 1) which plays a central role in our analysis.

On one hand, this weaker concentration bound is still strong

enough for our purpose of degree reduction. On the other

hand, since we are only bounding the variance, the required

conditions are much more relaxed and can be shown to be

satisfied by the algorithm.
On a conceptual level, one contribution of our paper

is to provide a natural example for how the Efron-Stein

inequality, which is often not among the standard tools used

in theoretical computer science, can be extremely useful in

the analysis of randomized algorithms.

How greedy maximal matching helps: Our proof of the

concentration bound relies on a number of unique properties

of the random greedy maximal matching algorithm:

1) If we run greedy maximal matching on an edge-

sampled subgraph of a graph, the maximum degree in

the residual graph drops significantly (see Lemma 4).

2) The set of matched vertices in the greedy maximal

matching changes by a constant number of elements

if a single vertex or edge is removed (see Lemma 5).

1627

3) If an ordering π is chosen randomly and an edge e of

the graph is also chosen randomly, then determining

whether e belongs to the greedy maximal matching

according to π requires “looking” only at O(d) edges of

the graph in expectation, where d is the average degree

of the line graph (see Proposition 4).

We summarize these properties in Section VI. Property 3

was originally developed in the context of sublinear time
algorithms for approximating maximum matching size. To

our knowledge, it was first formalized by Nguyen and

Onak [33], with the precise bound of Proposition 4 proved

by Yoshida et al. [37]. We find the application of this

methodology in proving concentration bounds extraordinary

and possibly of independent interest.

II. PRELIMINARIES

A. Notation

Throughout the paper for any positive integer k, we use [k]
to denote the set {1, . . . , k}. For any graph G = (V,E) and

any V ′ ⊆ V , we let G[V ′] denote the induced subgraph;

that is, G[V ′] contains edge e in E if and only if both

of its endpoints are in V ′. For a vertex v, we define

the neighborhood N(v) to be the set of vertices u with

{u, v} ∈ E.

An edge subset M ⊆ E is a matching if no two edges

in M share an endpoint. A matching M of a graph G is

a maximal matching if it is not possible to add any other

edge of G to M and it is a maximum matching if every

matching in G has size at most |M |. When it is clear from

the context, we abuse notation to use M for the vertex set

of matching M . In particular, we use G[V \M] to denote

the graph obtained by removing every vertex of M from

G. Furthermore, for any vertex v ∈ V and matching M , we

define the residual degree degres
M (v) to be zero if v ∈ M , and

otherwise degres
M (v) := degG[V \M](v). Finally, we define the

match-status of vertex v according to some matching M to

be the indicator for the event that v ∈ M .

B. The MPC Model

The Massively Parallel Computations (MPC) model was

first introduced by Karloff et al. [25] and further refined by

[23, 11, 12, 4]. An input of size N is initially distributed

among M machines, each with a local space of size S.

Computation proceeds in synchronous rounds in which each

machine can perform an arbitrary local computation on its

data and can send messages to other machines. The messages

are delivered at the start of the next round. Furthermore, the

total messages sent or received by each machine in each

round should not exceed its memory.

We desire algorithms that use a sublinear space per

machine (i.e., S = N1−Ω(1)) and only enough total space to

store the input (i.e., S ·M = O(N)). For graph problems,

the edges of an input graph G(V,E) with n := |V | and

m := |E| are initially distributed arbitrarily among the

machines, meaning that N = Θ(m) words (or Θ(m log n)
bits). Moreover, we mainly consider the regime of MPC with

space per machine of S = Θ(n) words.

C. Concentration inequalities

We will use two main concentration inequalities: the

Efron-Stein inequality and the bounded differences inequal-
ity. These both concern functions f(x1, . . . , xn) which have

Lipschitz properties, namely, changing each coordinate xi

has a relatively small change to the value of f .

Proposition 1 (Efron-Stein inequality [35]). Fix an
arbitrary function f : {0, 1}n → R and let
X1, . . . , Xn and X ′

1, . . . , X
′
n be 2n i.i.d. Bernoulli ran-

dom variables. For �X := (X1, . . . , Xn) and �X(i) :=
(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn), we have

Var(f(�X)) ≤ 1

2
· E

[n∑
i=1

(
f(�X)− f(�X(i))

)2]
.

We consider the following form the of the bounded dif-

ferences inequality (which is a special case of McDiarmid’s

inequality):

Proposition 2 (Bounded differences inequality). Let f
be a λ-Lipschitz function on k variables, and let �X =
(X1, . . . , Xk) be a vector of k independent (not necessarily
identically distributed) random variables. Then, Pr

[
f(�X) ≥

E[f(�X)] + t
] ≤ exp

(
−2t2

kλ2

)
.

A slight reformulation of this, which is more useful for

us to use directly, is the following:

Proposition 3. Let f be a λ-Lipschitz function on k
variables, and let �X = (X1, . . . , Xk) be a vector of k
independent (not necessarily identically distributed) random
variables. Then w.e.h.p.,

f(�X) ≤ E[f(�X)] + λn0.01
√
k.

D. Sequential Greedy Maximal Matching

As described in Section I-B, a maximal matching can be

found by a sequential greedy algorithm:

Definition 1 (Greedy maximal matching). Given a graph
G = (V,E) and an ordering π over the edges in E, the
greedy maximal matching algorithm processes the edges in
the order of π and adds an edge e to the matching if none of
its incident edges have joined the matching so far. We denote
the resulting maximal matching by GreedyMM(G, π).

This greedy maximal matching has a number of nice

properties that play a critical role in the analysis of our

algorithm. We summarize these properties in Section VI.

We view the permutation π as a function mapping E to

[m]; we say that e has higher priority than e′ if π(e) <
π(e′). In analyzing the greedy matching algorithm, it is often

1628

convenient to use the following local method of generating

the permutation: each edge e is associated with a real ρe ∈
[0, 1]; we then form π by sorting in order of ρ. Slightly

abusing notation, we write GreedyMM(G, ρ) in this case as

shorthand for GreedyMM(G, π) where π is the permutation

associated to ρ.

III. ROADMAP

As discussed in Section I-B, the key to proving Theorem 1

and Theorem 2 is an algorithm to reduce the graph degree

by a polynomial factor. The precise statement of this lemma

is as follows:

Lemma 1 (degree reduction). There is an O(1) round MPC
algorithm to produce a matching M , with the following
behavior w.e.h.p.: it uses n/ΔΩ(1) space per machine and
O(m) space in total, and the residual graph G[V \M] has
maximum degree Δ1−Ω(1).

Our main result, and the technical core of our analysis

in proving Lemma 1 lies in showing that the following

Algorithm 1 significantly reduces the degree of nearly all

vertices in G.

Algorithm 1.

Input: A graph G = (V,E) with maximum degree Δ.

Output: A matching M in G.

(1) Permutation: Choose a permutation π uniformly at

random over the edges in E.

(2) Edge-sampling: Let GL(V, L) be an edge-sampled

subgraph of G where each edge in E is sampled

independently with probability p := Δ−0.85.

(3) Vertex partitioning: Partition the vertices of V into

k := Δ0.1 groups V1, . . . , Vk such that the partition

of every vertex in V is chosen independently and

uniformly at random.

(4) Each machine i ∈ [k] receives the graph GL[Vi]
and finds the greedy maximal matching Mi :=
GreedyMM(GL[Vi], π).

(5) Return matching M :=
⋃k

i=1 Mi.

Specifically, we will show the following:

Lemma 2. Algorithm 1 has the following desirable behav-
ior:

1) W.e.h.p., it uses n/ΔΩ(1) space per machine.
2) W.e.h.p., it uses O(n)+m/ΔΩ(1) space in total (aside

from storing the original input graph.)
3) The expected number of vertices v ∈ V such that

degres
M (v) > Δ0.99 is at most O(n/Δ0.03).

We will prove Lemma 2 in Section IV and we will prove

Lemma 1 in Section V. Before this, let us show how the

degree reduction algorithm of Lemma 1 can be used to prove

Theorem 1.

Proof of Theorem 1: The algorithm consists of r
iterations that each commits a number of edges to the final

maximal matching using the algorithm of Lemma 1. In each

iteration, the maximum degree in the remaining graph is

reduced from Δ to Δ1−α given that Δ > c for some

constant c and α. This ensures that by the end of iteration

r, maximum degree is at most max{c,Δ(1−α)r}.

To get the first result, take r = Θ(log logΔ); at the

end of this process, the residual graph has degree O(1).
At this point, we put the entire residual graph onto a single

machine, and compute its maximal matching. To get the

second result, take r = Θ(log(1/δ)); at the end of this

process, the residual graph has degree nδ . At this point, we

again put the entire residual graph onto a single machine,

and compute its maximal matching.

IV. MATCHING ALMOST ALL HIGH-DEGREE VERTICES:

PROOF OF LEMMA 2

We now turn to proving Lemma 2. We first need some

notation for the analysis of Algorithm 1. For simplicity, we

write Gi for the graph G[Vi]. Note that Gi is different from

GL
i in that GL

i includes only a subset of the edges in Gi;

those that were sampled in Line 2 of Algorithm 1. We let Li

be the set of edges {u, v} ∈ L with u, v ∈ Vi; that is, Li is

the edge-set of GL
i . We further define χ to be the partition

function of the vertices; that is, each vertex select a value

χ(v) u.a.r from [k], and then we set Vi = χ−1(i). We also

note that throughout the proof, we assume m ≥ n0.9. This

assumption comes w.l.o.g. since otherwise one can put all

the edges into one machine with even sublinear memory of

O(n0.9) and find a maximal matching there.

We begin by analyzing the residual degree of a vertex

within its own partition, which are some simple conse-

quences of the method used to generate L.

Claim 1. The following bounds on the edge set L hold
w.e.h.p.:

1) Every i ∈ [k] has |Vi| = Θ(n/Δ0.1).
2) The graph GL contains O(m/Δ0.85) edges.
3) Each graph GL

i contains O(n/Δ0.05) edges.

Proof: The first property follows from a straightforward

Chernoff bound, noting that E[Vi] = n/k = n/Δ0.1 ≥
poly(n). For the second property, observe that the expected

number of edges in GL is m · p = m/Δ0.85. As we have

discussed above, we can assume that m ≥ n0.9 and we

also know that Δ ≤ n; therefore, m/Δ0.85 ≥ n0.05 and by

Chernoff’s bound the number of such edges is O(m/Δ0.85)
w.e.h.p. For the third property, we consider two cases where

Δ ≥ n0.01 and Δ < n0.01 separately.

Case 1: Δ ≥ n0.01: For each vertex v ∈ Vi, its incident

edge e = {u, v} will belong to GL
i if e is sampled in L

1629

and vertex u also belongs to Vi. Both of these events occur

at the same time with probability p · k−1 = Δ−0.95. This

means that the expected number of neighbors of v in GL
i

will be Δ ·Δ−0.95 = Δ0.05. Since we assumed Δ ≥ n0.01, a

simple Chernoff bound can show that this random variable

is concentrated around O(Δ0.05) w.e.h.p. Combined with

the first property, the number of edges in each GL
i will be

O(n/Δ0.1) ·O(Δ0.05) = O(n/Δ0.05) w.e.h.p.

Case 2: Δ < n0.01: Let U denote the number of edges

in GL
i . For the arguments discussed above, we still have

E[U] ≤ O(n/Δ0.05). Furthermore, U can be regarded as

a function of the vertex partition χ and the edge set L.

There are O(nΔ) such random variables, and each of these

can change U by at most Δ. Therefore, by Proposition 3,

w.e.h.p., we have

U ≤ E[U] + Δ · n0.01 ·
√
O(nΔ);

as Δ ≤ n0.01 this in turn implies that U ≤ O(n/Δ0.05)
w.e.h.p.

These allow us to prove the first two parts of Lemma 2:

Proof of Lemma 2 part 1 and 2: For the space bounds,

Claim 1 shows that for each GL
i , we require O(n/Δ0.05)

space for its edges and O(n/Δ0.1) for its vertices. Since Δ
is larger than any constant, this is smaller than n/ΔΩ(1).

To show the bounds on total space usage note that the total

edge count of all the graphs GL
i is clearly at most |L|, since

each edge lives on at most one machine, and this is at most

m/ poly(Δ). Furthermore, storing partition of each vertex

requires only O(n) total space.

As we have discussed before, for any vertex v ∈ V and

any i ∈ [k], we define the random variable

Zv,i :=
∣∣Vi ∩NG[V \M](v)

∣∣,
to be the degree of vertex v in the ith partition of the residual

graph G[V \M]. Note here that v does not necessarily belong

to Vi. With this definition, if a vertex v is not matched in

M , we have degres
M (v) = Zv,1+· · ·+Zv,k. We further define

the related random variable Z ′
v as:

Z ′
v :=

{
Zv,χ(v) if v /∈ M

0 if v ∈ M ,

which is equivalent to the residual degree of v in its own

partition.

Claim 2. For any vertex v, we have Pr(Z ′
v > Δ0.86) ≤

exp(− poly(Δ)).

Proof: We will show that this bound holds, even after

conditioning on the random variables χ and π. Suppose

now that v ∈ Vi and so we need to bound the probability

that Zv,i > Δ0.86. Note, here, that Z ′
v = degres

Mi
(v). Also,

Mi is formed by performing independent edge sampling on

G[Vi] and then taking the greedy maximal matching. Thus

by Lemma 4, the probability that Z ′
v > ln(1/β)

p is at most β.

Setting β = e−Δ0.01

, we have Z ′
v > Δ0.86 with probability

at most exp(− poly(Δ)).

A. Analysis of the Inter-partition Degrees

The key to analyzing Algorithm 1 is to show that for most

vertices v, the values of Zv,i take on similar values across

all possible indices i. We had sketched how this leads to

the desired bound on vertex degrees in Section I-B; let us

provide some more technical details here.

Recall from Section I-B that our concentration inequalities

should not have an additive factor depending on n or

they become too weak to be useful as Δ gets smaller.

To overcome this, we show that with careful analysis, the

Efron-Stein inequality (Proposition 1) yields our desired

concentration bound; in particular, it gives concentration on

the order Zv,i = E[Zv,i]±Δ1−Ω(1). However, we emphasize

that this concentration bound is not with exponentially high

probability, or even with high probability: it only holds with

a relatively small probability 1 − 1/ poly(Δ). This is the

reason that we can only show that the number of high-

degree vertices reduces by a 1/ poly(Δ) factor, and not that

Algorithm 1 reduces the maximum degree outright.

Due to symmetry, we may consider showing a concentra-

tion bound for Zv,1. Let us furthermore assume that L and

π have been fixed. Therefore, Zv,1 becomes only a function

of the vertex partitioning χ, or more precisely, a function of

the set of vertices that belong to partition V1. Let us define

the vector �x, by setting xv = 1 if χ(v) = 1, and xv = 0
otherwise. We may write Zv,1(�x) to emphasize that Zv,1

is merely a function of �x. Observe that �x is a vector of

n i.i.d. Bernoulli-1/k random variables. To use the Efron-

Stein inequality for bounding the variance, we have to upper

bound the right-hand-side of inequality

Var(Zv,1) ≤ 1

2
E�x

[∑
w∈V

(
Zv,1(�x)− Zv,1(�x

(w))
)2]

, (1)

where �x(w) is obtained by replacing the value of xw in �x
with x′

w which is drawn independently from the same distri-

bution. In other words, the w summand of (1) corresponds

to the effect of repartitioning vertex w on the value of Zv,1.

Thus, we need to show that for most of the vertices in V ,

whether they belong to V1 or not does not affect Zv,1.

To show this, consider a game where we determine

Zv,1(�x) by querying entries of �x. The queries can be

conducted adaptively, i.e., each query can depend on the

answers to previous queries. If we show an upper bound βv

on the number of queries required to determine Zv,1(�x), then

no matter what the other n − βv entries of �x are, Zv,1(�x)
remains unchanged and so clearly Zv,1(�x)−Zv,1(�x

(w)) = 0
for all such unqueried vertices w. (The subscript v in βv is

used to emphasize that the upper bound can be different

for different choices of v.) Therefore, one way to show that

1630

most vertices of V do not affect Zv,1 is to design an efficient

query process. We also note a particularly useful property of

the Efron-Stein inequality in (1) is that even an upper bound

on the expected number (taken over choice of �x) of queries

suffices.

In addition to showing that most vertices do not affect

Zv,1, we also need to show that the query process yields an

appropriate Lipschitz property on Zv,1 as well. That is, even

if the query process can guarantee Zv,1(�x)−Zv,1(�x
(w)) = 0

for most vertices w, we still have to bound the value

of (Zv,1(�x) − Zv,1(�x
(w)))2 on those vertices w where

Zv,1(�x) 	= Zv,1(�x
(w)). This also follows from the nice

structure of the greedy maximal matching algorithm.

Claim 3 (Lipschitz property). For any vertex partitioning
�x, let �x(w) be obtained by changing the w index of �x. Then
(Zv,1(�x)− Zv,1(�x

(w)))2 ≤ 4.

Proof: Suppose that xw = 0 which means x
(w)
w = 1.

Let V1 and V ′
1 denote the vertex partitions due to �x and

�x(w) respectively, i.e., V1 = {u | xu = 1} and V ′
1 =

{u | x
(w)
u = 1}. Observe that V1 and V ′

1 differ in only

one vertex w which belongs to V ′
1 but not V1. Define M1 :=

GreedyMM(G[V1], π) and M ′
1 := GreedyMM(G[V ′

1], π). By

Lemma 5 part 1, there are at most two vertices in V whose

match-status differs between M1 and M ′
1. Even if these

two vertices happen to be neighbors of v, we still have

|Zv,1(�x)− Zv,1(�x
(w))| ≤ 2 and thus get the desired bound.

The case with xw = 1 and x
(w)
w = 0 follows from a similar

argument.

The Lipschitz property can be plugged directly into (1) to

show Var(Zv,1) ≤ O(nΔ−0.1). In what follows, however,

we describe a query process which significantly reduces this

upper bound to poly(Δ) for nearly all the vertices, i.e.,

removes the dependence on n.

The query process: We start with a query process to de-

termine whether a given edge belongs to matching M1(�x) –

where here we write M1(�x) to emphasize that the parameters

π, L should be regarded as fixed and so matching M1 is

only a function of the vertex partitioning �x. This process is

very similar to a generic edge oracle for the greedy matching

(which we briefly discuss in Section VI), except that instead

of querying the edges, it queries the entries of the vector �x.

Suppose that we have to determine whether a given edge

e ∈ L belongs to the matching M1(�x). Instead of revealing

the whole vector �x, first note that if one of the end-points

of e does not belong to V1, then e cannot be in the induced

subgraph GL
1 and thus we can answer NO immediately.

Suppose that e appears in GL
1 . Since the greedy maximal

matching algorithm processes the edges in the order of π, it

suffices to recursively determine whether any of the incident

edges to e belongs to M1(�x) in the order of their priorities.

At any point that we find such incident edge to e, we

immediately return NO as e certainly cannot join M1(�x).

Otherwise e has to join M1(�x), thus we return YES. We

summarize the resulting query process as EOπ(e, �x):

EOπ(e, �x): A query-process to determine whether e ∈
M1(�x).

Let e = {u, v}. Query xu and xv; if xu = 0 or xv = 0,

then return NO.

Let e1, . . . , ed be the incident edges to e in GL sorted as

π(e1) < π(e2) < · · · < π(ed).
for i = 1, . . . , d do

if π(ei) < π(e) then
if EOπ(ej , �x) = YES then return NO

return YES

We also define a degree oracle DOπ(v, �x) to determine

the value of Zv,1(�x). This checks whether each w ∈ NG(v)
appears in V1 and is matched, which in turn requires check-

ing whether every edge incident to w appears in matching

of GL[V1]:

DOπ(v, �x): A query process to determine the value of

Zv,1(�x).

c ← 0
for all vertices u ∈ NG(v) do

Query xu.

if xu = 1 then
Execute EOπ((u,w), �x) for all vertices w ∈

NGL(u).
if EOπ((u,w), �x) = NO for all such vertices w

then c ← c+ 1
 u is unmatched in M1

return c

Analysis of the query complexity: We now analyze the

query complexity of the oracle DOπ , i.e., the number of

indices in �x that it queries. For any vertex v, we let B(v)
denote the number of vertices that are queried when running

DOπ(v). This is precisely the quantity that we need to

bound for arguing that Var(Zv,1) is small according to (1).

Formally:

Claim 4. Fix any �x, π, L and and let �x(w) be a vector
obtained by resampling the index xw. Then∑

w∈V

(Zv,1(�x)− Zv,1(�x
(w)))2 ≤ 4B(v).

Proof: By definition, the value of Zv,1(�x) can be

uniquely determined by only revealing indices of �x which

are quered by DOπ(v, �x). Therefore, changing other indices

w of �x cannot affect Zv,1 and so Zv,1(�x)−Zv,1(�x
(w)) = 0.

There are B(v) indices queries by v. For any such index w,

Claim 3 shows that (Zv,1(�x)− Zv,1(�x
(w)))2 ≤ 4.

1631

To bound B(v), let us first define A(e) for an edge e ∈ L1

to be the number of edges in L1, on which the edge oracle

is called (recursively) in the course of running EOπ(e, �x).
Note that when running EO, only edges that are in L1 can

generate new recursive calls; other edges are checked, but

immediately discarded.

Claim 5. We have E[
∑

e∈L1
A(e)] ≤ O(n) where the

expectation is taken over χ, L, and π.

Proof: Let us first suppose that the random variables

L and χ are fixed. Thus also GL
i is determined. The only

randomness remaining is the permutation π. As we are only

interested in edges of L1, the edges outside L1 have no

effect on the behavior of EOπ . Thus, A(e) is essentially

the query complexity of GreedyMM(G1, π) under a random

permutation. By Proposition 4, we have:

Eπ

[∑
e∈L1

A(e) | L, χ
]
≤ O(|L1|+ |R1|),

where R1 is the set of intersecting edge pairs in G1.

Integrating now over the random variables L and χ, we get:

E

[∑
e∈L1

A(e)
]
≤ O(E[|L1|+ |R1|]).

Each edge e ∈ E goes into L1 with probability p/k2 =
Δ−1.05, and so E[|L1|] = mΔ−1.05. Likewise, G contains

at most mΔ/2 pairs of intersecting edges and each of these

survives to R1 with probability p2/k3 = Δ−2. Therefore,

E[|R1|] ≤ mΔ−1. Since m ≤ nΔ, we therefore get

E[
∑

e∈L1
A(e)] ≤ O(n).

Claim 6. Suppose that we condition on the event that when
running DOπ(v, �x), we make a total of t calls to EOπ(e, �x)
with e ∈ L1. Then the expected number of total entries of �x
queried during DOπ(v, �x) is at most O(Δ1.15 + tΔ0.15).

Proof: Let us condition on the random variables χ,L1

and π. This determines the full listing of all edges in L1 that

are queried during the execution of DOπ(v), because only

such edges can generate new recursive calls to EOπ . Thus,

if we show that this bound holds conditioned on χ,L1, π it

will also show that it holds conditioned on the value t. The

only remaining randomness at this point is the set L \ L1.

Let J denote the set of edges in L1 queried during

DOπ(v, �x), with |J | = t. Then DOπ(v, �x) will query xu

for all u ∈ NG(v), and it will query w for all w ∈ NGL(u)
for all such u ∈ NG(v). Finally, whenever it encounters edge

e ∈ J , it will call EOπ(f, �x) for some edges f ∈ L \ L1

which touch e; each of these will query two vertices, but

the query process will not proceed further when they are

discovered to lie outside L1.

The number of vertices u ∈ NG(v) queried is clearly at

most Δ. Now let us fix some u ∈ NG(v) and count the

number of vertices w ∈ NGL(u) queried. This is precisely

degL(u), and for any fixed u, the expected number of such

vertices w is at most Δp = Δ0.15. Thus, the total expected

number of queried vertices in the first two categories is at

most Δ1.15.

Finally, let us consider some edge e = (a, b) ∈ J . The

number of corresponding queried edges of L \ L1 is at

most degL\L1
(a)+degL\L1

(b). Clearly again, for any fixed

e we have E[degL\L1
(a)] ≤ Δp = Δ0.15 and similarly

for b. Thus, the expected number of queried entries of �x
corresponding to edge e is at most 4Δ0.15.

Putting all these together, the expected number of queried

entries of �x is O(Δ1.15 + tΔ0.15).

Lemma 3. We have E[
∑

v∈V B(v)] ≤ O(nΔ1.15) where
the expectation is taken over χ,L, π.

Proof: For any vertex v ∈ V , let us first define B′(v)
to the number of edges in L1 that are queried in the course

of running DOπ(v). This can be bounded by:

B′(v) ≤
∑

u∈NG(v)∩V1

∑
w:(u,w)∈L1

A(u,w).

Summing over v ∈ V , we get:∑
v

B′(v) ≤
∑
v

∑
u∈NG(v)∩V1

∑
w:(u,w)∈L1

A(u,w)

≤
∑

(u,w)∈L1

A(u,w)
(∑
v∈NG(u)

1 +
∑

v∈NG(w)

1
)

≤ 2Δ
∑
e∈L1

A(e).

Taking expectations and applying Claim 5, we therefore have

E

[∑
v

B′(v)
]
≤ 2ΔE

[∑
e∈L1

A(e)
]
≤ O(Δn).

By Claim 6, we have E[B(v) | B′(v) = t] ≤ O(Δ1.15 +
tΔ0.15) for any vertex v. This further implies that E[B(v)] ≤
O(Δ1.15 + E[B′(v)]Δ0.15); thus

E

[∑
v

B(v)
]
≤ O

(
Δ0.15

E

[∑
v

B′(v)
]
+Δ1.15n

)
≤ O(Δ1.15n),

as desired.

We now say that a vertex v is bad if E�x[B(v) | π, L] >
Δ1.4 (i.e., Ω(Δ0.25) times larger than the average value

given by Lemma 3) and good otherwise. Let us define B
to be the set of bad vertices. Note that, because B is based

on a conditional expectation, it is determined solely by the

random variables π, L.

Claim 7. The expected size of B satisfies Eπ,L[|B|] ≤
O(n/Δ0.25).

Proof: Observe that we have
∑

v∈V Eχ[B(v) | π, L] ≥
|B| · Δ1.4 with probability one since for each bad vertex

1632

v ∈ B, by definition the expected value of B(v) is at least

Δ1.4. Taking expectations over π and L, we therefore get

Eπ,L[|B|] ≤ Δ−1.4 · Eπ,L

[∑
v∈V

E�x[B(v)] | π, L]
]

= Δ−1.4
∑
v∈V

E[B(v)].

By Lemma 3, we have
∑

v∈V E[B(v)] ≤ O(Δ1.15n).
Putting these two bounds together gives E[|B|] ≤
O(nΔ−0.25).

Claim 8. For any π, L, any good vertex v has Var(Zv,1 |
π, L) ≤ O(Δ1.4).

Proof: By Claim 4, for any vertex partitioning �x, we

have
∑

w∈V (Zv,1(�x) − Zv,1(�x
(w)))2 ≤ 4B(v), where �x(w)

is obtained by changing the w entry of �x. If we fix π, L and

take expectations over �x, this gives

E�x

[∑
w∈V

(Zv,1(�x)−Zv,1(�x
(w)))2 | π, L

]
≤ 4E�x[B(v) | π, L].

On the other hand, by (1), any vertex v has

Var(Zv,1 | π, L) ≤ 1

2
E�x

[∑
w∈V

(
Zv,1(�x)−Zv,1(�x

(w))
)2 | π, L

]
.

Combining the two inequalities gives Var(Zv,1 | π, L) ≤
2E[B(v) | π, L]. Since v is good with respect to π, L, it

satisfies E�x[B(v) | π, L] ≤ O(Δ1.4) by definition. Thus

Var(Zv,1 | π, L) ≤ O(Δ1.4).
We are now ready to prove the main part of Lemma 2.

Proof of Lemma 2, part (3): For each vertex v ∈ V ,

define the random variable yv to be the indicator function

that degres
M (v) > Δ0.99 after running Algorithm 1. We need

to show that E[
∑

v∈V yv] ≤ O(n/Δ0.03).
Depending on π and L, let us partition the vertices in

V into two subsets B and G of respectively bad and good

vertices as defined before. Furthermore, fix τ = 2Δ0.86 and

partition the set G of good vertices into two subsets H and

L where for any vertex v ∈ H, E�x[Zv,1 | π, L] ≥ τ and for

any v ∈ L, E�x[Zv,1 | π, L] < τ . We have:∑
v∈V

yv =
∑
v∈B

yv +
∑
v∈L

yv +
∑
v∈H

yv.

By Claim 7, we know directly that E[|B|] ≤ O(n/Δ0.25).
Since yv ≤ 1 for any vertex v, we have E[

∑
v∈B yv] ≤

E[|B|] ≤ O(n/Δ0.25).
Now, for any fixed v ∈ V , we compute the probability

of the event that v ∈ L and yv = 1 (respectively, v ∈ H
and yv = 1); we show that each such event has probability

O(Δ−0.03).

Good vertices of type L: Recall that degres
M (v) ≤ Zv,1 +

. . .+Zv,k where k = Δ0.1 denotes the number of partitions.

Taking expectations we get

E[degres
M (v) | π, L] ≤ E[Zv,1 + . . .+ Zv,k | π, L]

= kE[Zv,1 | π, L]
where the latter equality for symmetry of the partitions. If

v ∈ L, then E[Zv,1 | π, L] < τ , thus, E[degres
M (v) | π, L] ≤

kτ = Δ0.1 · 2Δ0.86 = 2Δ0.96. By Markov’s inequality,

Pr[degres
M (v) > Δ0.99 | π, L] < O(Δ−0.03). Therefore,

Pr[yv = 1 ∧ v ∈ L | π, L] ≤ O(Δ−0.03). Integrating over

π, L also Pr[yv = 1 ∧ v ∈ L] ≤ O(Δ−0.03) as desired.

Good vertices of type H: We show that good vertices of

type H are highly likely to be matched in their own partition

and thus not too many of them will remain in the graph. For

such a vertex v, one of the following two events must occur:

either Z ′
v ≥ Δ0.86 or Z ′

v < Δ0.86. The first of these events

has probability exp(− poly(Δ)) � Δ−0.03 by Claim 2. We

next need to bound the probability of having v ∈ H and

also having Z ′
v ≤ Δ0.86. If this occurs, by definition of Z ′

v ,

we have at least one index j ∈ [k] with Zv,j < Δ0.86. We

bound the occurrence probability of this event.

Since v ∈ H, by definition it is a good vertex and

thus Claim 8 shows that Var(Zv,i | π, L) ≤ O(Δ1.4).
Also, E[Zv,i | π, L] ≥ 2Δ0.86. Therefore, by Chebyshev’s

inequality, for any fixed i ∈ [k],

Pr
[
Zv,i < Δ0.86 | π, L]
≤ Pr

[∣∣Zv,i − E[Zv,i | π, L]
∣∣ ≥ 2Δ0.86 −Δ0.86

]
≤ O

(
Var(Zv,i | π, L)

(Δ0.86)2

)
≤ O

(
Δ1.4

Δ1.72

)
≤ O(Δ−0.32).

By a union bound over the k = Δ0.1 choices of j, we can

bound the probability that v is in H and there exists some

j ∈ [k] with Zv,j ≤ Δ0.86 given π and L by O(Δ−0.22).
This means that overall, the probability that yv = 1 and

v ∈ H is O(Δ−0.22) � O(Δ−0.03).

V. PUTTING EVERYTHING TOGETHER

We now prove Lemma 1, showing that Algorithm 1 can

be used to reduce the overall graph degree. There are two

parts to doing this. First, we need to amplify the success

probability of Lemma 2, which only showed a degree

reduction in expectation, into one holding w.e.h.p. Next, we

need to remove the remaining high-degree vertices.

Claim 9. There is an algorithm to generate a matching M
which w.e.h.p. uses n/ΔΩ(1) space per machine and O(m)
total space, such that there are at most n/Δ0.02 vertices v
with degres

M (v) > Δ0.99.

Proof: We may assume that the original graph has as

least n/Δ0.02 vertices with deg(v) > Δ0.99, as otherwise

there is nothing to do. This implies that m ≥ nΔ0.97.

Now consider running Algorithm 1 to generate a matching

M . Let us define Y to be the number of vertices v ∈ V

1633

with degres
M (v) > Δ0.99. Lemma 1 has shown that E[Y] ≤

O(n/Δ0.03), and so we need to show concentration for Y .

There are two cases depending on the size of Δ.

Case 1: Δ > n0.1: In this case, Markov’s inequality

applied to Y shows that Pr[Y > nΔ−0.02] ≤ O(Δ−0.01) ≤
1/2. Now consider running t = na parallel iterations

of Algorithm 1 for some constant a > 0, generating

matchings M1, . . . ,Mt. Since they are independent, there

is a probability of at least 1 − 2−t that at least one

matching Mi has the property that its residual set of high-

degree vertices satisfies Y > nΔ−0.02. Thus, w.e.h.p.,

this algorithm satisfies the condition on the high-degree

vertices. Each application of Algorithm 1 separately uses

O(n) + m/ poly(Δ) space. Therefore, the t iterations in

total use O(n1+a) + nam/ poly(Δ) space. Since Δ > n0.1

and m ≥ Δn0.97 > n1.07, this is O(m) for a a sufficiently

small constant.

Case 2: Δ < n0.1: We can regard Y as being determined

by O(nΔ) random variables, namely, the values ρ, χ, L. By

Lemma 5, modifying each entry of ρ, χ, or L can only

change the match-status of at most O(1) vertices. Each

of these, in turn, has only Δ neighbors, which are the

only vertices whose degree in G[V \M] is changed. Thus,

changing each of the underlying random variables can only

change Y by O(Δ). By Proposition 3, therefore, w.e.h.p. we

have

Y ≤ E[Y]+O(Δ)n0.01
√
nΔ ≤ O(nΔ−0.03)+O(n0.51Δ1.5).

As Δ ≤ n0.1 and Δ is larger than any neded constants, this

is at most nΔ−0.02. Therefore, already a single application

of Algorithm 1 suceeds w.e.h.p.

Having slightly reduced the number of high-degree ver-

tices, we next use the following Algorithm 2, which signif-

icantly decreases the number of high-degree vertices.

Algorithm 2.

(1) Let Y be the set of vertices in G[V \M] with degree

greater than τ = Δ0.999.

(2) Sample each edge with at least one end-point in Y
with probability q := Δ−0.99 and let L be the set of

sampled edges.

(3) Put GL = (V, L) in machine 1, choose an arbitrary

permutation π over its edges and return matching

M ′ := GreedyMM(GL, π).

Claim 10. Given a graph G, suppose we apply Claim 9;
let M be the resulting matching and G′ = G[V \ M].
Suppose we next run Algorithm 2 on G′ and let M ′ denote
the resulting matching. Let Y ′ denote the set of vertices v
with degres

M∪M ′(v) > τ . Then, w.e.h.p., |Y ′| ≤ n/Δ1.01.

Proof: Let Y be the set of vertices with degres
M (v) > τ

and Y = |Y|. By Claim 9, w.e.h.p. Y ≤ n/Δ0.02. For the

remainder of this proof, we assume that M (and hence Y)

is fixed and it satisfies this bound.

We first analyze E[Y ′] where we define Y ′ = |Y ′|. Con-

sider some vertex v ∈ Y . By Lemma 4, with probability at

least 1−β the vertex v has degres
M∪M ′ ≤ O(log 1/β

q). Setting

β = e−Δ0.001

, we get that degres
M∪M ′(v) ≤ O(Δ0.991) with

probability 1−exp(−ΔΩ(1)). Since this holds for any vertex

v ∈ Y , we have shown that

E[Y ′] ≤ Y · exp(−ΔΩ(1)) ≤ ne−ΔΩ(1)

.

We next need to show concentration for Y ′. For this, note

that if Δ > n0.01, then the above bound on E[Y ′] already

implies (by Markov’s inequality) that Y ′ < 1 w.e.h.p.

If Δ < n0.01, then we use the bounded differences

inequality. Here, Y ′ can be regarded as a function of nΔ
random variables (the membership of each edge in L). By

Lemma 5, each such edge can affect the match-status of

O(1) vertices. Each such vertex w, in turn, can only change

the membership in Y ′ of its neighbors. Hence, each random

variable changes Y ′ by at most O(Δ). By Proposition 3, we

therefore have w.h.p.

Y ′ ≤ E[Y ′] +O(Δ
√
nΔn0.01) ≤ ne−ΔΩ(1)

+O(Δ1.5n0.51).

By our assumption that Δ ≤ n0.01, this is easily seen to be

smaller than n/Δ1.01.

Proof of Lemma 1: When we apply Claim 9 and

then apply Claim 10, this w.e.h.p. gives matchings M,M ′

respectively such that G[V \(M ∪M ′)] has at most n/Δ1.01

vertices of degree larger than Δ0.999. Claim 9 already obeys

the stated space bounds. For Algorithm 2, observe that

|Y| ≤ n/Δ0.02, and so there are at most nΔ0.98 edges

incident to Y . This means E[|L|] ≤ n/Δ0.01 and a simple

Chernoff bound thus shows that L ≤ n/ΔΩ(1) w.e.h.p.

Finally, we place all vertices with degree at least Δ0.999

and their incident edges onto a single machine; this clearly

takes O(n/Δ0.01) space. Since Δ is larger than any needed

constant, this is at most n/ΔΩ(1). We thus expand M ∪M ′

to a maximal matching M ′′ of G[V \ (M ∪ M ′)]. At the

end of this process, all remaining vertices of G must have

degree less than Δ0.999.

A. The Algorithm with Mildly Sublinear Space

We now turn to proving Theorem 2, where we reduce the

space per machine to n/2Ω(
√
logn) with round complexity

at O(log logΔ + log log log n). The follows by combining

the fact that our algorithms require n/ΔΩ(1) space with a

known technique for simulating LOCAL algorithm on low-

degree graphs in an exponentially faster time.

Proof of Theorem 2: The degree reduction algorithm of

Lemma 1 uses a space per machine of n/ΔΩ(1) to get the de-

gree down from Δ to Δ1−Ω(1). Therefore, if Δ ≥ 2Ω(
√
logn),

1634

the degree reduction automatically requires n/2Ω(
√
logn)

space. This means that within O(log logΔ) rounds, we can

get the maximum degree down to Δ′ ≤ 2(γ/2)
√
logn w.e.h.p.,

where γ ∈ (0, 1) is any small constant. (If Δ ≤ 2(γ/2)
√
logn

originally, then we simply have Δ′ = Δ.)

At this point, we switch to a different algorithm: we

simulate the known t = O(logΔ + poly(log log n)) round

LOCAL algorithms for maximal matching [9]. This requires

O(log t) = O(log logΔ + log log log n) rounds; this is

possible for the all-to-all communication of the machines

(compared to LOCAL) and the fact that the maximum degree

is small (so that the neighborhood is not too large that it

does not fit the memory). For more details, see for example

the blind coordination lemma of [16] which shows one can

simulate t rounds of all state-congested LOCAL algorithms

(such as that of [9]) in O(t
logΔ n+log t) rounds of MPC with

n1−Ω(1) space per machine and O(n1+γ/2) total space. (This

excludes the space needed to store the original graph.)

In our case, since we apply this algorithm to a graph of

maximum degree Δ′ = 2(γ/2)
√
logn and t = O(logΔ′ +

poly(log log n)), and we get a runtime of

O
(logΔ′ + poly log log n

logΔ′ n
+ log logΔ′ + log log log n

)
.

Since Δ′ ≤ 2O(
√
logn), the first term is O(1); since Δ′ ≤ Δ,

the second term is at most log logΔ.

Note that the LOCAL maximal matching algorithm we

are simulating here only succeeds with high probability, i.e.

with probability 1 − 1/ poly(n). In order to amplify it to

exponential success probability, we can run nγ/2 separate

independent executions; w.e.h.p., at least one will succeed.

This multiplies the total space by nγ/2, bringing the total

space (aside from the storage of G) up to n1+γ .

VI. USEFUL PROPERTIES OF SEQUENTIAL GREEDY

MAXIMAL MATCHING

In this section we prove the properties of the sequential

greedy maximal matching that we used throughout the paper.

The first property concerns the behavior of greedy match-

ing when it is run on an edge-sampled subgraph of a graph.

This property is very similar to some results in [1, 21, 27]

on greedy algorithms for correlation clustering and maximal

independent set.

Lemma 4. Fix a graph G = (V,E), let π be a permutation
over E, and let p ∈ (0, 1] be an arbitrary parameter. We
define Gp = (V,Ep) to be the random subgraph of G formed
wherein each edge in E appears in Ep independently with
probability p and define M := GreedyMM(Gp, π). For any
vertex v and any parameter β ∈ (0, 1/2), with probability
at least 1− β, degres

M (v) ≤ ln(1/β)
p .

Proof: Consider the following equivalent method of

generating M . We iterate over the edges in E in the order

of π. Upon visiting an edge e, if one of its incident edges

belongs to M , we call it irrelevant and discard it. Otherwise,

we draw a Bernoulli-p random variable Xe; if Xe = 1, we

call e lucky and add it to M otherwise we call e unlucky.

If v is matched in M , then degres
M (v) = 0. Otherwise, all of

its remaining edges in G[V \M] should have been unlucky.

That is, every time we encounter an edge e in this process, it

must have been irrelevant or we must have chosen Xe = 0.

Furthermore, in order to have degres
M (v) > τ = ln(1/β)

p , there

must remain at least τ edges which are not irrelevant. During

this process, the probability that all such edges are marked

unlucky is at most (1− p)τ ≤ exp(−τp) = β.

The second useful property of the greedy matching is that

modifying a single vertex or edge of G does not change the

set of matched vertices too much. Note that that the set of

edges selected for M can change significantly.

Lemma 5. Fix some graph G(V,E) and let ρ : E → [0, 1]
be an associated list of priorities:

1) If graph G′ is derived by removing a vertex of G, then
there are at most 2 vertices whose match-status differs
in GreedyMM(G, ρ) and GreedyMM(G′, ρ).

2) If graph G′ is derived by removing an edge of G, then
there are at most 2 vertices whose match-status differs
in GreedyMM(G, ρ) and GreedyMM(G′, ρ).

3) If ρ′ is derived by changing a single entry of ρ, then
there are at most 2 vertices whose match-status differs
in GreedyMM(G, ρ) and GreedyMM(G, ρ′).

Proof: We start with the proof of the first part. Suppose

that G′ is obtained by removing some vertex v from G.

Let M := GreedyMM(G, ρ) and M ′ := GreedyMM(G′, ρ).
Furthermore, let D := M ⊕ M ′ denote the symmetric

difference of M and M ′, i.e. the set (M \M ′)∪ (M ′ \M).
Note that the match-status of a vertex v differs in M and M ′

if and only if its degree in D is one. Therefore, it suffices

to show that there are at most two such vertices in D.

We first claim that D has at most one connected com-

ponent (apart from singleton vertices). For sake of con-

tradiction, suppose that D has multiple such connected

components; fix one component C that does not contain

v. Let e be the edge in C with the highest priority. The

fact that no higher priority edge that is connected to e is

part of M or M ′ (otherwise e would not be the highest

priority edge in C) shows that e has to belong to both M
and M ′. By definition of D, this means that e /∈ D which is

a contradiction. Next, observe that since D is composed of

the edges of two matchings, its maximum degree is at most

2 and thus its unique component is either a path or a cycle.

The latter has no vertex of degree one and the former has

two; proving part 1 of Lemma 5.

The proof of the other two parts of Lemma 5 follows

from a similar argument. If an edge e is removed from G
or its entry in ρ is changed, then for the same argument, the

symmetric difference M ⊕M ′ of the two greedy matchings

M and M ′ that are obtained would contain only one

1635

connected component which has to contain e. Since this

component is a cycle or a path, the match-statuses of at

most two vertices are different in the two matchings.

The third property is the most subtle: it can be sum-

marized as stating that the presence of any given edge e
appearing in M can be determined from a relatively small

number of other edges. To make this more precise, let us

consider the following query-based method which we refer

to as the “edge oracle” EOπ(e) for determining whether an

edge e appears in GreedyMM(G, π):

EOπ(e): A query-process to determine whether e ∈
GreedyMM(G, π).

Let e1, . . . , ed be the incident edges to e in G sorted such

that π(e1) < π(e2) < · · · < π(ed).
for i = 1, . . . , d do

if π(ei) < π(e) then
if EOπ(ej) = YES then return NO

return YES

It is clear that e ∈ GreedyMM(G, π) if and only if

EOπ(e) = YES. For any edge e ∈ E, let us define A(e) to be

the number of (recursive) calls to EOπ that are generated by

running EOπ(e). Translating a result of Yoshida et al. [37]

for maximal independent set into our context, gives:

Proposition 4 ([37]). Let G be a graph with m edges and r
pairs of intersecting edges. If π is drawn u.a.r. from permu-
tations on m elements, then Eπ[

∑
e∈E A(e)] ≤ O(m+ r).

Proof: Let H be the line graph of G. Then H has m
vertices and r edges, and hence has average degree 2r/m.

Also, Eπ[A(e)] is the expected query complexity of the

maximal independent set of H under a random sequential

greedy independent set. The result of Yoshida et al. [37,

Theorem 2.1] implies the following bound on the average

value of A(e) in terms of the average degree of H:

1

m
Eπ

[∑
e∈L

A(e)
]
≤ 1 +

2r

m
.

We obtain the stated result by multiplying through by m.

REFERENCES

[1] Kook Jin Ahn, Graham Cormode, Sudipto Guha, An-

drew McGregor, and Anthony Wirth. Correlation

clustering in data streams. In Proceedings of the 32nd
International Conference on Machine Learning, ICML,

pages 2237–2246, 2015.

[2] Kook Jin Ahn and Sudipto Guha. Access to data

and number of iterations: Dual primal algorithms for

maximum matching under resource constraints. In Pro-
ceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 202–211,

2015.

[3] Noga Alon, László Babai, and Alon Itai. A fast and

simple randomized parallel algorithm for the maximal

independent set problem. J. Algorithms, 7(4):567–583,

1986.

[4] Alexandr Andoni, Aleksandar Nikolov, Krzysztof

Onak, and Grigory Yaroslavtsev. Parallel algorithms

for geometric graph problems. In Proceedings of the
46th annual ACM Symposiim on Theory of Computing
(STOC), pages 574–583, 2014.

[5] Sepehr Assadi. Simple round compression for parallel

vertex cover. CoRR, abs/1709.04599, 2017.

[6] Sepehr Assadi, MohammadHossein Bateni, Aaron

Bernstein, Vahab Mirrokni, and Cliff Stein. Coresets

meet edcs: algorithms for matching and vertex cover

on massive graphs. In Proceedings of the 30th an-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1616–1635, 2019.

[7] Sepehr Assadi and Sanjeev Khanna. Randomized

composable coresets for matching and vertex cover. In

Proceedings of the 29th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages

3–12, 2017.

[8] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Mas-

sively parallel algorithms for finding well-connected

components in sparse graphs. CoRR, abs/1805.02974,

2018.

[9] Leonid Barenboim, Michael Elkin, Seth Pettie, and

Johannes Schneider. The Locality of Distributed Sym-

metry Breaking. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 321–330, 2012.

[10] MohammadHossein Bateni, Soheil Behnezhad, Mahsa

Derakhshan, MohammadTaghi Hajiaghayi, Raimondas

Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affin-

ity clustering: Hierarchical clustering at scale. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems (NIPS), pages 6867–6877, 2017.

[11] Paul Beame, Paraschos Koutris, and Dan Suciu. Com-

munication steps for parallel query processing. In

Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems
(PODS), pages 273–284, 2013.

[12] Paul Beame, Paraschos Koutris, and Dan Suciu. Com-

munication steps for parallel query processing. J. ACM,

64(6):40:1–40:58, 2017.

[13] Soheil Behnezhad, Sebastian Brandt, Mahsa Der-

akhshan, Manuela Fischer, MohammadTaghi Haji-

aghayi, Richard M. Karp, and Jara Uitto. Massively

parallel computation of matching and MIS in sparse

graphs. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019., pages

481–490, 2019.

1636

[14] Soheil Behnezhad, Mahsa Derakhshan, Hossein Esfan-

diari, Elif Tan, and Hadi Yami. Brief announcement:

Graph matching in massive datasets. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 133–136, 2017.

[15] Soheil Behnezhad, Mahsa Derakhshan, and Mo-

hammadTaghi Hajiaghayi. Brief announcement:

Semi-mapreduce meets congested clique. CoRR,

abs/1802.10297, 2018.

[16] Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, and Richard M. Karp. Massively

parallel symmetry breaking on sparse graphs: MIS and

maximal matching. CoRR, abs/1807.06701, 2018.

[17] Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, Marina Knittel, and Hamed Saleh.

Streaming and massively parallel algorithms for edge

coloring. In 27th Annual European Symposium on
Algorithms, ESA 2019, September 9-11, 2019, Mu-
nich/Garching, Germany., pages 15:1–15:14, 2019.

[18] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobo-

dan Mitrovic, Krzysztof Onak, and Piotr Sankowski.

Round compression for parallel matching algorithms.

In Proceedings of the 50th annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages

471–484, 2018.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[20] Buddhima Gamlath, Sagar Kale, Slobodan Mitrović,

and Ola Svensson. Weighted matchings via unweighted

augmentations. arXiv preprint arXiv:1811.02760,

2018.

[21] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad,

Slobodan Mitrovic, and Ronitt Rubinfeld. Improved

massively parallel computation algorithms for MIS,

matching, and vertex cover. In Proceedings of the 2018
ACM Symposium on Principles of Distributed (PODC),
pages 129–138, 2018.

[22] Mohsen Ghaffari and Jara Uitto. Sparsifying dis-

tributed algorithms with ramifications in massively

parallel computation and centralized local computation.

Proceedings of the 30th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), to appear., 2019.

[23] Michael T. Goodrich, Nodari Sitchinava, and Qin

Zhang. Sorting, searching, and simulation in the

MapReduce framework. In Proceedings of the 22nd
International Symposium on Algorithms and Compu-
tation (ISAAC), pages 374–383, 2011.

[24] Amos Israeli and Alon Itai. A fast and simple ran-

domized parallel algorithm for maximal matching. Inf.
Process. Lett., 22(2):77–80, 1986.

[25] Howard J. Karloff, Siddharth Suri, and Sergei Vassil-

vitskii. A model of computation for MapReduce. In

Proceedings of the 21st annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 938–948, 2010.

[26] Subhash Khot and Oded Regev. Vertex cover might

be hard to approximate to within 2- ε. Journal of
Computer and System Sciences, 74(3):335–349, 2008.

[27] Christian Konrad. Mis in the congested clique model

in O(log logΔ) rounds. CoRR, abs/1802.07647, 2018.

[28] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and

Sergei Vassilvitskii. Filtering: a method for solving

graph problems in MapReduce. In Proceedings of the
23rd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 85–94, 2011.

[29] Christoph Lenzen. Optimal deterministic routing and

sorting on the congested clique. In ACM Symposium
on Principles of Distributed Computing, PODC, pages

42–50, 2013.

[30] Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. Dis-

tributed approximate matching. SIAM J. Comput.,
39(2):445–460, 2009.

[31] Michael Luby. A simple parallel algorithm for the

maximal independent set problem. In Proceedings
of the 17th annual ACM Symposium on Theory of
Computing (STOC), pages 1–10, 1985.

[32] Andrew McGregor. Finding graph matchings in data

streams. In 8th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Prob-
lems (APPROX) and 9th International Workshop on
Randomization and Computation (RANDOM), pages

170–181, 2005.

[33] Huy N. Nguyen and Krzysztof Onak. Constant-time

approximation algorithms via local improvements. In

Proceedings of the 49th annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 327–

336, 2008.

[34] Krzysztof Onak. Round compression for parallel

graph algorithms in strongly sublinear space. CoRR,

abs/1807.08745, 2018.

[35] J Michael Steele et al. An Efron-Stein inequality

for nonsymmetric statistics. The Annals of Statistics,

14(2):753–758, 1986.

[36] Tom White. Hadoop - The Definitive Guide: Storage
and Analysis at Internet Scale (2. ed.). O’Reilly, 2011.

[37] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An

improved constant-time approximation algorithm for

maximum matchings. In Proceedings of the 41st
annual ACM Symposium on Theory of Computing
(STOC), pages 225–234, 2009.

[38] Matei Zaharia, Mosharaf Chowdhury, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster

Computing with Working Sets. In 2nd USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud),
2010.

1637

