
Approximation Algorithms for LCS and LIS
with Truly Improved Running Times

Aviad Rubinstein∗, Saeed Seddighin†, Zhao Song‡, Xiaorui Sun§
∗Computer Science Department, Stanford University, Stanford, California, USA, aviad@cs.stanford.edu

†SEAS, Harvard University, Cambridge, Massachusetts, USA, saeedreza.seddighin@gmail.com
‡ Simons Institute for the Theory of Computing, Berkeley, California, USA, magic.linuxkde@gmail.com

§Computer Science Department, University of Illinois at Chicago, Chicago, Illinois, USA, xiaorui@uic.edu

Abstract—Longest common subsequence (LCS) is a classic
and central problem in combinatorial optimization. While LCS
admits a quadratic time solution, recent evidence suggests that
solving the problem may be impossible in truly subquadratic
time. A special case of LCS wherein each character appears
at most once in every string is equivalent to the longest
increasing subsequence problem (LIS) which can be solved in
quasilinear time. In this work, we present novel algorithms
for approximating LCS in truly subquadratic time and LIS
in truly sublinear time. Our approximation factors depend on
the ratio of the optimal solution size over the input size. We
denote this ratio by λ and obtain the following results for LCS
and LIS without any prior knowledge of λ.
• A truly subquadratic time algorithm for LCS with ap-

proximation factor O(λ3).
• A truly sublinear time algorithm for LIS with approxi-

mation factor O(λ3).
Triangle inequality was recently used by Boroujeni et al.

[1] and Chakraborty et al. [2] to present new approximation
algorithms for edit distance. Our techniques for LCS extend
the notion of triangle inequality to non-metric settings.

Keywords-approximation; LCS; LIS; subquadratic time;

I. INTRODUCTION

In this paper, we consider three of the most classic

problems in combinatorial optimization: the longest common

subsequence (LCS), the edit distance (ED), and the longest

increasing subsequence (LIS). The LCS of two strings A
and B is simply their longest (not necessarily contiguous)

common subsequence. The edit distance is defined as the

minimum number of character deletions, insertions, and

substitutions required to transform A into B. For the purpose

of our discussion, we consider a more restricted definition of

edit distance where substitutions are not allowed1. Longest

increasing subsequence is equivalent to a special case of

LCS where the input strings are permutations. All three

problems are very fundamental and have been subject to

a plethora of studies in the past few decades and specially

in recent years [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [1], [2], [15], [16], [17].

1Alternatively, the cost of a substitution is doubled as it requires a
deletion and an insertion.

If the strings have length n, both LCS and ED can

be solved in quadratic time (O(n2)) with dynamic pro-

gramming. These running times are slightly improved to

O(n2/ log2(n)) by Masek and Paterson [18], however, ef-

forts to improve the running time to O(n2−Ω(1)) for either

edit distance or LCS were all futile.

In recent years, our understanding of the source of com-

plexity for these problems tremendously improved thanks to

a sequence of fine-grained complexity developments [10],

[11]. We now know that assuming the strong exponential

time hypothesis (SETH) [10], or even weaker assumptions

such as the orthogonal vectors conjecture (OVC) [10] or

branching-program-SETH [11], there are no truly sub-

quadratic2 time algorithms for LCS. Similar results also hold

for edit distance [9].

Indeed, the classic approach to break the quadratic bar-

rier for these problems is approximation algorithms. Note

that for (multiplicative) approximations, LCS and edit dis-

tance are no longer equivalent (much like we have a 2-

approximation algorithm for Vertex Cover, but Independent

Set is NP-hard to approximate within near-linear factors).

For edit distance, an Õ(n + Δ2)-time algorithm of [3]

(where Δ is the true edit distance between the strings)

implies a linear-time
√
n-approximation algorithm. The

approximation factor has been significantly improved in

a series of works to O(n3/7) [4], to O(n0.34) [5], to

O(2Õ(
√
logn)) [6]3, and finally to polylogarithmic [7]. A

recent work of Boroujeni et al. [1] obtains a constant factor

approximation quantum algorithm for edit distance that runs

in truly subquadratic time. Finally, the breakthrough of

Chakraborty et al. [2] gave a classic (randomized) constant

factor approximation for edit distance in truly subquadratic

time. A key component in both of the latest constant

factor approximation algorithms is the application of triangle

inequality (for edit distance between certain substrings of

the input). A particular challenge in extending these ideas

to LCS is that LCS is not a metric and in particular does

2By truly sub-quadratic we mean O(n2−ε), for any constant ε > 0
3We define ˜O(f) to be f · logO(1)(f).

1121

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00071

not satisfy the triangle inequality.
Our understanding of the complexity of approximate

solutions for LCS is embarrassingly limited. For general

strings, there are several linear-time 1/
√
n-approximation

algorithms based on sampling techniques. For alphabet size

|Σ|, there is a trivial 1/|Σ|-approximation algorithm that

runs in linear time. Whether or not these approximation

factors can be improved by keeping the running time sub-

quadratic is one of the central problems in fine-grained com-

plexity. Very recently, both the general 1/
√
n-approximation

factor, and, for binary strings, the 1/2-approximation factor,

have been slightly improved ([15] and [19], respectively).

These works give improved algorithm for the two extreme

cases where the size of the alphabet is very small or very

large. In comparison, our approximation guarantee depends

on the solution size rather than the size of the alphabet.

Also, for the special case of balanced strings, we improve

upon the result of [19] by obtaining an o(|Σ|) approximate

solution in subquadratic time. There are a few fine-grained

complexity results for approximate LCS, but they only hold

against deterministic algorithms, and rely on very strong

assumptions [12], [13], [14].

A. Our Results
For simplicity, we use lcs(A,B) to denote the size (not

the whole sequence) of the longest common subsequence

for two strings A and B. Similarly, we use ed(A,B) to

denote the edit distance and lis(A) for the size of the

longest common subsequence. We sometimes normalize the

solution by the length of the strings so that the size of

the solution remains in the interval [0, 1]. We refer to

the normalized solutions by ||lcs(A,B)|| = lcs(A,B)/n
and || ed(A,B)|| = ed(A,B)/2n (here both strings have

equal length n), and ||lis(A)|| = lis(A)/n. In this way,

|| ed(A,B)||+ ||lcs(A,B)|| = 1 (assuming both strings have

equal length).
As mentioned earlier, recent developments for edit dis-

tance are based on a simple but rather useful observa-

tion. Edit distance satisfies triangle inequality, or in other

words, given three strings A1, A2, A3 of length n such that

|| ed(A1, A2)|| ≤ δ and || ed(A2, A3)|| ≤ δ hold, we can

easily imply that || ed(A1, A3)|| ≤ 2δ. While lcs does not

satisfy the triangle inequality in any meaningful way, it

does, on average, satisfy the following birthday-paradox-like

property that we call birthday triangle inequality.

Property (birthday triangle inequality). Consider
three equal-length strings A1, A2, and A3 such that
||lcs(A1, A2)|| ≥ λ and ||lcs(A2, A3)|| ≥ λ. If the common
subsequences correspond to random indices of each string,
we expect that ||lcs(A1, A3)|| ≥ λ2.

Of course, this is not necessarily the case in general.

More precisely, it is easy to construct examples4 in which

4For example, A1 = 0n/20n/2, A2 = 0n/21n/2, A3 = 1n/21n/2.

||lcs(A1, A2)|| = 1/2 and ||lcs(A2, A3)|| = 1/2, but

||lcs(A1, A3)|| = 0. Our first main result shows that while

it only holds on average, we can algorithmically replace the

triangle inequality for edit distance with the birthday triangle

inequality on worst case inputs.

Theorem (Main Theorem, formally stated as Theo-

rem II.1). Given strings A,B both of length n such that
|| lcs(A,B)|| = λ, we can approximate the length of the
LCS between the two strings within an O(λ3) factor in
subquadratic time. The approximation factor improves to
(1− ε)λ2 when 1/λ is constant.

We remark that our algorithm is actually able to output

the whole sequence of the solution, but we only focus on

estimating the size of the solution for simplicity. We begin

by comparing our main theorem to previous work on edit

distance. In this case, 1/λ is constant w.l.o.g.5 and therefore

the approximation factor of our algorithm is (1 − ε)λ2. If

δ = || ed(A,B)||, then our LCS algorithm outputs a trans-

formation from A to B using at most 2n(1−(1−ε)(1−δ)3)
operations. Observe that when the strings are not overly

close and δ = Ω(1) by scaling ε, we already recover a

(3+ε′)-approximation for edit distance in truly subquadratic

time. For mildly far strings, say δ = 0.1, a more careful

look at the expansion of (1 − δ)3 reveals that we save an

additive Θ(δ2) in the approximation factor. For example,

with δ = 0.1 our approximation factor for edit distance is

2.71 instead of 3.

An interesting implication of our main result is for LCS
over a large alphabet Σ, where the optimum || lcs(A,B)||
may be much smaller than 1. This is believed to be the

hardest regime for approximation algorithms (and indeed the

only one for which we have any conditional hardness of

approximation results [12], [13], [14]). Here, we consider

instances that satisfy a mild balance assumption: we assume

that there is a character that appears with frequency at least

1/|Σ| in both strings6. Then, our main theorem implies an

O(1/|Σ|3/4)-approximate solution in truly subquadratic time

(the first improvement over the trivial 1/|Σ| approximation

in this regime).

Corollary (LCS, formally stated as Corollary II.3). Given
a pair of strings (A,B) of length n over alphabet Σ that
satisfy the balance condition, we can approximate their LCS
within an O(|Σ|3/4) factor in truly subquadratic time.

Next, we show that a similar result can be obtained

for LIS. Perhaps coincidentally, the approximation factor

of our algorithm is also O(λ3) which is same to LCS,

5When we use our solution to approximate edit distance, we can safely
assume that ||lcs(A,B)|| = Ω(1) since otherwise the edit distance of the
two strings is very close to 2n.

6Note that in every instance in each string there is a character that appears
with frequency at least 1/|Σ|, but in general that may not be the same
character.

1122

but the technique is completely different. Although LIS
can be solved exactly in time O(n log n), there have been

several attempts to approximate the size of LIS and related

problems in sublinear time [20], [21], [22], [23], [24],

[25], [8]. The best known solution is due to the work of

Saks and Seshadhri [8] that obtains a (1 + ε)-approximate

algorithm for LIS in polylogarithmic time, when the solution

size is at least a constant fraction of the input size 7.

In other words, if ||lis(A)|| = λ and 1/λ is constant,

their algorithm approximates lis(A) in polylogarithmic time.

However, this only works if 1/λ is constant and even if 1/λ
is logarithmically large, their method fails to run in sublinear

time8. We complement the work of Saks and Seshadhri [8]

by presenting a result for LIS similar to our result for LCS.

More precisely, we show that when ||lis(A)|| = λ, an O(λ3)
approximation of LIS can be obtained in truly sublinear time.

Although our approximation factor is worse than that of [8],

our result works for any (not necessarily constant) λ.

Theorem (LIS, formally stated as Theorem IV.8). Given an
array A of n integer numbers such that ||lis(A)|| = λ. We
can approximate the length of the LIS for A in sublinear
time within a factor O(λ3).

If one favors the running time over the approximation

factor, it is possible to improve the exponent of n in the

running time down to any constant κ > 0 at the expense of

incurring a larger multiplicative factor to the approximation.

B. Preliminaries

In LCS or edit distance, we are given two strings A and

B as input. We assume for simplicity that the two strings

have equal length and refer to that by n. In LCS, the goal

is to find the largest subsequence of the characters which is

shared between the two strings. In edit distance, the goal is

to remove as few characters as possible from the two strings

such that the remainders for the two strings are the same.

We use lcs(A,B) and ed(A,B) to denote the size of the

longest common subsequence and the edit distance of two

strings A and B.

In LIS, the input contains an array A of n integer numbers

and the goal is to find a sequence of elements of A whose

values (strictly) increase as their indices increase. For LIS,

we denote the solution size for an array A by lis(A).
We also use lis[α,β](A) to denote the size of the longest

increasing subsequence subject to elements whose values lie

in range [α, β]. Longest increasing subsequence is equivalent

to LCS when the inputs are two permutations of n distinct

characters.

Finally, we define a notation to denote the normalized

solution sizes. For LCS, we denote the normalized solution

7Their algorithm obtains an additive error of δn in time 2Õ(1/δ). When
the solution size is bounded by λn, one needs to set δ < λ in order to
guarantee a multiplicative factor approximation.

8There is a term (1/λ)1/λ in the running time.

size by ||lcs(A,B)|| = lcs(A,B)/
√|A||B| for A and B

and we use || ed(A,B)|| = ed(A,B)/(2
√|A||B|) for edit

distance. Note that, when the two strings have equal length

we have || ed(A,B)|| + ||lcs(A,B)|| = 1. Similarly, for

longest increasing subsequence, we denote by ||lis(A)|| =
lis(A)/|A| the normalized solution size. We usually refer to

the size of the input array by n.

Throughout this paper, we call an algorithm f(λ)-
approximation for LCS if it is able to distinguish the fol-

lowing two cases: i) ||lcs(A,B)|| ≥ λ or ii) ||lcs(A,B)|| <
λf(λ). A similar definition carries over to LIS. Once an

f(λ)-approximation algorithm is provided for either LCS or

LIS, one can turn it into an algorithm that outputs a solution

with size f(λ)(1− ε)λn provided that the optimal solution

has a size λn. The algorithm is not aware of the value of

λ but will start with λ0 = 1 and iteratively multiply λ0 by

1− ε until a solution is found.

C. Techniques Overview

Our algorithm for LCS is closely related to the recent

developments for edit distance [1], [2]. We begin by briefly

explaining the previous ideas for approximating edit distance

and then we show how we use these techniques to obtain

a solution for LCS. Finally, in Section I-C2 we outline our

algorithm for LIS.

1) Summary of Previous ED Techniques: Indeed, edit dis-

tance is hard only if the two strings are far (|| ed(A,B)|| = δ
and δ = n−o(1)) otherwise the O(n + (nδ)2) algorithm of

Landau et al. [3] computes the solution in truly subquadratic

time. The algorithm of Chakraborty et al. [2] for edit

distance has three main steps that we briefly discuss in the

following.

Step 0 (window-compatible solutions):: In the first step,

they construct a set of windows WA for string A and a set

of windows WB for string B. Each window is essentially

a substring of the given string. Let k denote the total

number of windows of WA ∪ WB . For simplicity, let all

the windows have the same size d and n � O(kd)9. The

construction features two key properties: 1) provided that

the edit distances of the windows between WA and WB are

available, one can recover a 1 + ε approximation of edit

distance in time Õ(n + k2) via dynamic programming. 2)

k2 × d2 � O(n2). That is, if we naively compute the edit

distance of every pair of windows, the overall running time

would still asymptotically be the same as that of the classic

algorithm.

In order to obtain a solution for edit distance, it suffices

to know the distances between the windows. However,

Chakraborty et al. [2] show that knowing the distances

between most of the window pairs is enough to obtain

an approximately optimal solution for edit distance. More

precisely, if the distances are not correctly approximated for

9The equality holds if we assume δ = Ω(1).

1123

at most O(k2−Ω(1)) pairs, we can still obtain an approximate

solution for edit distance. Step 1 provides estimates for the

distances of the windows which is approximately correct

except for O(k2−Ω(1)) many pairs and Step 2 shows how

this can be used to obtain a solution for edit distance.

Discretization simplifies the problem substantially. For a

fixed 0 ≤ δ ≤ 1, they introduce a graph Gδ where the

nodes correspond to the windows and an edge between

window wi ∈ WA and window wj ∈ WB means that

|| ed(wi, wj)|| ≤ δ. If we are able to construct Gδ for log-

arithmically different choices of δ, we can as well estimate

the distances within a 1+ε factor for the windows. Therefore

the problem boils down to constructing Gδ for a fixed given

δ without computing the edit distance between all pairs of

windows.

Step 1 (sparsification via triangle inequality):: This

step is the heart of the algorithm. Suppose we choose a high-

degree vertex v from Gδ and discover all its incident edges

by computing its edit distance to the rest of the windows.

Triangle inequality implies that every pair of windows in

N(v) has a distance bounded by 2δ. Therefore by losing a

factor 2 in the approximation, one can put all these edges in

Gδ and not compute the edit distances explicitly. Although

this does save some running time, in order to make sure

the running time is truly subquadratic, we need to make a

similar argument for paths of length 3 and thereby lose a

factor 3 in the approximation. This method sparsifies the

graph and what remains is to discover the edges of a sparse

graph.

Step 2 (discovering the edges of the sparse graph)::
Step 1 uses triangle inequality and discovers many edges

between the vertices of Gδ . However, it may not discover

all the edges completely. When in the remainder graph, the

degrees are small (and hence the graph is sparse) triangle

inequality does not offer an improvement and thus a different

approach is required. Roughly speaking, Chakraborty et al.
[2] subsample the windows of WA into a smaller set S
and discover all pairs of windows wi ∈ S and wj ∈ WB

such that edge (i, j) is not discovered in Step 1. Next,

they compute the edit distance of each pair of windows

(wi, wj), wi ∈ WA, wj ∈ WB such that there exist two

nearby windows (wa, wb) satisfying wa ∈ S,wb ∈WB and

the edge between wa and wb was missed in Step 1. The

key observation is that even though this procedure does not

discover all the edges, the approximated distances lead to

an approximate solution for edit distance.

2) LCS: Our algorithm for LCS mimics the same guide-

line. In addition to this, Steps 0 and 2 of our algorithm are

LCS analogues of the ones used by Chakraborty et al. [2].

The main novelty of our algorithm is Step 1 which is a

replacement for triangle inequality. Recall that unlike edit

distance, triangle inequality does not hold for LCS.

Challenge I.1. How can we introduce a notion similar to

triangle inequality to a non-metric setting such as LCS?

We introduce the notion of birthday triangle inequal-

ity to overcome the above difficulty. Given windows w1,

w2, and w3 of size d such that ||lcs(w1, w2)|| ≥ λ and

||lcs(w2, w3)|| ≥ λ hold, what can we say about the LCS
of w1 and w3? In general, nothing! ||lcs(w1, w3)|| could be

as small as 0. However, let us add some randomness to the

setting. Think of the LCS of w1 and w2 as a matching from

the characters of w1 to w2 and similarly the LCS for w2

and w3 as another matching between characters of w2 and

w3. Assume (for the sake of the thought experiment) that

the characters of w2 appear randomly in each matching.

Since ||lcs(w1, w2)|| ≥ λ, each character of w2 appears

with probability at least λ in the matching between w1

and w2. A similar argument implies that each character of

w2 appears with probability λ in the matching of w2 and

w3. Thus, (assuming independence), each character of w2

appears in both matchings with probability λ2. This means

that in expectation, there are λ2d paths of length 2 between

w1 and w3 which suggests ||lcs(w1, w3)|| ≥ λ2 as shown

in Figure 1. This is basically birthday paradox used for the

sake of triangle inequality.

Replacing triangle inequality by birthday triangle inequal-

ity is particularly challenging since birthday triangle inequal-

ity only holds on average. In contrast, triangle inequality

holds for any tuple of arbitrary strings. Most of our technical

discussions is dedicated to proving that we can algorithmi-

cally use birthday triangle inequality to obtain a solution for

the worst-case scenarios. The most inconvenient step of our

analysis is to show that our algorithm estimates the LCS
of most window pairs in the sparsification phase. While

this is straightforward for edit distance, birthday triangle

inequality requires a deeper analysis of the underlying graph.

In particular, we need to prove that if the undiscovered edges

are too many, then birthday triangle inequality can be applied

to certain neighborhoods of the graph.

There are two difficulties that we face here. On one hand,

in order to apply birthday triangle inequality to a subgraph,

we need to have enough structure for that subgraph to

show the implication can be made. On the other hand, our

assumptions cannot be too strong, otherwise such neighbor-

hoods may not cover the edges of the graph. Therefore, the

first challenge that we need to overcome is characterizing

subgraphs in which birthday triangle inequality is guaranteed

to be applicable. Our suggestion is the bi-cliques structure.

Although combinatorial techniques seem unlikely to prove

this, we use the Blakley-Roy inequality to show that in

a large enough bi-clique, we can use birthday triangle

inequality to imply a bound on the LCS of certain pairs. The

second challenge is to prove that if the underlying graph is

dense enough, the graph contains many bi-cliques that cover

almost all the edges that we plan to discover. This is again a

challenging graph theoretic problem. We leverage extremal

1124

w2

w1 w3

Figure 1: Birthday paradox for triangle inequality: let w1, w2, w3 be three windows of length d = 8 and assume λ = 1/2.

The LCS between w1 and w2 is λd = 4 and the LCS between w2 and w3 is λd = 4. Finally due to birthday paradox, we

expect that the LCS between w1 and w3 is λ2d = 2.

graph theory tools such as Turan’s theorem for cliques and

bi-cliques to obtain this bound.

Similar to edit distance, we construct a set W = WA∪WB

of k windows in Step 0 and aim to sparsify the edges of the

lcs-graph in Step 1. Our construction ensures that kd � Θ(n)
and that knowing the LCS of the window pairs suffices to

approximate the LCS of the two strings. For a threshold

0 ≤ λ ≤ 1, define a matrix O : [k] × [k] → {0, 1} to

be a matrix which identifies whether ||lcs(wi, wj)|| ≥ λ. In

other words, O[i][j] = 1 ⇐⇒ ||lcs(wi, wj)|| ≥ λ. For an

0 < α ≤ 1, we call a matrix Oα an α approximation of O
if it meets the following two conditions:

Oα[i][j] = 0 =⇒ ‖lcs(wi, wj)‖ < λ

and

Oα[i][j] = 1 =⇒ ‖lcs(wi, wj)‖ ≥ α · λ
Notice that Oα gives more flexibility than O for the cases

that λα ≤ lcs(wi, wj) < λ. That is, both 0 and 1
are acceptable in these cases. Indeed an α approximation

algorithm for the above problem is enough to obtain an

α approximation algorithm for LCS. However, this is not

necessary as Step 2 allows for incorrect approximation for

up to k2−Ω(1) many window pairs. Therefore, the problem of

approximating LCS essentially boils down to approximating

O for a given basket of windows W = Wa∪Wb and a fixed

λ by allowing sufficiently small error in the output. A naive

solution is to iterate over all pairs wi and wj and compute

lcs(wi, wj) in time O(d2) and determine O accordingly.

However, this amounts to a total running time of O(k2d2)
which is quadratic and not desirable. In order to save time,

we need to compute the LCS of fewer than k2 pairs of

windows. To make this possible, we allow our algorithm to

miss up to O(k2−Ω(1)) edges of the graph. Step 2 ensures

that this does not hurt the approximation factor significantly.

We construct a graph from the windows wherein each

vertex corresponds to a window and each edge identifies

a pair with a large LCS (in terms of λ). Let us call this

graph the lcs-graph and denote it by Gλ. The goal is to

detect the edges of the graph by allowing false-positive.

As we discussed earlier, the hard instances of the problem

are the cases where the lcs-graph is dense for which we

need a sparsifier. Roughly speaking, in our sparsification

technique, our algorithm constructs another graph Ĝλ such

that Ĝλ is valid in the sense that the edges of Ĝλ correspond

to pairs of windows with large enough LCS. In addition

to this, our algorithm guarantees that after the removal of

the edges of Ĝλ from Gλ the remainder is sparse. In other

words, |E(Gλ) \ E(Ĝλ)| = O(|V (Gλ)|2−Ω(1)). Of course,

if the overall running time of the sparsification phase is

truly subquadratic, the error of undiscovered edges can be

addressed by the techniques of [2] in Step 2.

Below, we bring a formal definition for sparsification.

sparsification
input: Windows w1, w2, . . . , wk, parameters λ, and α.

solution: A matrix Ôα ∈ {0, 1}k×k such that:

• Ôα[i][j] = 1 =⇒ ||lcs(wi, wj)|| ≥ α · λ
•
∣∣∣{(i, j) | ||lcs(wi, wj)|| ≥ λ and Ôα[i][j] = 0

}∣∣∣ =

k2−Ω(1)

We present two sparsification techniques for LCS. The

first one (Section III-A), has an approximation factor of

(1−ε)·λ2. In Section III-B we present another sparsification

technique that has a worse approximation factor O(λ3) but

leaves fewer edges behind. Although the second sparsifica-

tion technique has a worse approximation factor, it has the

advantage that the number of edges that remain in the sparse

graph is truly subquadratic regardless of the value of λ and

therefore it extends our solution to the case that λ = o(1)
(see Section III-B for a detailed discussion).

Let us note one last algorithmic challenge to keep in mind

before we begin to describe our sparsification techniques.

For edit distance, if window pairs (w1, w2) and (w2, w3) are

close, we are guaranteed that w1 and w3 are also close; for

longest common subsequence, we will argue that (w1, w3)
are likely to be have a long LCS (for a “random” choice of

(w1, w3)). Nonetheless, in order to add (w1, w3) as an edge

to our graph we have to verify that their LCS is indeed long.

1125

If we were to verify an edge naively, we would need as much

time as computing the LCS between (w1, w3) from scratch!

Sparsification 1, (1 − ε)λ2-approximation:: Similar

to edit distance, applying birthday triangle inequality to

paths of length 2 for LCS does not improve the running

time significantly. Therefore, we need to use birthday tri-

angle inequality for paths of length 3. To this end, we

define the notion of constructive tuples as follows: a tuple

〈wi, wa, wb, wj〉 is an (ε, λ)-constructive tuple, if we have

||lcs(wi, wa)|| ≥ λ, ||lcs(wi, wj)|| ≥ λ, ||lcs(wb, wj)|| ≥ λ
and by taking the intersection of the three LCS matchings,

we are able to imply ||lcs(wa, wb)|| ≥ (1−ε)λ3 (see Figure 2

for an example). Taking the intersection of the matchings can

be done in linear time which is faster than computing the

LCS.

Our sparsification technique here is simple but the analysis

is very intricate. We subsample a set S of windows and

compute the LCS of every window in S and all other

windows. We set |S| = kγ log k, where γ ∈ (0, 1). At

this point, for some pairs, we already know their LCS.

However, if neither wi nor wj is in S, we do not know

if ||lcs(wi, wj)|| ≥ λ or not. Therefore, for such pairs, we

try to find windows wa, wb ∈ S such that 〈wi, wa, wb, wj〉 is

constructive. If such a constructive tuple is found for a pair

of windows, then we conclude that their normalized LCS is

at least (1− ε)λ3.

All that remains is to argue that this method discovers

almost all the edges of the lcs-graph Gλ and the number of

undiscovered edges is k2−Ω(1). This is the most difficult part

of the analysis. We note that proving the existence of only
one constructive tuple is already non-trivial even when Gλ is
complete. However, our goal is to show almost all the edges

are discovered via constructive tuples when Gλ is dense (and

of course not necessarily complete).

Define a pair of windows wi and wj to be well-connected,

if there are at least k2−γ different (wa, wb) pairs such that

〈wi, wa, wb, wj〉 is (ε, λ)-constructive. Since each window

appears in S with probability kγ−1 log k, for each well-

connected pair we find one constructive tuple via our al-

gorithm with high probablity. Therefore, we need to prove

that the total number of pairs (wi, wj) such that (wi, wj) is

not well-connected but ||lcs(wi, wj)|| ≥ λ is subquadratic.

Let us put these edges in a new graph NGλ whose vertices

are all the windows. We first leverage the Blakley-Roy

inequality and a double counting technique to prove that

if NGλ has a large complete bipartite subgraph, then there

is one constructive tuple which includes only the vertices

of this subgraph (Lemma III.5). Next, we apply the Turan’s

theorem to show that if NGλ is dense, then it has a lot

of large complete bipartite subgraphs. Finally, we use a

probabilistic method to conclude that NGλ cannot be too

dense otherwise there are a lot of constructive tuples in the

graph which implies that at least one edge (wi, wj) in NGλ

is well-connected. This is not possible since all the well-

connected pairs are detected in our sparsification algorithm

with high probability.

The above argument proves that if we sparsify our graph

using our sparsification algorithm, the remainder graph

would have a subquadratic number of edges. Therefore

after plugging Step 2 into the algorithm, the running time

remains subquadratic. However, since Turan theorem gives

us a weak bound, the running time of the algorithm using this

sparsification is O(n2−Ω(λ)) and is only truly subquadratic

when 1/λ is constant.

Sparsification 2, O(λ3)-approximation:: In Section

III-A, we present another sparsification method that although

gives us a slightly worse approximation factor O(λ3) it

always leaves a truly subquadratic number of edges behind

and therefore the running time of the algorithm would

be truly subquadratic regardless of the parameter λ. This

sparsification is based on a novel data structure.

Let opti,a denote the longest common subsequence of

wi and wa (with some fixed tie-breaking rule, e.g. lex-

icographically first). Define lcswa
(wi, wj) to be the size

of the longest common subsequence between opti,a and

wj . Notice that this definition is no longer symmet-

ric. Let ||lcswa
(wi, wj)|| denote the relative value, i.e.,

||lcswa(wi, wj)|| = lcswa(wi, wj)/
√|wi| · |wj |. The first

ingredient of the algorithm is a data-structure, namely

lcs-cmp. After a preprocess of time O(|wa|
∑

i∈S |wi|),
lcs-cmp is able to answer queries of the following type in

time O(|wi|+ |wj |):
• “for a 0 ≤ λ̃ ≤ 1 either certify that ‖lcswa

(wi, wj)‖ ≥
Ω(λ̃2) or report that ‖lcswa

(wi, wj)‖ < O(λ̃)".

In our sparsification, we repeat the following procedure

kγ times, where γ ∈ (0, 1). We sample a window wa

uniformly at random and construct lcs-cmp(wa, S) for S =
{wi|i �= a and |wi| ≥ |wa|}. After the preprocessing step,

we make a query for every pair of windows (wi, wj) such

that wi, wj ∈ S and determine if lcswa
(wi, wj) is at least

Ω(λ4) or upper bounded by O(λ2) (here λ̃ = λ2). If their

LCS is at least Ω(λ4) we report this pair as an edge in our

lcs-graph. Finally, we use the Turan theorem to prove that

the number of remaining edges in our graph is small.

To be more precise, we first construct a graph NGλ that

reflects the edges that are not detected via our sparsification.

We give directions to the edges based on the length of

the windows. If NGλ is dense enough, then there is one

vertex v in NGλ with a large enough outgoing degree.

We use the neighbors of v to construct another graph

NFλ with vertex set N(v). An edge exists in NFλ if

max{‖lcswv(wi,wj)‖, ‖lcswv(wj ,wi)‖} ≥ Ω(λ2). Edges of

NFλ are directed the same way as NGλ. We prove that NFλ

has no large independent set. In other words, if we select

a large enough set of vertices in NFλ, then there is at least

one edges between them. Next, we apply the Turan theorem

to prove that NFλ is dense. Finally, we imply that since

1126

wi

wa

wb

wj

Figure 2: Let wi, wa, wb and wj denote four windows and each of them has length d = 8. This figure shows how the

intersection of the edges of three windows are taken in order to construct a solution for the LCS of wi and wj . If the size

of the intersection is large, then such a tuple is called constructive. The solid lines represent LCS between two strings, and

the dashed line represents the intersection of the three LCSs.

NFλ is dense, there is one vertex u in the neighbors of v
such that there are a lot of 2-paths between v and u. This

implies that the edge (u, v) should have been detected in

our sparsification and therefore must not exist in NGλ. This

contradiction implies that NGλ is sparse in the first place.

3) LIS: In this section, we present our result for longest

increasing subsequence. More precisely, we show that when

the solution size is lower bounded by nλ (λ ∈ [0, 1]),
one can approximate the solution within a factor O(λ3)
in time Õ(

√
n/λ7). This married with a simple sampling

algorithm for the cases that λ < n−Ω(1), provides an

O(λ3)-approximate algorithm with running time of Õ(n0.85)
(without further dependence on λ). We further extend this

result to reduce the running time to Õ(nκpoly(1/λ)) for any

κ > 0 by imposing a multiplicative factor of poly(1/λ)10 to

the approximation.

Our algorithm heavily relies on sampling random el-

ements of the array for which longest increasing subse-

quence is desired. Denote the input sequence by A =
〈a1, a2, . . . , an〉. A naive approach to approximate the so-

lution is to randomly subsample the elements of A to

obtain a smaller array B and then compute the longest

increasing subsequence of B to estimate the solution size

for A. Let us first show why this approach alone fails to

provide a decent approximation factor. First, consider an

array A = 〈1, 2, . . . , n〉 which is strictly increasing. Based

on A, we construct two inputs A′ and A′′ in the following

way:

• A′ is exactly equal to A except that a p fraction of the

elements in A′ are replaced by 0.

• A′′ is exactly equal to A except that every block of

length
√
n is reversed in A′′. In other words, A′′ =

〈√n,
√
n− 1,

√
n− 2, . . . , 1, 2

√
n, 2
√
n− 1, . . . ,

√
n+

1, . . . , n, n− 1, n− 2, . . . , n−√n+ 1〉.

10The exponent of 1/λ depends exponentially on 1/κ.

We subsample the two arrays A′ and A′′ with a rate

of 1/
√
n to obtain two smaller arrays B′ and B′′ of size

roughly O(
√
n). It is easy to prove that lis(B′) = Ω(

√
n)

and lis(B′′) = Ω(
√
n) both hold even though lis(A′) = Ω(n)

but lis(A′′) = O(
√
n). By setting p = 1/e11 we can

also make sure that lis(B′) and lis(B′′) are within a small

multiplicative range even though the gap between lis(A′)
and lis(A′′) is substantial.

The above observation shows that the problem is very

elusive when random sampling is involved. We bring a

remedy to this issue in the following. Divide the input array

into
√
n subarrays of size

√
n. We denote the subarrays

by sa1, sa2, . . . , sa√n and fix an optimal solution opt for

the longest increasing subsequence of A. Define sm(sai) to

be the smallest number in sai that contributes to opt and

lg(sai) to be the largest number in sai that contributes to

opt. Moreover, define lis[�,r] to be the longest increasing

subsequence of an array subject to the elements whose

values lie within the interval [, r]. This immediately implies

lis(A) =

√
n∑

i=1

lis[sm(sai),lg(sai)](sai).

Another observation that we make here is that since we

assume ||lis(A)|| ≥ λ and the size of each subarray is

bounded by
√
n, then we have

lis(A)

maxi lis
[sm(sai),lg(sai)](sai)

≥ √nλ

which essentially means that in order to approximate lis(A)
it suffices to compute lis[sm(sai),lg(sai)](sai) for Õ(1/λ) many

randomly sampled subarrays. This is quite helpful since this

shows that we only need to sample Õ(1/λ) many subarrays

and solve the problem for them. However, we do not know

the values of sm(sai) and lg(sai) in advance. Therefore, the

11e � 2.7182.

1127

main challenge is to predict the values of sm(sai) and lg(sai)
before we sample the subarrays.

Indeed, one needs to read the entire array to correctly

compute sm(sai) and lg(sai) for each of the subarrays.

However, we devise a method to approximately guess

these values without losing too much in the size of the

solution. Roughly speaking, we show that if we sample

k = O(1/(λε)) different elements from a subarray sai for

some constant ε and denote them by aj1 , aj2 , . . . , ajk , then

for at least one pair (α, β), [ajα , ajβ] is approximately close

to [sm(sai), lg(sai)] up to a (1− ε) factor.

The above argument provides O((1/(λε))2) candidate

domain intervals for each sai. However, this does not provide

a solution since we do not know which candidate domain

interval approximates [sm(sai), lg(sai)] for each sai. Of

course, if we were to randomly choose one candidate interval

for every subarray, we would make a correct guess for at

least O(
√
n(λε)2) subarrays which provides an approxima-

tion guarantee of O(λ2) for our algorithm. However, our

assignments have to be monotone too. More precisely, let

[s̃m(sai), l̃g(sai)] be the guesses that our algorithm makes,

then we should have

s̃m(sa1) ≤ l̃g(sa1) ≤ s̃m(sa2) ≤ l̃g(sa2)

≤ . . .

≤ s̃m(sa√n) ≤ l̃g(sa√n).

Random sampling does not guarantee that the sampled

intervals are monotone. To address this issue, we introduce

the notion of pseudo-solutions. A pseudo-solution is an

assignment of monotone intervals to subarrays in order to

approximate sm(sai) and lg(sai). The quality of a pseudo so-

lution with intervals [1, r1], [2, r2], . . . , [√n, r
√
n] is equal

to
∑

i lis
[�i,ri](sai). For a fixed pseudo-solution, this can be

easily approximated via random sampling. Thus, our goal

is to construct a pseudo-solution whose quality is at least

an O(λ3) approximation of the size of the optimal solution.

To this end, we present a greedy method in Section IV-B to

construct the desired pseudo-solution.

Finally, in Section IV-D, we show how the above ideas

can be generalized to improve the running time down to

Õ(nκpoly(1/λ)) for any arbitrarily small κ > 0 by imposing

a factor poly(1/λ) to the approximation guarantee.

II. ORGANIZATION OF THE PAPER

Our algorithm for LCS contains 3 steps (Steps 0-2) that

are explained in details in the full-version. Since Steps 0 and

2 follow from previous work, we only bring Step 1 in this

version and defer the rest to the full-version.

In both our results for LCS and LIS, we assume that

the goal is to find approximate solutions, provided that the

solution size is at least λ0n. After the algorithms terminate,

if the output is smaller than what we expect, we realize that

the solution is smaller than λ0n. Therefore, we begin by

setting λ0 = 1 and iteratively multiply λ0 by a 1− ε factor

until we obtain a solution. This only adds a multiplicative

factor of log 1/λ to the running time and a multiplicative

factor of 1− ε to the approximation. Since we present two

different sparsification techniques, we obtain two theorems:

one is Theorem II.1 and the other is Theorem II.2.

Theorem II.1. Given strings A,B of length |A| = |B| = n
with || lcs(A,B)|| = λ, we can approximate the length of
the LCS between the two strings within a factor O(λ3) in
time Õ(n39/20).

Proof: If λ ≤ n−20 we run the classic O(n2λ) time

algorithm and get an exact solution in the desired time. Oth-

erwise, we begin by setting λ0 = 1 and iteratively multiply

λ0 by a factor 1−ε until a solution is found with size at least

Ω(λ3)n. This adds an overhead of O(log 1/λ) to the running

time. By Choosing d =
√
n we can bound the total running

time of Steps 0, 1, and 2 by Õ(n13/10λ−13) ≤ Õ(n39/20).

Theorem II.2. Given strings A,B of length |A| = |B| = n
with || lcs(A,B)|| = λ, we can approximate the length of
the LCS between the two strings within a factor (1− ε)λ2

in n2−Ω(ελ) time for any ε > 0.

Proof: The proof is identical to Theorem II.1, we omit

the details here.

As an immediate corollary of Theorem II.1, we present

an algorithm that beats the 1/|Σ| approximation factor in

truly subquadratic time, when the strings are balanced.

Corollary II.3. Given a pair of strings (A,B) of length n
over alphabet Σ that satisfy the balance condition, we can
approximate their LCS within an O(|Σ|3/4) factor in time
O(n39/20).

Proof: Since A and B are balanced, there is a character

σ ∈ Σ that appears at least n/|Σ| times in both strings.

Indeed, finding a solution of size n/|Σ| by restricting our

attention to only character σ can be done in time O(n). If

lcs(A,B) ≤ n/|Σ|1/4 this already gives us an O(|Σ|3/4)
approximate solution. Otherwise, ||lcs(A,B)|| > 1/|Σ|1/4
and the approximation factor of our O(λ3)-approximation

algorithm would be bounded by O(|Σ|3/4).
Finally, we bring our results for LIS in Section IV. We

show that

Theorem II.4. Given a length-n sequence A with lis(A) =
nλ. We can approximate the length of the LIS within a factor
of O(λ3) in time Õ(n17/20).

Proof: If λ < n−1/20 we sample the array with

a rate of n−3/20 and compute the LIS for the sampled

array. The running time of the algorithm is Õ(n17/20). The

approximation factor is O(n−3/20) ≥ O(λ3). Otherwise, by

Theorem IV.8, we estimate the size of LIS up to an O(λ3)

1128

Figure 3: Red rectangles show the elements of sai that contribute to lis(A) and gray circles show the elements of sa that

are sampled via our algorithm.

approximation factor in time Õ(λ−7
√
n) ≤ Õ(n17/20).

III. LCS STEP 1: SPARSIFICATION VIA BIRTHDAY

TRIANGLE INEQUALITY

Recall that we are given two sets of windows WA and WB

for the strings and our goal is to approximate the LCS of

every pair of windows between WA and WB . For simplicity,

we put all the windows in the same basket W = WA ∪WB

and denote the windows by w1, w2, . . . , wk where k is the

total number of windows. Since the windows have different

lengths, we define wmax = maxi∈[k] |wi| to be the maximum

length of the windows. Similarly, we also define wmin =
mini∈[k] |wi| to be the minimum length of the windows.

Let wgap = wmax/wmin. Let wlayers denote the number of

different window sizes. Notations wgap and wlayers will be

used in the later analysis.

In order to approximate the LCS’s we fix a λ ∈
{ελ0, (1 + ε)ελ0, (1 + ε)2ελ0, . . . , 1} and sparsify graph

Gλ. In Section III-A, we present a sparsification algorithm

(Algorithm 1) which provides λ2-approximation when λ
is constant. The formal guarantee of the algorithm is pro-

vided in Theorem III.11. In Section III-B, we present a

sparsification which provides O(λ3)-approximation for any

(potentially super-constant) λ.

A. Sparsification for Oλ2

In our solution, we fix an arbitrary LCS for every pair of

windows and refer to that as opti,j for two windows wi and

wj . Note that we do not explicitly compute opti,j in our

algorithm. Let us for simplicity, think of each opti,j as a

matching between the characters of the two windows. Also,

denote by
(
opti,a∩opta,b∩optb,j

)
a solution which is con-

structed for windows wi and wj by taking the intersection

of
(
opti,a ∩ opta,b ∩ optb,j

)
. More precisely, we have

(x, y) ∈ (opti,a ∩ opta,b ∩ optb,j
)⇐⇒∃α, β such that

(x, α) ∈ opti,a and

(α, β) ∈ opta,b and

(β, y) ∈ optb,j .

Let
∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ =

∣∣∣
(
opti,a∩opta,b∩optb,j

)∣∣∣√
|wi||wj |

.

Definition III.1 ((ε, λ)-constructive). We call a tuple
〈wi, wa, wb, wj〉 (wi �= wa �= wb �= wj) a constructive tuple,
if
∥∥(opti,a ∩ opta,b ∩ optb,j

)∥∥ ≥ (1− ε)λ3.

The advantage of a constructive tuple is that if

opti,a, opta,b, and optb,j are provided, one can construct

a desirable solution for opti,j in linear time by taking the

intersection of the given matchings. Our algorithm is actually

based on the above observation. We bring our algorithm in

the following:

We parameterize our algorithm by a value 0 < γ < 1 to

be set later. One may optimize the runtime of the algorithm

by setting the value of γ in terms of the number of windows

and the length of the windows. We first sample a set

S of O(kγ log k) windows. Next, we compute opti,j of

every window wi ∈ S and every other window wj (not

necessarily in S). Finally, we find all the constructive tuples

〈wi, wa, wb, wj〉 such that wa, wb ∈ S and update Ôλ2

accordingly. This is shown in Algorithm 1.

The running time of our algorithm is equal to

O(k|S|w2
max + k2|S|2wmax). The rest of this section is

dedicated to proving that what remains in the lcs-graph is

sparse.

We first introduce the notion of well-connected pairs.

Definition III.2 (well-connected pair). We say a pair of
windows (wi, wj) is well-connected, if there are at least
k2−γ pairs of windows (wa, wb) such that 〈wi, wa, wb, wj〉
is (ε, λ)-constructive.

1129

Algorithm 1 Sparsification for Oλ2

1: procedure QUADRATICSPARSIFICA-

TION(w1, w2, . . . , wk, λ, ε) �
Theorem III.11

2: γ ← 0.1
3: S ← 40kγ log k i.i.d. samples of [k]
4: Ôλ2 ← {0}k×k

5: for wi ∈ S do � Takes |S|kw2
max time

6: for j ← 1 to k do
7: opti,j , optj,i ← lcs(wi, wj)
8: end for
9: end for

10: for wi ∈ S do � Takes |S|kwmax time

11: for j ← 1 to k do
12: if |opti,j | > λ then
13: Ôλ2 [i][j]← 1
14: end if
15: end for
16: end for
17: for i← 1 to k do � Takes k2|S|2wmax time

18: for j ← 1 to k do
19: for wa ∈ S do
20: for wb ∈ S do
21: if

∥∥(opti,a ∩ opta,b ∩ optb,j
)∥∥ ≥

(1− ε)λ3 then
22: Ôλ2 [i][j]← 1
23: end if
24: end for
25: end for
26: end for
27: end for
28: return Ôλ2

29: end procedure

It follows from the definition that well-connected pairs

are detected in our algorithm with high probability.

Lemma III.3. Let Ôλ2 ∈ {0, 1}k×k denote the output of
Algorithm 1. With probability at least 1− 1/poly(k), for all
(i, j) ∈ [k]× [k] such that (wi, wj) is a well-connected pair
(Definition III.2), we have Ôλ2 [i][j] = 1.

Proof: We consider a fixed (i, j) such that pair (wi, wj)
is well-connected. Let

Qi,j =

{
(a, b)

∣∣∣∣ ∥∥opti,a ∩ opta,b ∩ optb,j
∥∥ ≥ (1− ε)λ3

}
.

Conceptually, we divide the process of sampling S into

two phases: we sample 20kγ log k windows in the first

phase, and then we sample another 20kγ log k windows in

the second phase.

For each a ∈ [k], let Qi,j,a = {b : (a, b) ∈ Qi,j}. Since

∑
a∈[k] |Qi,j,a| = |Qi,j | ≥ k2−γ , there are at least

k2−γ − k · k1−γ/2

k
=

k1−γ

2

different number a’s in [k] such that |Qi,j,a| ≥ k1−γ

2 . Hence,

in the first phase, there is a sampled number q such that

|Qi,j,q| ≥ k1−γ/2 with probability at least

1−
(
1− k1−γ/2

k

)20kγ log k

<
1

k5
.

We fix such a q. In the second phase, there is a sampled

number r such that r ∈ Qi,j,q with probability at least

1−
(
1− k1−γ/2

k

)20kγ log k

<
1

k5
.

The lemma is obtained by a union bound on all the well-

connected pairs (wi, wj).
In what follows, we bound |{(i, j) | ||lcs(wi, wj)|| ≥

λ and Ôλ2 [i][j] = 0}|. In other words, we prove an upper

bound on the number of edges that remain in the graph.

Definition III.4 (NGλ). Define a graph NGλ with k vertices
and the following edges:

E(NGλ)

=

{
(i, j)

∣∣∣∣ ||lcs(wi, wj)|| ≥ λ and Ôλ2 [i][j] = 0

}
.

We first prove that every KΩ(wgap/(ελ3)),Ω(wgap/(ελ3)) sub-

graph of NGλ corresponds to at least one constructive tuple.

Lemma III.5. Let X and Y be two sets of windows such
that for every wi ∈ X and wj ∈ Y there is an (i, j) edge
in E(NGλ), for every wi, wi′ ∈ X , |wi| = |wi′ | and for
every wj , wj′ ∈ Y , |wj | = |wj′ |. If |X| ≥ Ω(wgap/(ελ

3))
and |Y | ≥ Ω(wgap/(ελ

3)), then there exist wi, wa, wb, wj ∈
X ∪Y such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive, i.e.,∥∥opti,a ∩ opta,b ∩ optb,j

∥∥ ≥ (1− ε)λ3.

Proof: By assumption, we know that |X|, |Y | ≥
Ω(wgap/(ελ

3)). Let t1 denote the window size for each

window in X , and t2 denote the window size for each

window in Y .

We carefully select X ′ ⊆ X and Y ′ ⊆ Y such that

1) |X ′| ≥ Ω(1/(ελ3)).
2) |Y ′| ≥ Ω(1/(ελ3)).
3) |X ′|t1 = (1±O(ε))|Y ′|t2.

To do this, if |X|t1 > (1+O(ε))|Y |t2, then we set Y ′ = Y

and select X ′ as an arbitrary subset of X with size
⌈
|Y |t2
t1

⌉
.

if |X|t1 < (1−O(ε))|Y |t2, then we set X ′ = X and select

Y ′ an arbitrary subset of Y with size
⌈
|X|t1
t2

⌉
.

We define a window-based (bipartite) graph GW =
(VW , EW) to be the subgraph of NGλ on VW = X ′ ∪ Y ′

removing all the edges within X ′ and all the edges within

1130

Figure 4: The graph on the left is an example of the string-based graph and the graph on the right is an example of the

character-based graph.

Y ′. Let l1 = |X ′| and l2 = |Y ′|. The total number of nodes

in window-based graph is l1 + l2, and the window-based

graph is a bi-clique.

We also define a character-based (bipartite) graph GC =
(VC , EC) as follows: Each window of X ′ has t1 nodes in

the character-based graph such that each node represents a

character of the window. Similarly, each window of Y ′ has

t2 nodes in the character-based graph. Two nodes x, y in

the character-based graph are adjacent iff (x, y) ∈ opti,j
where wi is the window containing character x and wj is

the window containing character y. Hence, the total number

of nodes in character-based graph is l1t1 + l2t2. The total

number of edges in character-based graph satisfy

l1l2λ
√
t1t2 ≤ |E(GC)| ≤ l1l2 min{t1, t2}.

The average degree of the character-based graph is at

least 2l1l2λ
√
t1t2/(l1t1 + l2t2). By Blakley-Roy inequality

(Lemma V.3), the number of walks of length 3 in the

character-based graph is at least

|V (GC)| ·
(
2
l1l2λ

√
t1t2

l1t1 + l2t2

)3

= (l1t1 + l2t2) ·
(
2
l1l2λ

√
t1t2

l1t1 + l2t2

)3

= 8λ3 (l1l2
√
t1t2)

3

(l1t1 + l2t2)2
.

But many of the 3-walks are degenerate. For the number of

2-walks, we can upper bound it by

#2-walks ≤ (max degree of GW) · 2|E(GC)|
≤ max{l1, l2} · 2(l1l2 min{t1, t2})
= 2(1 +O(ε))l21l2t1.

Note that the #1-walks is 2|E(GC)|. We have

#2-walks +#1-walks

#3-walks

≤2(1 +O(ε))l21l2t1 + 2l1l2 min{t1, t2}(
8λ3 (l1l2

√
t1t2)3

(l1t1+l2t2)2

)
<

(l1t1 + l2t2)
2l21l2t1

2λ3l31l
3
2t

1.5
1 t1.52

≤ (4 +O(ε))l41l2t
3
1

2λ3l4.51 l1.52 t31

=
4 +O(ε)

2λ3l0.51 l0.52

≤ O(ε),

where the second step and third step follow from l1t1 =
(1 ± O(ε))l2t2, and the last step follows from l1 =
Ω(1/(ελ3)), l2 = Ω(1/(ελ3)). Hence, the total number of

3-paths (3-walks that are not degenerate) is at least

8(1−O(ε))λ3 (l1l2
√
t1t2)

3

(l1t1 + l2t2)2
.

On the other hand, the number of 4-tuples in window-based

graph is 8
(
l1
2

)(
l2
2

) ≤ 2l21l
2
2. Thus, there must exist a 4-tuple

containing at least

8(1−O(ε))λ3 (l1l2
√
t1t2)

3

(l1t1 + l2t2)2
· 1

2l21l
2
2

=

4(1−O(ε))λ3
√
t1t2 · l1l2t1t2

(l1t1 + l2t2)2
=

4(1−O(ε))λ3
√
t1t2 · 1

l1t1
l2t2

+ 2 + l2t2
l1t1

≥

4(1−O(ε))λ3
√
t1t2 · 1

4 +O(ε)
≥

(1−O(ε))λ3
√
t1t2,

many 3-walks where the third step follows from l1t1 =
(1 ± O(ε))l2t2. Rescaling the factor of ε for |X| and |Y |
completes the proof.

1131

Definition III.6 (reconstructive tuple). We say a tuple
〈wi, wa, wb, wj〉 is reconstructive if it is (ε, λ)-constructive
and also (i, a), (a, b), (b, j), (i, j) ∈ E(NGλ).

Before proving Lemma III.10, we need to define a new

graph NFλ,

Definition III.7 (NFλ). We construct a graph NFλ in the
following way: for each node v ∈ NGλ we keep v in NFλ

with probability p = k−α/4 where α = 1 − γ/4. For each
u, v ∈ NFλ, if (u, v) ∈ NGλ then we also draw an edge u, v
in NFλ.

It is obvious that V (NFλ) ⊆ V (NGλ) and E(NFλ) ⊆
E(NGλ).

Based on definition of NFλ, we are able to show that if

NGλ is dense, so is NFλ.

Claim III.8 (NFλ is a dense graph). Let wlayers be the
number of different window sizes. Let NGλ denote a graph
such that |E(NGλ)| ≥ k2−β · w2

layers for some β and NFλ

be defined as Definition III.7. If γ/4− β = Ω(1), then with
probability at least 0.98, we have

|E(NFλ)| = Ω(|V (NFλ)|2−4β/γ · w2
layers)

Proof: Based on the sampling rate, we know that the

following hold in expectation:

E[|V (NFλ)|] = 1

4kα
|V (NGλ)|,

and

E[|E(NFλ)|] = 1

42k2α
|E(NGλ)|.

Using standard Chernoff bound, we have with probability

0.99,

|V (NFλ)| ∈ [1/2, 2] · 1

4kα
|V (NGλ)| = [1/2, 2] · 1

4
k1−α

= [1/2, 2] · 1
4
kγ/4,

To show the concentration of |E(NFλ)|, we define a

random variable xu,v such that xu,v = 1 if (u, v) ∈ E(NFλ),

0 otherwise. Then we have

E
[|E(NFλ)|2

]
= E

⎡⎢⎣
⎛⎝ ∑

(u,v)∈E(NGλ)

xu,v

⎞⎠2
⎤⎥⎦

= E

⎡⎣ ∑
(u,v)∈E(NGλ)

x2
u,v

⎤⎦
+E

⎡⎣ ∑
(u,v),(u,v′)∈E(NGλ)

1v �=v′xu,vxu,v′

⎤⎦
+E

⎡⎣ ∑
(u,v)∈E(NGλ)

∑
(u′,v′)∈E(NGλ)

1u�=v �=u′ �=v′xu,vxu′,v′

⎤⎦
≤ p2|E(NGλ)|+ p3 ·#2-walks

+p4 · (|E(NGλ)|2 −#2-walks− |E(NGλ)|
)
.

Since E[|E(NFλ)|] = p2|E(NGλ)|. Thus,

Var[|E(NFλ)|] = E
[
(|E(NFλ)|)2

]− (E[|E(NFλ)|])2
≤ p2|E(NGλ)|+ p3 ·#2-walks

≤ p2|E(NGλ)|+ p3|V (NGλ)| · |E(NGλ)|
≤ 2p3|V (NGλ)| · |E(NGλ)|.

In order to use Chebyshev’s inequality, we need to make

sure

p2|E(NGλ)| > 1,

and

p2|E(NGλ)| ≥ 100(2p3|V (NGλ)||E(NGλ)|)1/2.
By p = kγ/4−1/4 and |E(NGλ)| ≥ k2−β , we need

kγ/2−β/16 > 1,

and the second condition is equivalent to

p|E(NGλ)| ≥ 20000|V (NGλ)|.
We just need kγ/4−β ≥ 80000.

Using Chebyshev’s inequality, we have

Pr

[∣∣∣∣|E(NFλ)| − E[|E(NFλ)|]
∣∣∣∣ ≥ τ

√
Var[|E(NFλ)|]

]
≤ 1

τ2

combining with
√
Var[|E(NFλ)|] ≤ 1

100E[|E(NFλ)|] to-

gether implies

Pr

[∣∣∣∣|E(NFλ)| − E[|E(NFλ)|]
∣∣∣∣ ≥ τ

1

100
E[|E(NFλ)|]

]
≤ 1

τ2
.

1132

Choosing τ = 10, we have with probability 0.99 that

|E(NFλ)| > 0.9E[|E(NFλ)|], and consequently

|E(NFλ)| > 0.9E[|E(NFλ)|]
≥ 0.9

1

42k2α
|E(NGλ)|

≥ 0.9
1

42
kγ/2−2k2−β · w2

layers

= 0.9
1

42
kγ/2−β · w2

layers

≥ 0.9
1

42
k

γ
4 (2−4β/γ) · w2

layers

≥ Ω(|V (NFλ)|2−4β/γ · w2
layers).

Thus, we complete the proof.

Next, we show

Claim III.9 (NFλ has no reconstructive tuple). Let NFλ be
defined as Definition III.7. With probability at least 0.99,
there is no reconstructive tuple in NFλ.

Proof: By Lemma III.3 and the definition of NGλ, there

is no pair of windows (wi, wj) in NGλ such that pair (i, j) is

well-connected. Formally speaking, for all pairs of windows

(wi, wj), there are at most k2−γ pairs of windows (wa, wb)
such that 〈wi, wa, wb, wj〉 is (ε, λ)-constructive.

For a fixed (i, a, b, j), the probability that we keep it in

NFλ is (k−α/4)4. We can compute the expected number of

constructive tuples in NFλ,

E[#constructive tuple] ≤ k2k2−γ · (k−α/4)4

= k4−γ−4α/256 = 1/256

where the last step follows from α = 1− γ/4.

By Markov’s inequality, we have

Pr[#constructive tuple ≥ 1/2]

≤E[#constructive tuple]

1/2

≤1/100.
Thus, with probability 0.99, there is no reconstructive tuple

in NFλ.

Finally, we use Lemma III.5 to prove an upper bound on

the number of edges in NGλ.

Lemma III.10. Let NGλ be as defined in Definition III.4.
Then with probability at least 0.9, NGλ has at most
k2−Ω(γλε/wgap) · w2

layers edges.

Proof: We start with assuming

|E(NGλ)| ≥ k2−β · w2
layers,

and will get the contradiction at the end.

We construct a graph NFλ based on Definition III.7.

Using Claim III.9, we know that NFλ has no reconstructive

tuple. Next, we are going to show two facts, and they are

contradicting to each other by some choice of β.

(Fact A). Note that NFλ does not satisfy the assump-

tion in Lemma III.5, thus we cannot apply Lemma III.5

to NFλ directly. Let wlayers denote the number of differ-

ent window sizes in total, we can decompose NFλ into

w2
layers graphs such that NFi,j

λ only involves size i and j,

∀i, j ∈ [wlayers] × [wlayers]. Now, applying Lemma III.5,

for every i, j, we imply that if NFi,j
λ has no reconstructive

tuple, then NFi,j
λ has no bipartite graph of certain size, i.e.,

KΩ(wgap/(ελ3)),Ω(wgap/(ελ3)).

(Fact B). Using the Turán’s Theorem (Lemma V.4), we

know for any integer s ≥ 2, a graph G with n vertices

and Ω(n2−1/s) edges has at least one Ks,s subgraph. We

consider graph NFλ. Since

|E(NFλ)| = Ω(|V (NFλ)|2−4β/γ · w2
layers),

by the pigeonhole principle, there exist i and j such that

|E(NFi,j
λ)| = Ω(|V (NFλ)|2−4β/γ). By Turán’s Theorem,

such an NFi,j
λ contains a large complete bipartite subgraph

Kγ/(4β),γ/(4β).

In order to get a contradiction, we just need

γ/(4β) ≥ c · wgap/(ελ
3).

for some sufficiently large constant c > 1 related to

Lemma III.5. Thus, we have

β ≤ γελ3/(4c · wgap).

Theorem III.11 (quadratic sparsification for constant λ).
Given k windows w1, · · · , wk. Let wmax = maxi∈[k] |wi|,
wmin = mini∈[k] |wi| and wgap = wmax/wmin. Let the
number of different window sizes be wlayers. For any λ ∈
(0, 1) and ε ∈ (0, 1/10), there is a randomized algorithm
(Algorithm 1) that runs in time

O(w2
maxk

1.1 log k + wmaxk
2.2 log2 k),

outputs a table Ôλ2 ∈ {0, 1}k×k such that

||lcs(wi, wj)|| ≥ (1− ε)λ3, if Ôλ2 [i][j] = 1

and∣∣∣∣{(i, j) ∣∣∣∣ ||lcs(wi, wj)|| ≥ λ, and Ôλ2 [i][j] = 0

}∣∣∣∣
=O

(
k2−Ω(λε/wgap) · w2

layers

)
.

The algorithm has success probability at least 1−1/poly(k).

Proof: The overall running time is

O(k|S|w2
max + k2|S|2wmax)

= O(k · kγ log k · w2
max + k2 · k2γ log2 k · wmax)

= O(k1.1 log k · w2
max + k2.2 log2 k · wmax)

where the first step follows from |S| = O(kγ log k), the

second step follows from γ = 0.1.

1133

The guarantee of table Ôλ2 follows from properties of

graph NGλ (Algorithm 1 provides the first property of table

in Theorem statement, Lemma III.10 provides the second

property of table in Theorem statement).

B. Sparsification for Oλ3

One shortcoming of Lemma III.10 is that the number of

remaining edges is only truly subquadratic if λ is constant.

As we discuss in Section III-A, the overall running time

of the algorithm depends on the number of edges in the

remaining graph and in order for the running time to be truly

subquadratic, we need to reduce the number of edges to truly

subquadratic. In this section, we show how one can obtain

this bound even when λ is super-constant. However, instead

of losing a factor λ2 in the approximation, our technique

loses a factor of O(λ3).

Definition III.12 (lcswa
(wi, wj)). For two windows wi and

wj , and a window wa, define lcswa
(wi, wj) as the length of

LCS of opti,a and wj , where opti,a denotes the LCS of wi

and wa.

Notice that unlike lcs, this new definition is not symmetric.

Similar to lcs, we also normalize the size of lcss by the

geometric mean of the lengths of the two windows. That

is, we divide the size of the common string by
√|wi||wj |.

In what follows, we first give an algorithm for detecting

close pairs of windows, and then prove that the number of

remaining pairs whose lcs is at least λ is truly subquadratic.

Our algorithm is based on a data structure which we call

lcs-cmp(wa, S, λ̃). Roughly speaking, we will choose λ̃ =
λ2 when we use it. Let us fix a threshold λ̃ and a window

wa. lcs-cmp(wa, S, λ̃) receives a set S of windows as input

such that the size of each window of S is at least |wa|.
Upon receiving the windows, it makes a preprocess in time

O(λ̃−2|wa|
∑

wi∈S |wi|). Next, lcs-cmp(wa, S, λ̃) would be

able to answer each query of the following form in almost

linear time:

• For two windows wi, wj ∈ S, either certify that

||lcswa(wi, wj)|| < λ̃/2 or find a solution for

||lcswa
(wi, wj)|| with a size of at least λ̃2/8.

We first show in Section III-B1, how lcs-cmp gives us a

sparsification in truly subquadratic time and then discuss the

algorithm for lcs-cmp in Section III-B2.

1) λ3 Sparsification using lcs-cmp: Similar to what we

did in Section III-A, we again use a parameter γ in our

algorithm and in the end, we adjust γ to minimize the total

running time. In our algorithm, we repeat the following

procedure kγ log k times: sample a window wa uniformly

at random and let S be the set of all the other windows

whose length is not smaller than |wa|. Next, we obtain

lcs-cmp(wa, S, λ̃) via running the preprocessing step. Fi-

nally, for each pair of windows wi, wj ∈ S, we make a query

to lcs-cmp to verify one of the following two possibilities:

• ||lcswa
(wi, wj)|| < λ2/2;

• ||lcswa
(wi, wj)|| ≥ λ4/8.

If the latter is verified we set Ôλ3/8[i][j] to 1 otherwise we

take no action. In what follows, we prove that after the above

sparsification, the number of edges in the remaining graph

is truly subquadratic.

Algorithm 2 Sparsification for Oλ3

1: procedure CUBICSPARSIFICATION(w1, w2, . . . , wk, λ)

� Theorem III.19

2: γ ← 0.1
3: λ̃← λ2

4: for counter = 1→ kγ log k do
5: Sample a ∼ [k] uniformly at random

6: S ← ∅
7: for i = 1→ k do
8: if i �= a and |wi| ≥ |wa| then
9: S ← S ∪ {wi}

10: end if
11: end for
12: lcs-cmp.INITIAL(wa, S, λ̃) � Algorithm 3,

Lemma III.20

13: for wi ∈ S do
14: for wj ∈ S do
15: if lcs-cmp.QUERY(wi, wj) outputs ac-

cept then � Algorithm 3,

Lemma III.21

16: Ôλ3/8[i][j]← 1 �

||lcswa(wi, wj)|| ≥ λ̃2/8
17: end if
18: end for
19: end for
20: end for
21: return Ôλ3/8

22: end procedure

In the rest of this section, we bound

|{(i, j) | ||lcs(wi, wj)|| ≥ λ and Ôλ3/8[i][j] = 0}|. In

other words, we prove an upper bound on the number

of edges that remain in the graph. Define a graph NGλ

such that each vertex of NGλ corresponds to a window

and an edge (i, j) means that ||lcs(wi, wj)|| ≥ λ but

Ôλ3/8[i][j] = 0. The goal is to prove an upper bound on

the number of edges of NGλ. We formally prove this in

Lemma III.18.

We define a notation called “close” which is similar

to “well-connected” in Section III-A. In order to avoid

confusion, we use “close” instead of well-connected.

Definition III.13 (close). Let γ ∈ (0, 1) and λ ∈ (0, 1).
We say a pair (wi, wj) of windows is close, if there are at
least k1−γ windows wa such that |wa| ≤ min{|wi|, |wj |}
and ||lcswa

(wi, wj)|| ≥ λ2.

1134

Our first observation is that Algorithm 2 detects all the

close pairs with high probability.

Lemma III.14. Let Ôλ3/8 ∈ {0, 1}k×k be the output
of Algorithm 2. For each (i, j) ∈ [k] × [k], if (wi, wj)
is close (Definition III.13) and ||lcs(wi, wj)|| ≥ λ, then
Ôλ3/8[i][j] = 1 holds with probability at least 1−1/poly(k).

Proof: We consider a fixed (i, j) such that (wi, wj) is

close. By Definition III.13, there are at least k1−γ wa such

that |wa| ≤ min{|wi|, |wj |} and ||lcswa(wi, wj)|| ≥ λ2.

Then the probability that none of these windows is sampled

is at most

(
1− k1−γ

k

)t

=

(
1− 1

kγ

)t

=

(
1− 1

kγ

)10kγ log k

≤ 1/poly(k).

Taking a union over at most k2 pairs completes the proof.

Before we proceed to Lemma III.18, we bring Lemma

III.15 as an auxiliary observation.

Lemma III.15 (existence of a correlated pair). Let ε ∈
(0, 1), λ ∈ (0, 1). Given a window wa and a set of windows
T . Let wgap denote the maximum size of windows divided by
the minimum size of windows. Let T contain at most wlayers

different sizes and |T | = Ω(wlayers · wgap/(ελ)). If for each
wi ∈ T we have ||lcs(wa, wi)|| ≥ λ, then there exist two
windows wi, wj ∈ T such that ||lcswa

(wi, wj)|| ≥ (1−ε)λ2.

Proof: Since T has size Ω(wlayers · wgap/(ελ)) and the

windows of T have at most wlayers different sizes, there must

exists a subset T ′ ⊆ T such that |T ′| = Ω(wgap/(ελ)) and

all the windows in T ′ have the same size. In the rest of the

proof, we will focus on wa and T ′.

Let t0 be the size of wa and t be the size of all the

windows in T ′. We consider a window-based bipartite graph,

on one side it has one node wa, and on the other side it has

|T ′| nodes. Then we can expand the window-based bipartite

graph into a character-based bipartite graph, on one side

it has t0 nodes, and on the other side it has t|T ′| nodes.

Two nodes x, y in the character-based graph are adjacent

iff (x, y) ∈ opta,i where wa is the window containing

character x and wi is the window containing character y.

Since ||lcs(wa, wi)|| ≥ λ for every wi ∈ T ′, the number of

edges in character-based bipartite graph is at least λ|T ′|√t0t.

For i-th character in window wa, we use Di to denote

the degree of the corresponding node in the character-based

bipartite graph. The number of 2-walks is at least

t0∑
i=1

Di(Di − 1) =

(
t0∑
i=1

D2
i −

t0∑
i=1

Di

)

≥
(

1

t0
(

t0∑
i=1

Di)
2 −

t0∑
i=1

Di

)

≥
(

1

t0
(λ|T ′|√t0t)

2 − (λ|T ′|√t0t)

)
=
(
λ2t|T ′|2 − λ|T ′|√t0t

)
≥ (1− ε)λ2t|T ′|2

It remains to show Eq. (1). Since the number of edges in

the character-based bipartite graph is at least λ|T ′|√t0t, we

have
t0∑
i=1

Di ≥ λ|T ′|√t0t.

By |T ′| = Ω(wgap/(ελ)), we have

λ|T ′|√t0t ≥ t0.

Due to a simple fact : x(x − z) > y(y − z) as long as

x > y > z > 0, we have

1

t0
(

t0∑
i=1

Di)
2 −

t0∑
i=1

Di ≥ 1

t0
(λ|T ′|√t0t)

2 − (λ|T ′|√t0t).

(1)

The number of 3-tuple (wi, wa, wj) is at most |T ′|2. Thus,

there must exists a pair such that

||lcswa
(wi, wj)|| ≥ (1− ε)λ2

We define graph NGλ and NFλ as follows:

Definition III.16 (NGλ). We assume that the edges of NGλ

are directed in the following way: For an edge (i, j) if
|wi| �= |wj | the starting point of the edge would be the
vertex corresponding to the longer window and the ending
point of the edge would be the one corresponding to the
shorter window. If both corresponding windows have the
same lengths, then we use an arbitrary direction for (i, j).

Definition III.17 (NFλ). We construct graph NFλ in the
following way : let a denote the node in V (NGλ) that has
the highest outgoing degree, let V (NFλ) = N(a). We add
an edge between vertices (i, j) in NFλ if ||lcswa

(wi, wj)|| ≥
(1−ε)λ2. Give directions to the edges of NFλ the same way
we did it for NGλ.

Now, we are ready to prove the main observation of this

section.

Lemma III.18 (upper bound on E(NGλ)). Let NGλ be
defined as Definition III.4. Then

|E(NGλ)| = O(k2−γ · wlayers · wgap/(ελ)).

1135

holds with probability 1− 1/poly(k).

Proof: We start with assuming

|E(NGλ)| ≥ Ω(k2−β · wlayers · wgap/(ελ)).

We construct a graph NFλ based on Definition III.17. By

Definition III.17, we know that |V (NFλ)| ≥ Ω(k1−β ·wlayers ·
wgap/(ελ)). By choosing some β = γ we will make a

contradiction.

Using Lemma III.15, we have for each set T ⊆ V (NFλ)
with |T | = Ω(wlayers · wgap/(ελ)), there exist two nodes u
and v in T such that edge (u, v) ∈ NFλ.

If we look at the complement of graph NFλ, we know

there is no clique Kr+1 where r = O(wlayers · wgap/(ελ)).
Using Turan’s theorem (Lemma V.5) we know that comple-

ment of graph NFλ has at most (1 − 1
r)

q2

2 edges, where

q = |V (NFλ)|. Then we have

|E(NFλ)| ≥ q(q − 1)

2
− (1− 1

r
)
q2

2
=

q2

2r
− q

2
.

This implies that there is one vertex j whose outgoing degree

in NFλ is at least

|V (NFλ)|
2r

− 1

2
≥ |V (NFλ)| · Ω

(
ελ

wlayers · wgap

)
≥k1−β

≥k1−γ .

Thus, there is a node in NGλ that has a lot of outgoing

edges, which means NGλ has a close pair.

On the other hand, Using definition of NGλ and

Lemma III.14, we know that NGλ should not contain any

close pair. Thus, we get a contradiction.

Theorem III.19 (cubic sparsification for arbitrary λ). Given
k windows w1, · · · , wk. Let wlayers denote the number of
different sizes for windows. Let wmax = maxi∈[k] |wi|,
wmin = mini∈[k] |wi| and wgap = wmax/wmin. For any
λ ∈ (0, 1), γ ∈ (0, 1), there is a randomized algorithm
(Algorithm 2) that runs in time

O(λ−4k1+γw2
max log k + k2+γwmax log k)

and outputs a table Ôλ3 ∈ {0, 1}k×k such that

||lcs(wi, wj)|| ≥ λ4/8, if Ôλ3 [i][j] = 1

and ∣∣∣{(i, j) | ||lcs(wi, wj)|| ≥ λ, and Ôλ3 [i][j] = 0
}∣∣∣

=O(k2−γwlayerswgap/λ).

The algorithm has success probability 1− 1/poly(k).

Proof: The running time of each round of Algorithm 2

is

= O(constructing S time

+lcs-cmp.INITIAL time

+|S|2 · (lcs-cmp.QUERY time))

= O(k + λ̃−2|S|w2
max + |S|2wmax)

= O(λ−4kw2
max + k2wmax)

where the last step follows by λ̃ = λ2.

Since it repeats O(kγ log k) rounds, thus the overall

running time is

O(kγ log k) ·O(λ−4kw2
max + k2wmax)

=O(λ−4k1+γw2
max log k + k2+γwmax log k).

2) Implementation of lcs-cmp: Given λ̃, wa and

w1, w2, . . . , ws, we present an O(λ̃−1|wa|
∑s

i=1 |wi|) time

preprocessing algorithm and O(|wa|) time query algorithm

for lcs-cmp such that for any i, j ∈ [s]

1) if ‖lcswa(wi, wj)‖ > λ̃/2, then the query algorithm

outputs accept;

2) if ‖lcswa
(wi, wj)‖ ≤ λ̃2/8, then the query algorithm

outputs reject.

Algorithm 3 is our lcs-cmp preprocessing and query

algorithm. The high level idea is to compute opta,i for every

i ∈ [s] and a set of at most 2/λ common subsequences

between wa and wi for each i such that every character

of wa appears at most once among the sequences for a

fixed i. lcswa
(wi, wj) is approximated by taking the longest

intersection of opta,i and some sequence in the set of

window wj . Also see Figure 5 for the intuition.

Now we prove that Algorithm 3 implements lcs-cmp.

Lemma III.20 (INITIAL). Given parameter λ̃, a window wa

and a set of windows w1, · · · , ws. The INITIAL of data struc-
ture lcs-cmp (Algorithm 3) takes O(λ̃−1|wa|

∑s
i=1 |wi|)

time, and outputs {Xa,i}i∈[s] and {Ya,i}i∈[s] such that
1) Xa,i corresponds to indices of a longest common

subsequence between wa and wi for every i ∈ [s].
2) Ya,i corresponds to indices of at most 2/λ̃ common

subsequence between wa and wi for every i ∈ [s].
3) If none of the element indices of a common subse-

quence between wa and wi is in Ya,i, then the length
of this common subsequence is less than λ̃|wa|/2.

Proof: The first property follows from the definition of

the algorithm.

For the second and third property, if an opt′a,i obtained in

Line 9 has length less than λ̃|wa|/2, then the element indices

of opt′a,i are not in Ya,i. Hence, the third property holds.

Also, it means that every time that Line 13 is executed,

the size of Ya,i increases by at least λ̃|wa|/2. For a fixed

1136

Figure 5: Computing a set of common subsequences between wa and wi for each i such that every character of wa appears

at most once among the sequences for a fixed i.

i ∈ [s], Line 13 is executed at most 2/λ̃ times. Thus, the

second property holds.
The running time is also obtained by the fact that Line

13 is executed at most 2/λ̃ times for every fixed i ∈ [s].

Lemma III.21 (QUERY). For any (i, j) ∈ [s] × [s], the
QUERY of data structure lcs-cmp (Algorithm 3) runs in time
O(|wa|) with the following properties:

1) If ‖lcswa(wi, wj)‖ > λ̃, then it outputs accept.
2) If ‖lcswa

(wi, wj)‖ ≤ λ̃2/8, then it outputs reject.

Proof: Let opta,i,j be the LCS between opta,i and wj .

By the definition, we have

‖lcswa
(wi, wj)‖ =

|opta,i,j |√|wi| · |wj |
Consider the case of ‖lcswa(wi, wj)‖ ≥ λ̃. By the third

property of Lemma III.20, there are less than λ̃|wa|/2
elements of opta,i,j with indices not in Ya,j . So we have

|Xa,i ∩ Ya,j | > λ̃
√
|wi||wj | − 1

2
λ̃|wa| ≥ 1

2
λ̃
√
|wi||wj |

where the last inequality follows from the fact that |wa| is

smaller than or equal to |wi| for every i ∈ [s]. Hence the

algorithm accepts.
Consider the case of ‖lcswa(wi, wj)‖ ≤ λ̃2/8. By the

second property of Lemma III.20, Ya,j corresponds to at

most 2/λ̃ mutually non-overlapping common subsequence

between wa and wj . Since ‖lcswa(wi, wj)‖ ≤ λ̃2/8, the

set of indices of every such a common subsequence has an

intersection with Xa,i of size at most λ̃2
√|wi||wj |/8. Thus,

we have

|Xa,i ∩ Ya,j | ≤ 1

8
λ̃2
√
|wi||wj | · 2

λ̃
≤ 1

4
λ̃
√
|wi||wj |.

Hence the algorithm rejects for this case.

IV. LONGEST INCREASING SUBSEQUENCE

We outlined the algorithm in Section I-C3. Here, we bring

the details for each step of the algorithm. In the interest

of space, we omit some of the proofs and bring them in

the full-version. In Section IV-A we discuss the solution

domains and show how we construct them. Next, in Section

IV-B we discuss the details of constructing pseudo-solutions

and finally in Section IV-C we show how we can obtain

an approximate solution from the pseudo-solutions. Also, in

Section IV-D we bring an improvement to the running time

at the expense of having a larger approximation factor for

the algorithm.

A. Solution Domains

We assume from now on that lis(A) > nλ holds. As men-

tioned earlier, we divide the input array into
√
n subarrays of

size
√
n and denote them by sa1, sa2, . . . , sa√n. For a fixed

optimal solution opt, our goal is to approximate the smallest

and the largest number of each subarray that contributes to

opt. Let us refer to these numbers as the domain of each

subarray. Let ε = 1/1000 be accuracy. For a subarray sai,
we sample k (will be decided later) different elements and

refer to them by aj1 , aj2 , . . . , ajk .

We first prove that,

Lemma IV.1 (constructing candidate domains). Let
λ ∈ (0, 1), ε ∈ (0, 1/2) and δ ∈ (0, 1/10). Let sai be
a length-

√
n subarray whose contribution to the optimal

solution is at least ε
√
nλ, i.e., lis[sm(sai),lg(sai)](sai) ≥ ε

√
nλ.

If we uniformly sample k = 20 log(1/δ)/(λε2) elements
aj1 , aj2 , . . . , ajk from sai, then with probability at least

1137

Algorithm 3 lcs-cmp data structure

1: data structure lcs-cmp
2:

3: members
4: Xa,1, · · · , Xa,s

5: Ya,1, · · · , Ya,s

6: λ̃ ∈ (0, 1)
7: end members
8:

9: procedure INITIAL(wa, {wi}i∈[s], λ̃) � Lemma III.20

10: for i ∈ [s] do
11: compute opta,i, a LCS between wa and wi

12: let Xa,i be the set of indices of all the element

of opta,i with respect to wa

13: end for
14: for i ∈ [s] do
15: let Ya,i be an empty set

16: while true do
17: compute opt′a,i, a LCS between wa remov-

ing the elements with index in Ya,i and wi

18: if the length of opt′a,i is less than λ̃|wa|/2
then

19: break
20: else
21: put the indices of all the elements of

opt′a,i with respect to wa into Ya,i

22: end if
23: end while
24: end for
25: return {Xa,i}i∈[s], {Ya,i}i∈[s]
26: end procedure
27:

28: procedure QUERY(wi, wj) � Lemma III.21

29: if |Xa,i ∩ Ya,j | > λ̃
√|wi| · |wj |/4 then

30: return accept

31: else
32: return reject

33: end if
34: end procedure
35:

36: end data structure

1 − δ, there exists a pair (α, β) ∈ [k] × [k] such that the
following two conditions hold

1) sm(sai) ≤ ajα ≤ ajβ ≤ lg(sai),
2) lis[ajα ,ajβ

](sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai).

Proof: At least ε
√
nλ elements of sai appear in opt.

Let us put all these elements in an array b in the same

order that they appear in sai. Then it is obvious that b has

at least ε
√
nλ elements. To prove the lemma, we bound the

probability that none of the first ε/2 fraction of the elements

Algorithm 4 Constructing the candidate domains

1: procedure CONSTRUCTCANDIDATEDOMAINS(sai) �
Lemma IV.1

2: � Given random access to a subarray sai
3: k ← 20 log(1/δ)/(λε2)
4: Sample k elements from sai, and denote the sampled

elements by aj1 , aj2 , . . . , ajk
5: for α in [k] do
6: for β in [k] do
7: If ajα ≤ ajβ , then construct a candidate

domain [ajα , ajβ]
8: end for
9: end for

10: return all the constructed candidate domains

11: end procedure

of b is sampled in our algorithm.

Pr[none first ε/2 fraction sampled]

≤
(
1− ε

2
· ε√nλ · 1√

n

)k

=

(
1− ε2λ

2

) 2
ε2λ
·10 log(1/δ)

≤ e−10 log(1/δ)

≤ δ/2,

where the first step follows from the fact that b contains

at least ελ
√
n elements, the second step follows from

k = 20 log(1/δ)/(λε2), and the third step follows from the

fact that the (1 − 1/x)x ≤ 1/e for ∀x ≥ 4. Hence, with

probability at least 1− δ/2, at least one of the elements in

the first ε/2 fraction of b are sampled.

With the same analysis, one can prove that with probabil-

ity at least 1 − δ/2 at least one of the elements in the last

ε/2 fraction of b are also sampled.

Taking a union bound of two events, with probability at

least 1 − δ, at least one of the elements in the first and at

least one of the elements in the last ε/2 fraction of b are

sampled.

Therefore, the lis of sai subject to this interval is at least

a 1− ε fraction of lis[sm(sai),lg(sai)](sai).

Notice that the average contribution of each subarray to

opt is
√
nλ and Lemma IV.1 applies to a subarray if its

contribution to opt is at least an ε fraction of this value.

Therefore Lemma IV.1 implies that a considerable fraction

of the solution is covered by the candidate domains.

Corollary IV.2 (existence of a desirable solution). Let
λ ∈ (0, 1) such that lis(A) ≥ nλ and ε ∈ (0, 1/4).
If we run Algorithm 4 with parameter δ = ε on ev-
ery subarray independently, then with probability at least

1138

1 − exp(−Ω(ε2√nλ)), there exist a set T ⊆ [
√
n] and

elements αi and βi sampled from sai for each i ∈ T such
that the following conditions hold:

1) For any i ∈ T , αi ≤ βi.
2) For any i, j ∈ T satisfying i < j, βi < αj .
3)

∑
i∈T lis[αi,βi](sai) ≥ (1− 4ε)lis(A).

Proof: Lemma IV.1 holds for all subarrays whose

contribution to opt is at least ε
√
nλ. Let S ⊆ [

√
n] denote

the set of coordinates such that for each i ∈ S

lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.

Since
∑√

n
i=1 lis

[sm(sai),lg(sai)](sai) ≥ nλ and

lis[sm(sai),lg(sai)](sai) ≤
√
n, we have∑

i∈S
lis[sm(sai),lg(sai)](sai) (2)

≥
√
n∑

i=1

lis[sm(sai),lg(sai)](sai)−
√
n · ε√nλ ≥ lis(A)− εnλ.

Let T ⊆ S denote the set of coordinates such that for

each i ∈ T ,

lis[αi,βi](sai) ≥ (1− ε)lis[sm(sai),lg(sai)](sai),

and

lis[sm(sai),lg(sai)](sai) ≥ ε
√
nλ.

Now we show that with probability at least 1 −
exp(−Ω(ε2√nλ)),∑
i∈T

lis[sm(sai),lg(sai)](sai) ≥ (1−2ε)
∑
i∈S

lis[sm(sai),lg(sai)](sai).

(3)

For each i ∈ S, let Xi denote a random variable such that

Xi =

{
lis[sm(sai),lg(sai)](sai), with probability of i ∈ T ;

0, with probability of i /∈ T,

and X =
∑

i∈S Xi. By Lemma IV.1 (with δ = ε), We have

E[X] ≥ (1 − ε)
∑

i∈S lis[sm(sai),lg(sai)](sai). By Hoeffding

bound (Theorem V.2),

Pr[X − E[X] ≥ εE[X]]

≤ 2 exp

⎛⎜⎝− 2ε2(E[X])2∑
i∈S

(
lis[sm(sai),lg(sai)](sai)

)2
⎞⎟⎠

≤ 2 exp

⎛⎜⎝−2ε2(1− ε)2
(∑

i∈S lis[sm(sai),lg(sai)](sai)
)2

n3/2

⎞⎟⎠
≤ 2 exp(−2ε2(1− ε)4

√
nλ)

≤ exp(−Ω(ε2√nλ)).

Hence, Equation (3) holds with probability at least 1 −
exp(−Ω(ε2√nλ)).

Conditioned on Equation (3), we have∑
i∈T

lis[αi,βi](sai)

≥
∑
i∈T

(1− ε)lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)
∑
i∈S

lis[sm(sai),lg(sai)](sai)

≥ (1− ε)(1− 2ε)(lis(A)− εnλ)

≥ (1− 4ε)lis(A)

(4)

where the first inequality follows from the definition of T ,

the second inequality follows from Equation (3), the third

inequality follows from Equation (2) and the last inequality

follows from lis(A) ≥ nλ.

Finally, by Equation (3) and (4), we have

Pr

[∑
i∈T

lis[αi,aβi
](sai) ≥ (1− 4ε)lis(A)

]
≥1− exp(−Ω(ε2√nλ)).

B. Constructing Approximately Optimal Pseudo-solutions

We call a sequence of
√
n intervals

[1, r1], [2, r2], . . . , [√n, r
√
n] a pseudo-solution

if all of the intervals are monotone. That is

	1 ≤ r1 < 	2 ≤ r2 < 	3 ≤ r3 ≤ . . . ≤ 	√n ≤ r√n.

These intervals denote solution-domains for the subarrays.

We also may decide not assign any solution domain to

a subarray in which case we show the corresponding

interval by ∅. Indeed, ∅ does not break the monotonicity

of a pseudo-solution. The quality of a pseudo-solution is

defined as
∑

i lis
[�i,ri](sai). We denote the quality of a

pseudo-solution ps by q(ps).
Another way to interpret Corollary IV.2 is that one can

construct a pseudo-solution using the sampled elements

whose quality is at least a 1 − ε fraction of lis(A). In this

section, we present an algorithm to construct a small set of

pseudo-solutions with the promise that at least one of them

has a quality of at least lis(A)/t, where t is the number

of pseudo-solutions. Finally, in Section IV-C, we present a

method to approximate the size of the optimal solution using

pseudo-solutions.

We construct the pseudo-solutions via Algorithm 5. The

input of Algorithm 5 is the set of candidate domain intervals

obtained by Algorithm 4 on every subarray. We first find an

assignment of candidate solution domains to the subarrays

which is monotone and has the largest number of candi-

date domain intervals. (This step can be implemented by

dynamic programming.) We make a pseudo-solution out of

this assignment and update the set of candidate intervals by

removing the ones which are used in our pseudo-solution.

We then repeat the same procedure to construct the second

1139

Algorithm 5 Constructing the pseudo solutions

1: procedure CONSTRUCTPSEUDOSOLU-

TIONS(cdi1, . . . , cdi√n) �
Lemma IV.3,IV.4,IV.5

2: � {cdii}i∈[√n] is
√
n sets of candidate domain

intervals

3: pseudo-solutions ← ∅
4: while true do
5: assg ← largest assigment of candidate domain

intervals to subarrays which is monotone

6: if assg contains less than ε
√
nλ non-empty can-

didate domain intervals then
7: break
8: else
9: Add assg to pseudo-solutions

10: for i← 1 to
√
n do

11: if assg contains a candidate domain

interval for subarray sai then
12: remove the corresponding candidate

domain interval from cdii
13: end if
14: end for
15: end if
16: end while
17: return pseudo-solutions ps1, ps2, . . . , pst
18: end procedure

pseudo-solution and update the candidate solution domains

accordingly. We continue on, until the number of solution

domains used in our pseudo-solution drops below ε
√
n in

which case we stop.

We first prove in Lemma IV.3 that the number of

pseudo-solutions constructed in Algorithm 5 is bounded by

O(k2/(λε)). Next, we show in Lemma IV.4 that at least

one of the pseudo-solutions constructed by Algorithm 5 has

a quality of at least Ω(lis(A)/t) where t is the number of

pseudo-solutions. Finally we prove in Lemma IV.5 that the

running time of Algorithm 5 is O(tk2
√
n log n).

Lemma IV.3 (number of pseudo-solutions). For each i ∈
[
√
n], let cdii be a set of at most k2 candidate domain

intervals. Let t denote the number of pseudo-solutions con-
structed in Algorithm 5. Then, we have t ≤ k2/(λε).

Proof: Note that for each subarray we have at most k2

candidate domain intervals. Since there are
√
n subarrays,

then in total we have
√
nk2 candidate domain intervals. Each

time we construct a pseudo-solution, the total number of the

candidate domain intervals is decreased by at least ε
√
nλ.

Thus, the total number of pseudo-solutions t can be upper

bounded,

t ≤
√
nk2

ε
√
nλ

≤ k2

λε
.

Lemma IV.4 (quality of pseudo-solutions). Let
ps1, ps2, . . . , pst be the pseudo-solutions constructed
by Algorithm 5. If lis(A) ≥ nλ holds, then with probability
at least 1 − exp(−Ω(√nλ)), there exists an i ∈ [t] such
that

q(psi) ≥
lis(A)

2t
.

Proof: Let us focus again on the actual so-

lution domains [sm(sa1), lg(sa1)],[sm(sa2), lg(sa2)], . . .,
[sm(sa√n), lg(sa

√
n)].

We define set S ⊆ [
√
n] such that

lis[sm(sai),lg(sai)] ≥ ε
√
nλ, ∀i ∈ S.

Using Corollary IV.2 with ε = 1/10, we know that there

is a monotone pseudo-solution [αi, βi]i∈T (T ⊆ S) such that

[αi, βi] are candidate domain intervals and∑
i∈T

lis[αi,βi](sai) ≥ (1− 4ε)lis(A).

Denote this pseudo-solution as sol.
At the time we terminate Algorithm 5, there are at most

ε
√
nλ candidate domain intervals of sol does not belongs to

any pseudo-solution of the pseudo-solution set. Also, since

each candidate domain interval contributes at most
√
n to

the quality of the pseudo-solution containing the interval,

we have

t∑
i=1

q(psi) ≥ (1− 4ε)lis(A)− ε
√
nλ · √n

≥(1− 4ε)lis(A)− εlis(A)

=(1− 5ε)lis(A).

Thus, there exists an i ∈ [t] such that

q(psi) ≥ (1− 5ε)lis(A)/t = lis(A)/(2t).

Lemma IV.5 (running time). For each i ∈ [
√
n], let cdii

be a set of at most k2 candidate domain intervals. Let t
denote the number of pseudo-solutions. The running time of
Algorithm 5 is bounded by O(tk2

√
n log n).

Proof: Lemma IV.3 states that Algorithm 5 terminates

after constructing t pseudo-solutions.

Now we show that constructing each pseudo-solution

takes time O(k2
√
n log n). Our solution is based on a

dynamic programming technique. Let D : [
√
n]× [k2]→ N

be an array such that D[i][j] stores the size of the largest

monotone pseudo-solution for the first i subarrays which

ends with the j’th candidate domain interval of sai. Using

classic segment-tree data structure (this data structure can

be found in many textbooks, e.g. [26]), one can compute

1140

Algorithm 6 Evaluate the pseudo solutions

1: procedure EVALUATEPSEUDOSOLU-

TIONS(ps1, . . . , pst) �
Lemma IV.6

2: � {psi}i∈[t] is a set of pseudo solutions

3: p← 1000t log4 n
ε4λ
√
n

4: Randomly sample each i ∈ [
√
n] with probability p,

and put all the samples in a set W
5: for each psj do
6: q̃(psj)← 0
7: for each interval [i, ri] in psj do
8: if i ∈W then
9: q̃(psj)← q̃(psj) + lis[�i,ri](sai)/p

10: end if
11: end for
12: end for
13: return largest q̃(psj) for all j ∈ [t]
14: end procedure

the value of D[i][j] in time O(log n) from the previously

computed elements of the array.

Thus, the total running is bounded by O(tk2
√
n log n).

C. Evaluating the Pseudo-solutions

We finally use a concentration bound to show that the

quality of a pseudo-solution can be approximated well by

sampling a small number of subarrays. Since a pseudo-

solution specifies the range of the numbers used in every

subarray, the quality of a pseudo-solution, or in other words,

the size of the corresponding increasing subsequence of a

pseudo-solution can be formulated as

q(ps) =

√
n∑

i=1

lis[�i,ri](sai)

where [i, ri] denotes the corresponding solution domain of

ps for sai.
In Lemma IV.6, we prove that by sampling

O(logO(1) n/λ4) many subarrays and computing

lis[�i,ri](sai) for them, one can approximate the quality of

a pseudo-solution pretty accurately.

Lemma IV.6 (the quality of pseudo-solution). Let λ ∈ (0, 1)
and ε be a constant in (0, 1/100). Let ps1, ps2, · · · , pst
be a set of t pseudo-solutions. With probability at
least 1 − exp(−Ω(log2 n)), Algorithm 6 runs in time
O(t2

√
n logO(1) n/λ) such that ,

1) If there exists an i ∈ [t], q(psi) ≥ λn
2t , then the

algorithm outputs an estimation at least λn
4t .

2) If q(psi) <
λn
8t for al the i ∈ [t], then the algorithm

outputs an estimation smaller than λn
4t .

Putting all the previous Lemmas together gives the fol-

lowing result:

Corollary IV.7 (algorithm for LIS decision problem). Given
a length-n sequence A, let λ ∈ [1/n, 1]. There is a random-
ized algorithm that runs in time O(λ−7

√
n logO(1) n) such

that with probability 1− 1/poly(n)

• The algorithm accepts if lis(A) > nλ.
• The algorithm rejects if lis(A) = O(nλ4).

Proof: The correctness follows from Lemma IV.6,

Lemma IV.4, and Lemma IV.5.

Running time: The running time is

time = O(tk2
√
n logO(1) n)︸ ︷︷ ︸

Lemma IV.5

+O(t2λ−1
√
n logO(1) n)︸ ︷︷ ︸

Lemma IV.6

= O(t2λ−1
√
n logO(1) n)

= O(k4λ−3
√
n logO(1) n)

= O(λ−7
√
n logO(1) n)

Thus, we complete the proof.

Finally, by starting with λ = 1 and iteratively multiplying

λ by a 1/(1 + ε) factor until a solution is found, we can

approximate lis(A) within an approximation factor of O(λ3).

Theorem IV.8 (polynomial approximation for LIS). Given
a length-n sequence A such that lis(A) = nλ where λ ∈
[1/n, 1] is unknown to the algorithm. There is an algorithm
that runs in time Õ(λ−7

√
n) and outputs a number est such

that

Ω(lis(A)λ3) ≤ est ≤ O(lis(A)).

with probability at least 1− 1/poly(n).

We remark that one can turn Theorem IV.8 into an

algorithm with running time Õ(n17/20) by considering two

cases separately. If λ < n−1/20 we sample the array with a

rate of n−3/20 and compute the LIS for the sampled array.

Otherwise, the running time of the algorithm is already

bounded by Õ(n17/20).

D. An O(nκ) Time Algorithm via Bootstrapping

Let us move a step backward and analyze the previous

algorithm for obtaining an O(λ3) approximate solution. We

first divide the input array into
√
n subarrays of size

√
n and

after constructing the pseudo-solutions, we sample O(λ4)
subarrays to estimate the size of the solution for pseudo-

solutions. The reason we set the size of the subarrays to√
n is that there is a trade-off between the first and the last

steps of the algorithm. More precisely, if we have more than√
n subarrays then the number of samples we draw in the

beginning would exceed Oλ(
√
n). On the other hand, having

fewer than
√
n subarrays results in larger subarrays which

would be costly in the last step.

If one favors the running time over the approximation

factor, the following improvement can be applied to the

algorithm: In the last step of the algorithm, instead of

sampling the entire subarrays and computing lis for every

1141

Algorithm 7 Recursive Estimate LIS with Oracle

1: procedure RECURSIVEESTIMATIONWITHORA-

CLE(ORACLE, A, λ, 	, r) �
Lemma IV.9

2: � input: sequence A, parameter λ, domain interval

[, r]
3: � assume sa1, sa2, . . . , sanκ are subarrays of A
4: � subroutine Oracle approximate LIS for subarrays

with approximation factor f(λ)
5: for i ∈ [ζ] do
6: cdii ← CONSTRUCTCANDIDATEDOMAINS(sai)
7: discard all the intervals which are not in [, r]

from cdii
8: end for
9: {ps1, . . . , pst} ←

CONSTRUCTPSEUDOSOLUTIONS(cdi1, . . . , cdiζ)

10: λ0 ←
(

λ
28

)4
11: p← 20 log4 n

λ0ζ

12: randomly sample each i ∈ [ζ] with probability p,

and put all the samples in a set Q
13: for j ∈ [t] do
14: c← 0
15: for i ∈W do
16: if ∃[i, ri] ∈ psj and ORACLE(sai, λ0, 	i, ri)

accepts then
17: c← c+ 1
18: end if
19: end for
20: if c ≥ 3λ0pζ/4 then
21: return accept

22: end if
23: end for
24: return reject

25: end procedure

pseudo-solution, we recursively call the same procedure to

approximate the size of the solution for each subarray. This

way, having large subarrays would no longer be an issue

and therefore we can have fewer subarrays to improve the

number of samples we draw in the first step of the algorithm.

More formally, in order to obtain a running time of

O(poly(λ)nκ) we set the size of each subarray to n1−κ and

therefore after constructing the pseudo-solutions, the prob-

lem boils down to approximating the solution for poly(λ)
many subarrays of length n1−κ. By running the same

algorithm, we would have nκ subarrays of length n1−2κ in

the second iteration. After 1/κ− 1 iterations, the subarrays

are small enough and we can access all their elements in time

O(poly(λ)nκ). Of course, this imposes a factor of poly(λ)
to the approximation.

By generalizing the ideas from previous subsections, we

show that if there is an algorithm for LIS with approximation

factor f(λ), then we can get a
(
f
(

λ4

232

)
· λ4

233

)
-approximate

LIS algorithm with better running time using the f(λ)-
approximate algorithm as a subroutine.

Lemma IV.9. Assume we partition the sequence into ζ
subarrays, where ζ is polynomially related to the length of
the input sequence. For parameter λ ∈ (0, 1), let ORACLE

be a f(λ)-approximate LIS algorithm (with respect to a
domain interval) with running time g(n, λ) and success
probability 1 − exp(−Ω(log2 n)) where n is the length of
the input sequence. Then Algorithm 7 using ORACLE as a
subroutine is a

(
f
(

λ4

232

)
· λ4

233

)
-approximate LIS algorithm

with

O

(
λ−4g

(
n

ζ
,
λ4

232

)
logO(1) n+ λ−7ζ logO(1) n

)
running time and success probability 1− exp(−Ω(log2 n)),
where ζ is the number of subarrays.

Proof: We first prove the correctness of the algorithm.

Let A be a sequence of length n, and sa1, . . . , saζ be the

subarrays.

Consider the case of lis[�,r](A) ≥ λn. By Corollary IV.2

and Lemma IV.4 with ε = δ = 1/10, with probability

1− exp(−Ω(ζλ)), there exists a pseudo-solution psj within

interval [, r] satisfying

q(psj) ≥
lis[�,r](A)

2t

≥ lis[�,r](A)λε

2k2

≥ lis[�,r](A)λε

2 · 202 log2(1/δ)/(λ2ε4)

≥ ε5λ4

800 log2(1/δ)
n ≥ λ4

231
n.

Let α denote the number of subarrays sai such that

lis[�i,ri](sai) ≥ λ0n/ζ where [i, ri] is the interval for

subarray sai in psj . We have

α ≥ q(psj)− λ4n/232

n/ζ
≥ λ4ζ

232
.

By Chernoff bound, Step 14 to Step 22 of Algorithm 7

accepts on psj with probability at least 1−exp(−Ω(log2 n)).
Consider the case of

lis[�,r](A) ≤ f

(
λ4

232

)
λ4

233
n.

Then for any pseudo-solution psj , we have

q(psj) ≤ f

(
λ4

232

)
λ4

233
n.

Let β denote the number of subarrays sai such that

lis[�i,ri](sai) ≥ f(λ4/232)n/ζ where [i, ri] is the interval

1142

Figure 6: The flowchart of the Oλ(n
ε) time algorithm is shown.

for subarray sai in psj . We have

β ≤ q(psj)

f(λ4/232)n/ζ
≤ λ4

233
ζ.

By Chernoff bound, Step 14 to Step 22 of Algorithm 7 do not

accept on psj with probability at least 1−exp(−Ω(log2 n)).
By union bound, Algorithm 7 rejects with probability at least

1− exp(−Ω(log2 n)).
Hence, Algorithm 7 is a

(
f
(

λ4

232

)
· λ4

233

)
-approximate

algorithm for LIS of length n with success probability at

least 1− exp(−Ω(log2 n)).
Finally, we discuss the running time of Algorithm 7.

By the definition of procedures CONSTRUCTCANDIDATE-

DOMAINS and CONSTRUCTPSEUDOSOLUTIONS, the run-

ning time of Step 5 to Step 9 of Algorithm 7 is

O(λ−9ζ logO(1) n). By Lemma IV.3, t = O(λ−3), and

by Chernoff bound with probability 1 − exp(−Ω(log2 n))
the size of Q is at most O(λ−4 log4 n). Hence, the run-

ning time of Step 12 to Step 24 of Algorithm 7 is

O(λ−7g(n/ζ, λ4/232) log4 n).

By definition, we have the following basic fact about

approximate ratio.

Fact IV.10. Let f and f ′ be two functions mapping (0, 1)
to (0, 1) such that f(λ) ≥ f ′(λ) for any λ ∈ (0, 1). If there
is a f(λ)-approximate LIS algorithm, then the algorithm is
also f ′(λ)-approximate.

Now we present algorithm to approximate LIS using

Õ(nκpoly(λ−1)) space by applying the pseudo-solution

construction-evaluation framework recursively. In particular,

we use the same algorithm on subarrays as an oracle and

apply Lemma IV.9 recursively to approximate the entire

sequence with slightly worse approximation ratio (compared

with approximation ratio of the oracle).

Lemma IV.11. Let κ be a constant of (0, 1) and λ ∈ (0, 1).

Algorithm 8 Recursive Estimate LIS
1: procedure RECURSIVELIS(A, λ, 	, r) � Lemma IV.11

2: � input: sequence A, parameter λ, domain interval

[, r]
3: � assume sa1, sa2, . . . , sanκ are subarrays of A
4: if the length of A is greater than n2κ then
5: return RECURSIVELISWITHORA-

CLE(RECURSIVELIS, A, λ, 	, r) with ζ = nκ

6: else
7: for i ∈ [nκ] do
8: cdii ← CONSTRUCTCANDIDATEDO-

MAINS(sai)
9: discard all the intervals which are not in [, r]

from cdii
10: end for
11: {ps1, . . . , pst} ←

CONSTRUCTPSEUDOSOLUTIONS(cdi1, . . . , cdinκ)
12: if EVALUATEPSEUDOSOLUTIONS(ps1, . . . , pst)
≥ λ|A| then

13: return accept

14: else
15: return reject

16: end if
17: end if
18: end procedure

Algorithm 8 approximates LIS with approximation ratio

λ2·4(�1/κ�−1)

2563·4(�1/κ�−1)

and running time O(nκ · λ−4O(1/κ)

logO(1) n) and success
probability 1− exp(−Ω(log3 n)).

Proof: We first prove the correctness of the algorithm

by induction. Without loss of generality, we assume 1/κ is

an integer.

1143

For i ∈ {2, 3, . . . , 1/κ}, denote

hi(λ) =
λ2·4(i−1)−4

2562·4(i−1)+3·4(i−2)−7
.

We show that if the length of the input sequence is ni·κ then

Algorithm 8 is hi(λ)-approximate.

If the length of input sequence is n2κ, then h2(λ) =
λ4

232 .

By Corollary IV.2, Lemma IV.4, and Lemma IV.6, Algo-

rithm 8 is h2(λ)-approximate.

In the induction step, for an integer 2 ≤ i < 1/κ,

we assume Algorithm 8 is hi(λ)-approximate for input

instance of length ni·κ. By Lemma IV.9, Algorithm 8 is(
hi

(
λ4

232

)
λ4

233

)
-approximate for input instance of length

n(i+1)·κ. Since

hi

(
λ4

232

)
λ4

233

=
λ4·(2·4(i−1)−4) · λ4

2564·(2·4(i−1)−4) · 2562·4(i−1)+3·4(i−2)−7 · 233

=
λ2·4i−12

2562·4i+2·4(i−1)+3·4(i−2)−18.875

>
λ2·4i−4

2562·4i+3·4(i−1)−7

=hi+1(λ),

by Fact IV.10, Algorithm 8 is hi+1(λ)-approximate for input

instance of length n(i+1)·κ. Since

h1/κ(λ) >
λ2·4((1/κ)−1)

2563·4((1/κ)−1)
,

by Fact IV.10, Algorithm 8 is

(
λ2·4((1/κ)−1)

2563·4((1/κ)−1)

)
-approximate

for input instance of length n.

By Corollary IV.2, Lemma IV.4, Lemma IV.6 and

Lemma IV.9, we have the desired running time. The success

probability is obtained by same corollaries/lemmas and

union bound.

Finally, by starting with λ = 1 and iteratively multiplying

λ by a 1/(1 + ε) factor until a solution is found, we

can approximate lis(A) within an approximation factor of

λO(41/κ).

Theorem IV.12. Let κ be a constant of (0, 1) and λ ∈
(0, 1). There exists a Õ(nκ ·λ−4O(1/κ)

) time algorithm for lis
with approximation factor λ4O(1/κ)

and success probability
1− exp(−Ω(log3 n)) .

V. PROBABILITY AND GRAPH TOOLS

In this section, we restate probability and graph tools that

we use throughout this paper. All these theorems are proven

in previous work.

Theorem V.1 (Chernoff Bounds). Let X =
∑n

i=1 Xi, where
Xi = 1 with probability pi and Xi = 0 with probability 1−

pi, and all Xi are independent. Let μ = E[X] =
∑n

i=1 pi.
Then
1. Pr[X ≥ (1 + δ)μ] ≤ exp(−δ2μ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)μ] ≤ exp(−δ2μ/2), ∀0 < δ < 1.

Theorem V.2 (Hoeffding bound). Let X1, · · · , Xn denote
n independent bounded variables in [ai, bi]. Let X =∑n

i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
Theorem V.3 (Blakley-Roy inequality, [27], see also Propo-

sition 3.1 in [28]). Let G denote a graph that has n vertices
and average degree d. The number of walks of length k in
graph G is at least ndk.

Theorem V.4 (Turán theorem for bipartite graphs, [29], see

also [30]). For a graph G the Turán number ex(G,n) is
the maximum number of edges that a graph on n vertices
can have without containing a copy of G. For any s ≤ t,
ex(Ks,t, n) ≤ 1

2 (t− 1)1/sn2−1/s + o(n2−1/s)

Theorem V.5 (Turán theorem for cliques [31]). Let G be
any graph with n vertices, such that G is Kr+1-free. Then
the number of edges in G is at most

(1− 1

r
) · n

2

2
.

Corollary V.6 (of Theorem V.5). Let G be any graph with
n vertices, such that G has no independent set of size r+1.
Then the number of edges in G is at least(

n

2

)
− (1− 1

r
) · n

2

2
=

nr + n2

2r
.

REFERENCES

[1] M. Boroujeni, S. Ehsani, M. Ghodsi, M. HajiAghayi, and
S. Seddighin, “Approximating edit distance in truly sub-
quadratic time: Quantum and mapreduce,” in Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2018.

[2] D. Charkraborty, D. Das, E. Goldenberg, M. Koucky, and
M. Saks, “Approximating edit distance within constant factor
in truly sub-quadratic time,” in Proceedings of the Fifty-
Ninth Annual IEEE Symposium on Foundations of Computer
Science, 2018.

[3] G. M. Landau, E. W. Myers, and J. P. Schmidt, “Incremental
string comparison,” SIAM Journal on Computing, vol. 27,
no. 2, pp. 557–582, 1998.

[4] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Kumar,
“Approximating edit distance efficiently,” in Proceedings of
the Forty-Fifth Annual IEEE Symposium on Foundations of
Computer Science, 2004.

[5] T. Batu, F. Ergun, and C. Sahinalp, “Oblivious string embed-
dings and edit distance approximations,” in Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, 2006.

1144

[6] A. Andoni and K. Onak, “Approximating edit distance in
near-linear time,” in Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, 2009.

[7] A. Andoni, R. Krauthgamer, and K. Onak, “Polylogarithmic
approximation for edit distance and the asymmetric query
complexity,” in Proceedings of the Fifty-First IEEE Annual
Symposium on Foundations of Computer Science, 2010.

[8] M. Saks and C. Seshadhri, “Estimating the longest increas-
ing sequence in polylogarithmic time,” in Proceedings of
the Fifty-First Annual IEEE Symposium on Foundations of
Computer Science, 2010.

[9] A. Backurs and P. Indyk, “Edit distance cannot be computed
in strongly subquadratic time (unless SETH is false),” in
Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, 2015.

[10] A. Abboud, A. Backurs, and V. V. Williams, “Tight hardness
results for LCS and other sequence similarity measures,” in
Proceedings of the Fifty-Sixth IEEE Annual Symposium on
Foundations of Computer Science, 2015.

[11] A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams,
“Simulating branching programs with edit distance and
friends,” in Proceedings of the Forth-Eighth Annual ACM
SIGACT Symposium on Theory of Computing, 2016.

[12] A. Abboud and A. Backurs, “Towards hardness of approxi-
mation for polynomial time problems,” in Proceedings of the
Eighth Innovations in Theoretical Computer Science Confer-
ence, 2017.

[13] A. Abboud and A. Rubinstein, “Fast and deterministic con-
stant factor approximation algorithms for LCS imply new
circuit lower bounds,” in Proceedings of the Ninth Innovations
in Theoretical Computer Science Conference, 2018.

[14] L. Chen, S. Goldwasser, K. Lyu, G. N. Rothblum, and
A. Rubinstein, “Fine-grained complexity meets IP=PSPACE,”
Proceedings of the Thirtieth Annual ACM-SIAM symposium
on Discrete Algorithm, 2019.

[15] M. Hajiaghayi, M. Seddighin, S. Seddighin, and X. Sun,
“Approximating LCS in linear time: Beating the barrier,” in
Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, 2019.

[16] M. Boroujeni and S. Seddighin, “Improved mpc algorithms
for edit distance and ulam distance,” in SPAA, 2019.

[17] M. Hajiaghayi, S. Seddighin, and X. Sun, “Massively par-
allel approximation algorithms for edit distance and longest
common subsequence,” in SODA. Society for Industrial and
Applied Mathematics, 2019.

[18] W. J. Masek and M. S. Paterson, “A faster algorithm comput-
ing string edit distances,” Journal of Computer and System
Sciences, vol. 20, no. 1, pp. 18–31, 1980.

[19] A. Rubinstein and Z. Song, “Reducing approximate longest
common subsequence to approximate edit distance,” in
SODA. https://arxiv.org/pdf/1904.05451, 2020.

[20] C. Schensted, “Longest increasing and decreasing subse-
quences,” Canadian Journal of Mathematics, vol. 13, pp.
179–191, 1961.

[21] M. L. Fredman, “On computing the length of longest increas-
ing subsequences,” Discrete Mathematics, vol. 11, no. 1, pp.
29–35, 1975.

[22] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova,
D. Ron, and A. Samorodnitsky, “Improved testing algo-
rithms for monotonicity,” in Randomization, Approximation,
and Combinatorial Optimization. Algorithms and Techniques.
Springer, 1999, pp. 97–108.

[23] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and
M. Viswanathan, “Spot-checkers,” Journal of Computer and
System Sciences, vol. 60, no. 3, pp. 717–751, 2000.

[24] E. Fischer, “The art of uninformed decisions: A primer to
property testing,” Current Trends in Theoretical Computer
Science: The Challenge of the New Century, vol. 1, pp. 229–
264, 2004.

[25] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, “Estimating
the distance to a monotone function,” Random Structures &
Algorithms, vol. 31, no. 3, pp. 371–383, 2007.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT press, 2009.

[27] G. R. Blakley and P. Roy, “A hölder type inequality for
symmetric matrices with nonnegative entries,” Proceedings
of the American Mathematical Society, vol. 16, no. 6, pp.
1244–1245, 1965.

[28] P. Keevash, B. Sudakov, and J. Verstraëte, “On a conjecture of
erdős and simonovits: Even cycles,” Combinatorica, vol. 33,
no. 6, pp. 699–732, 2013.

[29] T. Kovári, V. Sós, and P. Turán, “On a problem of k.
zarankiewicz,” in Colloquium Mathematicum, vol. 1, no. 3,
1954, pp. 50–57.

[30] P. V. Blagojević, B. Bukh, and R. Karasev, “Turán numbers
for ks,t-free graphs: Topological obstructions and algebraic
constructions,” Israel Journal of Mathematics, vol. 197, no. 1,
pp. 199–214, 2013.

[31] P. Turán, “On an external problem in graph theory,” Mat. Fiz.
Lapok, vol. 48, pp. 436–452, 1941.

1145

