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Abstract—We consider a revenue-maximizing seller
with n items facing a single buyer. We introduce the
notion of symmetric menu complexity of a mechanism,
which counts the number of distinct options the buyer
may purchase, up to permutations of the items. Our
main result is that a mechanism of quasi-polynomial
symmetric menu complexity suffices to guarantee a (1−
ε )-approximation when the buyer is unit-demand over
independent items, even when the value distribution
is unbounded, and that this mechanism can be found
in quasi-polynomial time.

Our key technical result is a polynomial-time, (sym-
metric) menu-complexity-preserving black-box reduc-
tion from achieving a (1 − ε )-approximation for un-
bounded valuations that are subadditive over inde-
pendent items to achieving a (1 −O (ε ))-approximation
when the values are bounded (and still subadditive over
independent items). We further apply this reduction to
deduce approximation schemes for a suite of valuation
classes beyond our main result.

Finally, we show that selling separately (which has
exponential menu complexity) can be approximated up
to a (1−ε ) factor with a menu of efficient-linear (f (ε ) ·n)
symmetric menu complexity.

I. Introduction

Multi-item mechanism design has been at the fore-
front of Mathematical Economics since Myerson’s sem-
inal work resolved the single-item case [Mye81]. Once
it became clear that optimal multi-item mechanisms
were prohibitively complex, even with just a single
buyer (e.g., [RC98], [Tha04], [MV07]), the problem
also entered the Theory of Computation through the
lens of approximation. As a result, there is now a
long line of work developing auctions which are sim-
ple, computationally-efficient, and approximately opti-
mal [CHK07], [CHMS10], [CMS15], [KW12], [HN17],
[LY13], [BILW14], [Yao15], [RW15], [CM16], [CDW16],

[CZ17].
These works take a binary view on simplicity, and

aim to discover the best approximation guarantees
achievable by simple mechanisms. Only recently have
works begun to explore the tradeoff between simplic-
ity and optimality, aiming instead to discover how
complex a mechanism must be, as a function of ε ,
in order to guarantee a (1 − ε )-approximation to the
optimum. This question is studied formally through the
lens of computational complexity (how much compu-
tation is required to find a mechanism guaranteeing
a (1 − ε )-approximation on a given instance?) and
menu complexity (how many distinct outcomes need
a mechanism induce in order to guarantee a (1 − ε )-
approximation?).1 Prior to our work, neither subex-
ponential upper bounds nor superpolynomial lower
bounds were known in any multi-dimensional setting
for either measure. Our main results provide the first
subexponential upper bound through both lenses.

A. Main Result Part 1: Quasi-Polynomial Computational

Complexity

Our main results concern a single unit-demand buyer

with independently drawn values for n items, the
same setting considered in seminal work of Chawla,
Hartline and Kleinberg which introduced this domain
to TCS [CHK07]. Specifically, there is a single seller
with n heterogeneous items facing a single buyer with
value vi for each item i and value maxi ∈S {vi } for any
set S . The seller has independent Bayesian priors Di

over each vi (so we say that the buyer is drawn from
D :=

∏
i Di ). The seller presents the buyer with a

1See Section II for a formal definition of menu complexity, and
formal statement of the computational problem.
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menu of (randomized allocation, price) pairs (S,p), and
the buyer purchases whichever option maximizes her
expected utility (v (S ) −p).2 The seller’s goal is to find,
over all menus, the one which optimizes her expected
revenue.
Our first main result considers the computational

complexity of this problem, which is known to be
computationally hard to solve exactly (unless PNP =

P#P ), even when each Di has support three [CDO
+15].

On the other hand, works of [CHK07], [CHMS10],
[CMS15] establish that a 1/4-approximation can be
found in polynomial time. It was previously unknown
whether a (1 − ε )-approximation (or even a (1/4 + ε )-
approximation) could be achieved in subexponential
time. Part one of our main result provides the first
subexponential-time approximation scheme.

Main Result 1 (Informal, see Theorem IV.5). For all
ε > 0, a (1 − ε )-approximation to the optimal revenue
for a unit-demand buyer with independent values for
n items can be found in time quasi-polynomial in n.

B. Main Result Part 2: Quasi-Polynomial Symmetric

Menu Complexity

Part two of our main result considers the same
problem through the lens of menu complexity. Menu
complexity, first defined in [HN13], is widely regarded
as an insightful yet imperfect measure. Imagine for
example the menu which allows the buyer to purchase
any desired set S for a price of |S | (“selling separately”).
This is ubiquitously accepted as a fairly simple menu
(perhaps it has “intrinsic complexity” n, since there
are n non-trivial “kinds” of possible outcomes), yet
technically it has menu complexity 2n (because there
are 2n different sets the buyer can purchase).

Prior work addresses this concern in two ways. The
first simply proposes alternative definitions, such as
additive menu complexity [HN13].3 This particular def-
inition, however, was later shown to be ill-defined (in
the sense that there exist optimal menus for which the
additive menu complexity is undefined) [BNR18], and
there are no prior alternative proposals. The second
approach is to argue that while selling separately may
technically have menu complexity 2n , it is always well-
approximated by a menu of polynomial size [BGN17].

2Throughout this paper, we abuse notation and write v (S ) :=
E[v (S )] when S is a set-valued random variable and v is fixed.

3A formal definition is not relevant to this discussion, but es-
sentially the definition is designed to address the specific concern
raised: the menu contains a list of (randomized allocation, price)
pairs, and the buyer may (adaptively or non-adaptively) select any
subset of options to purchase. So “selling separately” has additive
menu complexity n.

The implication is that while the definition is still
imperfect, it is at least impossible for a distribution
for which selling separately is optimal to witness a
super-polynomial lower bound on the menu complex-
ity required for a (1 − ε )-approximation.

We propose the first alternative which is well-
defined for all menus, the symmetric menu complexity.
Informally, a menu respects a permutation group Σ if
whenever (S,p) is an option on the menu, (σ (S ),p) is
an option as well for all σ ∈ Σ. A menu has symmetric
menu complexity C if there exists a Σ such that the
menu is symmetric with respect to Σ and contains at
most C distinct equivalence classes under Σ.4

Observe that in our motivating example where a
buyer could pick S at price |S | has symmetric menu
complexity n (the menu is invariant under all per-
mutations), and that importantly the symmetric menu
complexity is well-defined for all menus (take Σ to
contain only the identity permutation). Of course, the
definition is still imperfect, as selling separately at n
distinct prices still has symmetric menu complexity 2n ,
but the improvement over standard menu complex-
ity is significant (discussed in Section I-G). Part two
of our main result establishes that quasi-polynomial
symmetric menu complexity suffices for a (1 − ε )-
approximation. Importantly, note that both parts of our
main result hold even for unbounded distributions.

Main Result 2 (Informal, see Theorem IV.5). For all
ε > 0, a (1 − ε )-approximation to the optimal revenue
for a unit-demand buyer with independent values for
n items exists with symmetric menu complexity quasi-
polynomial in n.

C. Main Result 3: A Reduction from Unbounded to

Almost-Bounded

Our proof of the above main results is cleanly
broken down into two steps, the first of which we
now overview. We provide a black-box reduction from
proving computational/menu/symmetric menu com-
plexity bounds for unbounded distributions to prov-
ing the same bounds for almost-bounded distributions.
Roughly, a distribution D is almost-bounded if for each
i , distribution Di is supported on [0, 1]∪ {W } (think of
W as some large number � n). That is, Di has at most
one value in its support exceeding 1.
This step in our proof applies quite generally, in

fact to any distribution which is subadditive over in-

dependent items (see Section II for definition). This
constitutes a key result in its own right due to

4For ease of exposition, this definition is slightly imprecise, see
Section II-D for a formal definition.
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significant gaps in tractability between unbounded
and almost-bounded instances. For example, it was
only recently shown that some f (n, ε ) < ∞ menu
complexity suffices for a (1 − ε )-approximation on all
unbounded distributions which are additive5 over n
independent items [BGN17] (and the proof is quite
involved), whereas the analogous result follows for
almost-bounded distributions by a folklore discretiza-
tion argument.

Main Result 3 (Informal, see Theorem III.1). There is a
polynomial-time reduction from a multiplicative (1−ε )-
approximation for unbounded distributions which are
subadditive over independent items to an additive
O (ε5)-approximation for almost-bounded distributions
which are subadditive over independent items. If the
O (ε5)-approximation produced on the almost-bounded
instance has (symmetric) menu complexity C , the
(1 − ε )-approximation for the unbounded instance has
(symmetric) menu complexity ≤ nC + n.

Readers familiar with [BGN17] may notice a rela-
tionship to their main result, and a detailed comparison
is warranted. The main result of [BGN17] asserts
that a (1 − ε )-approximation for an additive buyer
over independent items can be achieved with bounded
((ln(n)/ε )O (n)) menu complexity, which can now alter-
natively be deduced from Theorem III.1 plus the afore-
mentioned folklore discretization argument (also called
a “nudge-and-round”). In comparison to [BGN17], the
main qualitative improvement in Theorem III.1 is
that we provide a true reduction from unbounded to
almost-bounded distributions.6 The main quantitative
improvements are an extension to subadditive over in-
dependent items (versus additive) and that the approx-
imation required on the almost-bounded distribution is
independent of n (versus O (ε3/n3)). It is worth noting
that this quantitative improvement is necessary for
our previous quasi-polynomial results (see discussion
following Theorem III.1), so the removal of dependence
on n is significant. It is also worth noting that our proof
of Theorem III.1 indeed makes use of several ideas
developed in [BGN17], and we identify the connections
where appropriate.

D. Approximating Almost-Bounded Distributions via

Symmetries

Theorem III.1 takes care of reducing unbounded dis-
tributions to almost-bounded ones, but we still need to

5A valuation function is additive if v (S ) =
∑
i∈S v ( {i }).

6In contrast, [BGN17] wraps up their additive approximation on a
bounded distribution via a specific nudge-and-round tailored to the
rest of their proof, and are explicit that care is required in this step.

figure out how to get an additive O (ε5)-approximation
on almost-bounded distributions that are unit-demand
over independent items. The folklore discretization
argument (roughly: round all values down to the
nearest multiple of O (ε10)) establishes only that an
exponential 1/εO (n) computational/menu complexity
suffices. Perhaps shockingly, no better bounds were
previously known, so our remaining task is to improve
this.
The unique special case where progress was pre-

viously made is if D is heavily symmetric (that is,
D is i.i.d., or there are only o(n) distinct marginals
of D) [DW12]. In this case, [DW12] establish that an
additive ε-approximation with symmetric menu com-
plexity nO (s/ε2 ) can be found in time nO (s/ε2 ) for any
distribution D that is unit-demand over independent
items with at most s distinct marginals. Of course,
our given D may have n distinct marginals, rendering
a direct application of their theorem useless. So our
key argument here is to show that every D which
is almost-bounded and unit-demand over independent
items is “close” in a precise metric to some D ′ which
is almost-bounded and unit-demand over independent

items with at most ln(n)1/ε
O (1)

distinct marginals.

E. Extensions

Beyond our main results, Theorem III.1 also allows
us to conclude the following corollaries:

• For all ε > 0 and n ∈ N, there exists a finite
f (n, ε ) s.t. for all subadditive D over n indepen-
dent items, a (1 − ε )-approximation can be found
in f (n, ε ) time which has menu complexity f (n, ε )
(Theorem IV.1).

• For all ε > 0 and all unit-demand D over i.i.d.

items, a (1 − ε )-approximation can be found in
polynomial time which has polynomial symmetric
menu complexity (Theorem IV.4).

• For all ε > 0 and all additive D over i.i.d. items,
a (1 − ε )-approximation can be found in quasi-
polynomial time which has quasi-polynomial
symmetric menu complexity (Theorem IV.4).

• For all ε > 0 and all additive D over independent
items where for all i , |support(Di ) | = O (1), a
(1 − ε )-approximation can be found in quasi-
polynomial time which has quasi-polynomial
symmetric menu complexity (Theorem IV.6). Note
that the supports of each Di may be distinct.

The proofs of the first three bullets follow by first ap-
plying our reduction (Theorem III.1), and then applying
standard (albeit somewhat subtle) nudge-and-round ar-
guments on the resulting almost-bounded distribution.
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Note that exploiting symmetries for i.i.d. distributions
is considerably simpler than for non-i.i.d. distributions
as the input is already symmetric (so [DW12] can be
applied almost immediately). The final bullet considers
a non-i.i.d. setting, but again establishes that all dis-
tributions whose marginals have constant support are
“close” to symmetric ones. Note that exact solutions for
this setting are computationally intractable [DDT14],
[CDO+15], and that no subexponential-time approxi-
mation schemes were previously known (and posed as
an open problem in [DDT14], even for marginals with
support two).
Additionally, like [BGN17], we also consider the

(symmetric) menu complexity necessary to approxi-
mate the revenue achieved by selling separately. For
the standard menu complexity, [BGN17] establishes

that there is always a menu of size n1/ε
O (1)

which guar-
antees a (1−ε )-fraction of the best revenue achievable
by selling separately. We establish an even stronger
claim for symmetric menu complexity: there is always
a menu of efficient-linear size which guarantees a
(1 − ε )-fraction of selling separately.

Informal Theorem (See Theorem V.1). For all menus
M which sell separately, and all D which are additive
over independent items, there exists a menu with
symmetric menu complexity f (ε ) · n which achieves a
(1−ε )-approximation to the revenue of M when buyers
are drawn from D (here f (ε ) = 2O (1/ε3 )).

Again, recall that symmetric menu complexity is still
an imperfect definition which assigns complexity 2n

to a menu which sells separately at n distinct prices
(whereas the “intrinsic complexity” of such a menu
is n). But Theorem V.1 asserts that for all ε , there is
a menu of linear symmetric menu complexity which
achieves the same (up to (1 − ε )) revenue guarantees.

Finally, in Section VI we analyze a barrier example
for extending our quasi-polynomial bounds for a unit-
demand buyer to an additive buyer. Essentially, the dis-
tribution is almost-bounded, but (provably) no previ-
ous approaches, nor our approach for almost-bounded
unit-demand distributions can guarantee better than
an 8/9-approximation. We believe that resolving this
example will be a fruitful direction for future work to
circumvent current barriers.

F. Related Work

The most related work to ours is [BGN17], whose
main result establishes that finite menu complexity
suffices to guarantee a (1 − ε )-approximation for an
additive buyer over independent items. As discussed
above, our black-box reduction provides both qualita-

tive and quantitative improvements on their work, and
makes use of tools they develop. There are numerous
other works which study the menu complexity of
optimal and approximately optimal auctions, but there
is not much technical overlap [BCKW15], [HN13],
[FGKK16], [SSW18], [Gon18].
(Quasi-)Polynomial Time Approximation Schemes

for a single buyer have been considered in prior works
from a few different perspectives. For example, [CD11]
develops a PTAS for the optimal deterministic item
pricing for a unit-demand buyer over independent
MHR items, and a QPTAS for a unit-demand buyer
over independent regular items.7 [Rub16] develops a
PTAS for the optimal “partition mechanism” for an
additive buyer over independent items.8 The simplest
comparison to these works is that we are searching
for a good approximation to the optimal (possibly
randomized) mechanism, versus a restricted class of
mechanisms. [DW12] develop a PTAS for a bounded
unit-demand buyer over i.i.d. items by exploiting sym-
metries. As noted previously, our work provides the
first approximation schemes towards the true optimum
in unrestricted settings (and also the first application
of [DW12] in asymmetric settings).
A series of works also considers the multi-bidder,

multi-item case. Works such as [DW12], [CH13] con-
sider special cases (such as i.i.d., MHR, etc.), and are
able to exploit symmetries or concentration to prove
that simple auctions can approach optimal guarantees.
In the general case, [CDW12a], [CDW12b], [CDW13]
develop fully-polynomial randomized approximation
schemes. These works achieve polynomial dependence
on the number of bidders, and the size of a single bid-
der’s support (so with independent items, this would
be exponential in n), and bear no technical similarity.
Indeed, one of the open questions left by these works
is whether it is possible to improve the dependence
on n when the items are independent, and our work
resolves this affirmatively in the case of a single unit-
demand buyer.
Finally, note that the interesting questions indeed

surround a (1 − ε )-approximation, and not exact so-
lutions. For example, [MV07], [DDT17] establish that
optimal mechanisms may have uncountable menu
complexity. Moreover, even in the case where the
marginal of each item has constant support (two, for
additive [DDT14], three for unit-demand [CDO+15]),

7That is, each fi (v )/(1 − Fi (v )) is monotone non-decreasing
(MHR) or v − (1− Fi (v ))/fi (v ) monotone non-decreasing (regular).

8A partition mechanism partitions the items into disjoint bundles
and allows the buyer to purchase any subset of bundles.
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exact solutions are computationally intractable and
subexponential-time approximation schemes were un-
known prior to our work (Theorem IV.6).

G. Discussion and Open Problems

We introduce the notion of symmetric menu com-
plexity, and provide the first subexponential time
approximation schemes and subexponential bounds
on the symmetric menu complexity of (1 − ε )-
approximately optimal auctions for an unbounded
unit-demand buyer over independent items. Our main
technical innovations are: (a) a black-box reduction
from computational/menu/symmetric menu complex-
ity bounds on unbounded distributions to almost-
bounded ones (Theorem III.1), and (b) establishing that
a wide class of (asymmetric) almost-bounded distri-
butions are “close to” symmetric distributions in a
formal sense (including unit-demand over independent
items, or additive over independent items of constant
support). We also conclude approximation-schemes for
a suite of additional classes of valuation functions.
The notion of symmetric menu complexity itself

will likely be of independent interest for future work.
Symmetric menu complexity is well defined for any
menu, and is always at most the menu complexity.
Additionally, an additive or unit-demand buyer can al-
ways find their favorite option on a menu of symmetric
menu complexity C in poly(n,C ) value queries (see the
full version of this paper for a short proof). Moreover,
Theorem V.1 establishes that selling separately can
be approximated arbitrarily well by a menu of linear
symmetric menu complexity. These arguments suggest
that symmetric menu complexity is a convincing sim-
plicity measure for additive/unit-demand buyers, and
the following open questions are directly relevant:

Open Question 1. Does there exist a polynomial-time
(respectively, polynomial symmetric menu complexity)
approximation scheme for a single unit-demand buyer
over independent items?
Does there exist a subexponential-time (respectively,

subexponential symmetric menu complexity) approxi-
mation scheme for a single additive (or subadditive)
buyer over independent items?

Open Question 2. Does there exist a subexponential-
time approximation scheme for multiple buyers who
are (unit-demand/additive/subadditive) over indepen-
dent items?

Still, symmetric menu complexity by no means
“dominates” the traditional menu complexity (for ex-
ample, a subadditive buyer can find her favorite option

on a menu of menu complexity C in poly(n,C ) value
queries, but the same is not necessarily true for a menu
of symmetric menu complexity C , or additive menu
complexity C). It is therefore also an important open
question (Open Problem 1.6 in [BGN17]) to understand
the standard menu complexity required to achieve a
(1 − ε ) approximation in any of the settings consid-
ered in this paper. In this direction, note importantly
that our Theorem III.1 allows future work to restrict
attention only to almost-bounded distributions.

H. Roadmap

Preliminaries are split into two sections: Section II
contains the minimal notation necessary to formally
state and overview our results. Extended preliminaries
can be found in the full version of this paper. Sec-
tion III contains a formal statement and brief overview
of our reduction from unbounded to almost-bounded
instances. Section IV overviews our use of symmetries
to derive approximation schemes for asymetric distri-
butions. Section V overviews the connection between
selling separately and symmetric menu complexity.
Section VI overviews a barrier example for an additive
buyer. Missing details and full proofs can be found in
the full version of this paper.

II. Preliminaries

In the interest of brevity, we first provide the
minimal notation necessary to understand our precise
statements and proof overviews. Additional notation
for detailed proofs is provided in the full version of
this paper.

A. Classes of Distributions

This paper considers instances with a single buyer
and n items. The buyer’s valuation function v (·) for
the items is drawn from some distribution D (written
as v ← D), which will always have independent items:
D :=

∏
i Di . We will consider the following classes of

valuations:

• k-demand over independent items. Each
Di is a single-dimensional distribution. The
buyer’s value vi for item i is drawn indepen-
dently from Di , and her value for a set S is
maxU ⊆S, |U | ≤k {∑i ∈U vi }. When k = 1 we say the
distribution is unit-demand and when k = n we
say it is additive.

• Subadditive over independent items. Each Di

is an arbitrary distribution.9 Denote by Xi a ran-
dom variable with distribution Di . There exists

9[RW15] defines Di to be a distribution over a compact subset of
a normed space, but this is not necessary.
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a function V (·, ·) : support(D) × 2[n] → R+ for
which a buyer with type �X has valuation function
v �X

(·) satisfying v �X
(S ) := V (�X , S ). Moreover, for

all �X ∈ support(D), function V (�X , ·) is monotone
and subadditive.10 We will often abuse notation
and think of the valuation function v (·) as being
drawn directly from D.11

We will use DS :=
∏

i ∈S Di to refer to the distribu-
tion D restricted to items in S . Note that we will often
abuse notation and use v (S ) to refer to ES [v (S )] when
S is a randomized allocation.

B. Revenue Benchmarks

We will also be interested in the following quanti-
ties. If the parameter D is clear from context, we may
drop it (but sometimes it will not be clear, and we will
make sure to include it).

• Rev(D): the optimal revenue achievable by any
mechanism for a single buyer drawn from D
(formally, the supremum of achievable revenues).
We will always assume that Rev(D) is finite.

• RevM (D): for mechanism M , the expected revenue
of M for distribution D.

• Val(D): the expected value of v ([n]), when v (·) is
drawn from D (not necessarily finite).

C. Bounded and Truncated Distributions

In order to formally state our results, we will be
interested in the following restrictions on D.

• A distribution D is unbounded if Rev(D) < ∞ (but
maybe Val(D) = ∞, no other constraints).

• A distribution D is c-bounded if Prv←D

[
v ({i}) ≤

c · Rev(D)
]
= 1 for all i .

• D is almost c-bounded if ∃X ∈ R so that for all i ,
Prv←D

[
v ({i}) ∈ [0, c · Rev(D)] ∪ {X }

]
= 1.

Importantly, observe that whenever D is almost c-
bounded, we can normalize so that all v ({i}) ∈ [0, 1]∪
{X/(c ·Rev(D))} with probability 1 (by dividing all val-
ues by c ·Rev(D)). Now, an additive ε/c-approximation
to Rev(D) immediately implies a multiplicative (1−ε )-
approximation to Rev(D).

Our main results will also involve truncating un-
bounded distributions into ones which are nearly-
bounded. Below we define these truncations formally.
The definition below is parameterized by a value T > 0
and a vector �p. Intuitively, the truncation operation
first replaces all item values > T with exactly T , and

10That is, for all S, T : v (S ) ≤ v (S ∪T ) ≤ v (S ) + v (T ).
11We refer the reader to [RW15] for some examples of natural

distributions satisfying this definition.

then for each item i independently sets a huge value
n2 · (max{1,T })3.
Definition II.1 (Canonical truncations). Let D be
subadditive over independent items. LetT ∈ R+, and let
�p ∈ Rn be a vector of probabilities. Denote by D (T , �p)
the truncation of D with respect to T , �p. To sample
from the distribution D (T , �p):

1) Draw v ← D. For each item i such that v ({i}) >
T , add i to S . These items will have their value
truncated at T .

2) For each item i , independently add i to W with

probability min
{

pi
n2 ·(max{1,T })3 , 1

}
. Update S := S \

W . These items will have their value set at n2 ·
(max{1,T })3.

3) Set v ′({i}) := T for all i ∈ S , v ′({i}) = n2 ·
(max{1,T })3 for all i ∈W .

4) (Additive truncation) Output v ′(·) with v ′(U ) :=
v (U ∩ S̄ ∩ W̄ ) +

∑
i ∈U∩(S∪W ) v

′({i}).
5) (Max truncation) Output v ′(·) with v ′(U ) :=

max
{
v (U ∩ S̄ ∩ W̄ ),maxi ∈U∩(S∪W ) {v ′({i})}

}
.

We also use the notation D (T ) := D (T ,�0).

Our reduction from unbounded to almost-bounded
requires truncating the original distribution, and holds
for either the additive or max truncation (or many
others), so we will not emphasize which is used. We
quickly parse what is going on in the definition. Both
truncations first initialize v ′({i}) := min{v ({i}),T }. For
each i , both truncations then independently select each
i with tiny probability12 and update v ′({i}) := n2 ·
max{1,T }3. Afterwards, in order to output a complete
set function, v ′(·) must be defined on all sets (not
just the singletons), and the two truncations extend
differently.
Observe that when D is additive over independent

items and Pr
[
v ({i}) ≤ T

]
= 1, then D (T ) = D

under the additive truncation. The same holds for unit-
demand and the max truncation. If all we know is that
D is subadditive (and Pr

[
v ({i}) ≤ T

]
= 1), then D (T )

does not necessarily equal D under either truncation
(but this is fine from the perspective of our results).
More importantly, observe that if D is subadditive
(resp. XOS, submodular) over independent items, then
D (T , �p) is also subadditive (resp. XOS, submodular)
over independent items under both truncations. If D
is additive (resp. gross substitutes) over independent
items, then D (T , �p) is additive (resp. gross substitutes)
over independent items under the additive truncation.
If D is unit-demand over independent items, then

12In all applications of this definition, we will have pi /T 
 ε .
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D (T , �p) is unit-demand over independent items under
the max truncation. So all of these classes are “closed”
under (at least) one of the canonical truncations.

D. Menu Complexity

We will consider two menu complexity mea-
sures in this paper. Recall that the Taxation Princi-
ple [HDSM79], [GO81] asserts that any mechanism
for a single buyer can be represented as a menu
of (randomized allocation, non-negative price) pairs,
where the buyer selects their favorite pair from the
menu (that is, the pair which maximizes the buyer’s
expected value for the randomized allocation minus the
price paid). We will therefore directly refer to a mech-
anism M as a menu/list of such pairs (which implicitly
includes the pair (∅, 0)). The first notion we consider
is the standard menu complexity from [HN13].

Definition II.2 (Menu Complexity [HN13]). The menu

complexity of a menu M is simply the size of the list
|M |. We denote by MC(M ) the menu complexity of M .

The following two definitions introduce our notion
of symmetric menu complexity.

Definition II.3 (Symmetries in a Menu). Let S be
a randomized allocation, p be a price, and Σ be a
subgroup of permutations of [n]. Then we denote by
(S,p, Σ) the set of (randomized allocation, price) pairs
⋃

σ ∈Σ{(σ (S ),p)}. That is, the set (S,p, Σ) contains, for
all σ ∈ Σ, the option to receive for price p the
randomized allocation which instantiates the random
set S , and then permutes the items according to σ .

Definition II.4 (Weak/Strong Symmetric Menu Com-
plexity). We say that a mechanism M has strong

symmetric menu complexity equal to the smallest c such
that there exists an index set I of size c , collection of
(randomized allocation, price) pairs {(Si ,pi )}i ∈I , and
subgroup Σ of item permutations such that M can
be written as

⋃
i ∈I {(Si ,pi , Σ)}. We refer to the strong

symmetric menu complexity of M as SSMC(M ).
We say that M has weak symmetric menu complexity

equal to the smallest c such that there exists an index
set I and menus {Mi }i ∈I such that each SSMC(Mi ) =
di for all i , menu M =

⋃
i Mi , and

∑
i di = c . We will

refer to the weak symmetric menu complexity of M as
WSMC(M ).

Above, the idea is that the mechanism designer
can present any mechanism M to the buyer with a
description of Σ via its generating set, together with a
list of SSMC(M ) (randomized allocation, price) pairs.
Similarly, the designer can present any mechanism M

to the buyer with a set of such lists, totaling WSMC(M )
(randomized allocation, price) pairs (again representing
each Σi via its generating set).
In principle, one might find some subgroups Σ

to be simpler than others (e.g., the subgroup of all
permutations, or all permutations on even elements,
etc.), but Jerrum’s filter establishes that all subgroups
have a generating set of size at most n [Jer82]. So while
some subgroups may indeed be conceptually simpler
than others, from the point of view of how much space
is needed to define Σ, the space is always n2 ln(n)
(this sanity checks, for instance, that it is not the case
that all menus have low symmetric menu complexity
simply because they can be cleverly partitioned into
few heavily-symmetric parts. See further discussion in
the full version of this paper).
Note also that the weak/strong symmetric menu

complexity is well-defined for any menu M (by taking
Σ to be the trivial subgroup), and that for all M , we
have WSMC(M ) ≤ SSMC(M ) ≤ MC(M ). This is in
contrast to previously posed notions such as “additive
menu complexity” [HN13], as some menus may simply
not admit an additive description (and therefore their
additive menu complexity is undefined) [BNR18].
To simplify presentation, we formally define what it

means for a class of distributions to have a low (1−ε )-
approximation menu complexity.

Definition II.5 (ε-Menu Complexity of a Class of
Distributions). Let D be a class of distributions. Define
the ε-Menu Complexity MC(D, ε ) of D to be the
minimum c such that for all D ∈ D there exists a menu
M with MC(M ) ≤ c and RevM (D) ≥ (1− ε )Rev(D). We
also define WSMC(D, ε ) and SSMC(D, ε ) similarly.

E. Computational Problems

Finally, we define the computational problem we
consider for our PTAS/QPTAS. Below, when we de-
scribe a distribution D as being input, we do not ex-
plicitly specify how the input is given, other than (a) it
is possible to sample from D in time poly(n) and (b) for
any T ∈ R, ε > 0, and all items i , it is possible to find

supp≥T
{
p · Pr[v ({i}) ≥ p]

}
, along with an r satisfying

r ·Pr[v ({i}) ≥ r ] ≥ (1−ε ) ·supp≥T
{
p ·Pr[v ({i}) ≥ p]

}
in

time polyε (n).
13 Observe that if the support of each Di

is explicitly listed and of size poly(n), then both these
properties are satisfied (even though the support of D
is exponential in n).

13Observe that this supremum is always finite when Rev(D ) is
finite.
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Definition II.6 (Implicit description of a
menu [DDT14]). An implicit description of a menu M
is a Turing machine which takes as input a valuation
v (·) and outputs argmax(S,p )∈M∪{(∅,0) } {v (S ) − p}. The
description has overhead c if on input v (·) described
using b bits, the Turing machine terminates in time
poly(c,b).

Definition II.7 (Computational Revenue Maximiza-
tion). A (1 − ε ) approximation for the problem
RevMaxD takes as input D ∈ D and outputs an
implicit description of a menu M such that RevM (D) ≥
(1 − ε )Rev(D). Whenever we say that an algorithm
for RevMaxD runs in time c , we mean both that the
implicit description is found in time c , and that the
implicit description itself has overhead c .

III. Overview: Reduction from Unbounded to
Bounded

In this section, we overview our polynomial-time
(symmetric) menu-complexity preserving reduction
from unbounded distributions to almost-bounded dis-
tributions. Theorem III.1 is the main result of this
section.

Theorem III.1. For any n ∈ N and ε > 0, let D
be a class of distributions that is closed under one of

the canonical truncations, such that every D ∈ D is

subadditive over n independent items. Let DB denote the

subset of D that is also almost 1/ε4-bounded. Then there

is a poly(n, 1/ε )-time reduction from achieving a (1−ε )-
approximation to RevMaxD to achieving a (1 −O (ε ))-
approximation to RevMaxDB

. Moreover:

MC(D, ε ) ≤ n + nMC(DB ,O (ε )) and

WSMC(D, ε ) ≤ n + nWSMC(DB ,O (ε )).

The proof of Theorem III.1 is broken down into
two main parts. The first half, captured in Propo-
sition III.2,14 asserts that for any distribution which
is subadditive over independent items, there exists a
(1−ε )-approximate menu of a particular form. Readers
familiar with [BGN17] will notice simliarity to their
Lemma 2.4; we discuss the differences shortly after.

Proposition III.2. Let E ≥ Rev(D)/ε3. Then for all D
that are subadditive over independent items, there exists

a menu M such that RevM (D) ≥ (1−O (ε ))Rev(D) and:

• For all (S,p) ∈ M , either p ≤ E, or there exists at

most one i such that Pr[i ∈ S] > 0.
• For each item i , there exist at most two distinct

(S,p) ∈ M such that p > E and Pr[i ∈ S] > 0.

14See full paper for a more precise version of Proposition III.2.

The structure of the promised M is identical to
Lemma 2.4 of [BGN17]. The key difference is that we
take E ≥ Rev(D)/ε3, versus their E ≥ n3Rev(D)/ε2. This
quantitative improvement is crucial for Theorem III.1:
without it, instead of reducing to 1/ε4-bounded distri-
butions, we would only reduce to poly(n/ε )-bounded
distributions. Our positive results for c-bounded dis-
tributions require runtime/symmetric menu complex-
ity exponential in c , so the quantitative difference is
significant. The second difference is the extension to
distributions which are subadditive over independent
items (their Lemma 2.4 holds for additive).
The second half of Theorem III.1 is Proposition III.5

below.15 We first need some definitions. Definition III.3
describes an operation which appears in [BGN17],
which takes a menu M and replaces all “expensive”
options in M with options which award at most a
single item with non-zero probability. Definition III.4
defines a new operation, which takes a menu M and
concatenates it with n new options which each offer a
single item deterministically.

Definition III.3 (Making a menu E-exclusive). For a
given menu M , let the menu M |E (“M made exclusive
above E”) denote the menu constructed from M as
follows:

• For any (S,p) ∈ M with p ≤ E, add (S, (1− ε )p) to
M |E .

• For any (S,p) ∈ M with p > E, and all items i ,
let Xi (S ) denote the (randomized) set that is {i}
with probability Pr[i ∈ S] and ∅ otherwise. Add
(Xi (S ), (1 − ε )p) to M |E .

Definition III.4 (Concatenating a menu with exclusive
options). Let �r ∈ R[n] be a vector of reserve prices, and
T ∈ R. Let also (Si ,qi ) be the option in M that would
be purchased by a buyer with value v (·) satisfying
v (S ) = T · I(i ∈ S ).16 Then MT ,�r (“M concatenated
with exclusive options �r”) is the menu M with the n
additional options

⋃
i

{
({i} , qi + ri · (1 − Pr[i ∈ Si ]))

}
,

and then multiplying all prices by (1 − ε ).
That is, concatenating a menu with exclusive options

�r adds, for all i , an option to purchase item i determin-
istically. The price-per-additional-probability of getting
item i beyond what is already allocated by Si is ri (and
then all prices are multiplied by (1 − ε )).

15Again, see full paper for a more precise version of Proposi-
tion III.5.

16Morally, one should think of (Si , qi ) as the option in M
which awards i with highest probability. However, if M has infinite
menu complexity, then this option need not be well-defined. The
definition is given as such to avoid overly cumbersome notation
with supremums.
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Proposition III.5. Let M be the mechanism promised

by Proposition III.2, and let T ≥ E/ε ≥ Rev(D)/ε4. Also,
let pi := supr ≥T

{
r · Pr[v ({i}) ≥ r ]

}
and let ri ≥ T be

such that ri · Pr[v ({i}) ≥ ri ] ≥ (1 − ε )pi . Then:

• (1 −O (ε )) · RevM (D) ≤ Rev(D (T , �p)).
• For any M ′, we have Rev(M ′ |E )T ,�r (D) ≥
RevM ′ (D (T , �p)) −O (ε ) · Rev(D).

Proposition III.5 establishes both that the optimal
revenue for D and D (T , �p) is close, and also that any
mechanism for D (T , �p) can be efficiently transformed
into one which achieves similar guarantees for D.
Proposition III.5 has no real analogue in [BGN17], but
replaces their Lemma 2.5. Their Lemma 2.5 specifies
a particular discretization of the “cheap part” of the
menu promised in Lemma 2.4 (priced ≤ E) which is
compatible with the remaining 2n expensive options
(priced > E). The entire challenge of this process is
ensuring that a buyer with value v (·) who chooses
to purchase one of the 2n expensive options from
the promised M does not all of a sudden wish to
purchase a cheap option instead after discretization.
As a result, one cannot simply view the cheap part
and expensive part as separate subproblems. The main
insight in [BGN17]’s Lemma 2.5 is that a particular
discretization of the cheap part does not interfere with
the 2n expensive options. The main insight in our
Proposition III.5 is more general: the only property
of the cheap part which interacts with the expensive
part is the maximum probability with which item i
is ever allocated (and this is captured in a some-
what roundabout way by the inserted point-masses
at n2 (max{1,T })3). So in comparison to Lemma 2.5
in [BGN17], the key contribution of Proposition III.5
is that it provides a true reduction from unbounded
to almost-bounded distributions. Future work (and the
remainder of the present work) can simply focus on
almost-bounded distributions, rather than separately
ensuring that the resulting menu is compatible with
Proposition III.2.
Observe that Theorem III.1 now follows from Propo-

sitions III.2 and III.5. For any D ∈ D, D (T , �p) is
almost 1/ε4-bounded. So if we can find a (1 − O (ε ))-
approximation for D (T , �p), we can efficiently make it
E-exclusive and concatenate the expensive options, and
these changes increase the (symmetric) menu complex-
ity by at most a factor of n, plus an additional n.
Chaining the inequalities in Propositions III.2 and III.5
establishes that the resulting menu is a (1 − O (ε ))-
approximation. A more detailed outline and complete
proofs can be found in the full version of this paper.

IV. Overview: Symmetries and Optimal
Mechanisms

With Theorem III.1 in hand, our task is now to
design good menus for almost-bounded distributions.
Unfortunately, there is not much prior work in this
direction (even for bounded distributions). It is only
known that, via an application of nudge-and-round
arguments, one can discretize all values into multiples
of ε/n while losing at most an ε fraction of the optimal
revenue, at which point an exponentially large linear
program can output an explicit description of the
optimal mechanism (for the discretized distribution).
Note that the linear program has size polynomial in
the support of D, which would remain exponential in
n even if D is unit-demand/additive and each marginal
has support size 2 (as D is a product distribution). We
omit the overview of this linear program and defer it
to the full version of this paper.
Despite this simple result for bounded distributions,

prior work of [BGN17] was the first to establish even
that some bounded menu complexity suffices for un-
bounded additive distributions over independent items,
and Theorem III.1 now allows us to do the same for
unbounded distributions which are subadditive over
independent items. A proof of the following theorem
appears in the full version of this paper, which for-
malizes the above paragraph and mostly follows from
Theorem III.1.

Theorem IV.1. Let D be the class of distributions which

are subadditive over n independent items. Then for all

ε , there exists a finite number C (n, ε ) < ∞ such that

MC(D, ε ) ≤ C (n, ε ).

One special case where progress was made is if
the underlying distribution D is symmetric [DW12].
Specifically, if D is invariant under all permutations
in Σ, [DW12] shows that the canonical LP refer-
enced above can be simplified to have size only
|support(D)/Σ| (that is, the LP needs to only consider
one representative from each equivalence class in the
support of D under Σ), which allowed them to conclude
a PTAS when D was bounded and unit-demand over
i.i.d. items. We recap (a slight generalization of) their
main result below, and include a proof in the full
version of this paper for completeness.

Definition IV.2 (Invariant under item permutations).
We say that Σ is an item permutation group if there
exists a partition T1 � . . .�Ts of [n] such that Σ is the
subgroup generated by

⋃
i {(x ,y)}x,y∈Ti . That is, Σ is

generated by all swaps of pairs of elements in the same
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Ti .
17 We further let s (the number of parts necessary

for the partition) denote the partition size of Σ.
We say that D is symmetric with respect to Σ if for

all σ ∈ Σ, the distribution which first draws v (·) ← D
and then outputs v ′(·) with v ′(S ) := v (σ (S )) is itself
the distribution D.

For example, if D is k-demand over i.i.d. items,
then D is symmetric with respect to the group of
all permutations on n items, and this permutation
group has partition size one. If D is k-demand over
independent items and all values for even items are
drawn i.i.d., and odd items are drawn i.i.d. (but from
a different distribution than the even items), D is
symmetric with respect to the item permutation group
Σ with T1 := even items and T2 := odd items, and
therefore Σ has partition size two.

Theorem IV.3 ([DW12]). For any item permutation Σ
of partition size s , let D be the class of distributions

D which are k-demand over independent items, with

each |support(Di ) | ≤ c , and symmetric with respect to

Σ. Then an optimal solution to RevMaxD can be found

in time poly(ncs ). Moreover, the mechanism output M
has SSMC(M ) ≤ ncs .

Our applications of Theorem IV.3 will first dis-
cretize a distribution into one which is symmetric
with respect to a Σ of low partition size, and also
where each marginal is supported on not many values.
Theorem IV.4 considers i.i.d. items, where the input is
already heavily symmetric and we just need to bound
the loss from discretizing values. We treat this case as
a warmup, but even here our results make quantitative
improvements on [DW12], and also now extend their
work to the unbounded case due to Theorem III.1.
In particular, observe that Theorem IV.4 concludes a
PTAS for distributions which are unit-demand over
i.i.d. items, and a QPTAS for distributions which are
additive over i.i.d. items.

Theorem IV.4. Let D be the class of valuations which

are k-demand over i.i.d. items. Then WSMC(D, ε ) ≤
nO (ln(k )/ε12 ) , and there exists a (1 − ε )-approximation to

RevMaxD which runs in time nO (ln(k )/ε12 ) .

Our main application of Theorem IV.3 will be on
arbitrary distributions which are unit-demand over in-
dependent items. That is, the initial distribution might
have no symmetries whatsoever. Still, we show that
it is possible to discretize the distribution in a way
which creates symmetries. Note that discretizing only

17Put another way, Σ contains exactly permutations which sepa-
rately permute items in Ti , for all i .

the values clearly no longer suffices, as there are fully
asymmetric distributions even when each marginal has
support size two. So we additionally need to discretize
the probabilities. The main challenge here is that unless
our discretization is excessively fine (that is, too fine
to improve the runtime/menu complexity), there will
almost certainly be some item for which the original
and the discretized values are quite different. So we
need to carefully dive into the details of an advanced
nudge-and-round argument to figure out exactly which
item values contribute to lost revenue. This careful
dive is possible for unit-demand valuations because
optimal menus award at most one item without loss
of generality. For additive valuations, there is a barrier
to this approach, which we expound in Section VI.

Theorem IV.5. Let D be the class of valuations which

are unit-demand over independent items. Then there

exists a (1−ε )-approximation to RevMaxD which runs in

time nO (ln(n/ε ))1/ε
7
) and WSMC(D, ε ) ≤ nO (ln(n/ε ))1/ε

7
) .

Finally, Theorem IV.6 below establishes that a
similarly careful nudge-and-round yields a quasi-
polynomial approximation scheme for distributions
where each marginal has support at most c (even if
that support is distinct for each marginal). Recall that
even when c = 2, no subexponential approximation
schemes are previously known, and this is left open
by [DDT14].

Theorem IV.6. Let D be the class of valuations

which are k-demand over independent items and sat-

isfy |support(Di ) | ≤ c for all i . Then there exists a

(1 − ε )-approximation to RevMaxD which runs in time

nO (ln(n/ε ))c and WSMC(D, ε ) ≤ nO (ln(n/ε ))c .

V. Overview: Selling Separately with Low
Symmetric Menu Complexity

One justified critique of menu complexity is that it
assigns menu complexity 2n to the “selling separately”
mechanism, which places price pi on each item and
allows the buyer to purchase any set S for price
∑

i ∈S pi . Symmetric menu complexity is still imperfect
in this regard: if all pi are distinct, the menu will still
have strong/weak symmetric menu complexity 2n .

[BGN17] provide a nice response to this critique,
by proving that while technically selling separately
is deemed to have 2n menu complexity, for every M
which sells separately and for all D which are additive
over independent items, there exists another M ′ for
which RevM ′ (D) ≥ (1 − ε )RevM (D) and MC(M ′) ≤
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n1/ε
O (1)

.18 So while the definition of menu complexity
is certainly still imperfect, we at least now know
that if (for instance) a distribution D admits no good
mechanisms of polynomial menu complexity, it is not
because selling separately is close to optimal.
We provide an even stronger response in the case of

symmetric menu complexity: when D is additive over
independent items, and M sells separately, there exists
another M ′ for which RevM ′ (D) ≥ (1 − ε )RevM (D)
and SSMC(M ′) ≤ f (ε )n. That is, the blow up from
the “intrinsic complexity” (or description complexity)
of selling separately n items to the strong symmetric
menu complexity of a menu that is almost as good is
just a multiplicative factor independent of n. The proof
can be found in the full version of this paper.

Theorem V.1. Let D be additive over independent items

andM be a mechanism which sells separately. Then there

exists a mechanismM ′ with RevM ′ (D) ≥ (1−ε )RevM (D)
and SSMC(M ′) ≤ f (ε )n, for f (ε ) = 2O (1/ε3 ) .

VI. A Barrier Example for an Additive Buyer

In this section we highlight an example of a (1/ε )-
bounded distribution which is additive over indepen-
dent items but serves as a barrier to proving good
(symmetric) menu complexity bounds. In a formal
sense, the known approaches for bounding the menu
complexity of (1 − ε )-approximately optimal mecha-
nisms for a bounded distribution are:

• Argue that SRev(D) ≥ (1 − ε )Val(D), perhaps
because each Di is nearly a point-mass (recall that
while selling separately does not itself have low
menu complexity, this suffices by Theorem V.1).

• Argue that BRev(D) ≥ (1 − ε )Val(D), perhaps
because for all i , v ({i}) ≤ ε2Val(D) with probabil-
ity one, and therefore v ([n]) concentrates tightly
around its expectation.

• (New, from Section IV) Argue that D is “close”
to a highly symmetric distribution D ′. Then use
Theorem IV.3 to argue that D ′ has a near-optimal
mechanism of low symmetric menu complexity,
followed by a claim to argue that this menu (with
discounts) also suffices for D.

We provide an example for which all three of these
approaches fail, highlighting the main challenge for
future work. We overview the construction in Ex-
ample VI.1 below, and highlight its main features in

18Note that “selling separately” is not obviously simple when D is
not additive over independent items, so it is not clear that one should
expect/demand such an M ′ unless D is additive over independent
items.

Proposition VI.2, deferring a proof of Proposition VI.2
to the full version of this paper.

Example VI.1. For even n, an ε < 1 (one interesting

choice discussed below is ε = 1/9), and k = Θ( ln(n)
ε

),
consider n vectors in �r1, . . . ,�rn ∈ {0, 1}k with |�ri |1 =
k/2 for all i (i.e., each has exactly k/2 ones and k/2
zeroes). Let it also be the case that for all i, j ∈ [n], we
have |{� : ri� � r j� }| ≥ k/6.19 Define Di so that:

Pr[vi = x] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ε
n
· I(i is even) x = 1

2ε
n
· I(i is odd) x = 1

2
(lnn) (1−ε )−�

nk
· I(ri� = 1) x = ε (1−ε )�

lnn ,
� = 0, ...,k − 1

1 − Pr[vi > x] x = 0

Proposition VI.2. Any distribution D satisfying the

definition in Example VI.1 has the following properties:

• Val(D) = 3ε/2.
• SRev(D) = ε .
• BRev(D) ≤ ε .
• vi ≤ 1 for all i with probability 1. Therefore, D is

1/ε-bounded.
• For all Σ with partition size s , and all D ′ such that

D ′ is symmetric with respect to Σ, the coupling

distance δ (D,D ′) ≥ ε2 · n−s
6n . In particular, if

s = o(n), then δ (D,D ′) ≥ ε2/6 − o(ε2) 20.

Observe that Proposition VI.2 rules out any of
the known approaches achieving better than a 8/9-
approximation. Indeed, in order to prove that either
of SRev(D) or BRev(D) beats a 2/3-approximation,
a better bound than Val(D) on the optimal revenue
would be necessary. This may indeed be the right
approach, but because D is 1/ε-bounded, it is already
well inside the range where techniques like those of
our Section III or [BGN17] can yield traction. This rules
out the first two approaches. In addition, the partition
size of Σ appears in the exponent of the symmetric
menu complexity for optimal mechanisms on distribu-
tions that are symmetric with respect to Σ, so the final
bullet asserts that a direct application of the approach
in Section IV cannot beat a (1 − √ε/8)-approximation
with subexponential symmetric menu complexity. In
particular, the construction is valid for any ε < 1, so
we can take ε small enough to have

√
ε/8 < 1/9, which

would rule out an 8/9-approximation via any of the
three known approaches.
Focusing on arguments for this example (and slight

generalizations) should be illuminating for future

19We prove (in the full version) that such vectors exist, which
follows by the probabilistic method.

20See the full version of this paper for the definition of coupling
distance δ (D, D′) between two distributions D, D′.
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progress. It seems that the missing ingredient is a
near-optimal bound on the optimal revenue without
relying on coupling with a symmetric distribution. The
interesting feature of D is that it is highly asymmetric,
but the values in the support of the marginals which
contribute to the asymmetry are small (much smaller
than Val(D)). Normally, this would imply that the ex-
pected value for the grand bundle concentrates, but the
point masses at 1 (or 1/2) ruin such a concentration.
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