
Faster Polytope Rounding, Sampling, and Volume Computation
via a Sub-linear Ball Walk

Oren Mangoubi

Worcester Polytechnic Institute
Worcester, MA

Nisheeth K. Vishnoi

Yale University
New Haven, CT

Abstract—This paper studies the problem of “isotropically
rounding” a polytope K ⊆ R

n, that is, computing a linear
transformation which makes the uniform distribution on the
polytope have roughly identity covariance matrix. It is assumed
that K ⊆ R

n is defined by m linear inequalities. We introduce
a new variant of the ball walk Markov chain and show that,
roughly, the expected number of arithmetic operations per-
step of this Markov chain is O(m) that is sub-linear in the
input size mn – the per-step time of all prior Markov chains.
Subsequently, we apply this new variant of the ball walk
to obtain a rounding algorithm that gives a factor of

√
n

improvement on the number of arithmetic operations over the
previous bound which uses the hit-and-run algorithm. Since
the cost of the rounding pre-processing step is in many cases
the bottleneck in improving sampling or volume computation
running time bounds, our results imply improved bounds for
these tasks. Our algorithm achieves this improvement by a
novel method of computing polytope membership, where one
avoids checking inequalities which are estimated to have a very
low probability of being violated. We believe that this method
is likely to be of independent interest for constrained sampling
and optimization problems.

Keywords-polytope rounding; volume computation; sam-
pling; random walks

I. INTRODUCTION

The task of bringing a polytope into near-isotropic posi-

tion is an important problem in mathematics and theoretical

computer science (TCS). In TCS, this problem is closely

linked with the widely studied problem of computing a

polytope’s volume [6], [15], [8], [19], [4], and often serves

as an important pre-processing step for these algorithms. For

a > 0, we say that a convex body K is in a-isotropic position

if the uniform distribution on K has covariance matrix ΣK

and mean μK satisfying

1

a2
In � ΣK � a2In and ‖μK‖2 ≤ 1

10
a.

Formally, consider the following problem, where B denotes

the unit ball centered at the origin:

Problem 1 (Bringing a polytope into isotropic position).
Given a polytope K := {x ∈ R

n : Ax ≤ b}, with A ∈
R

m×n and b ∈ R
m such that rB ⊆ K ⊆ RB for some

r,R > 0, generate a matrix Ω̃ ∈ R
n×n and vector μ̃ ∈ R

n

such that K̃ := Ω̃−
1
2 (K − μ̃) is in 2-isotropic position.

The problems of sampling from the uniform distribution on a

polytope and of bringing a polytope into isotropic position

are closely related. On the one hand, bringing a polytope

into isotropic position can improve the running time of

Markov chain-based sampling algorithms [14]. On the other

hand, it is known that n log(n) independent samples from

the uniform distribution on a polytope suffices to bring

a polytope into O(1)-isotropic position [22]. All current

Markov chains which are used to sample from the uniform

distribution on a polytope defined by m inequalities use

at least mn arithmetic operations per Markov chain step

to implement, and it is currently an open problem how to

improve the number of arithmetic operations to fewer than

mn [14]. mn is the size of the input and is also the time

required to check whether a given point is in K or not.
The main focus of this paper is to develop Markov chains

for sampling that allow us to bypass this mn barrier, and

obtain faster algorithms for rounding, sampling, and volume

computation. In particular, we introduce an implementation

of the ball walk Markov chain [1], [8], which improves the

expected number of arithmetic operations to roughly O(m)
operations per ball walk step. Our improvement in the per-

step complexity applies in the special case when the polytope

is in near-isotropic position, and we are given an O(1)-warm

start in the n−3 interior of the polytope.
We then apply a recent result of [14] which says that,

starting at any point on the n−3 interior of K, the ball walk,

together with a rejection sampling post-processing step from

[8], can generate a sample from the uniform distribution on

K in O(n2.5 log(1ε)) “proper” ball walk steps (that is, only

counting the steps where the ball walk changes position). If

X0 is also O(1)-warm, the expected number of steps (both

proper and improper) is also O(n2.5 log(1ε)) [8]. Multiplying

the two, we get that the expected number of operations for

our implementation of the ball walk to generate a sample

with TV error ε, is, roughly speaking1, O(m×n2.5 log(1ε)).

1Since the two random variables may be correlated, we cannot simply
multiply their expectations. Instead, we treat these two expectations sepa-
rately until the very end of our proof, and then use Markov’s inequality to
bound each with probability 9/10. We then multiply our bounds for the
two random variables that we obtained from Markov’s inequality to get a
bound for the product of the random variables which holds with probability
8/10.

1338

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00082

Therefore, if we re-start the ball walk at the same O(1)-
warm initial point X0 after we generate each sample, we can

use our algorithm to generate p samples that are (condition-

ally on X0) jointly independent and uniformly distributed

on K with TV error ε, after roughly O(pmn2.5 log(1ε))
operations.

Using our implementation of the ball walk to generate

n log(n) samples, we can use results from [22] to compute

a sample mean and sample covariance matrix for the uniform

distribution on K which allows us to bring any polytope K
that is in 15-isotropic position into 2-isotropic position with

probability 1−ε, in roughly Õ(mn3.5 log(1ε)) operations, if

we are given an O(1)-warm start X0, with X0 in the n−3

interior of K. We use this idea in an iterative manner to

obtain a rounding algorithm which can bring any polytope

rB ⊆ K ⊆ RB into 2-isotropic position with probability

1− ε. Specifically, we show the following:

Theorem I.1 (Main theorem: Bringing a polytope into
isotropic position). There exists an algorithm which, given
a polytope K := {x ∈ R

n : Ax ≤ b}, with A ∈ R
m×n and

b ∈ R
m such that rB ⊆ K ⊆ RB for some r,R > 0,

and ε > 0, generates a matrix Ω̃ ∈ R
n×n and vector

μ̃ ∈ R
n such that the polytope K̃ := Ω̃−

1
2 (K − μ̃) is

in 2-isotropic position with probability at least 1 − ε, in
Õ(mn4.5polylog(1ε ,

R
r)) arithmetic operations.

To prove Theorem I.1 (see Theorem V.6 for the version

of Theorem I.1 specific to our algorithm), we consider a

sequence of convex bodies

Ki := K ∩ (1 + 1/n)irB,

and bring these convex bodies into isotropic position se-

quentially, starting from K0 = rB. We are able to do

this since one can show that the same linear transforma-

tion which brings Ki into 2-isotropic position also brings

Ki+1 into 15-isotropic position. Since there are n log(Rr)
convex bodies Ki in the sequence, our algorithm brings K
into 2-isotropic position in Õ(mn4.5polylog(1ε ,

R
r)) opera-

tions. Our rounding algorithm improves the best previous

Õ(mn5polylog(1ε ,
R
r)) bound of [19] for bringing a poly-

tope into isotropic (or just “well-rounded”) position by a

factor of
√
n, making progress on an open problem (see #4

in Section 8 of [4]). We get an improvement of
√
n rather

than n since our bound for the number of operations per

ball walk step needs the convex bodies Ki to be kept in

isotropic position at each i (requiring us to generate Θ̃(n2)
independent samples), while [19] only need to keep their

sequence of convex bodies in well-rounded position at each

iteration (which they can do using only Θ̃(n) independent

samples). On the other hand, each of our samples requires

n1.5 fewer operations per sample in expectation: we get a

factor of n fewer operations from our improved bound on

the expected number of operations per Markov chain step,

and an additional factor of
√
n fewer operations because

the bound on the number of ball walk steps on isotropic

convex bodies is smaller by a factor of
√
n than the bound

for the hit-and-run Markov chain used in [19]. Our bound

on the number of operations to put K in isotropic position

is therefore smaller by a factor of
√
n compared to [19].

A. Application to volume computation

Bringing K into isotropic position allows us to then use

the volume computation algorithm of [4] to compute the

volume of K with error δ, in Õ(mn4

δ2) operations after we

pre-process K into isotropic position. Hence, starting with

K far from isotropic position, we can compute the volume

of K in roughly Õ(mn4.5 log(Rr) +
mn4

δ2) operations:

Corollary I.2 (Computing the volume of a polytope).
There exists an algorithm which, given a polytope K :=
{x ∈ R

n : Ax ≤ b}, with A ∈ R
m×n and b ∈ R

m such that
rB ⊆ K ⊆ RB for some r,R > 0, and ε, δ > 0, computes
with probability at least 1−ε the volume of K up to a factor
of 1 + δ in Õ(mn4.5polylog(1ε ,

R
r) +

mn4

δ2 polylog(1δ ,
1
ε))

arithmetic operations.

In the regime where δ−1 = O(1) and m ≥ n3,

the best current algorithm, which uses [19] for pre-

processing and [4] for volume computation, gives a bound

of Õ(mn5polylog(1ε ,
R
r) +

mn4

δ2 polylog(1δ ,
1
ε)) operations.

Corollary I.2 improves this bound by a factor of
√
n.

Moreover, since our result benefits from recent improve-

ments in the bound on the Cheeger constant of an isotropic

convex body, Corollary I.2 makes progress towards the open

problem of connecting improved bounds on the Cheeger

constant to faster volume computation (See section 2.2.3

of [14]). In Table I we give bounds for different algorithms

which can be used to compute the volume.

B. Application to sampling

Pre-processing a polytope into isotropic position is also

a bottleneck for the problem of sampling from the uniform

distribution on the polytope. If we use our rounding algo-

rithm (Theorem I.1) to bring K into 2-isotropic position,

and then use the hit-and-run algorithm to generate a sample

from the uniform distribution on K, we obtain a sample

from the uniform distribution on K with TV error ε in

Õ(mn4.5polylog(1ε ,
R
r)) arithmetic operations:

Corollary I.3 (Sampling from non-rounded polytope).
There exists an algorithm which, given a polytope K :=
{x ∈ R

n : Ax ≤ b}, with A ∈ R
m×n and b ∈ R

m such that
rB ⊆ K ⊆ RB for some r,R > 0, and ε > 0, generates
a sample uniformly distributed on K with TV error ε, in
Õ(mn4.5polylog(1ε ,

R
r)) arithmetic operations.

In the regime where m ≥ n2, the current best bound is

Õ(mn5polylog(1ε ,
R
r)) operations (if one uses a rounding

pre-processing step from [19], and then the hit-and-run

1339

Markov chain [18]) or, depending on the matrix multipli-

cation exponent 2 < ω ≤ 3, Õ(mnω+2.5 log(1ε)) for the

John walk [3]. Corollary I.3 improves on [19] by a factor of√
n, and on [3] by a factor of nω−2. However, for smaller

values of m algorithms such as Riemannian HMC [13] can

be faster (see Table II).

Algorithm # of arithmetic operations

Ball walk + rounding [8] mn6δ−2

Ball walk + rounding [11]
mn5.5 +mn4δ−2

+ Gaussian cooling
Hit-and-run [19]

mn5δ−2

+ simulated annealing

Riemannian HMC [13] m2nω−1/3δ−2

Gaussian cooling [5] mn×max(n2(R/r)2, n3)δ−2

Algorithm 1&2 [our paper]
mn4.5 +mn4δ−2

+ Gaussian cooling

Table I: Bounds on the number of arithmetic operations to compute

the volume of a polytope K with rB ⊆ K ⊆ RB (logarithmic

factors of r, R, ε, d,m are not shown). Here ω is the matrix

multiplication exponent, currently ω ≈ 2.37. (note: Gaussian

cooling assumes (r, R)-well rounded, which is somewhat weaker

than rB ⊆ K ⊆ RB)

Algorithm # of arithmetic operations

Ball walk + rounding [11] mn5.5

Hit-and-run + rounding [19] mn5

Dikin walk [9] m2nω+1

John walk [3]
mnω+2.5

+ Dikin walk initialization

m2nω+3/4

Geodesic walk* [12] (m2nω− 1
4 log(β) assuming

a β-warm start)

m2nω+2/3

Riemannian HMC* [13] (m2nω−1/3 log(β) assuming
a β-warm start)

Vaidya walk [3]
m1.5nω+3/2

+ Dikin walk initialization

Algorithm 1&2 [our paper] mn4.5

Table II: Bounds on the number of arithmetic operations to
generate one sample from the uniform distribution on a polytope
K with rB ⊆ K ⊆ RB (logarithmic factors of r, R, ε, d,m are
not shown). The matrix multiplication exponent ω is currently
ω ≈ 2.37 for the best known matrix multiplication algorithm.
(*Note: RHMC and Geodesic walk assume a warm start. While
one can obtain a (R/r)n-warm start in our setting by initializing
from the uniform distribution on rB, this causes the running times
of RHMC and Geodesic walk to gain an additional factor of n.)

Note that in Table II the Dikin, Geodesic and Vaidya walks,

as well as Riemannian HMC, have bounds with dependence

on m of at least m1.5. In particular, in the regime m > n2,

they have slower bounds than the algorithms which have

linear dependence on m, including our algorithm as well as

the hit-and-run algorithm of [19] and the ball walk of [11].

Finally, note that, given the current bound ω ≈ 2.37, our

algorithm has faster bounds compared to the John walk.

C. Key technical ideas

The algorithmic techniques we use in our variant of the

ball walk are inspired from stochastic gradients, where one

queries an oracle by subsampling. Instead of subsampling a

small subset of component gradients, at each step of the ball

walk we check a small subset of the inequalities defining our

polytope. The challenge is in determining which inequalities

are important at any given time. The main difficulty lies in

the fact that the ball walk is much more likely to violate

inequalities corresponding to nearby hyperplanes than far-

away ones. The reason is that, if the Markov chain’s steps are

uniformly distributed, by the isoperimetric inequality [20]

(and convexity of the polytope) the Markov chain will in

expectation spend at least roughly half of its time a distance

of 1
n from the boundary of the polytope, if the polytope is in

near-isotropic position. Hence, in expectation, the Markov

chain will be a distance of 1
n from one or more faces

of the polytope at least half of the time and one cannot

simply check a uniform random subset of these inequalities.

Instead, our Markov chain estimates the distance to each

inequality, and checks only those inequalities which have a

non-negligible probability of being violated. This idea turns

out to be challenging to execute and we expand on it in

Section III. We believe our method of checking membership

may be of independent interest to constrained sampling and

optimization problems.

II. OUR ALGORITHMS

A. Notation

For any finite-volume subset S ⊆ R
n, let ΣS denote the

covariance matrix of the uniform distribution on S and let

μS denote the mean of the uniform distribution on S. Let

πK denote the uniform distribution on a convex body K.

Let π̂K ≡ π̂η
K denote the speedy distribution for step size η,

where the speedy distribution is the stationary distribution

of the proper steps of the ball walk with step size η. The

Markov chain formed by the proper steps of the ball walk

is called the speedy walk. A convex body K is said to be

a-isotropic if

1

a2
In � ΣK � a2In.

If, furthermore, ‖μK‖2 ≤ 1
10a, we say that K is in a-

isotropic position. A convex body K is said to be (r,R)-
rounded if

EX∼πK
[‖X‖22] ≤ R2

1340

and K contains a ball of radius r. A convex body which is

O(1)-isotropic is also (O(1), O(
√
n))-rounded, although the

converse is not true [17]. If a convex body is (r,R)-rounded

with R
r = O(

√
n), we say it is well-rounded. For any subset

S ⊆ R
n and any point x ∈ R

n, let

dist(x, S) := inf
y∈S
‖x− y‖2

denote the distance from x to the subset S and let ∂S
denote the boundary of the subset S. Let B(x, r) denote

the Euclidean ball with center x and radius r, and denote

the unit ball by the shorthand notation B := B(0, 1). We

say that a probability distribution μ : Rn → R (or a random

variable with distribution μ) is β-warm with respect to a

probability distribution ν : Rn → R if

μ(x)

ν(x)
≤ β ∀x ∈ R

n.

We denote the probability distribution of a random variable

X by L(X). Finally, we define the ball walk Markov chain

X̃0, X̃1 . . . on K with initial point X̃0 ∈ K and step size

η > 0, by the recursion

X̃i+1 =

{
X̃i + ηξi if X̃i + ηξi ∈ K

X̃i+1 = X̃i otherwise,

where ξ0, ξ1, . . . are iid uniform on the unit ball.

B. Algorithm 1 (Sampling)

Algorithm 1 generates independent samples approxi-

mately uniform on a convex body

K := {x ∈ R
n : Ax ≤ b} ∩ ρB,

for some ρ > 0. It has two main components: a Markov

chain obtained as a subsequence of the ball walk which

generates samples from the “speedy distribution”, and a

rejection sampling method which obtains uniform samples

from these “speedy distributed” samples. The “While” loop

generates the ball walk X1, To determine whether a

ball walk proposal is inside K without checking all m
inequalities at each step, every time that the algorithm checks

an inequality Ajx ≤ b, it stores in memory the distance hj to

the corresponding hyperplane Hj . The algorithm then waits
hj

αη/
√

n
steps until re-computing that inequality, where α > 0

is a parameter set by the user. The idea is that, since with

high probability the ball walk makes steps of size O(η/
√
n) in

the direction of the hyperplane Hj , the ball walk is unlikely

to propose a step which crosses Hj before taking
hj

αη/
√

n

steps. This allows us to ensure that our implementation of

the ball walk remains inside K with high probability.

The ball walk is run until a fixed number of proper

steps Ys are made. The Markov chain Y1, Y2, . . . formed

by the proper steps of the ball walk is called the “speedy

walk”. Since fast mixing bounds are available for the speedy

walk but not for the ball walk, we generate our samples

from the speedy walk, that is, we run the ball walk for a

fixed number I of proper steps. This gives us a sample YI
approximately from the stationary distribution of the speedy

walk. Unfortunately, the speedy walk does not have uniform

stationary distribution; the samples from the speedy walk

have a different distribution called the “speedy distribution”.

To obtain uniformly distributed samples from our speedy-

distributed samples we use a rejection sampling method,

Algorithm 4.15 from [8] (reproduced in our Algorithm 1

as Steps 35-40). To obtain p independent samples, we run

the speedy walk p times starting at the same initial point

Y0 but using different independent random Gaussian vectors

ξi each time (this is the outer “For” loop). The parameter

“Modified” can be set to “ON” or “OFF”. If it is “ON”

we use our new implementation of the ball walk, while if

it is “OFF” we use the usual implementation where all m
inequalities are checked at each step. The purpose of the

parameter “Modified” is only to simplify the exposition of

our proofs; in practice we always set “Modified = ON.”

Algorithm 1 Sampling (Modified speedy walk)

input: A ∈ R
m×n, b ∈ R

m, ρ > 0, with 1
10B ⊆ K where

K := {x ∈ R
n : Ax ≤ b} ∩ ρB

input: step size η > 0, tolerance α > 0, I > 0, maximum

number imax of proper+improper steps

input: Initial point Y0 ∈ K, Modified ∈ {ON,OFF}
1: for j = 1 to m do Initialization: compute distance to

all m hyperplanes

2: Set hj = bj −AjX0

3: end for
4: Sort the hj’s in increasing order, and denote the

ordered set of hj’s by H
5: Set i = 0, s = 0, and k = 1
6: while k ≤ p do
7: Set X0 = Y0

8: while s ≤ I and i ≤ imax do
9: Set i← i+ 1, and set K = True

10: Sample ξi ∼ unif(B(0, 1))
11: Set X̂i+1 = Xi + ηξi Ball walk proposal

12: if Modified = ON then Determining which

inequalities to check

13: Set j� to be the largest value of j such that

hj < α η√
n
× i

14: for j = 1 to j� do Compute distance to

possibly-nearby hyperplanes

15: Set hj = bj −AjXi

16: Insert hj into H such that H remains in

increasing order

17: if hj < 0 and K = True then
18: Set K = False

19: end if
20: end for

1341

21: if ‖X̂i+1‖2 > ρ then Check if in ball ρB
22: Set K = False

23: end if
24: else Conventional membership query, if

modifications “turned off”

25: Check if X̂i+1 satisfies all m inequalities and

is in ρB, and if not set K← False

26: end if
27: if K = True then
28: Set Ys = Xi Speedy walk step

29: Set Xi+1 = X̂i+1

30: Set s← s+ 1
31: else
32: Set Xi+1 = Xi

33: end if
34: end while
35: Set Zk = 2n

2n−1Ys

36: if Zk ∈ K then
37: “accept” Zk and set k ← k + 1
38: else
39: “reject” Zk rejection sampling to get uniform

distribution

40: end if
41: end while
42: output: Samples Z1, . . . , Zp which are approximately

uniformly distributed on K. Output these samples if i ≤
imax. Otherwise, output “Failure”.

C. Algorithm 2 (Rounding)

Using Algorithm 1 as a subroutine, we obtain an algorithm

(Algorithm 2) for bringing a polytope into isotropic position:

The goal of Algorithm 2 is to inductively bring into

isotropic position a sequence of convex bodies

K1 ⊆ K2 ⊆ · · · , where Ki := (1 + 1/n)irB ∩K,

starting with K1. At each iteration of the “For” loop, we use

Algorithm 1 to generate samples from the uniform distribu-

tion on a convex body K̂i which is an affine transformation

of Ki in 15-isotropic position obtained at the previous step

of the “For” loop (Step 11). Using these samples, Algorithm

1 computes a sample covariance matrix and mean for K̂i

(Steps 12 and 13), which allows it to compute an affine

transformation that puts Ki into 2-isotropic position as “K̃i”

and Ki+1 into 15-isotropic position as “K̂i+1”. Steps 15-21

generate a point X0 which is O(1)-warm with respect to the

uniform distribution and in the n−3-interior of K̃i. The point

X0, which is also O(1)-warm with respect to the uniform

distribution on K̂i+1 and in its n−3-interior, is then used in

the next iteration of the “For” loop as an initial point when

Algorithm 1 is used to generate samples from the uniform

distribution on K̂i+1.

Algorithm 2 Rounding

input: A ∈ R
m×n, b ∈ R

m

input: r,R > 0 such that rB ⊆ K ⊆ RB, where

K := {x ∈ R
n : Ax ≤ b}

input: p ∈ N, ε > 0, Modified ∈ {ON,OFF}
1: Set Σ̂0 = r2In and μ̂0 = 0
2: Set i� = n log2(

R
r)

3: for k = 1 to p do
4: Sample Zk from the uniform distribution on B
5: if dist(Zk, ∂B) ≥ n−3 then
6: Set X̂0 = Zk

7: end if
8: end for
9: for i = 1 to i� − 1 do

10: Define Ki := (1 + 1/n)irB ∩K (just a definition,

no computation here)

11: Use Algorithm 1 with parameter “Modified” and

initial point X0 to generate p points Z1, . . . , Zp

approximately from the uniform distribution on

K̂i ∩ 20
√
n log(40n

2

ε)B, where K̂i := Σ̂
− 1

2
i (Ki − μ̂i)

and is represented by the inequalities with matrix

AΣ̂
1
2
i ∈ R

m×n, and vector b−Aμ̂i ∈ R
m.

12: Set μ̂i+1 = 1
p

∑p
j=1 Zi + μ̂i

13: Set Σ̂i+1 = [1p
∑p

j=1(Zi − μi)
�(Zi − μi)]Σ̂i

14: Set Interior = False

15: while Interior = False do generate a starting

point, uniform on the “n−3-interior” of K̂i

16: Use Algorithm 1 with parameter “Modified”

and initial point X0 to a generate a single sample X̂0

approximately from the uniform distribution on

K̂i ∩ 20
√
n log(40n

2

ε)B.

17: Set X̂ ′
0 ← Σ̂

− 1
2

i+1Σ̂
1
2
i (X̂0 + μ̂i − μ̂i+1)

18: if dist(X̂ ′
0, ∂[K̃i ∩ 20

√
n log(40n

2

ε)B]) ≥ n−3,

where K̃i := Σ̂
− 1

2
i+1(Ki − μ̂i+1) then

19: Set X0 = X̂ ′
0

20: Set Interior = True

21: end if
22: end while
23: end for
24: output: Σ̂i� , μ̂i� , X0

III. TECHNICAL OVERVIEW OF OUR MAIN RESULT:

THEOREM I.1

A. Rounding polytopes via sampling

Most algorithms which bring a polytope into isotropic po-

sition work by generating independent or near-independent

samples which are approximately uniformly distributed in

the polytope. These samples allow one to compute the

sample mean and sample covariance matrix for the polytope.

In [22] it was shown that n log(n) samples suffice to bring

1342

a polytope into isotropic position. However, one is still left

with the problem of generating independent uniform samples

from the polytope. Typically this is done by running a

Markov chain on the polytope whose stationary distribution

is equal (or in some sense close to) the uniform distribution

in the polytope. However, the number of steps for which one

must run the Markov chain to obtain uniform independent

samples in many cases itself depends on the extent to

which the polytope is isotropic, or the extent to which it

is rounded.2

Because of this, most rounding algorithms start with the

ball contained in the polytope (which is very easy to put in

well-rounded position), and gradually deform the polytope at

each iteration (for instance by considering the intersection of

the polytope with a ball of increasing radius). One alternates

between sampling steps where one samples from the convex

body, and steps where one uses these samples to compute

an affine transformation which keeps the convex body well-

rounded (for example, this transformation can be achieved

by computing the sample covariance matrix). For instance,

this is the case for the “ball walk” Markov chain used

in [8], and the “hit-and-run” Markov chain used in [19].

In particular, the algorithm of [19] requires only n log(n)
samples to round the convex body. Key to this is that the hit-

and-run Markov chain does not require isotropic position but

rather only that the polytope be well-rounded. This fact was

used in [19], together with a “pencil construction,” to provide

a rounding algorithm where one computes a well-rounded

polytope at n log(Rr) iterations each using log(n) samples,

and using n samples to bring the polytope into isotropic

position only every log(n) iterations. Since the hit-and-

run Markov chain requires n3 steps to generate a uniform

sample, they require roughly n4 log(n) log(Rr) Markov chain

steps to put a polytope into isotropic position. If the polytope

is defined by m inequalities, the hit-and-run algorithm uses

mn arithmetic operations to compute polytope membership

at each step of the Markov chain, giving a bound of

mn× n4 log(n)) log(Rr) arithmetic operations to round the

polytope; this is currently the fastest running time bound for

rounding this class of polytopes in our setting.
This mn cost of computing each step of the Markov chain

is a feature of all current Markov chain sampling algorithms

on polytopes defined by m inequalities [14]. However, one

can imagine that there may be ways of reducing the cost

of computing polytope membership. One approach is to use

a Markov chain called “coordinate hit-and-run” [7]. This

algorithm works in the same way as the usual hit-and-

run algorithm, except that it only takes steps in (random)

coordinate directions. Hence, checking each inequality takes

only O(1) arithmetic operations, meaning that each step of

2While there are some algorithms such as the Dikin walk which do not
depend on how isotropic the polytope is, these do not currently provide
the fastest methods of bringing a polytope rB ⊆ K ⊆ RB into isotropic
position in our setting.

the Markov chain would roughly require only m operations.

Unfortunately, since there are as of yet no polynomial-in-

dimension mixing time bounds for coordinate hit-and-run,

one cannot currently use coordinate hit-and-run to obtain

better running time bounds for rounding.

B. A first attempt

As an alternative approach to coordinate hit-and-run one

might consider using the stochastic gradient technique to

reduce the cost of computing each step of a Markov chain

which stays inside a polytope. For instance, one might

attempt to apply stochastic gradients to a Markov chain such

as the Dikin walk which, instead of computing polytope

membership, makes use of the log-barrier function of the

polytope to remain inside the polytope. The log-barrier at

any point in the Markov chain is given by

φ(x) = −
m∑
j=1

log(Ajx− bj),

with Hessian

∇2φ(x) = −
m∑
j=1

A�j Aj

(Ajx− bj)2

(here Aj is a row-vector). If m is large, one might try to

estimate the gradient, or in the case of the Dikin walk the

Hessian, of the log-barrier function by taking a small subset

of the polytope’s inequalities and using these to estimate

the sum. Unfortunately this “stochastic Hessian” gives a

very bad approximation for points which are near a face

of the polytope, since the term 1
(Ajx−bj)2

corresponding

to the nearest face can be much larger than the combined

contributions of the terms corresponding to all the other

faces, and a small subsample of the polytope inequalities

will most likely not include the single very large term.

Since a uniform random sampling is unlikely to include

this overwhelmingly large term in the sum, this “stochastic

Hessian” version of the Dikin walk is likely to very quickly

leave the polytope.

One might instead consider an approach related to

stochastic gradients, but for Markov chains such as the

ball walk which, instead of computing a barrier function,

compute polytope membership at each step. To determine

polytope membership, one typically checks all m inequal-

ities at each step of the Markov chain. One may instead

consider checking only a small uniformly random subset

of m
n of these inequalities at each step. Unfortunately, this

approach cannot work if one wishes to sample from the

uniform distribution on a polytope. The reason is that, if

the Markov chain’s steps are uniformly distributed, by the

isoperimetric inequality [20] (and convexity of the polytope)

the Markov chain will in expectation spend at least half of

its time a distance of 1
n from the boundary of the polytope.

Hence, in expectation, the Markov chain will be a distance

1343

of 1
n from one face of the polytope at least half of the time.

For a ball walk with optimal step size of η = Θ(1√
n
), with

high probability the ball walk takes a step of size 1
n in the

direction of this face. Since the ball walk may have an Ω(1)
probability of proposing a step which violates the inequality

corresponding to the closest face, if one only checks a small

random subset of size m
n of the inequalities one is likely

to miss checking the inequality corresponding to this face,

which in many cases would cause the Markov chain to leave

the polytope with probability Ω(1) at each step (this is the

case, for instance, if the polytope is a cube). Hence, we

cannot limit ourselves to checking a random subsample of

the inequalities.

C. Our method of computing polytope membership

Recall that the isoperimetric inequality [20] implies that

any Markov chain whose stationary distribution is close to

the uniform distribution on the polytope will spend on aver-

age at least 1
n of its time a distance 1

n from the boundary of

the polytope. This suggests that if we wish to compute only

a small subsample of the polytope inequalities at each step

of the Markov chain, we must make sure that our subsample

includes all those inequalities whose corresponding face is

close to the current Markov chain step. While it is possible

for us to compute the distance

hj(i) := AjXi − bj

between the current point in the Markov chain Xi to the

hyperplane Hj corresponding to each inequality (Aj , bj),
we do not wish to compute this distance hj(i) for each

j at every step i in the Markov chain, since this takes

the same mn operations needed to check each inequality.

To get around this problem, rather than computing each

distance, we instead only compute the distance to any given

hyperplane at a small fraction of the steps. To determine

which hj(i) should be computed at any given step, we

estimate a high-probability lower bound Lj(i) for hj(i) and

only compute hj(i) if the Markov chain is likely to propose

a step violating the jth inequality, that is, if this lower bound

is

Lj(i) = O

(
1

n

)
.

To estimate the lower bound on hj(i), we apply concentra-

tion inequalities to the steps of the ball walk. Specifically, we

use concentration inequalities for spherical caps to show that

with probability at least 1− ε
m the ball walk will never take

any steps of size more than η√
n
log(imax

ε) in the direction of

Hj , if the ball walk is run for at most imax steps (imax is

a “cutoff time” parameter which can be set by the user of

Algorithm 1; if the algorithm takes more than imax steps,

the algorithm terminates without outputting any samples).

Hence, if we set our high-probability lower bound to be

Lj(i) = hj(�
�(i))− (i− �

�(i))× η√
n
log(

imax

ε
),

where �
�(i) is the last time before step i that the distance to

Hj was computed, then with probability at least 1 − ε the

ball walk will never leave the polytope (Lemma IV.1, and

Step 13 in Algorithm 1).

D. Using anti-concentration to prove expected running time
bounds for our algorithm

Even though we have shown that our algorithm obtains

the exact same samples as the usual implementation of

the ball walk with high probability, we still have to show

that it reduces the number of inequalities one has to check

at each step of the Markov chain. Towards this end, we

prove an anti-concentration inequality (Lemma IV.3) for the

uniform distribution on a convex body to show that the

expected number of inequalities our algorithm checks at any

given step is roughly m
n . Roughly, this inequality says that

a uniform random point on an isotropic convex body has

probability at most O(Δ) of being within a distance Δ of

any given codimension-1 hyperplane. The main obstacle in

applying the anti-concentration inequality is that, while we

are able to guarantee that a random step of the Markov chain

is O(1)-warm with respect to the uniform distribution on K,

if we are to only check a small fraction 1
n of the inequalities

(in expectation) at each step, the steps where one checks the

inequality cannot be uniformly distributed or even O(1)-
warm with respect to the uniform distribution but instead

can only be Θ(n)-warm at best. This is because one has

to ensure that, if the Markov chain is within a distance of

one ball walk step from a given inequality, this inequality

will be checked with very high probability, but only with

probability O(1n) at a “typical” step.

To get around this problem we instead bound the waiting

time between any given step i of the Markov chain and the

most recent time �
�(i) that the distance to the hyperplane

was computed by the algorithm, as a function of the distance

to this hyperplane at the current step i of the Markov

chain, allowing us to apply the anti-concentration inequality.

Specifically, we use our bound on the size of the ball walk’s

steps in the direction of Hj to show that i − �
�(i) must

be greater than
hj(i)

√
n

η log(mimax
ε)

. Since η = Θ(1√
n
), applying

the anti-concentration inequality on hj(i) gives a lower

bound on E[i − �
�(i)] that is roughly equal to n, if we

are given an O(1)-warm start with respect to the uniform

distribution. This in turn implies that given an O(1)-warm

start, we compute the distance to any given hyperplane at

only a small fraction 1
n of the ball walk steps in expectation

(Lemma IV.5). Hence, rather than taking mn operations,

our algorithm is able to compute each step of the ball walk

in only m operations in expectation, an improvement by a

factor of n.

1344

E. Improved bounds for Rounding a polytope

Unfortunately, we cannot use the rounding meta-algorithm

of [19], which requires only n log(n) samples to round the

polytope, with our implementation of the ball walk. The

reason is that, while the rounding meta-algorithm in [19]

keeps a sequence of convex bodies well-rounded at each of

the n iterations, it only keeps the convex bodies in isotropic

position at a small number log(n) of the iterations. To obtain

our bounds on the expected frequency at which one needs

to compute the distance to each Hj , we must make sure that

the convex body is in isotropic position at each iteration; our

rounding algorithm (Algorithm 2) uses n2 log(n) samples

instead of n log(n) (see the next paragraph for a discussion

of the rounding algorithm). Hence, it would seem at first

that, despite the fact that we improve the expected number

of arithmetic operations at each step of the Markov chain by

a factor of n, this improvement would be offset by the fact

that we need n times as many samples, which we require

to keep the polytope in isotropic position at every iteration.

However, there are additional benefits to keeping a polytope

in isotropic position. In particular, recent improvements

towards weaker versions of the KLS conjecture imply that

the best current bound on the mixing time of the proper

steps of the ball walk (also called the “speedy walk”) also

improves to n2.5 by a factor of
√
n if the polytope is in

isotropic position as opposed to the roughly n3 mixing time

bound available for the hit-and-run Markov chain when

the polytope is well-rounded but not O(1)-isotropic [11].

Hence, keeping the convex body in isotropic position allows

us to combine our factor of n improvement with the
√
n

improvement in the mixing time from [11]. The number

of arithmetic operations to round a convex body is then

at most roughly mn4.5, an improvement of
√
n over the

mn5 bound of [19]. Note that it is enough to bound the

number of arithmetic operations in expectation, since one

can always start over if the rounding algorithm takes more

than its expected number of steps.

F. Rounding a polytope by sampling from isotropic position
(Algorithm 2)

More specifically, in order to efficiently generate the

samples needed to bring a polytope into 2-isotropic position

one should first ensure that the polytope from which one

samples is, say, in 15-isotropic position. Towards this end,

one can consider a sequence of nested convex bodies

Ki := K ∩ (1 + 1/n)irB.

The initial polytope K0 = rB is just the ball contained

inside K, which can be brought into isotropic position by

multiplying this ball by 1
r
√
d

. Since the diameter of Ki in-

creases by a factor of only 1+1/n, at each step, one can show

that the volume of these convex bodies does not increase by

more than e at each step i, and that for any transformation

that brings Ki−1 into 2-isotropic position, applying the

same transformation to Ki would bring it into 15-isotropic

position. This suggests an iterative algorithm (Algorithm 2),

where one samples from a 15-isotropic convex body which is

a linear transformation of Ki−1, allowing one to bring Ki−1

into 2-isotropic position. The same transformation brings

Ki into 15-isotropic position, allowing one to iteratively

bring the sequence of polytopes into 2-isotropic position

by alternating between sampling and linear transformation

steps (Lemma V.2). This takes n log(Rr) iterations to bring

the polytope K into isotropic position, and uses n log(n)
samples at each iteration; the number of samples to round

the polytope is then roughly n2 log(n) log(Rr). To allow us

to apply Lemma IV.5 and bound the expected fraction of the

time that our implementation of the ball walk (Algorithm 1)

checks a given inequality, we must still show the ball walk

has a warm start at each iteration of Algorithm 2. We can

obtain a warm start for Ki by using a sample from the i−1
iteration which is approximately uniformly distributed on

Ki−1 (Steps 15-21 of Algorithm 2). Since Ki−1 contains at

least 1
e of the volume of Ki, a uniformly distributed point on

Ki−1 provides us with an O(1)-warm start for Ki (Lemma

V.4).

Remark III.1. If the KLS conjecture is proved true, the
mixing time bound of the speedy walk on convex bodies in
isotropic position would decrease by an additional factor of√
n to just roughly n2, potentially allowing us to improve

our running time to roughly mn4. On the other hand, as
noted in [11], it is not known how to connect improvements
in the KLS conjecture to the current-best rounding algo-
rithm which uses hit-and-run from a well-rounded but not
isotropic position [19]. We note, however, that since further
improvements to KLS would only apply to the ball walk from
a warm start, even using our method, one would have to
find a way to modify our rounding algorithm to allow it to
use approximately-independent samples from a warm start
rather than fully-independent samples from a cold start.

G. Organization of the rest of the paper

In the rest of the paper, we prove the main result (Theorem

I.1, proved for our specific algorithm as Theorem V.6), and

its corollaries I.2 and I.3.

In Section IV we bound the accuracy of Algorithm 1

and (roughly speaking) the expected number of arithmetic

operations it performs when it is used to sample from a

polytope in O(1)-isotropic position. In Section IV-A we

bound the probability our implementation of the ball walk

leaves the polytope. In Section IV-B we prove an anti-

concentration bound, which we use in Section IV-C to bound

the expected frequency at which our implementation of the

ball walk checks a given inequality. In Sections IV-D and

IV-E we recall results from [8] and [11] which allow us to

then bound the mixing time of the speedy walk (the proper

1345

steps of the ball walk) and the expected number of steps.

In Section V we bound the success probability and

expected number of arithmetic operations of the rounding

algorithm (Algorithm 2). In Section V-A we bound the

success probability of Algorithm 2. In Section V-B we

bound the expected number of arithmetic operations made

by Algorithm 2 under the assumption that it provides a

warm start to the ball walk subroutine (Algorithm 1) at

each iteration of Algorithm 2, and in Section V-C we show

that this warm start assumption holds. In Section V-D we

verify that the running time of steps where one does not

check inequalities have only negligible contribution to the

running time of Algorithm 2. In Section V-E we combine

these results to complete the proof of our main theorem for

rounding (Theorem V.6).

In Section VI we prove our results for volume com-

putation (Corollary I.2) and sampling (Corollary I.3) for

polytopes which may be far from isotropic position.

IV. SAMPLING FROM AN ISOTROPIC POSITION.

A. Bounding the distance traveled in any direction

In this section we bound the distance traveled by the

Markov chain in the direction orthogonal to the plane Hj

after i steps.

Lemma IV.1. Fix ε̂ > 0 and suppose that α ≥
4 log

(
2mimax

ε̂

)
in Algorithm 1. Then with probability at least

1 − ε̂ we have that, given the same random vectors ξi, the
output of Algorithm 1 is the same regardless of whether we
set Modified = ON or Modified = OFF.

Proof: By the concentration inequality for spherical

caps [10], for ξ ∼ uniform(B(0, 1)), for the jth row Aj

of the matrix A we have

P

(∣∣∣∣Aj
ξ

‖ξ‖2

∣∣∣∣ ≥ t

)
≤ 2e−(n−2)t2/2,

and hence

P

(∣∣∣∣ηAj
ξ

‖ξ‖2

∣∣∣∣ ≥ ηt√
n

)
≤ 2e−t2/2.

Thus,

P

(∣∣∣∣ηAj
ξ

‖ξ‖2

∣∣∣∣ ≥ η√
n
2 log(

2

δ
)

)
≤ δ,

for every δ > 0. Therefore, for every ε̂ > 0,

P

(
i∑

	=1

∣∣∣∣ηAj
ξ	
‖ξ‖2

∣∣∣∣ ≥ i× η√
n
2 log

(
2i

ε̂

))

≤ P

(∣∣∣∣ηAj
ξ	
‖ξ‖2

∣∣∣∣ ≥ η√
n
2 log

(
2i

ε̂

)
for some � ∈ [i]

)

≤ i× ε̂

i
= ε̂.

Hence, for our implementation of the ball walk X1, X2, . . .
in Algorithm 1 we have

P

(
sup

i≤	≤k
|AjX	 −AjXi| ≥ (k − i)

2η√
n
log

(
2imax

ε̂

)

for some 0 ≤ i ≤ k ≤ imax

)

≤ P

(∣∣∣∣ηAj
ξ	
‖ξ‖2

∣∣∣∣ ≥ 2η√
n
log

(
2imax

ε̂

)
for some � ∈ [imax]

)

≤ imax × ε̂

imax

≤ ε̂.

Thus, if α ≥ 2 log
(
2mimax

ε̂

)
, we have

P

(
sup

i≤	≤k
|AjX	 −AjXi| ≥ (k − i)

η√
n
α (1)

for some 0 ≤ i ≤ k ≤ imax

)

≤ ε̂

m
.

Let Zi be the usual ball walk Markov chain (where we check

every inequality at each step) which evolves according to the

following update equations:

Z0 = X0

Zi+1 =

{
Zi + ηξi if Zi + ηξi ∈ K

Zi otherwise.

Then inequality (1) implies that if we set α ≥ 2 log
(
2mimax

ε̂

)
in Algorithm 1, then with probability at least 1− ε̂ we have

that Xi = Zi for every i ∈ [imax].
Therefore, with probability at least 1 − ε̂, the output

of Algorithm 1 is the same regardless of whether we set

Modified = ON or Modified = OFF.

Remark IV.2. We have to bound the sum of the absolute
value of the distance, rather than the sum of the variance,
since the rejection step could introduce a bias (for instance,
if the Markov chain is traveling along the face of a polytope).

B. Anti-concentration bounds for isotropic convex bodies

Lemma IV.3. Suppose that the uniform distribution πK on
K has identity covariance matrix (that is, K is 1-isotropic)
and that X ∼ πK is a random vector uniformly distributed
on K. Let H be any codimension-1 hyperplane. Then we
have

P(dist(X,H) ≤ ε̂) ≤ 2ε̂ ∀ε̂ > 0.

Proof: Let A ∈ R
1×n be a row vector and b ∈ R a real

number such that Ax = b is the equation for the Hyperplane

H . Let X ∼ πK be a random vector uniformly distributed

on K. Denote the distribution of AX by πA
K . Note that πA

K

is a marginal distribution of πK . First, we note two facts:

1346

1) All marginals of a logconcave distribution are logcon-

cave (Theorem 2.2 of [23]).

2) If the covariance matrix of any distribution π satisfies

σ1In � Σ � σ2In,

then the variance AΣA� of its marginal πA in the

subspace defined by A satisfies

σ1 ≤ AΣA� ≤ σ2.

By the above facts, we have that the distribution of AX ∈ R

is isotropic (i.e., it has variance 1) and is logconcave. Let x�

be a maximizer of πA
K . By Lemma 5.5(a) in [16], we have

πA
K(x�) ≤ 1. (2)

Hence, for any ε̂ > 0 we have

P(|AX − b| ≤ ε̂) =

∫ b+ε̂

b−ε̂

πA
K(x)dx

≤
∫ b+ε̂

b−ε̂

πA
K(x�)dx

(Eq. 2)

≤
∫ b+ε̂

b−ε̂

1dx

= 2ε̂.

Remark IV.4. Note that the bounds in [21] are more
general than what we need since they apply to hyperplanes
of any codimension. We only care about codimension-1
hyperplanes, and can reduce the problem to obtaining anti-
concentration bounds for a 1-dimensional isotropic logcon-
cave distribution. This allows us to get a tight bound in
Lemma IV.3 without assuming the KLS conjecture. This
bound is tight (up to a universal constant) since it is tight
for the special case of the unit cube and the regular simplex.

C. Bounding the frequency of constraint checking

To simplify notation, define η̂ := 1
10η
√
n, and γ := 10αη̂.

Lemma IV.5. Suppose that K contains a ball of radius
r = 1

10 . Fix ε̂ > 0 and set the algorithmic parameter
α ≥ 4 log

(
2imax

ε̂

)
. Consider any row Aj of A and entry

bj of b. Suppose that the initial point X0 is β-warm with
respect to the uniform distribution for some β > 0. Let
Nj be the number of steps (excluding the first step) of the
Markov chain in Algorithm 1 with Modified = ON at
which the algorithm checks inequality (Aj , bj) and let N

be the number of Markov chain steps. Let Fj :=
Nj

N be
the frequency of checking this inequality (excluding the first
check). Then

E[Fj] ≤ 16n−1γβ +
32γ

n
× β log (n/γ) +

1

N
βε̂.

Proof: First, we note that the stationary distribution of

the steps of the ball walk (including improper and proper

steps) is uniform on K. Let

X = X0, X1, X2, . . . XN

be the Markov chain generated by Algorithm 1 with

Modified = ON, initial point X0 = Y0, and random vectors

ξ1, Let

X̃ = X̃1, X̃2, . . . X̃N

be the first N steps of the Markov chain generated by

Algorithm 1 with Modified = OFF, using the same initial

point X̃0 = Y0 and the same random vectors3. Using the

same initial point and random vectors defines a coupling

between X and X̃ . Then Xk = X̃k for all k if and only if

Xk ∈ K for all k ≤ N .

Let G be the event that

sup
i≤	≤k

|AjX̃	 −AjX̃i| < (k − i)× η√
n
α

for all 0 ≤ i ≤ k ≤ imax and all j ∈ [m]. By Equation (1)

in the proof of Lemma IV.1, we have that

P(G) ≥ 1− βε̂.

Also by the proof of Lemma IV.1 we have that Xk ∈ K for

all k ≤ N if G occurs. Hence,

P(Xk = X̃k∀k ≤ imax) ≥ P(G). (3)

Recall that hj(i) := bj − AjXi is the distance from

the Markov chain Xi to the hyperplane corresponding to

the inequality (Aj , bj) at step i. Rather than checking the

inequality (Aj , bj) at each step of the ball walk, Algorithm

1 waits some number of steps w(i) after checking this

inequality at some step i. More generally, we define

w(i) := max

(⌊√
n

αη
hj(i)

⌋
, 1

)

regardless of whether the inequality is actually checked at

step i (we can think of w(i) as the amount of time the

algorithm would have waited if it had checked the inequality

at step i).
Let �(k) be the step at which the inequality is checked for

the kth time. Let �(i) be the number of times the inequality

has been checked after i Markov chain steps (in particular,

we have �(i) ≤ i). Let

�
�(i) := �(�(i))

be the last time the inequality was checked.

3We consider all steps X̃k = X̃Ñ , for all k ≥ Ñ ,where Ñ is the
number of Markov chain steps computed by the algorithm. That is, the
Markov chain remains stuck forever at the same point after Algorithm 1
halts.

1347

Then, if the Markov chain X does not leave K, the total

number Nj of times the inequality is checked is

Nj =

Nj∑
k=1

w(�(k)) (4)

=
N∑
i=1

1

w(��(i))
(If G does not occur),

where the first equality holds because w(�(k)) = 1 for all

k. Therefore, we have

E[Nj] ≤
N∑
i=1

E

[
1

w(��(i))

]
+ P(Gc). (5)

We will show that, if G occurs, then

w(i− s) ≥ 1

4
w(i) ∀0 ≤ s ≤ 1

8
w(i).

Suppose that G occurs. Without loss of generality we may

assume that w(i) > 2 (since otherwise we have w(i− s) >
1 > 1

4w(i)). Then

hj(i− s) ≥ hj(i)− s× η√
n
α (6)

≥ hj(i)− 1

8
w(i)× η√

n
α

= hj(i)− 2

8

√
n

αη
hj(i)× η√

n
α

=
3

4
hj(i).

Therefore,

w(i− s) = max

(⌊√
n

αη
hj(i− s)

⌋
, 1

)
(Eq. 6)

≥ max

(⌊√
n

αη

3

4
hj(i)

⌋
, 1

)

≥ max

(√
n

αη

3

4
hj(i), 1

)
− 1

≥ 3

4
max

(√
n

αη
hj(i), 1

)
− 1

≥ 3

4
w(i)− 1

≥ 1

4
w(i),

where the last inequality holds since we assumed without

loss of generality that w(i) > 2. Therefore whenever G
occurs we have

w(i− s) ≥ 1

4
w(i) ∀i, s ∈ Z

+, s ∈
[
0,

1

8
w(i)

]
. (7)

Suppose (towards a contradiction) that w(��(i)) < 1
8w(i).

But we always have

�
�(i) + w(��(i)) > i,

since w(��(i)) is the amount of time we wait to check the

inequality after step �
�(i), and, by definition of �

�(i) we

have not yet re-checked the inequality at step i. Hence we

would have

i− �
�(i) < w(��(i)) <

1

8
w(i).

Then by Inequality 7 we would have

w(��(i)) ≥ 1

4
w(i),

which contradicts our assumption that w(��(i)) < 1
8w(i).

Therefore, by contradiction we have that

w(��(i)) ≥ 1

8
w(i) ∀i ∈ Z

+. (8)

Hence, combing Equations (5) and (8) we have

E[Nj]
(Eq. 5)

≤
N∑
i=1

E

[
1

w(��(i))

]
+ P(Gc) (9)

(Eq. 8)

≤ 8
N∑
i=1

E

[
1

w(i)

]
+ P(Gc).

Therefore it is enough to bound E[1
w(i)] for each i.

Bounding E[1
w(i)]: Fix any i ∈ [N]. First, we note that

without loss of generality we may assume that X0 ≡ X̃0 is

a 1-warm start, since the bound on E[Fj] for the β-warm

case for general β ≥ 1 will be at most β times as large as

the bound for the 1-warm special case.

In the special case where X0 ≡ X̃0 is a 1-warm start,

X̃i ∼ πK is uniformly distributed on K. Then by Lemma

IV.3 we have

E

[
1

w(i)

]
= E

[
1

max(�
√
n

αη hj(i)�, 1)

]
(10)

= E

[
1

max(� n
10αη̂hj(i)�, 1)

]

≤ 1× P

(
hj(i) ≤ 10αη̂

n

)

+ 2E

[
10αη̂

nhj(i)
× �{hj(i) ≥ 10αη̂

n
}
]

(Lemma IV.3)

≤ 2n−1γ

+ 2E

[
γ

nhj(i)
× �{hj(i) ≥ γ

n
}
]
,

where γ := 10αη̂.

But

E

[
γ

nhj(i)
× �{hj(i) ≥ γ

n
}
]

(11)

=

∫ ∞

0

P

(
γ

nhj(i)
× �{hj(i) ≥ γ

n
} ≥ t

)
dt

=

∫ ∞

0

P

(
γ

nhj(i)
× �{1 ≥ γ

nhj(i)
} ≥ t

)
dt

1348

=

∫ 1

0

P

(
γ

nhj(i)
× �{1 ≥ γ

nhj(i)
} ≥ t

)
dt

≤
∫ 1

0

P

(
γ

nhj(i)
≥ t

)
dt

=

∫ 1

0

P

(γ

tn
≥ hj(i)

)
dt

= −γ

n

∫ γ
n

∞
P (u ≥ hj(i))u

−2du

=
γ

n

∫ ∞

γ
n

P (u ≥ hj(i))u
−2du

=
γ

n

∫ 1

γ
n

P(u ≥ hj(i))u
−2du

+
γ

n

∫ ∞

1

P(u ≥ hj(i))u
−2du

(Lemma IV.3)

≤ γ

n

∫ 1

γ
n

u1 × 2× u−2du

+
γ

n

∫ ∞

1

1× u−2du

=
2γ

n

∫ 1

γ
n

u−2+1du+
γ

n

=
2γ

n
× log (n/γ) +

γ

n

≤ 4γ

n
× log (n/γ) .

Hence, combining Inequalities (10) and (11) we have

E

[
1

w(i)

]
≤ 2n−1γ +

4γ

n
× log (n/γ) . (12)

Thus, by Inequality (9) we have

E[Fj] = E

[
Nj

N

]
(13)

(Eq. 9)

≤ 8
1

N

N∑
i=1

E

[
1

w(i)

]
+

1

N
P(Gc)

(Eq. 12)

≤ 8

N

N∑
i=1

[
2n−1γ +

4γ

n
× log (n/γ)

]
+

1

N
P(Gc)

=
8

N
×N

[
2n−1γ +

4γ

n
× log (n/γ)

]
+

1

N
P(Gc)

≤ 16n−1γ +
32γ

n
× log (n/γ) +

1

N
ε̂.

Hence, in the general-β case we get:

E[Fj] ≤ 16n−1γβ +
32γ

n
× β log (n/γ) +

1

N
βε̂.

D. Mixing time of the speedy walk

To bound the mixing time of the ball walk, one can

consider the speedy walk. The speedy walk is the same

Markov chain as the ball walk except that we leave out

the steps where the ball walk does not change position.

Since the ball walk ends up staying for more time at certain

points than the speedy walk, the speedy walk has a different

stationary distribution π̂K called the “speedy distribution”.

Denote by the random variable τi the stopping time which

is equal to the number of proper+improper steps taken until

the ball walk has taken i proper steps. Then the random

walk Z1, Z2, . . . where Zi = Xτi is the “speedy walk”.

We recall the following Theorem4 from [8], of which

Theorem 18 and the following paragraph in [11] is a

corollary:

Lemma IV.6 (Speedy walk (Theorem 18 and following

paragraph in [11], Theorem 4.1 in [8])). Suppose that K is
15-isotropic and fix ε̂ > 0. Given an initial point X0 which
is a β-warm start with respect to the speedy distribution, the
ball walk on K with step size η ≥ 1

800
√

n log(n/ε̂)
satisfies

‖L(Xτi)− π̂K‖TV ≤ ε̂

if i ≥ cn2.5 log3(βε̂) where c > 0 is a universal constant.
If instead the ball walk starts from a non-random point

which is a distance at least n−c1 for any constant c1, then
the ball walk on K with step size η ≥ 1

800
√

n log(n/ε̂)
satisfies

‖L(Xτi)− π̂K‖TV ≤ ε̂

if i ≥ c2n
2D(log logD) log3(n/ε̂) where D is the diameter

of K and c2 is a constant that depends only on c1.

Let λ be the probability that the ball walk proposes a step

inside the convex body K from a point uniformly distributed

on K; we call λ the average local conductance. We will use

the following results [8] which allow one to obtain improved

average-case running time bounds for the ball walk.5

Lemma IV.7 (Corollary 4.6 in [8]). The average local
conductance of K satisfies λ ≥ 1 − η

√
n

2r if K contains
a ball of radius r.

Using average local conductance [8] gives the following

Lemma on the expected number of improper steps taken

by the ball walk:

Lemma IV.8 (Theorem 4.10b in [8]). Suppose that X0 is
distributed according to the speedy distribution on K. Fix

4The “M-distance” used in [8] is bounded above by the warmness β,
and bounded below by the TV distance. So the result we quote here is in
fact weaker than the “M-distance” version of the result.

5Since our goal is to put the convex body in isotropic position, which
fails with exponentially small probability in the running time if we obtain
iid points, it is enough to bound the average-case running time since we
can always just start over if the running time ends up being too long.

1349

t > 0. Then the expected number of (proper and improper)
ball walk steps needed to get t proper steps is at most 2t

λ .

Remark IV.9. Theorem 4.10b [8] was stated for a specific
value of t (their bound on the mixing time). However, in
the special case when we already start at the stationary
distribution of the speedy walk, if the expectation holds
for one value of t, it must also hold for every value of
t. (Moreover, we note that even for non-stationary starts
(which we do not need here) their proof holds for all values
of t.)

E. Bounding the accuracy

Lemma IV.10. Assume that K is a 30-isotropic convex
body containing B(0, 1

10), and that dist(X0, ∂K) ≥ n−3.
Fix ε̂ > 0. Then Algorithm 1 with η ≤ 1

10
√

8n log(n/ε̂)
,

Modified = OFF, and I = c2n
2ρ(log log ρ) log3(n/ε̂)

outputs independent samples Z1, Z2, . . . , Zp, where each Zi

has TV distance 10ε̂ to the uniform distribution on K.

Proof: Since the speedy walk is initialized at a point

X0, which is a distance at least n−3 from the boundary

of K, by Lemma IV.6 we have that the samples Y1, Y2, . . .
obtained by running the speedy walk for

I = c2n
2ρ(log log ρ) log3(n/ε̂)

proper steps each satisfy

‖L(Ys)− π̂K‖TV ≤ ε̂

for all s. Moreover, these points are independent since each

run of the speedy walk starts at the same point X0.

By Theorem 4.16 in [8] we have that the samples

Z1, Z2, . . . obtained from Y1, Y2, . . . by the rejection sam-

pling step in Algorithm 1 are uniformly distributed on K
with TV error 10ε̂. Moreover, since Y1, Y2, . . . are jointly

independent, Z1, Z2, . . . , Zp are also jointly independent.

V. ROUNDING A POLYTOPE

In this section we analyze the running time and accuracy

of Algorithm 2.

A. Bounding the success probability of Algorithm 2

In this section we bound the success probability of Algo-

rithm 2. We use the following lemma (Corollary 11 in [2]),

which is a corollary of the main result in [22].

Lemma V.1 (Corollary 11 in [2]). Let K be a convex set.
Let Y1, . . . , Yp be iid uniform random points in K and fix
ε̂ > 0. Let

Ȳ :=
1

p

p∑
i=1

Yk,

and let

Σ̂Y :=
1

p

p∑
i=1

(Yi − Ȳ)(Yi − Ȳ)�.

Then there exists an absolute constant c such that if p ≥
n× c log2(1ε̂) log

2(n), the convex set

K‡ := Σ̂
− 1

2

Y (K − Ȳ)

is 2-isotropic and ‖μK‡‖2 < 1
20 with probability at least

1− ε̂.

Note that in the proof of Corollary 11 in [2] it is shown that

‖μK‡‖2 <
1

20
,

although this is not mentioned explicitly in [2] in the

statement of their Corollary.

Fix ε > 0. From now on we fix the parameters p, I, η in

Algorithm 1 as follows:

• p ≥ n× c log2(1ε) log
2(n),

• I = c2n
220
√
n log

(
40n2p2

ε

)
×
(
log log 20

√
n log

(
40n2p2

ε

))
log3

(
np2

ε

)
log log(Rr),

• η = 1

30
√

n log(n/ε)
.

Lemma V.2. Suppose that we set parameters modified =
OFF, imax = ∞. Then for any value of α > 0, with
probability at least 1− ε the convex body

K̃i� := Σ̂
− 1

2
i� (K − μ̂i�)

outputed by Algorithm 2 is in 2-isotropic position. Moreover,
the expected number of iterations of each of the “While”
loops in Algorithm 2 is bounded above by 2.

Proof: Recall the definitions from Algorithm 2 where

K̃i−1 :=

{
B for i = 1

Σ̂
− 1

2
i (Ki−1 − μ̂i) for i ≥ 2,

and

K̂i := Σ̂
− 1

2
i (Ki − μ̂i) ∀i ∈ N.

We prove this theorem by induction:

Inductive assumption: Suppose that

K̃i−1 = Σ̂
− 1

2
i (Ki−1 − μ̂i)

is 2-isotropic with ‖μK̃i−1
‖2 ≤ 1

20 , and that

B(0,
1

4
) ⊆ K̃i−1.

Base case: Since for i = 1 K̃i−1 = B is 2-isotropic, we

must have that K̂i is 4e ≤ 15-isotropic (see the inductive

case for why this is true). Therefore K̂i is 15-isotropic and

contains the ball B(0, 1
4), since

K̂i ⊇ K̃i−1 = B ⊇ B(0,
1

4
).

1350

Then by Lemma IV.10 we have that the points Z1, . . . , Zp

are independent, and are each a TV distance at most ε
p2 from

the uniform distribution on K̂i.
6

Therefore, by Lemma V.1 we have that K̃i is 2-

isotropic with probability at least 1− ε
p (since we can cou-

ple Z1, . . . , Zp to independent random vectors Ẑ1, . . . , Ẑp

which are exactly uniformly distributed on K̂i, such that

P(Xi = Ẑi) ≥ 1− ε

p2
,

and apply Lemma V.1 to these vectors).

Inductive case: Showing that K̃i−1 being in 2-isotropic
position implies that K̃i is in 2-isotropic position.

Since

Ki−1 ⊆ Ki and Vol(Ki) ≤ eVol(Ki−1),

we have

ΣKi
� Vol(Ki−1)

Vol(Ki)
ΣKi−1

� 1

e
ΣKi−1

.

Moreover, since K is convex and 0 ∈ K, we have

Ki ⊆ (1 + 1/n)Ki−1,

and

Vol(Ki) ≥ 1

e
Vol ((1 + 1/n)Ki−1) .

Hence, we have

ΣKi �
Vol((1 + 1/n)Ki−1)

Vol(Ki)
Σ(1+1/n)Ki−1

=
Vol((1 + 1/n)Ki−1)

Vol(Ki)
(1 + 1/n)2ΣKi−1

� 4eΣKi−1
.

Therefore, we have that

1

e
ΣKi−1 � ΣKi � 4eΣKi−1 ,

and hence that

1

e

1

4
In � 1

e
ΣK̃i−1

� ΣK̂i
� 2eΣK̃i−1

� 16eIn.

Therefore we have shown that the fact that K̃i−1 is 2-

isotropic implies that K̂i is 4
√
e ≤ 15-isotropic. Therefore

K̂i is 15-isotropic and contains the ball B(0, 1
4), since

K̂i ⊇ K̃i−1 ⊇ B(0,
1

4
).

We now show that the centers of mass of K̂i and K̃i−1 are

a distance at most roughly
√
n apart. Suppose (towards a

contradiction) that

‖μK̂i
− μK̃i−1

‖2 > 10
√
n log(

40n

ε
).

6See the inductive case for why we get a bound for the uniform
distribution on K̂i even though the Markov chain is on K̂i ∩ ρB for

ρ = 20
√
n log(40n

2

ε
)B.

By Lemma 24 in [11], 1− ε
40n of the volume of the convex

body K̂i is inside the ball of radius 2
√
n log(40nε) with

center at μK̂i
. Hence, if the assumption

‖μK̂i
− μK̃i−1

‖2 > 10
√
n log(

40n

ε
)

were true, we would have (for ε < 0.1) that a nonzero

portion of the volume of K̂i is a distance of at least 40n
√
n

from μK̂i
, since

Vol(K̂i)

Vol(K̃i−1)
≤ e and K̂i ⊇ K̃i−1.

This is a contradiction since the convex body K̂i is entirely

contained in a ball of radius 15n because it is 15-isotropic.

Hence by contradiction we have that

‖μK̂i
− μK̃i−1

‖2 ≤ 10
√
n log

(
40n

ε

)
.

By inductive assumption we have that ‖μK̃i−1
‖2 ≤ 1

5 , and

hence that

‖μK̂i
‖2 ≤ ‖μK̂i

− μK̃i−1
‖2 + ‖μK̃i−1

‖2 ≤ 12
√
n log

(
40n

ε

)
.

By Lemma 24 in [11], 1− ε
40n2p2 of the volume of the convex

body K̂i is contained in a ball of radius 2
√
n log(40n

2p2

ε)

centered at μK̂i
. Hence, since K̂i being 15-isotropic implies

that it is contained in a ball of radius 15n, we have that

K̂†
i := K̂i ∩ 20

√
n log(

40n2p2

ε
)B

is 30-isotropic. Moreover, by Lemma 24 in [11] and the fact

that

‖μK̂i
‖2 ≤ 12

√
n log(

40n

ε
),

we have

Vol(K̂†
i) ≥

(
1− ε

2p2

)
Vol(K̂i).

Therefore, since the rejection step in the “While” loop of

Algorithm 2 ensures that X0 is in the n−3-interior of

K̃i ∩ 20
√
n log(

40n2

ε
)B,

by Lemma IV.10 we have that the points Z1, . . . , Zp are

independent, and are each a TV distance at most ε
p2 from

the uniform distribution on K̂i.

Therefore, by Lemma V.1 we have that K̃i is 2-isotropic

and

‖μK̃i
‖2 ≤ 1

20

with probability at least 1 − ε
p (Since we can cou-

ple Z1, . . . , Zp to independent random vectors Ẑ1, . . . , Ẑp

which are exactly uniformly distributed on K̂i, such that

P(Zk = Ẑk) ≥ 1− ε

p2
,

1351

and apply Lemma V.1 to these vectors. Therefore, we have

Z1, . . . , Zp independent with

‖L(Zk)− πK̃i
‖TV ≤ ε

10p2 log(Rr)

for all k ∈ [p]).
Bounding the number of iterations of the “While”

loop. First, we bound dist(X̂ ′
0, ∂[K̃i ∩ ρB]) for

ρ = 20
√
n log(

40n2

ε
).

Since K̃i is 2-isotropic, it contains a ball of radius 1√
2

.

Therefore, by a statement in the proof of Corollary 4.6 in

[8], we have that

Voln−1(∂K̃i) ≤ n
1/
√
2
Vol(∂K̃i).

Therefore, we have that

PY∼unif(K̃i)
(dist(Y, ∂K̃i) < n−3) ≤ n−3Voln−1(∂K̃i)

Vol(∂K̃i)

≤ n−2
√
2.

Moreover, by Lemma 24 in [11], 1− ε
10n2p2 of the volume

of the convex body K̃i is contained in B(μK̃i
, ρ
2), and since

K̃i is in 2-isotropic position,

‖μK̃i
‖2 ≤ 1

5
.

Thus, 1 − ε
10n2p2 of the volume of the convex body K̃i is

contained in the ball B(0, ρ).
Now, since X̂0 and Z1 are generated by the ball walk

with the same starting point and parameters, we have

‖L(X̂ ′
0)− πK̃i

‖TV = ‖L(X̂0)− πK̂i
‖TV

= ‖L(Z1)− πK̂i
‖TV

≤ ε

p2
.

Therefore, we have

P

(
dist

(
X̂ ′

0, ∂[K̃i ∩ ρB]
)
< n−3

)
≤ n−2

√
2 +

ε

10n2p2
+ ‖L(Zk)− πK̃i

‖TV

≤ n−2
√
2 +

ε

10n2p2
+

ε

p2
.

But X̂ ′
0 ≡ X̂ ′k

0 is generated independently at each iteration

k of the while loop, implying that

P

(
min
j≤k

dist
(
X̂ ′j

0 , ∂[K̃i ∩ ρB]
)
≤ n−3

)

≤
(
n−2

√
2 +

ε

10n2p2
+

ε

p2

)k

≤ 2−k.

Therefore, the expected number of iterations of the “While”

loop is bounded by

∞∑
k=1

2−(k−1) ≤ 2.

B. Bounding the expected running time of Algorithm 2

In this section we bound the expected frequency at which

Algorithm 2 checks any given inequalities. From now on we

set the parameter α of Algorithm 1 to be

α = 4 log

(
2npimax

ε

)
.

Lemma V.3. Suppose that, at each step of Algorithm 2,
X0 is a β-warm start with respect to both the uniform
distribution and the speedy distribution. Fix b� ≤ imax

40I . Then
with probability at least 8

10 the total number of inequality
checks made during the first b� times that Algorithm 2 with
Modified = ON invokes the ball walk Markov chain is
≤ 40βb�I ×m

[
16n−1γ + 32γ

n × log(n/γ) + ε
np

]
.

Proof: Let Sk be the number of proper+improper steps

for the kth Markov chain in Algorithm 2, and let Fk
j be

the frequency at which the kth Markov chain checks the

inequality (Aj , bj).
Let

S† :=
b�∑
k=1

Sk

be the sum of the steps for the first b� runs of the Markov

chain in Algorithm 2, and let

F† := 1

b�

b�∑
k=1

m∑
j=1

Fk
j

be the frequency at which Algorithm 2 checks any inequality.

Now, if Y0 is a β-warm start for the speedy distribution,

by Lemmas IV.8 and IV.7 we have

E[S†] ≤ β × 4b�I.
Hence, we have, by Markov’s inequality, that

S† ≤ 40b�I ≤ imax,

with probability at least 9
10 .

Thus, by Lemma IV.5 we have

E[F†�{S† ≤ imax}]
≤ m×

[
16n−1γβ +

32γ

n
× β log (n/γ) +

εβ

nb�

]
.

Hence, by Markov’s inequality we have with probability at

least 9
10 that

F†�{S† ≤ imax} ≤ 160n−1γβ +
320γ

n
β log (n/γ) + 10

βε

nb�
.

1352

Therefore, with probability at least 8
10 we have that both

S† ≤ 40βb�I ≤ imax

and

F† ≤ 160n−1γβ +
320γ

n
× β log (n/γ) + 10

βε

nb�
,

since

F†�{S† ≤ imax} = F†

whenever

S† ≤ 40βb�I ≤ imax.

Therefore, with probability at least 8
10 we have that the total

number of times Algorithm 1 computes an inequality is

S†F† ≤ 40βb�I ×m

[
16n−1γβ +

32γ

n
β log (n/γ) +

βε

nb�

]
.

C. Bounding the warmness of the start in Algorithm 2 with
respect to the speedy and uniform distributions

Lemma V.4. With probability at least 6
10 − ε we have that,

the total number of inequality checks for the duration of
Algorithm 2 with Modified = ON, is at most

220(2 + p)i�I ×m

[
16n−1γ +

32γ

n
× log (n/γ) +

ε

np

]
.

Moreover, if Σ̂i� , μ̂i� , X0 are the outputs of Algorithm 2,
we have that X0 is O(1)-warm with respect to the uniform
distribution on Σ̂

− 1
2

i� (K − μ̂i�).

Proof: First, we bound the number of times Algorithm 1

runs the ball walk. By Lemma V.2 we have that the expected

number of iterations of the “While” loop at each “For” loop

iteration of Algorithm 1 is at most 2. Hence, the expected

number of times the ball walk is run by Algorithm 1 is

at most (2 + p)i�. Therefore, by Markov’s inequality, we

have that with probability at least 9
10 the ball walk is run by

Algorithm 1 no more than 10(2 + p)i� times.

Next, we bound the speedy and uniform warmness. The

main observation of this section is that, for our step size, any

distribution which is β-warm with respect to the uniform

distribution is 2β-warm with respect to the speedy distri-

bution. This is true since, by Remark 4.12 in [8], one can

obtain speedy-distributed samples by starting with uniformly

distributed samples, if we take one step of the ball walk

starting at each sample, and reject the original point if and

only if the ball walk step leaves the convex body. By Lemma

IV.7, for our choice of step size η the average acceptance

probability λ is at most 1
2 . Therefore, any sample which is

β-warm with respect to the uniform distribution must also

be 2β-warm with respect to the speedy distribution7, since

then

π̂K(x) = πK(x)
1

λ
P({one step of ball walk

starting at x is rejected}).

Therefore, to apply Lemma V.3, it is enough to show that

the initial points in Algorithm 1 are β-warm with respect to

the uniform distribution.

Denote the value of X̂ ′
0 at the ith iteration of the “For”

loop and k’th iteration of the “While” loop of Algorithm 2

by X̂ ′
0 ≡ X̂ ′i,k

0 . Next, we note that by the proof of Lemma

V.2 we have

‖L(X̂ ′i,k
0)− πK̃i

‖TV ≤ ε

10p(i�)2

for each i, k. Moreover, since we are using a fixed starting

point, X̂ ′1
0 , X̂ ′2

0 , . . . are independent. Thus, there exists a

sequence of random variables

{X̃i,k
0 }i∈[i�],k∈[10(2+p)i�]

such that X̃i,k
0 = X̂ ′i,k

0 with probability at least 9
10 − ε,

where X̃i,k
0 ∼ πK̃i

. Hence, X̃i,k
0 are 1-warm with respect to

the uniform distribution on K̃i.

Recall from the proof of Lemma V.2 that

Ki ⊆ Ki+1 and Vol(Ki+1) ≤ eVol(Ki).

Thus, we have

K̃i ⊆ K̂i+1 and Vol(K̂i+1) ≤ eVol(K̃i),

since

K̃i := Σ̂
− 1

2
i+1(Ki − μ̂i+1) and K̂i+1 := Σ̂

− 1
2

i+1(Ki+1 − μ̂i+1).

Therefore, the fact that X̃i,k
0 is 1-warm with respect to

the uniform distribution on K̃i implies that it is e-warm

with respect to the uniform distribution on K̂i+1. Hence,

we have that X̃i,k
0 is 2e-warm with respect to the speedy

distribution on K̂i+1.

Hence, by Lemma V.3 we have that with probability at

least 6
10 − ε, the total number of inequality checks for the

duration of Algorithm 2, is at most

80e(2 + p)i�I ×m

[
16n−1γ +

32γ

n
× log (n/γ) +

ε

np

]
.

7Note, however, that the converse is not true: β-warm with respect to the
speedy distribution does not imply 2β warm with respect to the uniform
distribution.

1353

D. Counting the running time of subroutines with negligible
contributions to the running time

Sorting: First, we argue that the cost of sorting the hj’s

can be ignored.

Algorithm 1 must sort the m inequalities into

O

(
n

αη

)
= O(n1.5)

bins, since, if K is O(1)-isotropic, the diameter of K is

O(
√
n). This takes O(m log(n)) time. This only occurs

once, at the start of the algorithm. Since our bound for the

entire algorithm is O(mn4.5) and mn4.5 >> m log(n), we

can ignore this cost.

At each step of the Markov chain, Algorithm 1 must move

all the bins over by 1 to “add” n
αη to each bin, and select

all hj’s such that

hj < α
η√
n
× i.

This can be done in O(1) operations by simply moving a

“pointer” at the bin for elements in [α η√
n
×(i−1), α η√

n
×i]

one bin to the right. This is only done once every Markov

chain step, and is negligible in comparison to the cost of

computing a Markov chain step, implying that we can ignore

this O(1) cost.

After computing the new values for all the hj’s that were

selected, Algorithm 1 must then sort these hj’s into the

corresponding bins. Since there are O(n1.5) bins, this takes

O(log(n)) time for each selected hj . This is negligible in

comparison to the cost of recomputing the value of each hj ,

which is O(n) (since we have to take an inner product).

Therefore we can ignore this cost.

Applying the linear transformation to Ki: Next, we

argue that the cost of applying the linear transformation

to put Ki into isotropic position at each iteration of Algo-

rithm 2 can be ignored. This linear transformation requires

computing AΣ̂
1
2
i , which takes O(mn2) operations, and com-

puting b − Aμ̂i, which takes O(mn) operations. There are

i� = n log(Rr) iterations in Algorithm 2, so applying the

linear transformations contributes at most O(mn3 log(Rr))
arithmetic operations. This is much smaller than our bound

of O(mn4.5 log(Rr)) on the number of operations, so we can

ignore the cost of applying the linear transformations.

E. Proof of main theorem for rounding

We now consider the following procedure, where we run

Algorithm 2 multiple times until it succeeds. This allows us

to put the polytope into isotropic position with a bound on

the running time that holds with very high probability (as

opposed to just holding in expectation).

Algorithm 3 Rounding in bounded time

input: A ∈ R
m×n, b ∈ R

m

input: r,R > 0 such that rB ⊆ K ⊆ RB, where

K := {x ∈ R
n : Ax ≤ b}

input: p ∈ N, ε > 0
input: I, imax ∈ N

1: Set Success = False
2: while Success = False do
3: Run Algorithm 2 with Modified = ON and with

the above inputs until either it outputs Σ̂i� , μ̂i� , X0 or

until it completes I inequality checks.

4: If Σ̂i� , μ̂i� , X0 were obtained, output

Success = True
5: end while
6: output: Σ̂i� , μ̂i� , X0

From now on we choose I, imax to satisfy

I = 2000(2 + p)i�I (14)

×m

[
16n−1γ +

32γ

n
log (n/γ) +

6ε

np

]
,

imax =

(
2000(2 + p)i�I

×m

[
320mη̂

nε
+

640mη̂

nε
log

(
nε

20mη̂

)
+

ε

np

])2

.

In particular, we have imax ≥ I.

Lemma V.5. Fix ε > 0. Then with probability at least 1−
2ε log(1ε) Algorithm 3 outputs, after at most log(1ε) calls to
Algorithm 2, an affine transformation (Σ̂i� , μ̂i�) and a point
X0, for which

K† := Σ̂
− 1

2
i� (K − μ̂i�)

is in 2-isotropic position. Moreover we have that X0 is
O(log(1ε))-warm with respect to the uniform distribution on
K†.

Proof: First, we note that by Lemma V.4 we have that

the “While” loop of Algorithm 3 completes at least one run

of Algorithm 2 after log(1ε) runs of the “While” loop of

Algorithm 3 with probability at least

1− 2− log(1
ε) ≥ 1− ε.

Moreover, by Lemmas V.2 and V.4, if Algorithm 2 were

allowed to keep running even after it uses up its alotted

number of arithmetic operations and ball walk steps, it would

return an affine transformation which puts K into 2-isotropic

position, and an O(1)-warm start for the uniform distribution

on this affine transformation of K, with probability at least

1 − ε at each run. Therefore, if we do stop Algorithm 2

after its alotted number of arithmetic operations and ball

walk steps, after log(1ε) steps we obtain, with probability at

1354

least 1−ε−ε log(1ε), an affine transformation (Σ̂i� , μ̂i�) for

which

K† := Σ̂
− 1

2
i� (K − μ̂i�)

is in 2-isotropic position and an O(log(1ε))-warm start X0

for the uniform distribution on K†.
Fix

p = n× c log2(
1

ε
) log2(n).

Recall the shorthand notation

η̂ :=
1

10
η
√
n and γ := 10αη̂,

and that we have fixed the parameters p, I, η, α of Algorithm

1 as follows:

• I = c2n
220
√
n log

(
40n2p2

ε

)
×
(
log log 20

√
n log

(
40n2p2

ε

))
log3

(
np2

ε

)
log log(Rr),

• η = 1

30
√

n log(n/ε)
,

• α = 4 log
(
2npimax

ε

)
.

Also recall that we have fixed I and imax in Equation 14,

and that i� is set to

i� = n log2(
R

r
)

in Algorithm 2.

Theorem V.6 (Version of Main Theorem (Th. I.1) specific
to our algorithm). Fix ε > 0. With probability at least
1− 2ε log(1ε) Algorithm 3 outputs an affine transformation
(Σ̂i� , μ̂i�) and a point X0 for which

K† := Σ̂
− 1

2
i� (K − μ̂i�)

is in 2-isotropic position, and X0 is O(log(1ε))-warm
with respect to the uniform distribution on K†, in
Õ(mn4.5 log9(1ε) log

9(Rr)) arithmetic operations.

Proof: By Lemma V.5, with probability at least 1 −
2ε log(1ε) Algorithm 3 outputs an affine transformation

(Σ̂i� , μ̂i�) which puts K into 2-isotropic position, in at

most I log(1ε) inequality checks. The number of arithmetic

operations for each inequality check is no more that 3n,

implying that the number of arithmetic operations performed

by Algorithm 3 in this event is at most

3n× I log(
1

ε
)

= 6000(2 + p)i�I ×m

[
16γ + 32γ log(n/γ) +

6ε

p

]
log(

1

ε
)

= Õ(mn4.5 log9(
1

ε
) log9(

R

r
)).

VI. PROOFS OF COROLLARIES FOR VOLUME

COMPUTATION AND SAMPLING

In this section we prove Corollaries I.2 and I.3 from

the introduction. First, we prove Corollary I.2 on volume

estimation.

Proof of Corollary I.2: By Lemma V.6 we have that

with probability at least 1− ε Algorithm 3 obtains an affine

transformation (Σ̂i� , μ̂i�) such that

K† := Σ̂
− 1

2
i� (K − μ̂i�)

is in 2-isotropic position, in Õ(mn4.5polylog(1ε ,
R
r)) arith-

metic operations. Thus, with probability at least 1 − ε, K†

contains a ball B(μK† , 1
2) where

‖μK†‖2 ≤ 1

5
,

implying that

B(0,
1

4
) ⊆ K†.

Thus, with probability at least 1− ε, 4K† contains the unit

ball B and is 8-isotropic. Hence, if we then apply the volume

algorithm [5] to 4K†, by Theorem 1.1 of [5] with probability

at least 1 − ε we can compute the volume of 4K† up to a

factor of 1 + δ in

mn4

δ2
log6(

n

δ
) log(

1

ε
)

arithmetic operations. But

Vol(K) =
1

4n
det(Σ̂

1
2
i�)Vol(4K

†).

Since det(Σ̂
1
2
i�) can be computed in O(n3) arithmetic oper-

ations, we can compute with probability at least 1 − ε the

volume of K up to a factor of 1 + δ in

Õ

(
mn4.5polylog

(
1

ε
,
R

r

)
+

mn4

δ2
log6

(n
δ

)
log

(
1

ε

))
arithmetic operations.

We then prove Corollary I.3 on sampling:

Proof of Corollary I.3: By Theorem V.6 we have that,

with probability at least 1−ε, Algorithm 3 obtains an affine

transformation (Σ̂i� , μ̂i�) and a random vector X0 such that

K† := Σ̂
− 1

2
i� (K − μ̂i�)

is in 2-isotropic position and X0 is O(1)-warm with respect

to the uniform distribution on K† in

Õ

(
mn4.5polylog

(
1

ε
,
R

r

))
arithmetic operations.

Since K† is in 2-isotropic position it is contained in

B(μK† , 4n) where

‖μK†‖2 ≤ 1

5
.

1355

Moreover, by Lemma 24 in [11], 1− ε of the volume of the

convex body K† is contained in a ball of radius 2
√
n log(1ε)

centered at μK† .

Hence, by Theorem 1.1 of [18], if we the run the hit-

and-run Markov chain sampling algorithm for Õ(n3 log(1ε))
Markov chain steps on the convex body

K† ∩B(0, 4
√
n log(

1

ε
))

with O(1)-warm start X0, we obtain a point Z uniformly

distributed on

K† ∩B(0, 4
√
n log(

1

ε
)),

with TV error ε.

But since

Vol(K† ∩B(0, 4
√
n log(

1

ε
))) ≥ (1− ε)Vol(K†),

we have that Z is also uniformly distributed on K† with TV

error 2ε. To obtain a point on K, we compute

Z̃ = Σ̂
1
2
i�Z + μ̂i� .

Since Z is uniformly distributed on K† with TV error 2ε,

Z̃ must be uniformly distributed on K with TV error 2ε as

well.

Therefore, we obtain a point Z from the uniform distri-

bution on K with TV error 2ε, in a number

Õ(mn4.5polylog(
1

ε
,
R

r
) + n3 log(

1

ε
))

= Õ(mn4.5polylog(
1

ε
,
R

r
))

of arithmetic operations.

ACKNOWLEDGMENT

The authors would like to thank Sushant Sachdeva and

the anonymous reviewers for their helpful comments and

suggestions. This research was partially supported by NSF

CCF-1908347 and SNSF 200021 182527 grants.

REFERENCES

[1] David Applegate and Ravi Kannan. Sampling and integration
of near log-concave functions. In Proceedings of the twenty-
third annual ACM symposium on theory of computing, pages
156–163. ACM, 1991.

[2] Dimitris Bertsimas and Santosh S Vempala. Solving convex
programs by random walks. In Proceedings of the thiry-fourth
annual ACM symposium on theory of computing, pages 109–
115. ACM, 2002.

[3] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin
Yu. Fast MCMC sampling algorithms on polytopes. The
Journal of Machine Learning Research, 19(1):2146–2231,
2018.

[4] Benjamin Cousins. Efficient high-dimensional sampling and
integration. PhD thesis, Georgia Institute of Technology,
2017.

[5] Benjamin Cousins and Santosh S Vempala. Bypassing KLS:
Gaussian cooling and an O∗(n3) volume algorithm. In
Proceedings of the forty-seventh annual ACM symposium on
theory of computing, pages 539–548. ACM, 2015.

[6] Martin Dyer, Alan Frieze, and Ravi Kannan. A random
polynomial-time algorithm for approximating the volume of
convex bodies. Journal of the ACM (JACM), 38(1):1–17,
1991.

[7] Hulda S Haraldsdóttir, Ben Cousins, Ines Thiele, Ronan MT
Fleming, and Santosh S Vempala. CHRR: coordinate hit-and-
run with rounding for uniform sampling of constraint-based
models. Bioinformatics, 33(11):1741–1743, 2017.

[8] Ravi Kannan, László Lovász, and Miklós Simonovits. Ran-
dom walks and an O∗(n5) volume algorithm for convex
bodies. Random Structures & Algorithms, 11(1):1–50, 1997.

[9] Ravindran Kannan and Hariharan Narayanan. Random walks
on polytopes and an affine interior point method for linear
programming. Mathematics of Operations Research, 37(1):1–
20, 2012.

[10] Michel Ledoux. The concentration of measure phenomenon.
American Mathematical Soc., 2001.

[11] Yin Tat Lee and Santosh S Vempala. Eldan’s stochastic
localization and the KLS hyperplane conjecture: An improved
lower bound for expansion. In Foundations of Computer
Science (FOCS), 2017 IEEE 58th Annual Symposium on,
pages 998–1007. IEEE, 2017.

[12] Yin Tat Lee and Santosh S Vempala. Geodesic walks in
polytopes. In Proceedings of the 49th Annual ACM SIGACT
Symposium on theory of Computing, pages 927–940. ACM,
2017.

[13] Yin Tat Lee and Santosh S Vempala. Convergence rate of
Riemannian Hamiltonian Monte Carlo and faster polytope
volume computation. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1115–
1121. ACM, 2018.

[14] Yin Tat Lee and Santosh S Vempala. The Kannan-Lovász-
Simonovits conjecture. arXiv preprint arXiv:1807.03465,
2018.

[15] László Lovász and Miklós Simonovits. Random walks in a
convex body and an improved volume algorithm. Random
structures & algorithms, 4(4):359–412, 1993.

[16] László Lovász and Santosh Vempala. The geometry of
logconcave functions and sampling algorithms. Random
Structures & Algorithms, 30(3):307–358, 2007.

[17] László Lovász and Santosh S Vempala. Fast algorithms for
logconcave functions: Sampling, rounding, integration and
optimization. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 57–68.
IEEE, 2006.

[18] László Lovász and Santosh S Vempala. Hit-and-run from a
corner. SIAM Journal on Computing, 35(4):985–1005, 2006.

1356

[19] László Lovász and Santosh S Vempala. Simulated annealing
in convex bodies and an O∗(n4) volume algorithm. Journal
of Computer and System Sciences, 72(2):392–417, 2006.

[20] Robert Osserman. The isoperimetric inequality. Bulletin of
the American Mathematical Society, 84(6):1182–1238, 1978.

[21] Grigoris Paouris. Small ball probability estimates for log-
concave measures. Transactions of the American Mathemat-
ical Society, 364(1):287–308, 2012.

[22] Mark Rudelson. Random vectors in the isotropic position.
Journal of Functional Analysis, 164(1):60–72, 1999.

[23] Santosh S Vempala. Geometric random walks: a survey.
Combinatorial and computational geometry, 52(573-612):2,
2005.

1357

