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Abstract—A sparsifier of a graph G (Bencziir and Karger;
Spielman and Teng) is a sparse weighted subgraph G that
approximately retains the same cut structure of G. For
general graphs, non-trivial sparsification is possible only by
using weighted graphs in which different edges have different
weights. Even for graphs that admit unweighted sparsifiers
(that is, sparsifiers in which all the edge weights are equal to
the same scaling factor), there are no known polynomial time
algorithms that find such unweighted sparsifiers.

We study a weaker notion of sparsification suggested by
Oveis Gharan, in which the number of cut edges in each cut
(9, S) is not approximated within a multiplicative factor (1+¢),
but is, instead, approximated up to an additive term bounded
by € times d - |S| + vol(S), where d is the average degree of
the graph and vol(.S) is the sum of the degrees of the vertices
in S. We provide a probabilistic polynomial time construction
of such sparsifiers for every graph, and our sparsifiers have a
near-optimal number of edges O (e *npolylog(1/¢)). We also
provide a deterministic polynomial time construction that con-
structs sparsifiers with a weaker property having the optimal
number of edges O(c?n). Our constructions also satisfy a
spectral version of the ‘“additive sparsification” property.

Notions of sparsification have also been studied for hyper-
graphs. Our construction of “additive sparsifiers” with O.(n)
edges also works for hypergraphs, and provides the first non-
trivial notion of sparsification for hypergraphs achievable with
O(n) hyperedges when ¢ and the rank r of the hyperedges are
constant. Finally, we provide a new construction of spectral
hypergraph sparsifiers, according to the standard definition,
with poly(e™',r) - nlogn hyperedges, improving over the
previous spectral construction (Soma and Yoshida) that used
O(n®) hyperedges even for constant ~ and e.
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I. INTRODUCTION

Benczir and Karger [1] introduced the notion of a cut
sparsifier: a weighted graph G = (V, F) is an e cut sparsifier
of a graph G = (V, E) if, for every cut (S, V —.S) of the set
of vertices, the weighted number of cut edges in G is the
same as the number of cut edges in G, up to multiplicative
error e, that is,

VS g |4 |6F(S) —€E(S)‘ S €-€E(S) . (1)

where ex (S) denotes the weighted number of edges in X
leaving the set S. A stronger notion, introduced by Spielman
and Teng [2], is that of a spectral sparsifier: according to this
notion, a weighted graph G' = (V, F) is an e cut sparsifier
of a graph G = (V, E) if
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where Lx is the Laplacian matrix of the graph X. Note
that (1) is implied by (2) by taking x to be the 0/1 indicator
vector of S. A more compact way to express (2) is as

—ELG j Lé - LG j ELG . (3)

Batson, Spielman and Srivastava [3] show that, for every
graph, an e spectral sparsifier (and hence also an e cut spar-
sifier) can be constructed in polynomial time with O(n/e?)
weighted edges, which is best possible up to the constant in
the big-Oh. Sparsifiers have several applications to speeding-
up graph algorithms.

For some graphs G, for example the “barbell” graph (that
consists of two disjoint cliques joined by a single edge), it is
necessary for a non-trivial sparsifier of G to have edges of
different weights. This has motivated the question of whether
there are weaker, but still interesting, notion of sparsification
that can be achieved, for all graphs, using sparsifiers that
are “unweighted” in the sense that all edges have the same
weight.

Question 1. Is a non-trivial notion of unweighted sparsifi-
cation possible for all graphs?

Results on unweighted sparsification have focused on
bounding the multiplicative error € in such cases, allowing it
to be super-constant [4], [5]. For graphs such as the barbell
example one, however gets, necessarily, very poor bounds.
But is there an alternative notion for which one can get
arbitrarily good approximation on all graphs using a linear
number of edges?

If one restricts this question from all graphs to selected
classes of graphs, then a number of interesting results are
known, and some major open questions arise.

If G (V,E) is a d-regular graph such that ev-
ery edge has effective resistance O(1/d), the Marcus-
Spielman-Srivastava [6] proof of the Kadison-Singer con-
jecture (henceforth, we will refer to this result as the MSS
Theorem) implies that G can be partitioned into almost-
regular unweighted spectral sparsifiers with error € and
average degree O(e~2). An interesting class of such graphs
are edge-transitive graphs, such as the hypercube.
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Another interesting class of graphs all whose edges have
effective resistance O(1/d) is the class of d-regular ex-
panders of constant normalized expansion ¢ > 0. Before
the MSS Theorem, Frieze and Molloy [7] proved that such
graphs can be partitioned into unweighted almost-regular
graphs of average degree O(e~2log d) and normalized edge
expansion at least ¢ — €. They also show how to construct
such a partition in randomized polynomial time under an
additional small-set expansion assumption on G. Becchetti
et al. [8] present a randomized linear time algorithm that,
given a dense regular expander G of degree d = Q(n) finds
an edge-induced expander in G of degree O(1). While both
[7] and [8] find sparse expanders inside dense expanders,
the work of Frieze and Molloy does not produce constant-
degree graphs and the work of Becchetti et al. only applies
to very dense graphs. Furthermore, neither work guarantees
that one ends up with a sparse graph that is a good sparsifier
of the original one.

Question 2. Is there a polynomial time construction of the
unweighted spectral sparsifiers of expanders whose existence
follows from the Marcus-Spielman-Srivastava theorem?

Notions of cut sparsifiers [9] and spectral sparsifiers [10]
have been defined for hypergraphs, generalizing the analo-
gous definitions for graphs. In a hypergraph H = (V, E),
a hyperedge e € E is cut by a partition (S,V — S) of the
vertices if e intersects both S and V — S. As for graphs,
we can define eg(S) to be the (weighted, if applicable)
number of hyperdges in E that are cut by (S,V — 5). As
before, a weighted subset of edges F' defines a hypergraph
cut sparsifier with error € if

VS CV ler(S) — ex(S)| < een(S).

Kogan and Krauthgamer [9] show how to construct such a
(weighted) sparsifier in randomized polynomial time using
O(e72n - (r + logn)) hyperedges where r is the maximum
size of the hyperedges which is also called the rank of the
hypergraph.

In order to define a notion of spectral sparsification, we
associate to a hypergraph H = (V, E) the following analog
of the Laplacian quadratic form, namely a function @)z such
that

Qu(x) = Z We - IAX (Ta — p)?

ecE

where w, is the weight (if applicable) of hyperedge e. Note
that with this definition we have that if x = 1¢ for some
subset S of vertices then Qp (x) = eg(S). Following Soma
and Yoshida [10], we say that a weighted hypergraph H is
a spectral sparsifier with error ¢ of GG if we have

Vx e RV 1Qa(%) — Qux)| < € Qu(x).
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Soma and Yoshida [10] provide a randomized polynomial
time construction of such sparsifiers, using O(e~2n?) hy-
peredges.

Question 3. s it possible, for every hypergraph, to construct
a weighted spectral sparsifier with O, (n) hyperedges?

As in the case of graphs, it is also natural to raise the
following question.

Question 4. Is a non-trivial notion of unweighted sparsifi-
cation possible for all hypergraphs?

We provide a positive answer to all the above questions.

A. Our Results

1) Sparsification with additive error: Oveis-Gharan sug-
gested the following weakened definition of sparsification:
if G = (V, E) is d-regular, we say that an unweighted graph
G = (V, F) is an additive cut sparsifier of G with error € if
we have

VS CV |c-ep(S)—ep(S)| < 2ed-|5|,

where ¢ = |E|/|F|. Note that this (up to a constant factor
change in the error parameter €) is equivalent to the standard
notion if G has constant normalized edge expansion, because
eg(S) and d - S will then be within a constant factor
of each other. On non-expanding graphs, however, this
definition allows higher relative error on sparse cuts and
a tighter control on expanding cuts. (The factor of 2 has no
particular meaning and it is just there for consistency with
the definition that we give next for non-regular graphs.)
For non-regular graphs G, we say that G = (V, F) is an
additive cut sparsifier of G with error ¢ if we have

VS CV |c-er(S)—er(S)| < e (davg - |S| + vol(S))

where ¢ = |E|/|F| and daye := 2|E|/|V] is the average
degree of GG and vol(S) is the volume of S that is, the sum
of the degrees of the vertices in S.!

This notion has a natural spectral analog, which we state
directly in the more general form:

—6-(Dc+davgf) jC-LG—LG je-(DG—f—dang).

Note, again, that if G is a regular expander then this
definition is equivalent to the standard definition of spectral
sparsifier.

'An error term of the form e - vol(S) alone is not possible in irregular
graphs, as can be seen considering, for example, a graph with two connected
components: one made of two vertices v1, v2 joined by an edge, and another
being a clique of size n — 2. Suppose we want to achieve additive error
% - vol(.S) for all cuts: in order to preserve the cut S = {1}, of volume
I and cut by one edge, we must keep the edge (v1,v2) in our sparsifier,
otherwise the additive error would be 1. Furthermore, the scaling factor,
given by the ratio of the number of edges in the original graph over the
number of edges in the sparsifier, can be at most 1.5, which means that we
must keep a constant fraction of the Q(n?) edges of the original graph.



In a hypergraph, the degree of a vertex is the number of
hyperedges it belongs to, and the volume of a set of vertices
is the sum of the degrees of the vertices that belong to it.
With these definitions in mind, the notion of additive graph
sparsifier immediately generalizes to hypergraphs.

2) New Graph Sparsification Constructions: Our first
result is a deterministic polynomial time construction which
achieves a weak form of unweighted additive sparsification.

Theorem I.1 (Deterministic Polynomial Time Construction).
Given a graph G = (V,E) and a parameter ¢ > 0, in
deterministic polynomial time we can find a multiset F' of
edges of size |F| = O(n/€?) such that, if we let Lg =
Dg — Ag be the Laplacian of G, Lgy = Dg — Ag be the
Laplacian of the graph G = (V,F), d = 2|E|/|V| be the
average degree of G, and ¢ = |E|/|F|, we have

QCDG —2Dg —€eDg —edl < CLG‘ —Lg 2 eDg+edl (4)

Note, in particular, that we get that for every set of vertices
S CV we have

—€|E| < cep(S) —ep(S) < evol(S) +ed|S| ()

The first inequality follows by computing the quadratic
forms of (4) with the £1 indicator vector x := 1g—15 of 5,
and noting that x” Lgx = 4ep(9), that XTLGX = 4ep(S),
that

xT Mx = trace(M)

for every diagonal matrix M, and that trace(Dg)
trace(cDgs) = trace(dI) = 2|E|. The second inequality
follows by computing the quadratic forms of (4) with
the 0/1 indicator vector x = 1g of S, and noting that
xTLex = ep(S), x'Lgx = ep(S), x'Ix = |S| and
xT Dex = vol(S).

Our proof is based on the online convex optimization
techniques of Allen-Zhu, Liao and Orecchia [5]. The con-
struction of [5] involves weights for two reasons: one reason
is a change of basis that maps L to identity, a step that is
not necessary in our setting and that could also be avoided in
their setting if G is a graph all whose edges have bounded
effective resistance. The second reason is more technical,
and it is to avoid blowing up the “width” on the online
game that they define. The second issue comes up when
one wants to prove cLs — Lg = —e- (Dg + dI), but is not
a problem for the upper bound cLs — Lg < € (Dg +dI).

To sidestep this problem, we set the goals of proving the
bounds

CLG—LG j € (d[+Dg)
CSLG - SLG j € (dI+ Dg)

where SLg denotes the signless Laplacian of a graph G,
defined as Dg + Ag. Note that the above PSD inequalities
are equivalent to (4).
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The reasons why, when our goal is the PSD inequalities
above, we are able to control the width without scaling (and
without weighing the edges) are quite technical, and we
defer further discussion to Section III.

Our next result is a probabilistic construction of sparsifiers
with additive error matching the Oveis-Gharan definition.

Theorem 1.2 (Probabilistic Polynomial Time Construction).
Given an n-vertex graph G = (V, E) and a parameter € > 0,
in probabilistic polynomial time we can find a subset F C E
of size |F| = n - O(1/€2) (where O(-) hides log(1/)°™")
factors) such that, if we let L = Dg— Ag be the Laplacian
of G, Lz = Dg — Ag be the Laplacian of the graph G =
(V,F), d=2|E|/|V| be the average degree of G, and c =
|E|/|F|, we have

—eDg —edl R cLsz— Lg X eDg +edl . 6)

When we apply the above result to a d-regular expander
G, we obtain a graph G whose average (and maximum)
degree is 0(6’2) and which is itself a good expander. More
precisely, if G has normalized edge expansion ¢ and G is
as above, then the normalized edge expansion of G is about
¢ — 2¢. Recall that Frieze and Molloy can find a G as above
but with degree O(e~2 log d) rather than O (e~ 2polyloge ~1).
Furthermore, if G is a d-regular expander of normalized edge
expansion ¢, we have? that

D¢ +dI = 2dI < O(¢2L¢) (7

and so the unweighted sparsifier G of G given by the above
theorem is also a spectral sparsifier in the standard sense.
This answers Questions 1 and 2 of the previous section.

We briefly discuss the techniques in the proof. Following
Frieze and Molloy [7] and Bilu and Linial [11], we apply
the Lovasz Local Lemma [12] (LLL) to construct an additive
cut sparsifier. One difficulty with this approach is that one
has to verify that the sparsifier approximates each of the
exponentially many cuts. Indeed, if one defines a “bad” event
for each one of these cuts, there are too many events that are
dependent in order to successfully apply LLL. A key insight
in [7] is that it is sufficient to verify those cuts (S,V —
S) where S induces a connected subgraph. This makes a
big difference in graphs of maximal degree d < n: for a
vertex v, there are ~ n‘~! subsets of ¢ vertices containing v
whereas one can prove that there are at most (d(gzjll)) such
subsets of size ¢ that induce a connected subgraph. This
allows one to manage the exponentially many events and get
almost optimal results with LLL. Indeed, we obtain a close
to optimal average degree O(e~2). This improves upon the
average degree bound in e~2logd [7] . We achieve this by
an iterative procedure that intuitively halves the number of
edges, instead of sparsifying the graph “in one go.”

2There is some abuse of notation in (7), because (7) only holds in the
space orthogonal to 1 = (1,1,---,1).



Another difference is that, in contrast to [7] and [11],
we can use recent constructive versions of LLL [13] to
give an efficient probabilistic time algorithm for finding the
sparsifier. To apply the constructive version of LLL in the
presence of exponentially bad events, one needs to find
a subset of bad events of polynomial size such that the
probability that any other bad event is true is negligible.
We show that this can be achieved by selecting the subset
of events corresponding to cuts (S, V' —.5) so that S induces
a connected graph and |S| = O(log,(n)). This gives us an
efficient probabilistic algorithm for finding a cut sparsifier
which we also generalize to hypergraphs (as we state in
the next section). For graphs, we then adapt the techniques
of Bilu and Linial [11] to go from a cut sparsifier to a
spectral one. To do so we need to consider some more
bad events in the application of LLL than needed by Bilu-
Linial who worked with “signings” of the adjacency matrix.
Specifically, in addition to the events that they considered,
we need to also bound the degree of vertices.

3) New Hypergraph Sparsification Constructions:

Theorem 1.3 (Hypergraph cut sparsification with additive
error). Given an n-vertex hypergraph H = (V, E) of rank
r and a parameter € > 0, in probabilistic polynomial time
we can find a subset F C E of size |F| = O (72 . 6% log E)
such that, if we let d = r|E|/|V| be the average degree of
H, and ¢ = |E|/|F|, the following holds with probability at

least 1 — n=2:

|cer(S) — ep(S)] < ed|S| + evol(S)

vSCV. (8

The proof follows the same approach as the first part of
our proof of Theorem 1.2, and in fact we present directly
the proof for hypergraphs, leaving the result for graphs
as a corollary. It might seem strange that the number of
hyperedges in our sparsifier is, for fixed €, of the form
O (Zlogr), since, intuitively, the sparsification problem
should only become harder when r grows. The reason is
that, even in a regular hypergraph, d|S| overestimates the
number of hyperedges incident on S by up to a factor of r,
and so, in order to have a non-trivial guarantee, one has to
set € < 1/7.

Theorem 1.4 (Hypergraph sparsification with multiplicative
error). There is a randomized polynomial time algorithm
that, given a hypergraph of rank r, finds a weighted spectral
sparsifier with multiplicative error € having O(e~2r3nlogn)
hyperedges.

The above result should be compared with the
O(e72n3logn) hyperedges of the construction of Soma
and Yoshida [10]. Our approach is to provide an “hyper-
graph analog” of the spectral graph sparsifier construction
of Spielman and Srivastava [14]. Given H, we construct
an associated graph G (in which each hyperedge of H
is replaced by a clique in G), we compute the effective
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resistances of the edges of GG, and we use them to associate
a notion of “effective resistance” to the hyperedges of H.
Then we sample from the set of hyperdedges of H by letting
the sampling probability of each hyperedge be proportional
to its “effective resistance” and we weigh them so that the
expected weight of each hyperedge in the sample is the
same. At this point, to bound the error, Spielman and Srivas-
tava complete the proof by applying a matrix concentration
bound for the spectral norm of sums of random matrices. For
hypergraphs, we would like to have a similar concentration
bound on the error given by,

Z(l - We) - mbaex (xy — )% (9)
eeH aoee

max
x€ERY:[|x||=1
where W, is a random variable that is O if the hyperedge e
is not selected and it is its weight in the sparsifier if it is
selected, with things set up so that 1 — W, has expectation
zero. (Actually, this would only lead to a sparsifier with
additive error: to achieve multiplicative error we have to
study an expression such as the one above but after a
change of basis defined in terms of the associated graph.
For simplicity we will ignore this point in this overview.)
However, unlike in the graph case, the expression in (9)
does not correspond to the spectral norm, or any other
standard linear-algebraic norm, due to the max term, and
the key difficulty in all previous approaches to the problem
was to get suitable upper bounds on this quantity. Our main
idea is to consider the quantity V, = > _,(1 — W) -
maxg pee (Lo — xb)2 and view it as a random process
indexed by the set of all unit vectors x, and directly argue
about its supremum over all such x, using the technique of
generic chaining. In particular, we relate the metric given by
the sub-gaussian norm of the increments of the process V,
to another suitably defined Gaussian random process on the
associated graph G of H, which is much easier to analyze.
This allows us to relate the bound on the supremum of V,
to a related expression on the graph G, for which we can
use known matrix concentration bounds.

II. PRELIMINARIES
A. Linear Algebra Preliminaries

In this paper all matrices will have real-valued entries.

A matrix M is Positive Semidefinite (abbreviated PSD
and written M > 0) if it is symmetric and all its eigenvalues
are non-negative. Equivalently, M is PSD if and only if

vx e R", x'Mx>0

that is, the quadratic form of M is always non-negative.
The trace of a matrix is the sum of its diagonal entries.
For a symmetric matrix, its trace is equal to the sum of its
eigenvalues, counted with multiplicities. A density matrix is
a PSD matrix of trace one. The operator norm of a matrix
M is

M| =

sup || M|

x:||x|[2=1



If M is symmetric, then the above is the largest absolute
value of the eigenvalues of M and we also refer to it as the
spectral norm or spectral radius of the matrix.

If A and B are matrices of the same size, then their
Frobenius inner product is defined as

<A, B> = Z Ai,jBi,j = trace(ATB)
@]
and we will also sometimes denote it as A e B. Note that if

M is a symmetric matrix we have

sup
X density matrix

M| = |M e X|

If M is a symmetric n X n matrix with spectral decompo-
sition M = > | A\;v;v] then the “absolute value” of M
is the PSD matrix

n

(M| =" ilvavy

i=1
B. Reduction to bounded-degree case

We show that, in proving Theorem 1.1, Theorem 1.2 and
Theorem 1.3, it is enough to prove weaker bounds where
davel + D¢ 1is replaced by dmax - I, and vol(.S) is replaced
by dmax|S|, where dmax is the maximum degree.

Consider the following construction: given a graph G =
(V. E) of average degree davs = 2|E|/V, construct a new
graph G’ = (V'E’) such that

e To each node v € V there corresponds a cloud of

[dy/[dave|] nodes in V.
o To each edge (u,v) € E there corresponds an edge in
E’ between the cloud of u and the cloud of wv.

o Each vertex in G’ has degree at most d, ,, = [davg |

A construction satisfying the above property can be real-
ized by replacing the vertices of V, in sequence, by a cloud
as required, and then distributing the d, edges incident to
v among the vertices v’ in the cloud of v, so that any v’ is
incident to at most d, . edges.

Now suppose that F' C E’ is a subset of the edges of G’
and that F' C F is the set of edges of G corresponding to
the edges of F’. Let G be the graph G = (V, F) and G’ =
(V,F’"). Let x € R be any vector, and define x’ € RV to
be the vector such that x/, = x,, if v’ is in the cloud of v.
Then we observe that

x'Lex = xTLax!
XTLGX = x/TLé,x/
KT (o DX < X" ([davg] + Di)x

The only non-trivial statement is the third one. To verify it,
we see that the left-hand side is
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xT(d , Ix =

max

d
- : [davg]xg
el
< Z(dv + [danD 'Xﬁ

veV

This means that we can start from an arbitrary graph G,
construct G’ as above, find an unweighted sparsifier G =
(V',F") of G', and then obtain a set F' of edges such that
G = (V,F) is an unweighted sparsifier for G, with the
property that any bound dependent on d; . I on the quality
of the sparsification of G’ becomes a bound in terms of
([davg] + D¢) (and we can drop the ceiling at the cost of
a constant factor in the error).
If H = (V, E) is a hypergraph we can similarly construct
a hypergraph H' = (V' E’) such that
e To each node v € V there corresponds a cloud of
[dy/[dave]] nodes in V.
o To each edge (u,v) € E there corresponds an edge in
E’ between the cloud of u and the cloud of v.

« Each vertex in H' has degree at most d, ,, = [davg |

max

Similarly to the graph case, for every set S C V we can
define a set S’ C V’ (the union of the clouds of vertices
in S’) and for every set I/ C E’ we can define a set of
hyperedges F' C E of the same cardinality such that

e5(S) = ex ()
er(S) = em ()
Qa1 < [dag][S] + vol(S)

We also note that, in both constructions, the maximum
degree and the average degree of the new graph (or hyper-
graph) are within a constant factor.

III. DETERMINISTIC CONSTRUCTION

In this section we use the online convex optimization
approach of Allen-Zhu, Liao and Orecchia [5] to construct
a weak form of unweighted additive spectral sparsifiers, and
we prove Theorem I.1. Given the reduction described in
Section II-B, it is enough to prove the following theorem.

Theorem IIl.1. There is a deterministic polynomial time
algorithm that given a graph G = (V,E) of maximum
degree dyma.x and a parameter € outputs a multiset F of
O(|V'|/€?) edges such that the graph G = (V, F) satisfies

QCDG' —2Dg — €dmax] = CL(; — Lo = edpmax]
where ¢ = |E|/|F|.

We are interested in the following online optimization
setting: at each time ¢ = 1,..., an algorithm comes up
with a solution X;, which is an n X n density matrix,
and an adversary comes up with a cost matrix C}, which



is an n X m matrix, and the algorithm receives a pay-
off X; e C;. The algorithm comes up with X; based on
knowledge of X1,...,X;_1 and of C1, ..., Ct_1, while the
adversary comes up with C; based on Xi,...,X; and on
C1,...,Ci_1. The goal of the algorithm is to maximize the
payoff. After running this game for 7" steps, one defines the
regret of the algorithm as

ix.ot>—<ixt.0t> |

Ry = sup
X density matrix

Theorem III.2 (Allen-Zhu, Liao, Orecchia [5]). There is a
deterministic polynomial algorithm that, given a parameter
n > 0, after running for T steps against an adversary
that provides cost matrices Cy restricted as described below,
achieves a regret bound

L 1/4 1/4, | 2y/n
Ry <O(n E (X o |Cyl) - X, Ce Xy + n
=1

Furthermore, if Cy is block-diagonal, then X is also block-
diagonal with the same block structure The restrictions on
the adversary are that at each step t the cost function Cy is
positive semidefinite or negative semideﬁnite and satisfies

X1/4 X1/4
n Ci 4

Remark II1.3. The theorem above is the ¢ = 2 case of Theo-
rem 3.3 in [5]. The Furthermore part is not stated explicitly
in [5, Theorem 3.3] but can be verified by inspecting the
proof. Note that what we are calling C; corresponds to —C}
in the treatment of [5], which is why their cost minimization
problem becomes a maximization problem here, and the
condition that Cy satisfy nX, 1/ 4C’t /4 i becomes the
condition that we have in the above theorem.

To gain some intuition about the way we will use the
above theorem, note that the definition of regret implies that

we have
T
)\max (Z Ct)
t=1

where A\pax () denotes the largest eigenvalue of the matrix.
Now suppose that we play the role of the adversary against
the algorithm of Theorem III.2, and that, at time ¢, we reply
to the solution X of the algorithm with a cost matrix of the
form mL,, 5, — Lg where m := |E| and (a¢, b;) is an edge
chosen so that

T
:RT+ZCt.Xt>

t=1

Xt ° (mL(L,,,bt - LG) S 0

We know that such an edge (ay, b;) must exist, because the
average of the left-hand side above is zero if we compute it
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for a uniformly chosen random (a¢,b;) € E. After playing
this game for 1" steps we have

T

)\max (mZLat,bt - TLG) S RT

t=1
and, calling F' the multiset {(as, b;) : ¢t =1,...,T}, calling
G = (V, F) the multigraph of such edges and ¢ = |E|/|F| =
m/T, and noting that L5 = >, L, 5, we have

1
C-Lé—ng?RT-I

which, provided that we can ensure that R is small, is one
side of the type of bounds that we are trying to prove.
In order to get a two-sided bound, one would like to use
the idea that
) =i

)\max <

and play the above game using, at step ¢, a cost matrix of
the form

o

where the edge (ay, b:) is chosen so that

M
0

0
—M

mLat;bt
0

— L | 0
‘ LG — mLat,bt

X, 0(C <0

Then, if we define ¢ and G as above, we would reach the
conclusion

1
lcLg — La|l < TRT

and what remains to do is to see for what value of 1" we
get a sufficiently small regret bound.

Unfortunately this approach runs into a series of difficul-
ties.

First of all, our cost matrix is neither positive semidefinite
nor negative semidefinite.

We could make it positive semidefinite by shifting, that is,
by adding a multiple of the identity. This is not a problem
for the block mL,, 5, — Lg, whose smallest eigenvalue is
at most 2d,,x in magnitude, but it is a serious problem for
the block Lg — mLg, ,, whose smallest eigenvalue is of
the order of —m: the shift needed to make this block PSD
would be so big that the terms X; @ |C;| in the regret bound
would be too large to obtain any non-trivial result.

Another approach, which is closer to what happens in
[5], is to see that the analysis of Theorem III.2 applies also
to block-diagonal matrices in which each block is either
positive semidefinite or negative semidefinite. This way, we
can shift the two blocks in different directions by 2dax]
and get the cost function in a form to which Theorem III.2
applies, but then we would still be unable to get any non-
trivial bound because the term X; e |C;| could be in the
order of m, while the analysis requires that term to be of
the order of dy,.x to get the result we are aiming for. To



see why, note that if C; is a block-diagonal matrix with
a positive semidefinite block and a negative semidefinite
block, then |C| is just the same matrix except that the
negative semidefinite block appears negated. Recall that we
wanted to select an edge so that X e C} is small: what will
happen is that the PSD block gives a positive contribution,
the NSD block gives a negative contribution, and X e |C}| is
the sum of the absolute values of these contributions, which
can both be order of m.

We could work around this problem by scaling the matrix
in a certain way, but this would make the analysis only
work for a weighted sparsifier. This difficulty is the reason
why [5] construct a weighted sparsifier even if the effective
resistances of all the edges of G are small, a situation in
which an unweighted sparsifier is known to exist because of
the Marcus-Spielman-Srivastava theorem.

We work around these difficulties by reasoning about the
signless Laplacian. If G is a graph with diagonal degree
matrix D¢ and adjacency matrix Ag, then the signless
Laplacian of G is defined as the matrix Dg+ Ag. We denote
by SL¢ the signless Laplacian of a graph G, and by SL,
the signless Laplacian of a graph containing only the single
edge (a,b). Equation (10) below shows that, in this case,
the term X, e |C;| in the regret bound can be bounded in
term of d,.x and are never order of m.

Recall that, like the Laplacian, the signless Laplacian is
a PSD matrix whose largest eigenvalue is at most 2d,ax.

To prove Theorem III.1, we will play the role of the
adversary against the algorithm of Theorem III.2 with the
PSD cost matrix

L mL(lhbt — LG 0
Ct L 2dmaxI+ ( 0 mSLat,bt — SLG >
where the edge (a¢,b;) is chosen so that
mLa t,by LG 0
Ko < 0 ST, 4 — SLa ) <0

Since X o I =1 for every density matrix, we get that, after
T steps, if we deﬁng F' to be the multiset of selected edges,
c= % =%, and G = (V, F), then we have

R
cLéfLGj%J

and so it remains to show that we can make Ry < edpax-T
by choosing 7' = O(n/¢?).

Let us analyze the quantities that come up in the statement
of Theorem III.2.

Since C; is PSD, we have

Xt. ‘Ct| ZXt.Ct

mLat,bt - LG ‘ 0
0 ‘ mSLat’b,, — SLG

:2dmax + Xt o (

§2dmax .

)

(10)
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The non-trivial part of the analysis is the following bound.

Claim 1. At every time step t we have

1X 71X | < O(Vdimas - m) (11)

Proof: Recall from Theorem II1.2 that matrices X; will
have the same block structure as the cost matrices C;. We
can therefore write the matrix X; as

_(v]o
Xi = ( 0|2 >
Then
o Ytl/4 0
t 0 Ztl 1
and

1X4C X | = masc{ [V Lay.b, + 2dinax] — L)
Y02 (S Lay b, + 2] — SLe) 2|}

Using the triangle inequality and the fact that all the eigen-
values of X;, and hence of Y}, of Z;, of Ytl/4 and Ztl/4 are
at most one, we have

||Ytl/4(mLat-,bt + 2dmax] — LG)Ytl/4”
<l|¥, Ly, Y| + 2

12 (mSLa, b, + 2dmax] — SLe)Y, |
SmHZtl/‘LSLambt Zt1/4|| + 2dmax

Also recall that we chose (at, b;) so that we would have

mLa, b, — Lg | 0
t,0¢ <
Xt.( —SLG _O

0 | mSLa, s,
which is the same as

YiemLg, p, + ZromSLg, b, <Y, 0 Lo+ Z, ¢ SLg

=X;e ( LG 0 > < >\max ( LG 0 )

0 | SLg 0 | SLg
§2dmax

which implies
Y, emLg, p, < 2dmax
ZyomSLg, b, < 2dmax
Now let us write

Y= Niyiyi

where \; are the eigenvalues of Y; and y; are a orthonormal
basis of eigenvectors of Y;, and let us also write

T
mLg, b, = WW



where w is the vector v/m - (1,, — 1p,) of length /2m.
Then

1 mLa, 5, Y = 1 w2 = whY P w

= VawTyiylw =3V iw,yi)?
Finally, ;y Cauchy-Schwarz, Z
Z Vilw,yi)? < \/Z<W7yz‘>2 : \/Z Ai(w,yi)?
il TV < VBB

In a completely analogous way we can prove that

12 *mS Lay 0, Z|| < 2¢/dipam

To conclude the proof, take 1 such that
| XY4C, X4 < min{1/4, ¢}

which, by the above claim, means that it can be done by
choosing n = €/O(v/dmaxm). Then using (10) and that m <
dmaezn We have the regret bound

Br < 00T s O/ ) + 2/
_ Ole T - dpaz) + O (e—lm)
< O(E -T - dmam) +0 (5_1dmaxn)

When T = O(n/e?), the above upper bound is O(e - T -
dmax), Which means that we have constructed a graph G
with T' = O(n/€?) edges such that

m
Tl Lo 2 0(0) - duax -1

m
?SLG —SLeg X0(€) - dmax -
where the second equation is equivalent to
m 2m
?Lé —Lg = TD@ —2D¢g — 0(6) “dmax - 1
proving Theorem III.1.

I'V. PROBABILISTIC CONSTRUCTION OF ADDITIVE
SPARSIFIERS

In this section, we give probabilistic algorithms for
constructing additive spectral sparsifiers of hypergraphs.
Specifically, we prove the following theorem which, by the
reduction in Section II-B, implies Theorem I1.3. That we
can choose the normalization constant ¢ to equal |E|/|F|
in Theorem 1.3 is because, in the reduction, the following
theorem is used for a graph where dy,.x approximately
equals the average degree.

Theorem IV.1. Given an n-vertex hypergraph H = (V, E)
of rank r and of maximal degree dn.y together with a
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parameter € > 0, in probabilistic polynomial time we can
find a subset F C E of size |[F| = O (% . E%log g) such
that, if we let ¢ be a normalization constant, the following
holds with probability at least 1 — n~2:

lc-er(S) —ep(S)] < edmax|S] vSCV. (12

In Section IV-A we then generalize the techniques for
simple graphs to obtain additive spectral sparsifiers as stated
in Theorem 1.2.

Our arguments are inspired by those used by Frieze and
Molloy [7] and subsequently by Bilu and Linial [11]. They
use the Lovasz Local Lemma (LLL) [12] with an exponential
number of bad events and may at first seem non-constructive.
However, rather recent results give efficient probabilistic
algorithms even in these applications of LLL. Theorem 3.3
in [13] will be especially helpful for us. To state it we
need to introduce the following notation. We let P be a
finite collection of mutually independent random variables
{P17P2,...7Pn} and let A = {Al,AQ,...,Am} be a
collection of events, each determined by some subset of P.
For any event B that is determined by a subset of P we
denote the smallest such subset by vbl(B). Further, for two
events B and B’ we write B ~ B’ if vbl(B)Nvbl(B’) # (.
In other words, B and B’ are neighbors in the standard
dependency graph considered in LLL. Finally, we say that
a subset A" C A is an efficiently verifiable core subset if
there is a polynomial time algorithm for finding a true event
in A’ if any. We can now state a (slightly) simplified version
of Theorem 3.3 in [13] as follows:

Theorem IV.2. Let A’ C A be an efficiently verifiable core
subset of A. If there is an ¢ € [0,1) and an assignment of
reals © : A — (0,1) such that:

VA e A:Pr[A] < (1—e)z(A)

I1

BeA:B~A

(1-=z(B)),
13)

then there exists a randomized polynomial time algorithm
that outputs an assignment in which all events in A are
false with probability at least 1 — ZAGA\A, z(A).

The following lemma says that we can roughly half the
degree of vertices without incurring too much loss in the
cut structure. Applying this lemma iteratively then yields a
sparsifier. We use the following notation: For an edge set X
and disjoint vertex subsets S and T, we let 0x (S, T") denote
the set of edges with one endpoint in S and one in T'; for
brevity, we also write §x () for §x(S9,5). Also recall that
ex(S,T)=16(S,T)| and ex (S) = |dx(9)].

Lemma 1IV.3. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex hypergraph H = (V, E)
of maximal degree dp,.x and of rank r, outputs a subgraph
H = (V,F) with F C E such that the following holds with



probability at least 1 — n~3:

)| < 104/dlog(dr) - |S]

[2-er(S) —er(S VS CV.

Proof: Throughout the proof we let d = dyax. The
proof adapts the arguments in [11] (which in turn are
similar to those in [7]) to general hypergraphs. Let G denote
the graph obtained from H = (V, E) by replacing each
hyperedge e = (vi,...,v;) € E, by a clique with (¥)
edges (v;,v;), 4,5 € [k]. We say that G is associated to
H. By construction, the degree of any vertex in G is at
most d(r — 1).

Graph G will be important due to the following fact: it is
enough to prove the inequality for those subsets S C V that
induce a connected subgraph of G. To see this, let G[S]
denote the subgraph induced by S. Suppose G[S] is not
connected and let Si,...,S; C S be the vertex sets of
the connected subgraphs. If the lemma holds for connected
components then |2-ep(S;) —er(S;)| < 104/dlog(dr) -
|S;| fori=1,...,k, and so

12-er(S) —en(S)

I
M=

(2-er(Si) —er(Si))

1

<
Il

<

“-

12 er(Si) —en(Si)]

=1

k
<10y/dlog(dr) - > _|Si]
i=1
=10+/dlog(dr) - S|,

where the first equality holds because there are no edges in
F (and F C FE) between the sets Sq,...,Sk.

It is thus sufficient to prove the inequality for those sets
S that induce a connected subgraph G[S]. Suppose we
select F' by including each edge e € E with probability
1/2 independently of other edges. That is, in the notation
of Theorem IV.2, we have that P consists of |E| mutu-
ally independent variables {P.}.cr, where P, indicates
whether ¢ € F' and Pr[P.] = 1/2. Now for each S such
that G[S] is connected, let Ag be the “bad” event that
|2 er(S) —epr(S)| > 104/dlog(dr) - |S|. Note that e (.5)
is the sum of at most d|S| independent variables, attaining
values 0 and 1, and that the expected value of er(.S) equals
eg(S)/2. Thus by the Chernoff inequality we get

Pr[Ag] < (dr)~5I5I,

To apply Theorem IV.2, we analyze the dependency graph
on the events: there is an edge between Ag and Ag: if
vbl(As) Nvbl(Ag/) # 0 < 65(S)Ndg(S’) # 0. Consider
now a fixed event Ag and let £ = |S|. We bound the number
of neighbors, Ag/, of Ag with |S’| = /. Since we are

interested in only subsets S’ such that G[S’] is connected,
this is bounded by the number of distinct subtrees on ¢
vertices in the associated graph G, with a root in one of
the endpoints of an edge in §(5) . As G has degree at most
d(r — 1), there are at most |S| + d(r — 1)|S| = drk choices
of the root. The number of such trees is known to be at most
(see e.g. [7])

drk - <dr(€ B

0 11)> < drk - (edr)*!, (14)

where we used that (“{‘7") < (edr)!!

Now to verify condition (13) of Theorem IV.2, we set
x(As) = (dr)~3!5l for every bad event Ag. So if we
consider an event Ag with k = |S|, then

x(ds) ] (1 -xz(As))

S’-ASNAS/
a0

> (dr)~3* exp(—2drk Z(dr)-%(edr)f—l)
=1
>(dr) ek > (dr)~%% /2 > Pr[Ag]/2,

32 drk(edr)*—*

where we used that d is a sufficiently large constant, which
is without loss of generality since if d < 104/dlog(dr) then
the lemma becomes trivial. In other words, (13) is satisfied
with € set to 1/2.

It remains to define an efficiently verifiable core subset
A" C Asuch that 1 —37 1 4y 0 #(4) > 1 =073 We let

A'={Ag € A:|S| < s} where s = log,,.(n).

By the same arguments as in (14), there is at most n -
(dréf_ll)) < n(edr)’~' many events with |S| = ¢ (corre-
sponding to connected components in G). Therefore, the
following properties hold:

1) A’ is efficiently verifiable since it contains n -
Sy (edr)=t = O(n-(edr)®) = O(n?) many events
that can be efficiently enumerated by first selecting
a vertex r among n choices and the considering all
possible trees rooted at r with ¢ < s vertices.

2) We have

Z l‘(AS

Ase A\A

Z (dr)=% - (n - (edr)”)
l=s+1
n
<n- Z (dr)~% < n(dr)™ =n"3,
{=s+1
where for the first inequality we again used that d is
a sufficiently large constant.

We have verified Condition (13) of Theorem IV.2 and we
have defined an efficiently verifiable core subset A’ such



that 3, a4 #(As) < n~3 and so the lemma follows.
|
Applying the above lemma iteratively will give us additive
cut sparsifiers of constant degree. In particular, the condition
in the following lemma will imply that the degree of each
vertex in H is at most O(dyax/2%) and k can be chosen
so that the degree is at most O(Z log(r/e)). The following
lemma therefore implies Theorem IV.1.

Lemma IV4. There is an absolute constant ¢ such that
the following holds. There is a probabilistic polynomial-time
algorithm that given as input an n-vertex hypergraph H =
(V, E) of maximal degree dpax and of rank r, € > 0, and
any k € N such that dpya2~% > ce% log(r/e), outputs a
subgraph H = (V, F) such that the following holds with

probability at least 1 — n=2:

|2]C cep(S) — eE(S)| < edmax|9] for every S C V.

Proof: Starting with H we apply Lemma IV.3 k times
to obtain H. Let F; denote the edge set and let d; denote
the maximum degree after round . So Fy = E and dy =
dmax- By the guarantees of Lemma IV.3, we have that with
probability 1 —n~=3, for every S C V

|2di+1 - dz| < 10\/ dl log(dlr) and (15)
12-ep,,, (S) — e, (S)] < 10y/d;log(d;r) - |S].  (16)

As we apply Lemma IV.3 k times with & < log(n), the
union bound implies that the above inequalities are true
for all invocations of that lemma with probability at least
1—k-n% >1—n"2 From now on we assume that the
above inequalities hold and show that the conclusion of the
statement is always true in that case. Specifically, we now
prove by induction on £ that

|2%d;, — do| < edp, and
‘Qk . epk(S) — GFO(S)‘ S Edo . ‘S|
The claim holds trivially for £ = 0. Assume it holds for all

i < k, which in particular implies 2°d; < 2d, for all i < k.
By the triangle inequality and (15),

for every S C V.

k—1
|28y — do| < ) [2'(2dis1 — di)|
=0
k—1
<10 2'\/d;log(d;r)
=0
k—1 )
<10 2'v/2(do/27) log(2(do/27)r)

=0

where the last term follows by the induction hypothesis on
d;. As the terms increase geometrically in 4, this sum is
O(2%+/(do/2%) log((do/2*)r) which is edy by our assump-
tion on k and selection of c.
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Finally, we note that |2 - e, (5) — eg, (S)| < edo - |9]
follows by the same calculations (using (16) instead of (15)).
| |

A. Additive spectral graph sparsifiers

In this section we describe how the proof in the previous
section generalizes to spectral additive graph sparsifiers.

Theorem IV.5. Given an n-vertex graph G = (V, E) and
a parameter € > 0, in probabilistic polynomial time we can
find a subset F C E of size |F| = n - O((log(1/¢€)3/€?)
such that, if we let L = Dg — Ag be the Laplacian of G,
L& = Dg — Ag be the Laplacian of the graph G=(V,F),
and c a normalization constant, we have

—€dmax] X cLg — Lg = edmaxd . 17)

Similar to before, this implies Theorem 1.2 by the reductions
in Section II-B.

To prove Theorem IV.5, we need the following modifica-
tion of Lemma IV.3 in the case of simple graphs.

Lemma IV.6. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex graph G = (V,E) of
maximal degree d, outputs a subgraph G = (V,F) with
F C FE such that the following properties hold with
probability at least 1 —n=3:

1) For every disjoint S, T C V. we have

12-er(S,T) —er(S,T)| < 10/dlogd - +/|S||T.
2) For every vertexv € V we have |2 - ep(v) — ep(v)] <

10+y/d logd.

The above lemma is similar to Lemma 3.2 in [11] with
the exception that here we also need the degree constraints
(the second condition). Similar to Lemma IV.7 we obtain
the following by applying Lemma IV.6 iteratively.

Lemma IV.7. There is an absolute constant c¢ such that

the following holds. There is a probabilistic polynomial-time

algorithm that on input an n-vertex graph G = (V, E) of

maximum degree d, € > 0, and any k € N such that d2—k >

cg% log(1/¢), outputs a subgraph G = (V, F) such that the

following properties hold with probability at least 1 —n~2:
1) For every disjoint S,T CV we have

|25 ep(S,T) — ep(S,T)| < ed-+/|S||T].
2) For every vertex v € V we have

‘Qk cer(v) —ep(v)| < ed.

The proofs of Lemma IV.6 and Lemma IV.7 are very
similar to the proofs of Lemma IV.3 and Lemma IV.4, re-
spectively. We have therefore deferred them to Appendix A.
We now explain how Lemma IV.7 implies an additive
spectral sparsifier for graphs via the following result of Bilu
and Linial [11]:



Lemma IV.8 (Lemma 3.3 in [11]). Let A be an n X n real
symmetric matrix such that the {1 norm of each row in A
is at most ¢, and all diagonal entries of A are, in absolute
value, O(alog(¢/a)+1)). Assume that for any two vectors,
u,v € {0,1}", wirh supp(u) N supp(v) = (:

luT Av|
[allffv]l —
Then the spectral radius of A is O(a(log({/a) + 1)).

Here supp(u) = {i : u; # 0} denotes the support of
a vector u. Now let G and G be the input and output
graph of Lemma IV.7. We set A = 2kLé — L¢. Since
the Laplacian of a graph is a symmetric real matrix we
have that A is a symmetric n X n real matrix where n is
the number of vertices in G and G. We now verify that A
satisfies the assumptions of the above lemma assuming that
the algorithm of Lemma IV.7 was successful (which happens
with probability at least 1 — n~2).
e The ¢; norm of a row in A is at most the #; of that
row in QkLG plus the ¢; norm of that row in L¢. This
can be upper bounded as follows. The ¢; norm of a
row of a Laplacian matrix corresponding to a vertex v
equals twice the (weighted) degree of v. As any vertex
in G has degree at most d, it follows that the /; norm
of any row in L¢ is at most 2d. For a row in 2kLC; we
use Property 2 of Lemma IV.7 to bound the ¢; norm
by 2(eg(v) + 10y/dlogd) < 2(d + 10v/dlogd). We
therefore have that #; norm of any row in A is bounded
by

¢ =2d+2(d + 10y/dlog d) = O(d) .

For the other two conditions, set & = ed where € is
selected as in Lemma IV.7. Then we have that the
absolute value of any diagonal entry in A corresponding
to a vertex v equals

2" ep(v) —ep(v)| < ed,

where the inequality is implied by Property 2 of
Lemma IV.7. Similarly, consider any vectors u,v €
{0, 1}™ with supp(u)Nsupp(v) = 0. Let S = supp(u)
and T' = supp(v). Then

lu" Av| = |uT(2kLG)V —u"Lev|
= || = 2%6p(8,T) — (—6p(S,T))l|
Sgd' V |S||T|a
where the last inequality is implied by Property 1 of
Lemma IV.7. The second equality is by the identity
u'Lov = Z (wv; +u;v; —wv; —uvy)
{i.i}eE
_6(57 T)

(and similar for 2kLé)-
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We thus have that the assumptions of Lemma IV.8 are
satisfied with £ = O(d) and a = ed. It follows that A has a
spectral radius of O(elog(1/e)d). Or equivalently:

—cclog(1/e)dl = 2"Ls — Lg =< celog(1/e)dI ,

for an absolute constant ¢’. To summarize, we obtain the
following lemma which in turn implies Theorem IV.5 (by
selecting k as large as possible):

Lemma IV.9. There are absolute constants ¢ and ¢’ such
that the following holds. There is a probabilistic polynomial-
time algorithm that on input an n-vertex graph G = (V, E)
of maximum degree d, € > 0, and any k € N such that
2% > CE% log(1/¢), outputs a subgraph G = (V, F) such
that the following holds with probability at least 1 —n=2:

—celog(1/e)dl < 2"Ls — Lg < delog(1/e)dI .
V. SPECTRAL HYPERGRAPH SPARSIFICATION

Let H = (V,E) be a weighted hypergraph on n ver-
tices, with weights w. > 0 on hyperedges e € E. Let
r = maxX.cg |e| be the maximum size of hyperedges in
H, i.e., the rank of the hypergraph.

For a hyperedge e, the hypergraph Laplacian operator Q) :
R™ — IR, acts on a vector x € R™ as

Qc(x) = we max(z, — mb)2 = w, max z" Ly
a,bece a,bee
where L, is the standard graph Laplacian for an (un-
weighted) edge ab.

Definition 1. (Hypergraph Laplacian) Given a weighted
hypergraph H, the hypergraph Laplacian operator Qp :
R™ — R for H is defined as

_ _ T
Qu(z) = Z Qe(x) = Z we Max @ Lopx
c€E(H) ceE(H)

Definition 2. (Multiplicative hypergraph spectral sparsi-
fier.) A weighted hypergraph H = (V,F) is a (1 + ¢)-
multiplicative spectral sparsifier of H if

Qi (x) — Qu(z)| < eQu(x)

We show the following result, which generalizes the result
of Spielman and Srivastava [14] from graphs to hypergraphs.

for all x € R". (18)

Theorem V.1. For any hypergraph H of rank r, and € > 0,
there is a (1 + €)-multiplicative spectral sparsifier H of H
with O(E%r:snlog n) edges. Moreover, there is an efficient
randomized algorithm that computes H with probability 1 —
n=*D) and runs in time O,..(n).

Unlike in the graph case, where it can be checked if F'
satisfies (18) by an eigenvalue computation, we do not know
of any efficient way to check Condition (18) for hypergraphs.

The following simple lemma shows that to prove Theorem
V.1, it suffices to consider the case where all hyperedges



have size between r/2 and r. We will make this assumption
henceforth.

Lemma V.2. If Theorem V.1 holds for hypergraphs where
each edge has size between r/2 and r, then it holds for all
rank r hypergraphs.

Proof: For i = 1,...,logr, let H; be H restricted to
edges of size (271,2%]. For each i, we apply the claimed
algorithm to H; to find a (1 + ¢;)-sparsifier H; of H; with
€; = £2(i71087)/2 and return H = U, H;.

As H; has O(§23inlog n) = O(%2"°8"2nlogn) hy-
peredges, summing over all ¢ from 1 to logr gives that H
has O(Z;73nlogn) hyperedges. Moreover, for any 2 € R™,

&€

H satisfies (18) as
Qg (x) — Qu(z) =| Z(Qﬁi (z) - Z Qu,(x))]
éZQgi(x)—QHi(x)lz Z
< iei@m (2) <€ Qmw ==Qu(@)

A. Algorithm

The algorithm is a natural generalization of the sampling
by effective resistances algorithm for graphs [14].

Definition 3. (Associated graph.) Let G denote the
multi-graph obtained by replacing each hyperedge e =
(v1,...,vx) € H, by a clique with (’;) edges (v;,v;),
i,j € [k], each with the same weight as that of e. We call
G the associated graph of H.

To avoid confusion, we will use (a, b) to denote the edges
in G and e for the hyperedges in H.

Algorithm: Given the hypergraph H, let G be its
associated graph, and let Lg = Z(ab) e Lab be the (graph)
Laplacian of G. Let Y, = Lal/zLabLal/Z, where Lal is
the pseudo-inverse of L¢. Then 4, := || Y]] is the effective
resistance of the edge ab. For a hypergraph e € E(H ), define

T'e = MAaxX Typ
a,bce

Let L = ce?/(r*logn), where c is a fixed constant that
can be computed explicitly from the analysis described later.
For each hyperedge e, set

Te

L)'

Ppe = min(1,

H is obtained by sampling each ¢ € H independently
with probability p. and scaling its weight by 1/p..
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B. Analysis

Our goal in the next few sections is to prove Theorem V.1.
We first show that H has O((r3nlogn)/e?) edges with high
probability, and then focus on showing that (18) holds with
probability 1 — nf2(1),

Bounding the number of edges: The expected number
of edges in H is ) _ p., which is at most (> _7.)/L. So it
suffices to bound,

D e

e€E(H)

max 7'gqp.
a,bce

e€E(H)

The effective resistances in a graph satisfy the metric prop-

erty, Tap < rac+7ep for all a, b, ¢, and so for any e € E(H)

with k = |e|, and any a, b € e, summing over all ¢ € e gives

krab S Z(’rac + ch) S 2 Z Ted

c€Ee c,d€e

As k > r/2 by our assumption from Lemma V.2, this gives

that
POIEAEED DD DENEIN S

e€E(H) e€cE(H) a,bee (ab)EE(G)

Without loss of generality we can assume that G is con-
nected, in which case L has rank exactly n — 1 and
Lg1 = 0. This gives that Z(ab)eE(G) Y. = I,_1, which
upon taking traces on both sides, and using that Y, is rank
1, gives Z(ab)eE(G) rep =n — 1.

So the expected number of edges is O(n/rL)
O((nr3logn)/e?), and as the hyperedges are sampled in-
dependently, by standard tail bounds the number of edges is
tightly concentrated around the mean.

Proving condition (18): We now focus on showing
that (18) holds. It is useful to first consider the analysis
of Spielman and Srivastava [14] for the graph case.

The graph case: In the graph setting, (18) becomes

|27 (Lg — Lg)w| <ex’Lgx  forallz € R™, (19)

where L = Z(ab)eF(l/pab)Lab is the Laplacian of G.
Setting z = L%z, and Yy, = Lg"/? Loy Lg%, this is
equivalent to showing that, for all z in the range of Lg, we
have
> 2T (Xap = Yan)z < e
(ab)eG

where X, is the random matrix which is Yy /pas with prob-
ability p,p and is the all-0 matrix otherwise. So E[X 3] =
Y. As Z(ab)eG Yoo = I (on the range of Lg), this
reduces to show that 2" (37,4 cq Xav — 1)z < €2
equivalently,

or

1Y (Xap — E[Xa))|| < e (20)
ab



This can be done using standard matrix concentration
bounds for the spectral norm such as the following.

Theorem V.3. (Matrix Bernstein inequality, [15].) Let
X1, ..., X, be independent, symmetric d x d random ma-
trices, and S =", X;, L = max; || X;||. Then

t2/2
In particular, this gives the following useful corollary.

12 E[XP]]| + Lt /3
Corollary V4. If A;,... A, are PSD with >, A; = 1,
and X; = A;/p; with probability p; and 0 otherwise, then
for any € <1,

Pr(||S — E[S]]| > €] < dexp(—¢*/3L)

Pl — E[S)] > 1] < dexp<

where L = max; || A;||/pi.

Applying Corollary V.4 with A; = Yy, and p; = pap,
we have L maxgp ||Yabll/Pab = maxXepTap/Pap =
O(g?/1ogn), which gives that (20) holds with probability
at least 1 — n~ (1) ag desired.

The hypergraph case: We first reduce the condition
(18) for hypergraphs to a simpler form. Let G be the graph
associated to H and L be its Laplacian. We have following
simple relation.

Lemma V.5. For a k-edge e, let L. =

for all x € R"
2
k(k—1)

If the hyperedges in H have size in (r/2,r], then for all
reR”

abee Lap. Then,

2
xTLe'Z‘ S QE(Z‘) S %xTLex

_ 2
r(r—1)

Proof: Suppose that z; < ... < x. Then Q.(z) =
(zx—21)?, while e contributes 3°, ;c(zi—2;)* to 2" Lga.
So the lower bound in the first inequality follows directly.

For the upper bound, we observe that (z—x1)? < 2(x),—
z;)%> + 2(x; — x1)? for each j = 2,...,k — 1. Summing
these gives (k—2)(zp —x1)% < 2 Zf;;((xk —zj)%+(z;—
71)?). Adding 2(x), — 1)? to both sides, and noting that
the resulting right side is at most 227 L., the upper bound
follows.

Summing up over all e € E(H), and using r/2 <k <r
gives the second set of inequalities. ]

By Lemma V.5, to show (18) it suffices to show that for
r e R",

4
2T Lor < Qu(z) < —2T Lg.
r

Qn 2

€
(2) ~ Qulw)] < 5o La
As before, setting z = LlG/Qm and Yy, = Lél/zLabLél/2
gives

Qe(2) = max 27 Lz = max 27 Yy 2.
a,bee a,b€e
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Let us define

We(z) = max 2TY 2,

and let X. be the random variable that is 1/p. with
probability p. and 0 otherwise. Then (21) is equivalent to

[ (e = DWe(2)] < 1211

ecH

for all z € Im(Lg).

As W,(2) scales as ||z||?, it suffices to show that

3
‘ Z(Xe - 1)We(z)| S ﬁ“z“Z
ecH

for all z € By, (22)

where B, is the unit ¢>-ball in the subspace restricted to the
image of Lg,

However, unlike in the graph case, it is not immediately
clear how to show concentration to prove (22). In particular,
as the operator W, (z) involves the max term, the left hand
side does not correspond to any standard linear-algebraic
quantity like the spectral norm, for which we can use matrix
concentration bounds.

A natural idea might be to replace W.(z) by the larger
term Z(a-, b)ce 27Y,p2, and reduce the problem to the graph
case, for which we can use matrix Bernstein inequality. But
this does not work as the multiplier (X, — 1) in (22) can
be negative (so |} (Xe —1)W.(2)| could be arbitrarily
large even though | >y (Xe — 1) 37, 4, 2" Yap2| is 0).

So our approach will be to directly consider the inequality
(18) for each z in the unit ¢5-ball, and bound the probability
of violation for any z by applying a union bound over all
such points z by a careful net argument. More precisely, we
view the left hand side of (22) as a random process indexed
by z € Bs, and use generic chaining arguments to bound
the supremum of this process.

Summarizing, let Wy (2) = >, c p We(2), and Wz (z) =
> ec XeWe(2) be the corresponding operator for H. Prov-
ing Theorem V.1 reduces to the following.

Theorem V.6. With probability 1 — n=*V), it holds that

5 for all z € By (23)
r

(Wi (2) = Wa(z)] <
This will be accomplished in the next few sections.

C. Supremum of random processes

We first give some background on the theory of supremum
of random processes and mention the results we need. For
more details, we refer the reader to Chapters 7 and 8 of the
excellent recent text [16].

Definition 4. (Random process) A random process is a col-
lection of random variables (Xt ):eT on the same probability
space, which are indexed by the elements t of some set T.

The random variables X; — X, for s,t € T are the
increments of the random process. A random process is



called mean-zero if all X; have mean-zero. We will only
consider mean-zero processes in this paper.

Definition 5. (Gaussian process) A random process (X¢)ter
is called a Gaussian process, if X, are jointly Gaussian,
i.e. if every finite linear combination of the X, is Gaussian.

Any Gaussian process can be written in a canonical way
as X; = (g,t), where t € R™ and g ~ N(0,1I,) is the
standard normal vector. This gives that for any s,¢ € T, the
increments of a Gaussian process satisfy,

(E[(Xe — X)) = it — |

where ||t — s||2 denotes the Euclidean distance between ¢
and s.

As a (mean-zero) Gaussian process is completely deter-
mined by its covariance, the supremum Esup,.r X; of a
gaussian process is completely determined by the geome-
try of the metric space (7, d). In particular, we have the
following celebrated result.

Theorem V.7. (Talagrand’s majorizing measures theorem.))
Let (Xt)ter be a mean-zero Gaussian process on a set T,
with the canonical metric on T, d(s,t) = ||t — s||2. Then for
some absolute constants c,C

cy2(T,d) < Esup Xy < Cy(T,d)
teT

where yo(T,d) = infiq,)sup,cr > opeo 2¥/2d(t, 1), and
where thi infimum is over all sets Ty, C T, satisfying
Ty < 2% for all k.

We now consider sub-gaussian processes (see section 8.1
in [16] for details).

Definition 6. (Sub-gaussian increments.) Consider a ran-
dom process (Xt)teT on a metric space (T, d). We say that
the process has sub-gaussian increments if there exists some

K >0, such that
| Xt — X5y, < Kd(t,s)  forallt,seT.

Here || - ||y, is the sub-gaussian norm for real-valued
random variable X, defined as

I1X ||y, = inf{t > 0 : E[exp(X2/t2)] < 2}.

We need the following two basic facts about the t)3-norm
(section 2.6 in [16]).

Fact V.8. For any random variable X,

(with ¢ = 1/v1In2).

Fact V9. For Xi,...,X,, independent || " | Xi”?pz <
iy 1Xill3,, where c is an absolute constant.

Xllpo < el Xlloo

The following result follows directly from Theorem V.7
(see section 8.6 in [16] for details).

Theorem V.10. (Talagrand’s comparison inequality.) Let
(Xt)ter be a mean-zero random process on a set T, and
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let (Yi)ier be a Gaussian process with the canonical metric
d(s,t) = (E[(Y, — Y;)?])Y/? = ||Y, — Yi||2. Assume that for
all s,t €T, we have

X = Xl < K[|Y: — Y5l
Then, for some absolute constant C,

Esup X; < CKEsupY;
teT teT
More generally, for every u > 0,
Pr|sup X; — X, >CK
s, teT
< 2exp(—u?)

<IE supY; +u diam(T))}
teT

where diam(T) is the diameter of T with respect to the
metric d.

In other words, if we can find a Gaussian process Y; such
that its Gaussian increments upper bound the corresponding
sub-gaussian increments of X, then we can bound the
supremum of X; by that of Y;.

D. Random process for hypergraph sparsification

We now consider the relevant random processes arising
in our setting of hypergraph sparsification.

Gaussian Process on the associated graph: Let G
be the associated graph of H, and consider the random
matrix U =) (ab)€E(G) JabYap, Where gqp are independent
N(0,1).

For z € R"™, consider the Gaussian process U, = 2TUz =
Z(ab)eE(G)(ZTYabz)gab' As ||U]| = max.ep, 2" Uz, it
follows that |U|| = sup,cp U, with T = Bs. As,

Uz - Uz’ - Z(ZTYabZ - Z/TYabzl)gab7
ab

the canonical metric induces the distance

du(z,2)? = E[(U. = U =Y (T Vapz — 27 Yap2')?
b

’ (24)

Hypergraph sampling process: Let us now consider the

random process corresponding to (22). We consider the case

when p. = 1/2 (the theory of sub-gaussian does not work

well for p. < 1) (in section V-E we will show that the case

of general p. reduces to that of p. = 1/2. For p. = 1/2,

(Xe—1) takes value —1 or 1 with probability 1/2 each. So
we define

V, = Z eeWe(z) = Z gemax 2L Y2

a,bce
ecE(H) e€E(H)

where €. are independent Rademacher random variables.

The following key Lemma will allow us to bound the
(complicated) sub-gaussian process V, by the simpler Gaus-
sian process U,.



Lemma V.11. There is an absolute constant c, such that for
any z,z' € B,

IV = Varlly, < el|lUz = Uslla-

Before proving this lemma, we need the following simple
fact.

Lemma V.12. For any numbers c1,...,cs and dy,. .., ds,

(max c; — rn;;\,xcli)2 < Z(Cl — di)2

Proof: Let ¢, = max; ¢; and dy, = max; d;. If ¢, > dp,
then

|Ca,_du| :Ca._da an_db
= max ¢; — maxd; > | maxc¢; — maxd;|.
1 K3 1 K3
The other case when ¢, < d is completely analogous. W
We now prove Lemma V.11.

Proof: (Lemma V.11). Fix 2,2z’ € Bs. For a hyper-
edge e, let a(e),b(e) € e be the indices that maximize
zTYa(e)l,(e)z, and a'(e),b'(e) € e be those that maximize
Z/TYa/(e)b/(e)Z/~ Then,

VZ - VZI = Z EE(ZTYa(e)b(e)Z - z'TYa/(e)b/(e)z').
ecE(H)

By Facts V.8 and V.9, there is an absolute constant ¢ such
that,

2
||Vz -V ||12pQ <c Z (ZTY:)(P)b(e)Z - Z/TYa/(e)b/(e)Z/)
e€E(H)
(25)
On the other hand, by (24) we have that

Z (2T Yoz =2V 2')?
(ab)EE(G)

”UZ_UZ’”% = du(z, Z/)2 =

(26)
Even though Y, (¢)s(c) could be different from Yor(c)pr(e), We
can use Lemma V.12 to show that the right hand side of (25)
is upper bounded by the right side of (26).
Fix a hyperedge e € H and let k = |e|. Applying Lemma
V.12 to the s = k? pairs a,b € [k] with c,p = 27 Y,z and
dapy = 2'TY 2, we get

(T Yaoper2 = 2T Ya(p(o?)’
< Z (zTYabz — z/TYabz’)2 .

a,bce

27

Summing over the hyperedges e € F(H), using (25) and
(26), and noting that

Z Z (ZTYabZ — Z/TYabZ/)2

e€E(H) a,bce

Z (zTYabz — z'TYabz’)2
(ab)EE(G)

gives the result.
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Remark: It might seem that the inequality (27) can be
tightened by a factor O(1/r), by using that for any z; <
... < zp, we have that (2, — 21)% < 237, (2 — 2;)? (we
used similar ideas in Lemma V.5). However, this following
example shows that this is not possible.

Suppose, Y, = Lap, ie. 21 Y2 = (24 — 2)%. Con-
sider z = (z21,...,2,) = (=1,0,...,0,M) and 2/ =
(0,0,...,0,M). The term on the left side of (27) is

T " N2
e Yooz = g Yorom0®)

=((M 4 1)* = M?)? ~ 4M*>.

On the other hand, the terms on the right side of (27)
correspond to

(2TYupz — 2TV 02" ) 2 = (20 — 2)% — (2, — 2)%)2
However, it is easily verified that for each of the r? —1 pairs
(a,b) except (a,b) = (1,7), (za — 2p)* — (2, — 2;)* < 1.
Making M arbitrarily large, this shows that we really need

the full contribution of each of the 72 terms on the right side
of (27), and we cannot improve the inequality.

Bounds on the process V,: Lemma V.11 and Theorem
V.10 will let us bound the supremum of V, by that of U..
We can directly bound the latter using the following variant
of the matrix Bernstein inequality.

Theorem V.13. ([15], Theorem 4.1.1.) If A4,..., A, are
symmetric d x d matrices, and g; are independent N (0, 1)
random variables, then for Y = ’ giA;

Prf| Y] > #] < dexp(~t2/2]| 3 A7)

In particular, Theorem V.13 has the following corollary.

Corollary V.14. If A; are PSD, and satisfy | A;|| < § and
Yoy Ai 21 then || Y, A?|| < 6 and so for ¢ > 2

Pr{[[Y]| 2 ey/dlogd] < dexp(—(c?logd)/2) < d /%,
We now show that a similar tail bound holds for sup, V..

Theorem V.15. Let S C E(H) be a subset of hyperedges
with r, < 0 for all e € S. For independent Rademacher ¢,
and z € R", let

VvV, = ZseWe(z).
eesS
Then Esup,.p, V. = O(v/dlogn), and for all u >0

Pr|sup V, > O(y/dlogn + Quﬁ)] < 2exp(—u?).

2€ B>

Proof: Let E(G[S]) = {(ab) : a,b € e,e € S} be
the multi-set of edges in the associated graph G[S] for H
restricted to S. Consider the process

U. >

(ab)e E(G[S])

T
Gabz Yabz



where g, are independent N (0, 1). Then

2

(ab)eE[G[S])

, we have ||Yy;|| < 6 for all (ab) €

>

(ab)EE(G)

sup U, = ||U]],
2€ By

where U = GabYab

As ro = maxg pee ||Yab
E(G[S]). Moreover as

(ab)e E(G[S])

Corollary V.14 gives that |U|| = O(y/dlogn). By Lemma
V.11 and the Talagrand comparison inequality Theorem
V.10, we have that for some constant C,

sup V, < C sup U, = C||U|| = O(y/d logn).

2E By z€B2

Yo < Yoo 21,

To compute the tail bound on sup, V, we need to compute
the diameter diam(T") with respect d,,. By the definition of
du (27 Z/) ’

diam(T)? = max dy (z, 2')?
(ab)e E(G[S])
Using (¢ — d)? < 2¢2 + 2d? for any c,d € R,

>

abe E(G[S])
zTYabz) ( Z ZTYabZ)>
abe B(G[S])

(as T =By, |Vl <6, Yap = 1)
ab

(2T Y2 — 2'YVp2')?

diam(T)? < 4ma%( (2T Yp2)?
ze

(¢

The claimed tail bound on sup, V, now follows from
Theorem V.10. ]

<4 max
zeT

max
abeE(GS])

<44

E. Putting it all together

We now prove Theorem V.6. Given H, we compute
G and p. as described earlier. By rounding p. up to
nearest integer powers of 2, we can assume that for each
e € E(H), pe =277 for some j € {0,...,¢}. This ensures
pe > min(l,r./L), while at most doubling the expected
size of H. Let C; = {e € E(H) : p. = 277}. As p. = 1
for hyperedges e with r, > L, the sampling error in H is
only due to edges with 7. < L, and so in the analysis of
the sampling error below we will assume that r. < L for
all e € E(H).

We view the process of sampling H in the following
iterative way. Let Hy = H, and for ¢ = 1,...,¢, H; is
obtained from H;_; by picking each hyperedge e of classes
Cj for j € {¢{—i+1,¢}, independently with probability 1,/2,
and doubling the weight of e if it is picked. Or equivalently,
fori =1,...,¢, H; is obtained by picking each edge e € C}
in H independently with probability min(1,2/7~%) and
scaling its weight by max(1,27t7~¢). So H, = H, and an
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edge e in C; survives independently in H, with probability
Pe = 277,

Proof: (Theorem V.6.) By the discussion above, for ¢ =
0,....4,

l
Wa,(2) =Y Y max(1,2"7)We(2).

j=0eeC;NE(H;)

and note that Wy, (2) = Wg(z) and Wg(2) = Wg,(2).
For any z € B», by triangle inequality

(Wi (2) = Wa(2)| = [Wh,(2) = Wh(2)|
¢

Taking supremum over all z, and taking the sup inside the
summation,

[
(Z) - WH(’Z)| < Zsup |WH1 (Z) - WH1—1(2)|
i=1
(28)
As H; is obtained by H;_; by sampling each edge of
class j € [{ —i+ 1, ¢] with probability 1/2 and doubling its
weight, we have

sup |[Wg
z

WHi (Z) - WHi—l (Z)

-y 3

j=L—i+1leeC;NE(H;_1)

g2 Iy, (2)

For j € {{ —i+ 1,¢} and any e € C;, W.(z) =
MaXg bee 2TYopz with ||[Yop|| < 7o < 277L for all a,b € e.
So ||2177¢Y,,|| < 2°~*L, and applying Theorem V.15 with
V., =Wy, (2) = Wp,_, (%) and u = \/logn gives that

Pr[sup V., > O(y/2i~¢Llogn)] < n~ %W

Together with (28), and taking union bound over the ¢ =
O(logn) classes, we get that

J4

sup [W (2) =W (2)] < o>~ V2 Llogn) = 0 (%) ,

i=1
with probability n=(1) as desired.
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APPENDIX
A. Proofs of Lemma IV.6 and Lemma IV.7

For completeness we give the proofs of Lemma IV.6 and
Lemma IV.7 that are very similar to those of Lemma IV.3
and Lemma IV.4, respectively.

Lemma 1IV.6. There exists a probabilistic polynomial-time
algorithm that, given an n-vertex graph G = (V,E) of
maximal degree d, outputs a subgraph G = (V, F) with
F C FE such that the following properties hold with
probability at least 1 —n~3:
1) For every disjoint S,T - V. we have
2 ex(S,T) — (S, T)] < 10y/dTogd - /ISTT.

2) Forevery vertexv € V we have |2 - ep(v) — eg(v)] <

10y/dTog d.

Proof: The proof closely follows that of Lemma IV.3
and is similar to the proof of Lemma 3.2 by Bilu and
Linial [11]. We first observe that we only need to verify
Property 1 for those disjoint sets S,7° C V such that
G[S U T] is connected. To see this, let G[S U T denote
the subgraph induced by S U T. Suppose G[S U T] is not
connected and let S;UTY, SoUTs,. .., S UT} be the vertex
sets of the connected components where S7,...,S; C S and
T1,...,Tx C T. If Property 1 holds for connected com-
ponents then |2-ep(S;,T;) —er(S;,T;)| < 10y/dlogd -

V1Si||T;| fori=1,...,k, and so

2:er(S.T) = en(S.T)

M;«

(2 QF(S“T) eE(S“Tl))

1

<.

M»

|2 eF(SZ,TL) — eE(S“T”

=

3

<10+/dlogd ZWS || T3]
<10+/dlogd \/|S|\T

It is thus sufficient to prove the inequalities for those disjoint
vertex sets .5, T' that induce a connected subgraph G[SUT].

Suppose we select ' by including each edge e € E
with probability 1/2 independently of other edges. That is,
in the notation of Theorem IV.2, we have that P consists
of |F| mutually independent variables {P.}.cr, where
P. indicates whether ¢ € F and Pr[P.] 1/2. Now
for each S and T such that G[S U T)] is connected, let
Ag 1 be the “bad” event that |2 - |05 (S, T)| — [0g(S,T)|| >
10y/dlogd - /|S||T|. Note that |6x(S,T)| is the sum of
at most d+/|S||T| independent variables, attaining values
0 and 1, and that the expected value of |dr(S,T)| equals
|0 (S, T)|/2. Thus by the Chernoff inequality we get

PI[A&T] < d~6ISVTI



Similarly, if we let D, denote the bad event that the
degree constraint of v is violated, i.e., |2 - ep(v) — ep(v)| >

10+/dlog d. Then
Pr[D,] < d°.

To apply Theorem IV.2, we analyze the dependency graph
on the events:

o There is an edge between Ag r and Ag: v if

Vbl(AsyT) N Vbl(AS/ﬁT/) #0
S60(S,T) N ou(S,T') £ 0.

o There is an edge between Ag r and D, if
vbl(Asr) Nvbl(D,) # 0 < 6r(S,T)Ndr(v) # 0.
o There is an edge between D, and D, if
vbl(D,) Nvbl(D,) # 0 < dg(u) N (v) # 0.

Consider now a fixed event Agp and let k = |SUT|.
We bound the number of neighbors, Ag: 7+, of Agr with
|S’UT’| = ¢. Since we are interested in only subsets S, 7"
such that G[S" U T"] is connected, this is bounded by the
number of distinct subtrees on £ vertices in the associated
graph G, with a root in one of the endpoints of an edge
in §(S,T). There are thus at most 2d min(|S|, |T|) < dk
many choices of the root and, as G has degree at most d,
the number of such trees is known to be at most (see e.g. [7])

" <d(£ —1)

01 (29)

> <dk-(ed)",
where we used that (/") < (ed)~'. Moreover, it is
easy to see that Agr has at most 2d min(|S|, |T]) < dk
neighbors B,,.

Now to verify condition (13) of Theorem IV.2, we set
z(Asur) = d73ISYTl for every bad event Agy and
x(B,) = d~3 for every bad event B,. So if we consider
an event Agp with k = |S U T/, then

(As) II (1 —2(Ag,1))
(8. T"):As,r~Agr 1+
H (1 - x(Bv))

v:Ag r~B,

> g3k H (1- CFBE)(i/’C(e(i)“l (1 d73)dk
=1

>d~ exp(~2dk Y d~* (ed)* "t — 2dkd )
=1
>d e > 4=0% /2 > Pr[Ag1]/2,

where we used that d is a sufficiently large constant, which is
without loss of generality since if d < 104/dlog(d) then the
lemma becomes trivial. In other words, (13) is satisfied for
events Agr with € set to 1/2. Let us now consider an event
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B,. Clearly there is at most d other events B, such that
B,, ~ B,. Moreover, by the same arguments as above there
are at most 2d(ed)*~* neighbors Ag 7 such that |[SUT| = .

Hence
11

z(By)
(S, T):By~As,T

>d B[ -a )™ (1)
(=1

(1-a(4s7) ] (-2(Bw)

u:By~By,

> d-%/2 > Pr[B,]/2,

where the second to last inequality follows because of the
same simplifications as done above with £ = 1. We have
thus verified that (13) is satisfied for all events with € set to
1/2.

It remains to define an efficiently verifiable core subset
A" C Asuch that 1 =37 1 4\ 0 #(4) > 1 =172 We let

'A/ = {B’U}’UEV ) {AS,T S .A : ‘S U T| S S}

where s = log,(n).

By the same arguments as in (29), there is at most n -
(7D) < n(ed)*~" many vertex sets U such that |U| = ¢
and G[U] is connected. Moreover, for each U there are 2°
possible ways of partitioning it into S and T'. Therefore, the
following properties hold:

1) A’ is efficiently verifiable since it contains n -
Soo_i(ed)12f = O(n - (ed - 2)%) = O(n®) many
events Ag 7 that can be efficiently enumerated by first
selecting a vertex  among n choices, then considering
all possible trees rooted at r with ¢ < s vertices, and
all possible ways of partitioning such a component
into S and 7. Moreover, the remaining n events B,
in A’ contains n are easy to verify in polynomial time.

2) We have
S w(Asr) < D d - (n-(ed-2)")
Ag e A\A L=s5+1
<n- Z d74€ < nd745 _ nf?)7
l=s+1

where for the first inequality we again used that d is
a sufficiently large constant.

We have verified Condition (13) of Theorem IV.2 and we
have defined an efficiently verifiable core subset A’ such
that 3 4 c a4 #(As) < n~? and so the lemma follows.

|

Lemma IV.7. There is an absolute constant c¢ such that
the following holds. There is a probabilistic polynomial-time
algorithm that on input an n-vertex graph G = (V, E) of
maximum degree d, ¢ > 0, and any k € N such that d2=% >
cZz log(1/e), outputs a subgraph G = (V, F) such that the
following properties hold with probability at least 1 —n~2:



1) For every disjoint S,T CV we have
|28 - ep(S,T) — ep(S,T)| < ed-/|S[|T].
2) For every vertex v € V we have
|2k cep(v) — eE(v)| < ed.

Proof: Starting with G we apply Lemma IV.6 k times
to obtain G. Let F; denote the edge set and let d; denote the
maximum degree after round i. So Fy = E and dy = d. By
the guarantees of Lemma IV.6, we have that with probability
1 —n~3, for every disjoint S,T C V,

|2di+1 — dl| < 10\/ dz log(dz)

(8,T) = er,(S,T)| < 10y/d; log(d:) - v/IS||T]
(31)

and 30)

}2 . ele

As we apply Lemma IV.6 k times with k < log(n), the
union bound implies that the above inequalities are true
for all invocations of that lemma with probability at least
1—k%-n"2>1—n"2 From now on we assume that the
above inequalities hold and show that the conclusion of the
statement is always true in that case. Specifically, we now
prove by induction on k that for every disjoint S, T C V,
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|2kdk — do| < edp, and
|25 ep, (S,T) — ep, (S, T)| < edo - \/|S]|T].
The claim holds trivially for £ = 0. Assume it holds for all
i < k, which in particular implies 2id; < 2dy for all i < k.
By the triangle inequality and (30),
k=1
|28 — do| < ) [2'(2dir1 — dy)|

=0

k—1
<10 2'\/d;log(d;)
=0

k—1
<10 2\/2(do/27) log(2(do/20))
i=0
where the last step follows by the induction hypothesis on
d;). As the terms increase geometrically in 4, this sum is
O(2%\/(do/2%)log((dy/2%)) which is edy by our assump-
tion on k and selection of c.
Finally, we note that [2" - ef, (S,T) — ep, (S, T)| < edy -
\/|S||T| follows by the same calculations (using (31) instead
of (30)). ]




