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Abstract—A hitting-set generator (HSG) is a polynomial
map Gen : Fk → F

n such that for all n-variate polynomials
Q of small enough circuit size and degree, if Q is non-
zero, then Q ◦ Gen is non-zero. In this paper, we give a
new construction of such a HSG assuming that we have
an explicit polynomial of sufficient hardness in the sense
of approximative or border complexity. Formally, we prove
the following result over any characteristic zero field F:

Suppose P (z1, . . . , zk) is an explicit k-variate
degree d polynomial that is not in the border
of circuits of size s. Then, there is an explicit
hitting-set generator Gen(P ) : F2k → F

n such
that every non-zero n-variate degree D poly-
nomial Q(x) in the border of size s′ circuits
satisfies Q �= 0 ⇒ Q ◦ Gen(P ) �= 0 provided
n10kdDs′ < s.

This is the first HSG in the algebraic setting that yields
a complete derandomization of polynomial identity test-
ing (PIT) for general circuits from a suitable algebraic
hardness assumption.

As a direct consequence, we show that even a slightly
non-trivial explicit construction of hitting sets for polyno-
mials in the border of constant-variate circuits implies a
deterministic polynomial time algorithm for PIT.

Let δ > 0 be a constant and k be a large enough
constant. Suppose, for every s ≥ k, there is an
explicit hitting set of size sk−δ for all degree
s polynomials in the border of k-variate size
s algebraic circuits. Then, there is an explicit
hitting set of size poly(s) for the border s-
variate algebraic circuits of size s and degree
s.

Unlike the prior constructions of such maps (e.g. [NW94],
[KI04], [AGS19], [KST19]), our construction is purely
algebraic and does not rely on the notion of combinatorial
designs.
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I. INTRODUCTION

The interaction of hardness and randomness is one

of the most well studied themes in computational com-

plexity theory, and in this work we focus on exploring

this interaction further in the realm of algebraic com-

putation.

The field of algebraic complexity primarily focuses

on studying multivariate polynomials and their com-

plexity in terms of the number of basic operations (addi-

tions and multiplications) required to compute them. Al-

gebraic circuits (which are just directed acyclic graphs

with leaves labelled by variables or field constant, and

internal gates labelled by + or ×) form a very natural

model of computation, and the size (number of gates

or wires) of the smallest algebraic circuit computing a

polynomial gives a robust measure of its complexity.

The main protagonists in this hardness-randomness

interaction are the hardness component which is the

question of proving superpolynomial lower bounds for

algebraic circuits for any explicit polynomial family and

the randomness component which is the question of de-

signing efficient deterministic algorithms for polynomial

identity testing (PIT) — the algorithmic task of check-

ing if a given circuit computes the zero polynomial.

Both these questions are of fundamental importance

in computational complexity and are algebraic analogs

of their more well known Boolean counterparts, the

P vs NP question and the P vs BPP question respec-

tively. These seemingly different problems are closely

related to each other, and in this work we focus on

one direction of this relationship; namely, the use of

hard explicit polynomial families for derandomization

of PIT.

It is known from an influential work of Kabanets and

Impagliazzo [KI04] that lower bounds on the algebraic

circuit complexity of explicit polynomial families leads

to non-trivial deterministic algorithm for the question of

polynomial identity testing (PIT) of algebraic circuits.

Moreover, the better lower bounds yield better deran-

domizations in terms of running time. For instance,

from truly exponential (or 2Ω(n)) lower bounds , we
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get quasipolynomial (or nO(logn)) time deterministic

algorithms for PIT. From weaker superpolynomial ( or

nω(1)) lower bounds, we only seem to get a subexpo-

nential (or 2n
o(1)

) time PIT algorithm.

However, no matter how good the lower bounds for

algebraic circuits are, this connection between lower

bounds and derandomization does not seem to give truly

polynomial time deterministic algorithms for PIT. This

is different from the Boolean setting, where it is known

that strong enough boolean circuit lower bounds imply

that BPP = P. The difference stems from the fact that,

in the worst case, an n-variate degree d polynomial P
needs to be queried on as many as

(
n+d
d

)� 2n points

to be sure of its non-zeroness. A key player in this

interaction of hardness and randomness, in the context

of algebraic complexity, is the notion of a hitting-set
generator (HSG), which we now define.

Definition 1 (Hitting-set generators). A polynomial
map G : F

k → F
m given by G(z1, z2, . . . , zk) =

(g1(z), g2(z), . . . , gn(z)) is said to be a hitting-set
generator (HSG) for a class C ⊆ F[x1, x2, . . . , xn] of
polynomials if for every non-zero Q ∈ C, we have that
Q ◦G = Q(g1, g2, . . . , gn) is also non-zero.

We shall say that G is t(n)-explicit if, for any a, we
can compute G(a) in deterministic time t(n). Here k
is called the seed length of the HSG and n is called
the stretch of the HSG. The maximum of the degrees of
g1, g2, . . . , gn is called the degree of the HSG.

Suppose a polynomial map G is an HSG for a class

C of circuits, we say that the G fools the class C of

circuits.

Informally, an HSG G gives a polynomial map which

reduces the number of variables in the polynomials in

C from n to k while preserving their non-zeroness.

It is not hard to see that such polynomial maps are

helpful for deterministic PIT for C. To test if a given

n-variate polynomial Q ∈ C is non-zero, it is sufficient

to check that Q ◦ G, a k-variate polynomial, is non-

zero. If the degree of each gi is not-too-large, then a

“brute-force” check (via the Schwartz-Zippel Lemma)

can be used to test if Q ◦ G is zero in at most

poly(t(n)) · (deg(G) · deg(Q))O(k)
time, if G is t(n)-

explicit. Thus, it is desirable to have HSGs that are very

explicit (small t(n)), low degree and deg(G) and large

stretch (k � n).

A. Prior construction of generators

Generators from combinatorial designs:: One of

the earliest (and most well-known) pseudorandom gen-
erator (PRG) from hardness is the construction of Nisan

and Wigderson [NW94] in the boolean world. In the

algebraic setting, an analogous construction was shown

to produce HSGs by Kabanets and Impagliazzo [KI04]1.

These constructions are based on the notion of a

combinatorial design, which is a family of subsets

that have small pairwise intersection. Given an explicit

construction of such a combinatorial design (e.g. a

family F = {S1, S2, . . . , Sn} of subsets of [k] of size

t each), the PRG/HSG in [NW94], [KI04] is then con-

structed by just taking a hard polynomial P (y1, . . . , yt)
and defining the map as G(z1, z2, . . . , zk) =
(P (y |S1

), P (y |S2
), . . . , P (y |Sn

)). The proof of cor-

rectness for this HSG goes via a hybrid argument and

a result of Kaltofen [Kal89].

Bootstrapping hitting sets and HSGs with large
stretch:: In a recent line of work [AGS19], [KST19]

the following surprising boostrapping phenomenon was

shown to be true for hitting sets for algebraic circuits.

The following is the statement from [KST19]:

Theorem 1 ([KST19]). Let δ > 0 and n ≥ 2 be
constants. Suppose that, for all large enough s, there is
an explicit hitting set of size sn−δ for all degree s, size s
algebraic formulas (or algebraic branching programs,
or circuits respectively) over n variables. Then, there
is an explicit hitting set of size sexp(exp(O(log∗ s))) for
the class of degree s, size s algebraic formulas (or
algebraic branching programs, or circuits respectively)
over s variables.

In other words, a slightly non-trivial explicit construc-

tion of hitting sets even for constant-variate algebraic

circuits implies an almost complete derandomization of

PIT for algebraic circuits. A natural question in this

direction which has remained open is the following.

Question 1 ([KST19]). Can slightly non-trivial hitting
sets for constant-variate algebraic circuits can be boot-
strapped to get polynomial size (and not just almost
polynomial size as in Theorem 1) hitting sets for all
circuits ?

The proof of Theorem 1 can also be interpreted as

a different HSG for algebraic computation. This HSG,

given the hypothesis of Theorem 1, stretches k bits to

n bits (for arbitrarily large n), but the degree and ex-

plicitness of the generator grows as nexp(exp(O(log∗ n))).

Thus, this construction comes very close to answer-

ing Question 1 and Question 2 without completely

answering them. This HSG is essentially constructed via

a repeated composition of the HSG in [KI04], [NW94],

where for each step, it uses a different hard polynomial

with an appropriate hardness, which increases gradually.

1Even though the construction of the generator in same in [KI04]
and [NW94], there are crucial differences in the analysis. In particular,
the analysis for the HSG in [KI04] relies on a deep result of
Kaltofen [Kal89] about low degree algebraic circuits being closed
under polynomial factorization.
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Due to this inherent iterative nature of the construction,

it seems difficult to reduce the degree and explicitness

of such HSG constructions to poly(n).
The need to go beyond design-based HSGs:: In the

set up of boolean computation, observe that we cannot

expect to have any PRG (or even HSG) of seed length

k to fool circuits of size much larger than n2k since

we can construct a circuit of size O(n2k) to identify

the range of the generator (consisting of 2k strings of

length n each). However, this upper bound of n2k on

the stretch does not seem to extend immediately to the

algebraic set up, where we are working with syntactic

computations. However, a similar argument seems to

give an upper bound of (dD)
O(k)

on the size of degree

D algebraic circuits which can be fooled by a HSG with

seed length k and degree d. Till recently, there were no

known constructions of such HSGs with stretch larger

than 2k. Thus, for any boolean PRG constructed via

hardness of a boolean function, 2k is an upper bound

on the stretch of the PRG. In the algebraic setting, one

could in principle hope to construct HSGs with stretch

close to dΩ(k). An HSG with strong enough parameters

would answer the following very natural question.

Question 2. If there is a polynomial family {Pn}n∈N,
where Pn is an n-variate polynomial of degree d such
that any algebraic circuit computing it has size dΩ(n),
then is PIT in P ?

Another reason for looking beyond the design based

HSGs in the algebraic setting is that by definition, a

design-based HSG is combinatorial. Aesthetically, it

seems desirable to have a route from algebraic lower

bounds to algebraic pseudorandomness which does not

rely on clever combinatorial constructions!

PRGs of Shaltiel & Umans [SU05] and
Umans [Uma03]:: An alternative to the design-

based PRGs in the boolean setting is the generator of

Shaltiel and Umans [SU05], and a related follow up

work of Umans [Uma03]. These generators are quite

different and, in particular, appear to be more algebraic
in their definition and analysis. We refer the interested

reader to the original papers [SU05], [Uma03] for

the formal definitions of these generators and further

details.

The algebraic nature of these PRGs makes them good

candidates for potential HSGs in the algebraic setting

and, indeed, this work was partially motivated by this

goal. However, as far as we understand, it remains

unclear whether there is an easy adaptation of these

PRGs which works for algebraic circuits. In particular,

the hardness required for the analysis of the PRGs

in [SU05], [Uma03] appears to be inherently functional,

i.e. they assume that it is hard to evaluate the polyno-

mial over some finite field. In the context of algebraic

complexity, the more natural notion of hardness is that

it is hard to compute the polynomial syntactically as a

formal polynomial via a small algebraic circuit.

B. Our Results

Our main result is the construction of a hitting-set

generator which comes very close to answering Ques-

tion 2, for characteristic zero fields.

Definition 2 (The generator). We define the following
map Gen : F[z1, z2, . . . , zk]× F

k × F
k → F

n+1.

Gen(P (z),y) = (Δ0(P,y),Δ1(P,y), . . . ,Δn(P,y)) ,

where Δi(P,y) is the homogeneous degree i (in y)
component in the Taylor expansion of P (z+ y), i.e.

Δi(P,y) =
∑

d∈Nk,|e|1=i

ye

e!
· ∂P
∂ze

.

It is clear that the above definition is dO(k)-explicit

as we can express P as a sum of dk monomials and

compute each component of Gen(P,y) with a small

additional cost. Our main theorem states that the above

map is indeed a generator if the polynomial P (z) is hard

enough, in the border or infinitesimal approximation
sense. We give an informal definition (over field such

as C or R) here and this notion shall be discussed in

detail in section II-B.

Definition 3 (Border computation (informal)). A poly-
nomial P ∈ F[x] is said to be in the border of algebraic
circuits of a class C of algebraic circuits if there is a
sequence of size s circuits {Cε} ⊆ C (possibly involving
coefficients that are rational functions in ε) such that

lim
ε→0

Cε = P.

An example of such a computation is the polynomial

xr−1y that is in the border of circuits of the form α�r1+
β�r2 where α, β ∈ F and �1, �2 are homogeneous linear

polynomials (even though, for any r ≥ 3, we cannot

express xr−1y as α�r1 + β�r2).

Cε :=

(
1

rε

)
· ((x+ εy)r − xr)

ε→0
= xr−1y.

Thus, the border of a class of circuits can be more pow-

erful than the class itself. The question of quantitatively

understanding this difference in computational power is

a fundamental problem, and is of great interest in the

context of Geometric Complexity theory.

Our main theorem is the following.

Theorem 2 (Main theorem). Assume that the underly-
ing field F has characteristic zero. Let P be a poly-
nomial of degree d on k variables such that P is not
in the border of algebraic circuits of size at most s.
Then, for (n+ 1)-variate polynomial Q(x0, . . . , xn) in
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the border of algebraic circuits of size s′ and degree D,
if
(
s′dDn10k

)
< s, then

Q 	= 0⇐⇒ Q ◦ Gen(P,y) 	= 0.

We remark that for our proof, it seems crucial that

P is not even in the border of small circuits and is not

just hard for small circuits from the point of view of

exact computation. Modulo this requirement, Theorem 2

almost completely answers Question 2 affirmatively. As

alluded to in the introduction, we do not know of prior

constructions of HSGs with these properties.

In addition to being interesting on its own, Theo-

rem 2 leads to the following result which shows that

bootstrapping of hitting sets can be done in polynomial

time, and at least in the setting of border complexity,

answers Question 1.

Theorem 3 (Bootstrapping in one shot). Assume that
the underlying field F has characteristic zero. Let δ > 0
be any constant and k ∈ N be a large enough constant.
Suppose that, for all large enough s, there is an sO(1)-
explicit hitting set of size sk−δ for all degree s polyno-
mials which are in the border of size s algebraic circuits
over k variables. Then, there is an sO(k3)-explicit hitting
set of size sO(k3) for all of degree s polynomials which
are in the border of size s algebraic circuits over s
variables.

Remark 1. It is worth mentioning that a substantial

fraction of lower bounds in algebraic circuit complexity

has been proved via algebraic natural proofs [?], [?].

Such techniques immediately yield the same lower

bounds for border complexity as well.

Also, almost all known constructions of hitting sets

for restricted classes of circuits are built by leveraging

certain weaknesses exploited in the corresponding lower

bound proofs. As a result, almost all hitting sets known

for subclasses of algebraic circuits, thus far, are also

hitting sets for the border of the respective restricted

classes.

Subsequent improvements : The results in this ver-

sion of the paper have seen some improvements since

the paper was submitted. In particular, we have been

able to remove the border altogether from the picture

in Theorem 2. This also removes the requirement that

we have a non-trivial PIT for the border of k variate

size s circuits from the hypothesis in Theorem 3. For

more details, we refer the interested reader to the full

version of this paper [?].

C. An overview of the proof

To show that the HSG in Definition 2 is indeed

a hitting-set generator for low degree polynomials in

the border of small circuits, we focus our attention

on a purported non-zero polynomial Q(x) with fewest

variables, of border circuit complexity s and degree D
which is not fooled by the generator, i.e. Q ◦ Gen
is identically zero. We use this identity to reconstruct

a small circuit for P which contradicts its hardness.

This would imply that all low degree polynomials in

the border of small circuits are fooled by the HSG.

In order to reconstruct a circuit for P from the circuit

for Q, we focus on the so called non-degenerate case

and address it in Lemma 5, which is our key technical

lemma. Before discussing the main ideas in the proof

of Lemma 5, we first discuss some of the details of the

reduction to the non-degenerate case.

Reducing to the non-degenerate case : : In the

non-degenerate case we insist that, in addition to having

Q◦g = 0, we have (∂xn
Q)◦Gen 	= 0; i.e. the derivative

of Q with respect to the last variable xn is fooled by

the generator. To ensure this condition, we consider the

status of the higher order derivatives of the generator

with respect to xn when composed with the generator.

Let r be the degree of Q in xn. If there exists a j ≤ r
such that Q, (∂xn

Q), (∂x2
n
Q), . . . , (∂xj−1

n
Q) are all non-

zero, and vanish when composed with the generator,

but (∂xj
n
Q) ◦ Gen 	= 0, then, we just work with the

the polynomial Q̃ = (∂xj−1
n

Q) instead of Q. Clearly,

Q̃ ◦ Gen = 0 and ∂Q̃
∂xn

◦ Gen 	= 0, and we are in the

case handled by Lemma 5. Moreover, the complexity

of Q̃ is not much larger than that of Q; more precisely,

it follows by a simple interpolation argument that Q̃ is

in the border of circuits of size at most O(sD). We

invoke Lemma 5 now with these parameters, and that

would complete the proof.

We still need to consider the case that there is no

such j ≤ r such that (∂xj
n
Q) ◦ Gen 	= 0, in particular,

(∂xr
n
Q) ◦ Gen = 0. Since r equals the degree of Q in

xn, it follows that Q̃ = (∂xr
n
Q) is a polynomial on one

fewer variable than Q which is non-zero and vanishes

when composed with the generator. This can be handled

by assuming that Q was the minimal (in terms of the

number of variables it depends on) non-zero, degree

≤ D polynomial in the border of size s circuits that is

not fooled by our generator.

Hurdle: The circuit complexity of ∂xr
n
Q is,

typically, a little larger than the complexity

of Q. Even if there is a slight increase in

size, how does (∂xr
n
Q) ◦ Gen = 0 contradict

minimality of Q?

This is the one of the key places where get help from

the border. The crucial observation is that although we

do not know if (∂xr
n
Q) is computable by a circuit of

size at most s, we show in Lemma 3 that the border

complexity of (∂xr
n
Q) is upper bounded by the border

complexity of Q. This would then be enough to leverage

the minimality assumption on Q.
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The proof of Lemma 3 is a simple trick with border

computation, and is a slight variant of the dampening
trick often used in this context (e.g. see [?]).

The proof of Lemma 5 : : The proof of the lemma

can be viewed as a variant of the standard Newton

Iteration (or Hensel lifting) based argument often used

in the context of root finding, although there are some

crucial differences. We iteratively construct the poly-

nomial P (z) one homogeneous component at a time

(recall that P (z) is a k-variate polynomial of degree d).

For the base case, we assume that we have access to the

homogeneous components of P of degree at most n,

which are homogeneous polynomials of degree at most

n on k variables and are trivially computable by a circuit

of size at most nO(k), which is much smaller than dΩ(k),

the presumed hardness of P for d� n. Thus, we have

n homogeneous components of P (z), and the goal is to

use them and the non-degeneracy assumption to recon-

struct all of P . For now, let us focus on recovering the

homogeneous component Pn+1 of degree equal to n+1.

We show that given the non-degeneracy condition in

the hypothesis of the lemma, there is a small circuit for

Δn(Pn+1(z)) mod 〈z〉2. Since Δn(Pn+1) is essentially

a generic linear combination of n-th order derivatives of

Pn+1, it is not hard to show that we can obtain a small

circuit that outputs each of the n-th order partial deriva-

tives of Pn+1(z), modulo higher degree terms. then

we would be able to reconstruct Pn+1(z) mod 〈z〉n+2

via repeated applications of the Euler’s differentiation

formula for homogeneous polynomials.

Fact 1 (Euler’s formula for differentiation of homo-

geneous polynomials). If A(x1, . . . , xk) is a homo-
geneous polynomial of degree t, then

∑k
i=1 ∂xi

A =
t ·A(x1, . . . , xk).

The crucial point in this entire reconstruction is

that each step of the reconstruction only incurs an

additive blow-up in size and hence can be repeated for

polynomially many steps to recover each homogeneous

part of P (Figure 1 in section III contains a pictorial

description of the inductive step).

Hurdle: This still only gives a small circuit

that computes Pn+1 mod 〈z〉n+2
and hence

we need to extract the degree (n + 1)-
homogeneous part. Typically, extracting a cer-

tain homogeneous part requires an interpola-

tion step and this incurs a multiplicative blow-

up in size which is unaffordable in this setting.

Once again, the setting of border complexity is crucial.

As shown in Lemma 4, if Q is in the border of size s cir-

cuits, then the lowest (or highest) degree homogeneous

part of Q is also in the border of size s circuits (this

is again proved via a similar dampening trick). Thus,

in the setting of border complexity, extracting extremal

homogeneous components incurs no cost at all!

Overall this merely additive increase in size allows us

to run the reconstruction step to extract all homogeneous

components of P and showing P is in the border of

small circuits, contradicting the hardness of P .
Similarities with [SU05], [Uma03] and [Kop15] :

: We remark that at a high level, our construction of

the HSG was inspired by the constructions by Shaltiel

and Umans [SU05], [Uma03], although the precise form

of our generator seems different from that in [SU05],

[Uma03]. We also note that the set up of induction

we have in the proof of Lemma 5 is very similar to

the set up used by Kopparty [Kop15] in the context

of list decoding Multiplicity codes. More precisely, our

induction is similar to what is used in constructing a

power series expansion of a non-degenerate solution of

the univariate Cauchy-Kovalevski differential equations,

which are used in [Kop15]. The key difference is

that while we work with a multivariate setting, the

list decoding algorithm in [Kop15] is for univariate

multiplicity codes. However, it would be interesting to

understand this analogy further.

II. NOTATION AND PRELIMINARIES

• Throughout the paper, we think of F as a field of

characteristic zero (or large enough).

• We use boldface letters such as z to denote sets

or tuples: z = (z1, z2, . . . , zk). For an exponent

vector e, we shall use ze to denote the monomial

ze11 · · · zekk . Let |e| := ∑
ei.

• We use ∂ze(P (z)) to denote the partial derivative
∂|e|(P )
∂ze .

• We use 〈z〉i to denote the ideal in F[z] generated

by all degree i monomials in z.

• We use P(k, d) to denote the class of k-variate

polynomials of degree at most d.

A. PIT preliminaries

The following well-known lemma gives an exponen-

tial (in the number of variables) sized hitting set for the

class of degree d polynomials.

Lemma 1 ([Ore22], [DL78], [Sch80], [Zip79]). Let
f(x) be a non-zero n-variate polynomial of degree at
most d. Then for any set S ⊂ F with |S| > d, there is
a point a ∈ S|x| such that f(a) 	= 0.

It is also known that existence of non-trivial hitting

sets for a class C can be used to construct hard polyno-

mials.

Theorem 4 (Informal, Heintz and Schnorr [HS80],

Agrawal [Agr05]). Let H(n, d, s) be an explicit hitting
set for circuits of size s, degree d in n variables.
Then, for every k ≤ n and d′ such that d′k ≤ d and
(d′+1)k > |H(n, d, s)|, there is a non-zero polynomial
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on n variables and individual degree d′ that vanishes
on the hitting set H(n, d, s), and hence cannot be
computed by a circuit of size s.

Finally, we need the following notion of interpolating
sets for a class of polynomials.

Definition 4 (Interpolating sets for P(k, d)). Let Mk,d

denote the number of k-variate monomials of degree at
most d. That is, Mk,d =

(
k+d
d

)
.

A set of points a1, . . . ,ar ∈ F
k is said to be an

interpolating set for P(k, d) if the vectors{(
aei : e ∈ Z

k
≥0 , |e| ≤ n

)
: i ∈ [r]} ⊂ F

Mk,d

form a spanning set for F
Mk,d .

Equivalently, there exists field constants β1, . . . , βr such
that for every f(z) ∈ P(k, d) and every e ∈ Z

k
≥0 with

|e| ≤ d, we have that

coeffze(f) =
r∑

i=1

βif(ai).

A canonical example of an interpolating set for

P(k, d) is Sk = {(s1, . . . , sk) : si ∈ S ∀i} where

S ⊆ F is a set of at least (d + 1) distinct field

elements. The following well-known proposition says

that a random set of points, of the appropriate size, is

an interpolating set for P(k, d) with high probability if

the field F is large enough.

Proposition 1 (Random sets are interpolating sets).
For any d, k, if F is large enough, then a random set
of size

(
k+d
d

)
is an interpolating set for P(k, d) with

probability 1− o(1).

B. Border computation

Definition 5 (ε-computing a function). A circuit C
over F(ε)[x] is said to ε-compute a polynomial Q(x),
denoted by C =ε Q, if the output of the circuit C is a
polynomial in F[x, ε] such that

C(x, ε) = Q(x) + ε · C ′(x, ε).
for some polynomial C ′(x, ε) ∈ F[x, ε]. In particular,
lim
ε→0

C(x, ε) = Q(x).

In other words, C =ε Q implies that setting ε = 0 in
the output of C results in Q (though the circuit C could

involve internal constants with ε’s in the denominators).

As mentioned earlier, the following is an example:

C :=

(
1

rε

)
· ((x+ εy)r − xr)

is a circuit that ε-computes the polynomial xr−1y.

In other words, if we let F be the field of complex

numbers and think of ε as a constant tending to zero,

then in some sense, the circuit C in the definition

approximates the polynomial P up to an error ε. As

ε tends to zero the magnitude of the constants in the

circuit C tends to infinity (while its size remains the

same), and we get closer and closer to P . The notion of

border complexity plays a key role in connecting ques-

tions in algebraic complexity to underlying questions

in algebra and geometry. In particular, understanding

whether going to the border of a complexity class of

polynomials endows it with additional computational

power is a natural and fundamental question in Geomet-

ric Complexity theory. For a more detailed discussion on

border complexity we refer the interested reader to [?]

and references therein.

Composition is well behaved for border computa-
tion:

Lemma 2. Let Q ∈ F[x, y] and P ∈ F[x] be two
polynomials which is in the border of algebraic circuits
of size s1 and s2 respectively. Then, Q(x, P ) is in the
border of algebraic circuits of size s1 + s2.

Proof: Let C ∈ F(ε)[x, y] be a circuit of size at

most s1 which approximates Q. In other words, there

are polynomials A1, A2, . . . , At ∈ F[x, y] such that

C(x, y) ≡ Q+

t∑
i=1

εiAi .

Similarly, let Φ ∈ F(ε)[x] be a circuit of size at most

s2 which approximates P . In other words, there are

polynomials B1, B2, . . . , Br ∈ F[x] such that

Φ(x) ≡ P +

r∑
j=1

εjBj .

We now prove the natural and intuitive claim that

lim
ε→0

C(x,Φ(x)) = Q(x, P ) .
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This would complete the proof of the lemma.

C(x,Φ(x))

= Q(x,Φ(x)) +
t∑

i=1

εiAi(x,Φ(x))

= Q

⎛
⎝x, P +

r∑
j=1

εjBj

⎞
⎠

+

t∑
i=1

εiAi

⎛
⎝x, P +

r∑
j=1

εjBj

⎞
⎠

= Q (x, P ) +

t′∑
j=1

εj ·A′j(x)

+

t∑
i=1

εiAi

⎛
⎝x, P +

r∑
j=1

εjBj

⎞
⎠ ,

where the last step follows from a Taylor expansion of

Q
(
x, P +

∑r
j=1 ε

jBj

)
around the point (x, P ).

Iterative application of the lemma gives the following

corollary.

Corollary 1. Let Q ∈ F[x, y1, y2, . . . , yn] be a
polynomial in the border of circuits of size s0 and
P1, P2, . . . , Pn ∈ F[x] be polynomials which are in
the border of algebraic circuits of size s1, s2, . . . , sn
respectively. Then, Q(x, P1, P2, . . . , Pn) is in the border
of algebraic circuits of size s0 + s1 + s2 + . . .+ sn.

Extremal derivatives and homogeneous parts:

Lemma 3. Let Q ∈ F[x, y] be a polynomial of degree
equal to d in y, and let P ∈ F[x, y, ε] be a polynomial
which can be computed by a circuit C ∈ F(ε)[x, y] of
size s, such that

lim
ε→0

P = Q .

Then, ∂Q
∂yd is also in the border of algebraic circuits of

size at most s.

Proof: We may assume that d > 0 (for otherwise,

there is nothing to prove). Let D be the degree of P in

y. Then,

P (x, y, ε) = Q(x, y)

+ ε · P̃ (x, y, ε)
=⇒ P (x, y, εD) = Q(x, y)

+ εD · P̃ (x, y, εD)
=⇒ εd · P (x, (y/ε), εD) = εdQ(x, (y/ε))

+ εD+dP̃ (x, (y/ε), εD)

Since P̃ (x, y, ε) is an honest-to-god polynomial in x, y
and ε and hence so is ε · P̃ (x, y, ε) with each coefficient

being divisible by ε. Hence, εD · P̃ (x, y, εD) has each

coefficient divisible by εD. As the degree of P̃ in y
is at most D, we have εD · P̃ (x, (y/ε), εD) is also a

polynomial in x, y and ε with each coefficient being

divisible by ε. Finally, since d > 0, we have that each

coefficient of the polynomial εD+d · P̃ (x, (y/ε), εD) is

divisible by ε. Hence,

lim
ε→0

(
εd · P (x, (y/ε), εD))

= lim
ε→0

(
εd ·Q(x, (y/ε)))

=
∂dQ

∂yd
· yd.

Thus, by setting y = 1, this immediately yields a circuit

of size at most s that approximates ∂dQ
∂yd .

A very similar argument also gives the following lemma

which would be useful for us.

Lemma 4 (Extracting the lowest-degree homogeneous

parts). Let P1, . . . , Pm ∈ F[x] and suppose Pi = Qi +
Ri where Qi is the lowest-degree homogeneous part of
Pi. Given a multi-output circuit C(x; ε) of size s that ε-
computes {P1, . . . , Pm}. Then, {Q1, . . . , Qm} can also
be ε-computed by a multi-output circuit C̃ of size s.

Proof: The proof is exactly along the lines as

Lemma 3. Suppose the outputs of C(x; ε) are

P̃1(x; ε) = (Q1(x) +R1(x)) + ε · S1(x; ε)

...

P̃m(x; ε) = (Q1(x) +R1(x)) + ε · Sm(x; ε)

Let di = deg(P̃i) and D = max({di}i) + 1. As in

Lemma 3, the circuit C(εx1, . . . , εxn; ε
D) has outputs

P̂i(x; ε) = Qi(εx) +Ri(εx) + εDSi(εx; ε
D)

= εdiQi(x) +Ri(εx) + εDSi(εx; ε
D)

= εdiQi(x) mod εdi+1

for each i. By rescaling the i-th output by ε−di , we have

a circuit that ε-computes Q1, . . . , Qm.

C. The Generator

For a k-variate polynomial P , let Δi(P (z),y) ∈
F[z,y] defined as

Δi(P ) =
∑

e:|e|=n

(
ye

e!

)
· ∂ze(P )

where e! = e1! · · · ek!. The generator with respect to P
is defined as follows:

Gen(P,y) = (Δ0(P,y), . . . ,Δn(P,y)) .

The following is a simple observation about the operator

Δ.
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Observation 1. Let P (z) and Q(z) be polynomials
such that P = Q mod 〈z〉j . Then, for any i ≤ j, we
have Δi(P ) = Δi(Q) mod 〈z〉j−i.

III. THE MAIN THEOREM

We start by recalling the main theorem.

Theorem 2 (Main theorem). Assume that the underly-
ing field F has characteristic zero. Let P be a poly-
nomial of degree d on k variables such that P is not
in the border of algebraic circuits of size at most s.
Then, for (n+ 1)-variate polynomial Q(x0, . . . , xn) in
the border of algebraic circuits of size s′ and degree D,
if
(
s′dDn10k

)
< s, then

Q 	= 0⇐⇒ Q ◦ Gen(P,y) 	= 0.

The rest of this section would be devoted to the proof

of this theorem.

Let us assume the contrary. That is, there is a

circuit C(x; ε) of size s and degree D such that

Q = limε→0 C 	= 0 but Q ◦ Gen(P,y) = limε→0(C ◦
Gen(P,y)) = 0. We shall assume, without loss of

generality, that limε→0 C depends non-trivially on the

variable xn and that no circuit C ′(x; ε) of size s and

degree D with limε→0 C
′ depending on fewer variables

satisfy limε→0 C
′ 	= 0 but limε→0 C

′ ◦ Gen(P,y) = 0.
The proof will proceed by inductively building a

circuit that ε-computes each homogeneous part of Pi

but we would need the following preprocessing.
Preprocessing the circuit:: Let C(x0, . . . , xn; ε) be

the minimal (in terms of number of variables) size s
circuit that is not fooled by Gen(P,y). That is, C ◦
Gen(P,y) 	= 0.

Claim 1. There is some i ≥ 0 such that

∂xi
n
(C) ◦ Gen(P,y) =ε 0,

∂xi+1
n
(C) ◦ Gen(P,y) 	=ε 0.

Proof: Let r = degxn
(lim
ε→0

C). Then, the polyno-

mial 0 	= Q′ = ∂xr
n

(
lim
ε→0

C
)

does not depend on xn.

Furthermore, by Lemma 3, we know that Q′ can also be

ε-computed by circuits of size s and degree D. Thus,

by the minimality of the choice of C, we have that

0 = Q′ ◦ Gen(P,y) =ε ∂xr
n
(C) ◦ Gen(P,y).

Since C◦Gen(P,y) 	=ε 0 and ∂xr
n
(C)◦Gen(P,y) =ε 0,

there must be an intermediate derivative where a switch

from zero to non-zero occurs.
Let C ′ = ∂xi

n
(C). In what follows, we will work

with C’ instead of C. Let its size be s′ ≤ s ·D (where

D = deg(C)).

C ′ ◦ Gen(P,y) =ε 0,

∂xn
(C ′) ◦ Gen(P,y) 	=ε 0.

Without loss of generality (by translating z if

necessary), assume that (∂xn
(C ′) ◦ Gen(P,y)) (0) =

Ψ(y; ε) with lim
ε→0

Ψ(y; ε) = Ψ(y) 	= 0. Let

P = P0 + P1 + · · · + Pd be the decomposition into

homogeneous parts, with Pi being the homogeneous

part of degree i, and let P≤r :=
∑

i≤r Pi.

Base case (j = 0): Each ∂zeP� for |e| ≤ n and

� ≤ n can be explicitly written as a sum of N :=
(
n+k
k

)
monomials. Hence, there is a circuit B0 of size s0 =
N2 that ε-computes (in fact, even exactly computes)

{∂ze(P�) : 0 ≤ � ≤ n , |e| ≤ n}.
Induction hypothesis: There is a circuit Bj−1(z; ε)

of size at most sj−1, with N� outputs that ε-computes

∂zeP� for each e with |e| ≤ n and � ≤ n+ j − 1.

Induction step: To construct a circuit Bj(z; ε) of

size at most sj (to be defined shortly) that ε-computes

∂zeP� for each e with |e| ≤ n and � ≤ n+ j.

Recall N =
(
n+k
n

)
, the number of k-variate degree

n monomials. We shall say that a ∈ F
n is “good” if

Ψ(a) 	= 0. Since F is large enough, by Proposition 1

and Lemma 1, a random set {a1, . . . ,aN} ⊂ F
n is a

set of “good” points that is also an interpolating set for

P(k, n) with probability 1−o(1). Let Γj−1,a be defined

as

Γj−1,a := (Δ0(P≤n+j−1, a), . . . ,Δn(P≤n+j−1,a)).

Lemma 5. Let a ∈ F
k be such that 0 	= Ψ(a) =

lim
ε→0

((∂xnC
′) ◦ Gen(P,a)) (0). Then,

( −1
Ψ(a)

)
·C ′(Γj−1,a) =ε Δn(Pn+j ,a) mod 〈z〉j+1

.

We will defer the proof of this lemma to the end of

the section and finish the rest of the proof.

We can begin with the circuit Bj−1(z; ε) that ε-

computes every ∂ze(P�) for |e| ≤ n and � ≤ n+ j− 1.

By taking suitable linear combinations of the output

gates, we can create a new circuit B, of size at

most sj−1+N5, that ε-computes {Γj−1,at
: t ∈ [N ]}.

Using Lemma 5 for each ai, we then obtain a cir-

cuit of size sj−1 + N5 + s′ · N that ε-computes{
Δn(Pn+j ,at) mod 〈z〉j+1

: t ∈ [N ]
}

.

By definition, Δn(Pn+j ,a) is a suitable linear com-

bination of ∂=n(Pn+j). Since {a1, . . . ,aN} was cho-

sen to be an interpolating set, each ∂ze(Pn+j) with

|e| = n can be written as a linear combination of

{Δn(Pn+j ,at) : i ∈ [N ]}. As {a1, . . . ,aN} was cho-

sen to be an interpolating set, each ∂ze(Pn+j) with

|e| = n can be written as a suitable linear combination
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z1 z2 zm
· · ·

Bj−1

Linear combinations

· · ·
Γj−1,a1

· · ·
Γj−1,aN· · ·

C′

−1
Ψ(a1)

C′

1
Ψ(aN )

· · ·

Linear combinations + Euler

· · ·

{
∂ze(Pn+j) mod

〈
zj+1

〉
: |e| ≤ n

}

Figure 1. Pictorial representation of B′j

of Δn(Pn+j ,at). Furthermore, since Pn+j is a homo-

geneous polynomial, we can also compute all its lower

order derivatives via repeated applications of Euler’s

formula (Fact 1). Overall, combined with the outputs

of Bj−1(z; ε), we have a circuit B′j(z; ε) (shown in

Figure 1) of size sj−1 +N10 + s′N that ε-computes

{∂ze(P�) : |e| ≤ n , � ≤ n+ j − 1}
∪

{
∂ze(Pn+j) mod 〈z〉j+1

: |e| ≤ n
}
.

Using Lemma 4, extracting the lowest degree homoge-

neous components of these outputs, gives a circuit Bj

of size sj ≤ sj−1 +N10 + s′N that ε-computes

{∂ze(P�) : |e| ≤ n , � ≤ n+ j} .
This completes the induction step.

Unraveling the induction for d − n steps, we even-

tually obtain a circuit of size at most d · s′ · N10 =
s · D · d · N10 that ε-approximates P0, . . . , Pd, and

thus its sum P . However, this contradicts the hardness

assumption of P . Hence, it must be the case that

limε→0 C ◦ Gen(P,y) 	= 0. This completes the proof

of the main theorem barring the proof of Lemma 5; we

address this next. (Theorem 2)

A. Proof of Lemma 5

We are given Γj−1,a =
(Δ0(P≤n+j−1,a), . . . ,Δn(P≤n+j−1,a)). For the

sake of brevity, we shall simply use Δi(P≤n+j−1) to

denote Δi(P≤n+j−1,a). Let Ri = Δi(P≤n+j−1) for

0 ≤ i ≤ n and A = Δn(Pn+j). From the assumption

on C ′, we have

0 =ε C
′(Δ0(P ), . . . ,Δn(P ); ε)

=⇒ 0 =ε C
′(Δ0(P ), . . . ,Δn(P ); ε) mod 〈z〉j+1

By Observation 1, we have that Δi(P ) =
Δi(P≤n+j−1) mod 〈z〉j+1

for all i ≤ n − 1, and

Δn(P ) = Δn(P≤n+j−1) + Δn(Pn+j) mod 〈z〉j+1
.

Therefore,

0 =ε C
′(Δ0(P≤n+j−1), . . . ,Δn−1(P≤n+j−1),

Δn(P≤n+j−1) + Δ(Pn+j); ε) mod 〈z〉j+1

= C ′(R0, R1, . . . , Rn−1, Rn +A; ε) mod 〈z〉j+1

We now do a Taylor expansion of the polynomial C
around the point (R0, R1, . . . , Rn).

0 =ε C
′(R0, . . . , Rn; ε)+

dC∑
i=1

Ai ·
(
∂xi

n
(C ′)(R0, . . . , Rn)

i!

)
mod 〈z〉j+1

Moreover, since A = Δn(Pn+j) is a homogeneous

polynomial (in z) of degree j and j ≥ 1, we have

A2 = 0 mod 〈z〉j+1
. Therefore,

0 =ε C
′(R0, . . . , Rn; ε)+∑

i

Ai ·
(
∂xi

n
(C ′)(R0, . . . , Rn)

i!

)
mod 〈z〉j+1

= C ′(R0, . . . , Rn; ε)

+A · (∂xn
(C ′)(R0, . . . , Rn)) mod 〈z〉j+1

= C ′(R0, . . . , Rn; ε) +A · α mod 〈z〉j+1

where α is the constant term of ∂xn(C
′)(R0, . . . , Rn).

Observe that the constant term of ∂xn(C
′)(R0, . . . , Rn)

is precisely

α = ∂xn
(C ′)(R0, . . . , Rn; ε)(0)

= ∂xn
(C ′)(Δ0(P≤n+j−1,a), . . . ,

Δn(P≤n+j−1,a); ε)(0)

= ∂xn
(C ′)(Δ0(P,a), . . . ,Δn(P,a))(0)

= (∂xn
(C ′) ◦ Gen(P,a)) (0)

= Ψ(a; ε) 	=ε 0

Combining this with the previous equation, we get

0 =εC
′(R0, . . . , Rn)

+A ·Ψ(a) mod 〈z〉j+1

=⇒ A = Δn(Pn+j)

=

( −1
Ψ(a)

)
C ′(R0, . . . , Rn) mod 〈z〉j+1

.

(Lemma 5)
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B. Application to bootstrapping phenomenon for hitting
sets

We now use Theorem 2 to prove the following

theorem about bootstrapping hitting sets for algebraic

circuits. The main differences of this result from the

earlier results of this flavor is that the bootstrapping

here is done in one step, and the final running time is

truly polynomially bounded, whereas the earlier proofs

had a iterative argument for stretching the number of

variables, and the final running time was of the form

s2
2O(log∗ n)

. Another crucial difference is that the result

below is for the border of polynomials with small

circuits.

Theorem 3 (Bootstrapping in one shot). Assume that
the underlying field F has characteristic zero. Let δ > 0
be any constant and k ∈ N be a large enough constant.
Suppose that, for all large enough s, there is an sO(1)-
explicit hitting set of size sk−δ for all degree s polyno-
mials which are in the border of size s algebraic circuits
over k variables. Then, there is an sO(k3)-explicit hitting
set of size sO(k3) for all of degree s polynomials which
are in the border of size s algebraic circuits over s
variables.

Proof: Let s′ = s40k
2/δ . Let H be the hitting

set guaranteed by the hypothesis of the theorem for

k-variate polynomials that are ε-computed by size s′

and degree s′ circuits. Since H is a set of size at

most s′k−δ , there is a k-variate polynomial P (z) of

individual degree at most s′(k−δ)/k that vanishes on

H . By Theorem 4, the polynomial P (z) cannot be ε-

computed by circuits of size s′.
Now suppose 0 	=ε C(x; ε) is an s-variate, degree

s circuit of size at most s. Then, by Theorem 2, if

C ◦ Gen(P,y) =ε 0, then P (z) can be ε-computed by

circuits of size at most

s·s·s10k ·k·s′(k−δ)/k ≤ s′·
(
s20k

s′δ/k

)
= s′·

(
s20k

s40k

)
< s′

which contradicts the hardness of P . Hence, it must be

the case that

Q = lim
ε→0

(C ◦ Gen(P,y)) 	= 0.

Note that Q is a non-zero k-variate polynomial of

degree at most s · k · s′ ≤ s50k
2/δ . Thus, by composing

the generator Gen(P,y) with the trivial hitting set from

Lemma 1, we have a hitting set of size at most s50k
3/δ

for C.

IV. OPEN PROBLEMS

We end with some open problems.

• The construction of the HSG in this paper needs

the characteristic of the field to be large enough or

zero. Constructing a HSG with similar properties

(seed length, stretch, running time, degree) over

fields of small positive characteristic would be

quite interesting.

• The role of approximative or border computation

in the analysis of the HSG here is quite intriguing.

However, as of now, Question 1 and Question 2

as stated continue to remain open. It would be in-

teresting to construct HSG with properties similar

to the one in this paper which does not go via the

border.

• In the current statement of Theorem 2, the hardness

required for P for the HSG to fool circuits of size

s, depends on the degree of this circuit. We suspect

that this dependence on the degree can be avoided,

and in particular, this HSG should fool all circuits

of small size regardless of their degree.

• Lastly, it would be interesting to understand if this

new HSG and the ideas in its analysis have any

other applications.
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