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Abstract—In a recent breakthrough result, Chattopadhyay,
Mande and Sherif [ECCC TR18-17] showed an exponential
separation between the log approximate rank and randomized
communication complexity of a total function f , hence refuting
the log approximate rank conjecture of Lee and Shraibman
[2009]. We provide an alternate proof of their randomized
communication complexity lower bound using the information
complexity approach. Using the intuition developed there, we
derive a polynomially-related quantum communication com-
plexity lower bound using the quantum information complexity
approach, thus providing an exponential separation between
the log approximate rank and quantum communication com-
plexity of f . Previously, the best known separation between
these two measures was (almost) quadratic, due to Anshu, Ben-
David, Garg, Jain, Kothari and Lee [CCC, 2017]. This settles
one of the main question left open by Chattopadhyay, Mande
and Sherif, and refutes the quantum log approximate rank
conjecture of Lee and Shraibman [2009]. Along the way, we
develop a Shearer-type protocol embedding for product input
distributions that might be of independent interest.

Keywords-quantum communication complexity; logarithm of
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information complexity;

I. INTRODUCTION

Communication complexity concerns itself with charac-

terizing the minimum number of bits that distributed parties

need to exchange in order to accomplish a given task (such

as computing a function F ). Over the years, it has estab-

lished striking connections with various areas of complexity

theory and information theory, providing tools for solving

central problems in such domains. Since it is in general

hard to pin down precisely the communication cost of a task,

various lower bound methods have been developed over the

years. One such method is the logarithm of the rank of the

matrix MF that encodes the values the function F takes

on various inputs. More precisely, this matrix is defined as

MF (x, y) = F (x, y). The following well known conjecture

posits that this lower bound is polynomially tight for the

deterministic communication complexity of F .

Conjecture 1 (Log-Rank Conjecture, [1]). There exists a
universal constant α such that the deterministic commu-
nication complexity of every total Boolean function F is
O(logα(rk(MF ))).

See Ref. [2] and reference therein for more details about

this and the other conjectures discussed in this work. A nat-

ural randomized analogue of Conjecture 1 is the following,

comparing randomized communication complexity to the

logarithm of the approximate rank rather than actual rank

of MF . (See Section II-B for definitions.)

Conjecture 2 (Log-Approximate-Rank Conjecture, [3]).
There exists a universal constant α such that the randomized
communication complexity (with error 1

3 ) of every total
Boolean function F is O(logα(rk1/3(MF ))).

In a recent breakthrough work [2], Chattopadhyay, Mande

and Sherif established that Conjecture 2 is false by exhibit-

ing a function with an exponential separation between the

randomized communication complexity (with constant error)

and Log-Approximate-Rank. Their function is a composition

of the 2-bit Xor function and a function that they call Sink.

The work [2] asked if their function had implications for the

following quantum version of Conjecture 2.

Conjecture 3 (Quantum Log-Approximate-Rank Conjec-

ture, [3]). There exists a universal constant α, such that the
quantum communication complexity of every total Boolean
function F is O(logα(rk1/3(MF ))).

Here we prove that Conjecture 3 is false as well. Before

proceeding to the statement of our main result, we define

the Sink function.

Definition 4 (Sink, [2]). Sink function is defined on a
complete directed graph of m vertices, using

(
m
2

)
variables

zi,j , i < j ∈ [m], in the following way. Let zi,j = 1 if there
is a directed edge from vertex vi to vj and zi,j = 0 if there
is a directed edge from vertex vj to vi. The function Sink
computes whether or not there is a sink in the graph. In
other words, Sink(z) = 1 iff ∃i ∈ [m] such that all edges
adjacent to vi are incoming.

The function of interest for communication complexity

is Sink ◦ Xor⊗(
m
2 ), where each Xor takes as input one bit

from Alice and one from Bob. For simplicity of notation, we

will denote this function as Sink ◦ Xor. Our main theorem

is as follows, which lower bounds the quantum information

complexity (QIC) of Sink ◦ Xor.
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Theorem 5. Any t-round entanglement assisted protocol for
Sink ◦ Xor achieving error 1/5 satisfies QIC(Π, μ⊗(

m
2 )) ∈

Ω(mt2 ), with μ being the uniform distribution on 1+1 bits 1.

The desired lower bound on entanglement assisted quan-

tum communication complexity (Q∗1
3

) of Sink ◦Xor follows

by optimizing max(t,m/t2) over the number of round t.

Corollary 6. It holds that Q∗1/3(Sink ◦ Xor) ∈ Ω(m1/3).

Hence, combining with the following upper bound on

the log-approximate-rank due to Ref. [2], the Sink ◦ Xor
function witnesses an exponential separation between log-

approximate-rank and quantum communication, and refutes

the quantum log-approximate-rank conjecture of Lee and

Shraibman [3].

Theorem 7 ( [2]). It holds that
1) log rk1/3(MSink◦Xor) ≤ 4 logm+ o(logm)

2) log rk+1/3(MSink◦Xor) = O(log2m).

In a subsequent version of [2], Chattopadhyay et. al.

improved the upper bound on log rk+1/3(MSink◦Xor) to

O(logm).

A. Independent work

Sinha and de Wolf [4] used the fooling distribution

method, in independent and simultaneous work, to obtain the

same Ω(m1/3) lower bound on the quantum communication

complexity of Sink ◦ Xor. This differs from our techniques

which we describe below.

B. Proof overview

At a high-level, our argument follows the well-established

information complexity approach [5], [6], [7], [8], [9]. We

view a given function f as some composition of many

instances of a simpler component function g, and argue

through a direct sum property a reduction from g to f .

This is achieved by embedding inputs to g into inputs to

f , where the remaining inputs to f are sampled from some

suitable distribution in order to achieve the desired direct

sum property. Following this, we show a lower bound on

the information complexity for g.

In the present context, Sink◦Xor is a composition of many

instances of the Equality function, in a way that the input

bits are shared across the instances. In Ref. [2], the authors

use Shearer’s lemma to handle such overlap between the

inputs across the instances and derive a corruption lower

bound. For the reduction from Sink ◦ Xor to Equality,

we also wish to use a Shearer-type inequality. We further

argue that a lower bound on information complexity of

Equality (for protocols that make small error in the worst

case) under uniform distribution implies a lower bound on

information complexity of Sink ◦ Xor. But it is not clear, a

1A random variable on a + b bits takes values over a bits on Alice’s
side and b bits on Bob’s side.

priori, that Equality should have high information cost under

that distribution, as this function has trivial communication

complexity under the uniform distribution. It turns out that

the cut-and-paste argument of Anshu, Belovs, Ben-David,

Göös, Jain, Kothari, Lee and Santha [10] yields a constant

lower bound on information complexity of good protocols

for Equality, even under the uniform distribution.

Broadly, our quantum lower bound proceeds along lines

similar to above. The quantum cut-and-paste argument of

Anshu, Ben-David, Garg, Jain, Kothari and Lee [11] in

the quantum setting yields a round dependent lower bound

on the quantum information complexity (QIC) [5], [12],

[13], [14], [15] of good protocols for Equality, even under

the uniform distribution. But the quantum version of the

embedding argument requires new methods. In the classical

setting, using classical information cost IC, as soon as

we have Alice and Bob privately sample the remaining

inputs, the Shearer-type embedding follows almost directly

from a Shearer like inequality for information [16]. In the

quantum setting, we would similarly like to use a Shearer-

type inequality for quantum information [17]. However, it

is not immediately clear how to make the protocol embed-

ding work for quantum information cost QIC. We instead

settle on an alternate notion of quantum information cost

(variants of which have appeared before [18], [13], [19],

[17]) that works well only for product input distributions.

The argument then goes through by carefully using this

notion, and it is equivalent to QIC up to a round-dependent

factor. What we get is a Shearer-type embedding protocol

for product input distributions that allows some specific pre-

processing of the inputs. We provide such a general version

in Section IV-A in the quantum setting, while we give a

more direct proof in the classical setting.

Hence, overall we get a round dependent lower bound on

the quantum information complexity of Sink ◦Xor, and the

round independent lower bound on quantum communication

complexity follows by optimizing over the number of rounds

in any good protocol.

II. PRELIMINARIES AND NOTATION

For integer n ≥ 1, let [n] represent the set {1, 2, ..., n}.
Let X and Y be finite sets and k be a natural number. Let

X k be the set X × ...×X , the cross product of X , k times.

Let μ be a probability distribution on X . Let μ(x) represent

the probability of x ∈ X according to μ. We write X ∼ μ to

denote that the random variable X is distributed according to

μ. We use the same symbol to represent a random variable

and its distribution whenever it is clear from the context.

The expectation value of function f on X is defined as

Ex←X [f(x)] =
∑

x∈X Pr(X = x)f(x) where x ← X
means that x is drawn according to the distribution of X .

We say X and Y are independent iff for each x ∈ X , y ∈
Y : Pr(XY = xy) = Pr(X = x) · Pr(Y = y). For joint
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random variables XY , Y x will denote the distribution of

Y |X = x.

A. Classical information theory

We start with the following fundamental information

theoretic quantities. We refer the reader to the excellent

sources for information theory [20] for further study.

Definition 8 (Entropy). Let random variable X take values
in X . Then entropy of random variable X is defined as

H(X) =
∑
x∈X

Pr(X = x) log

(
1

Pr(X = x)

)
.

Definition 9 (Mutual Information). Let random variable X
take values in X and Y take values in Y . Then the mutual
information between random variables X and Y is defined
as

I(X : Y ) = H(X) +H(Y )−H(XY ).

The conditional entropy of X given Y is

H(X|Y ) =
∑
y∈Y

Pr(Y = y)H(X|Y = y).

The conditional mutual information between X and Y
conditioned on Z is

I(X : Y |Z) =
∑
z∈Z

Pr(Z = z)I(X : Y |Z = z).

Let μ and ν be two distributions over the set X . The

Kullback-Leibler divergence between μ and ν is defined as

D(μ‖ν) = −
∑
x∈X

μ(x) log

(
ν(x)

μ(x)

)
.

The following holds:

I(X : Y ) =
∑
y∈Y

Pr(Y = y)D(Xy‖X).

Definition 10 (Distance measures). Let μ and ν be
probability distributions over X . We define the following
distance measures between distributions.

Total variation distance: Δ(μ, ν) = 1
2 ||μ − ν||1 =

maxT⊆X [μ(T )− ν(T )] = 1
2

∑
x∈X |μ(x)− ν(x)|.

Bures metric (Hellinger distance):

B(μ, ν) :=

√∑
x∈X

(
μ(x) + ν(x)

2
−

√
μ(x)ν(x)

)
.

Fact 11 (Relationship between Hellinger distance and Total

variation distance). Let μ, ν be two distributions over X . It
holds that,

1√
2
Δ(μ, ν) ≤ B(μ, ν) ≤

√
Δ(μ, ν).

Fact 12 (Triangle Inequality). Let μ, ν, η be 3 distributions
over X . It holds that,

Δ(μ, η) ≤ Δ(μ, ν) + Δ(ν, η).

Fact 13 (Pinsker’s inequality( [20], Lemma 11.6.1, p. 370)).
Let μ and ν be two distributions over the set X . It holds
that,

Δ2(μ, ν) ≤ ln 2

2
·D(μ‖ν).

We now review some properties of the Bures metric.

Fact 14 (Facts about Bures metric).

Fact 14.A (Triangle inequality [21]). The following triangle
inequality and a weak triangle inequality hold for the Bures
metric and the square of the Bures metric.

1) Let μ, ν, η be 3 distributions over X . It holds that,

B(μ, η) ≤ B(μ, ν) + B(ν, η).

2) Let μ1, μ2, ..., μt+1 be t+ 1 distributions over X . It
holds that,

B2(μ1, μt+1) ≤ t ·
t∑

i=1

B2(μi, μi+1).

Fact 14.B (Averaging over register). For 2 joint random
variables θXB , θ

′
XB with same marginal distribution θX =

θ′X , we have

B2(θXB , θ
′
XB) = Ex←X [B2(θxB , θ

′x
B )].

Finally, an important property of both these distance

measures is monotonicity.

Fact 15 (Monotonicity). For any 2 joint random variables
μXY , νXY over X × Y , we have

Δ(μXY , νXY ) ≥ Δ(μX , νX) and

B(μXY , νXY ) ≥ B(μX , νX).

We state the following classical version of the Shearer-

type inequality for information.. (See Lemma 36.)

Lemma 16. Let XZ be a correlated random variable such
that X = X1 ⊗ X2 ⊗ .... ⊗ Xn. If S is an independant
random variable distributed on subsets of the coordinates
[n], such that for every i ∈ [n], Pr[i ∈ S] ≤ 1

k , then

ES [I(XS : Z|S)] ≤ 1

k
I(X;Z)

where XS is the random variable (Xi : i ∈ S).
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B. Classical communication complexity

Let f : X × Y → {0, 1} be a total function (that is,

its value is defined on every input) and ε ∈ (0, 1). In

a two-party communication task, Alice is given an input

x ∈ X , Bob is given y ∈ Y and the task is to compute

f(x, y) by exchanging as few bits as possible. The parties are

allowed to possess pre-shared randomness (R) and private

randomness (RA, RB). Without loss of generality, we can

assume that Alice communicates first and also gives the final

output. The communication cost of a protocol Π, denoted

by CC(Π), is the maximum number of bits the parties

have to communicate over all possible inputs and values

of the shared and private randomness. Let Rε(f) represent

the two-party randomized communication complexity of f
with worst case error ε, i.e., the communication of the best

two-party randomized protocol for f with error at most ε
over any input (x, y). Worst-case error of the protocol Π
over the inputs is denoted by err(Π). With some abuse of

notation, let Π also denote the random variable composed

of all the messages of the protocol. We will not include the

public randomness R in the protocol and will account for it

separately.

Definition 17 (XOR function). A function F : {0, 1}n ×
{0, 1}n → {0, 1} is called an XOR function if there
exists a function f : {0, 1}n → {0, 1} such that
F (x1, ..., xn, y1, ..., yn) = f(x1 ⊕ y1, ..., xn ⊕ yn) for all
x, y ∈ {0, 1}n. We denote F = f ◦XOR.

Definition 18 (Rank). The rank of a matrix M , denoted by
rk(M) is the minimum integer k for which there exist k rank
1 matrices such that M =

∑k
i=1Mi.

Definition 19 (Non-negative Rank). The non-negative rank
of a matrix M , denoted by rk+(M) is the minimum integer
k for which there exist k rank 1 matrices with non-negative
entries such that M =

∑k
i=1Mi.

Definition 20 (Approximate rank). Let ε ∈ [0, 1/2) and M
be an |X | × |Y| matrix. The ε-approximate rank of M is
defined as

rkε(M) = min
M̃
{rk(M̃)},

in which the minimum ranges over all M̃ satisfying

∀x ∈ X , y ∈ Y, |M̃(x, y)−M(x, y)| ≤ ε.
Definition 21 (Approximate non-negative rank). Let ε ∈
[0, 1/2) and M be an |X | × |Y| matrix. The ε-approximate
non-negative rank of M is defined as

rk+ε (M) = min
M̃
{rk+(M̃)},

in which the minimum ranges over all M̃ satisfying

∀x ∈ X , y ∈ Y, |M̃(x, y)−M(x, y)| ≤ ε.

Definition 22 (Distributional Information Complexity). Dis-
tributional information complexity of a randomized protocol
Π with respect to a distribution XY ∼ μ is defined as

IC(Π, μ) = I(X : Π|Y RRB) + I(Y : Π|XRRA).

Definition 23 (Max Distributional Information Complexity).
Max-distributional information complexity of a randomized
protocol Π is defined as

IC(Π) = max
μ

IC(Π, μ).

Definition 24 (Information Complexity of a function). In-
formation complexity of a function f is defined as

IC(f) = inf
Π:err(Π)≤ε

IC(Π).

Note that since one bit of communication can hold at most

one bit of information, for any protocol Π and distribution μ
we have IC(Π, μ) ≤ CC(Π). This implies that information

complexity of a function is a lower bound on the randomized

communication complexity of a function.

Lemma 25 (Cut-and-paste lemma (Lemma 6.3 in [7])). Let
(x, y) and (x′, y′) be two inputs to a randomized protocol
Π. Then

B((RΠ)x,y, (RΠ)x
′,y′) = B((RΠ)x,y

′
, (RΠ)x

′,y).

Fact 26 (Pythagorean property (Lemma 6.4 in [7])). Let
(x, y) and (x′, y′) be two inputs to a randomized protocol
Π. Then

B2((RΠ)x,y
′
, (RΠ)x

′,y′) + B2((RΠ)x,y, (RΠ)x
′,y)

≤ 2B2((RΠ)x
′,y′ , (RΠ)x,y).

C. Quantum information theory

We now introduce some quantum information theoretic

notation. We assume the reader is familiar with standard

concepts in quantum computing [22], [23], [24].

Let H be a finite-dimensional complex Euclidean space,

i.e., Cn for some positive integer n with the usual complex

inner product 〈·, ·〉, which is defined as 〈u, v〉 = ∑n
i=1 u

∗
i vi.

We will also refer to H as an Hilbert space. We will usually

denote vectors in H using bra-ket notation, e.g., |ψ〉 ∈ H.

The �1 norm (also called the trace norm) of an operator

X on H is ‖X‖1 := Tr(
√
X†X), which is also equal to

(vector) �1 norm of the vector of singular values of X . A

quantum state (or a density matrix or simply a state) ρ is a

positive semidefinite matrix on H with Tr(ρ) = 1. The state

ρ is said to be a pure state if its rank is 1, or equivalently

if Tr(ρ2) = 1, and otherwise it is called a mixed state. Let

|ψ〉 be a unit vector on H, that is 〈ψ|ψ〉 = 1. With some

abuse of notation, we use ψ to represent the vector |ψ〉 and
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also the density matrix |ψ〉〈ψ|, associated with |ψ〉. Given

a quantum state ρ on H, the support of ρ, denoted supp(ρ),
is the subspace of H spanned by all eigenvectors of ρ with

nonzero eigenvalues.

A quantum register A is associated with some Hilbert

space HA. Define |A| := log dim(HA). Let L(A) represent

the set of all linear operators on HA. We denote by D(A)
the set of density matrices on the Hilbert space HA. We

use subscripts (or superscripts according to whichever is

convenient) to denote the space to which a state belongs,

e.g, ρ with subscript A indicates ρA ∈ HA. If two registers

A and B are associated with the same Hilbert space, we

represent this relation by A ≡ B. For two registers A
and B, we denote the combined register as AB, which is

associated with Hilbert space HA ⊗HB . For two quantum

states ρ ∈ D(A) and σ ∈ D(B), ρ⊗σ ∈ D(AB) represents

the tensor product (or Kronecker product) of ρ and σ. The

identity operator on HA is denoted IA.

Let ρAB ∈ D(AB). We define the partial trace with
respect to A of ρAB as

ρB := TrA(ρAB) :=
∑
i

(〈i| ⊗ IB)ρAB(|i〉 ⊗ IB),

where {|i〉}i is an orthonormal basis for the Hilbert space

HA. The state ρB ∈ D(B) is referred to as a reduced density
matrix or a marginal state. Unless otherwise stated, a miss-

ing register from subscript in a state will represent partial

trace over that register. Given ρA ∈ D(A), a purification of

ρA is a pure state ρAB ∈ D(AB) such that TrB(ρAB) = ρA.

Any quantum state has a purification using a register B with

|B| ≤ |A|. The purification of a state, even for a fixed B, is

not unique as any unitary applied on register B alone does

not change ρA.

An important class of states that we will consider are

the classical quantum states. They are of the form ρAB =∑
a μ(a) |a〉〈a|A⊗ρaB , where μ is a probability distribution.

In this case, ρA can be viewed as a probability distribution

and we shall continue to use the notations that we have

introduced for probability distribution, for example, Ea←A

to denote the average
∑

a μ(a).
A quantum super-operator (or a quantum channel or a

quantum operation) E : A → B is a completely positive

and trace preserving (CPTP) linear map (mapping states

from D(A) to states in D(B)). The identity operator in

Hilbert space HA (and associated register A) is denoted

IA. A unitary operator UA : HA → HA is such that

U†AUA = UAU†A = IA. The set of all unitary operations

on register A is denoted by U(A).
A 2-outcome quantum measurement is defined by a

collection {M, I − M}, where 0 � M � I is a positive

semidefinite operator, where A � B means B−A is positive

semidefinite. Given a quantum state ρ, the probability of

getting outcome corresponding to M is Tr(ρM) and getting

outcome corresponding to I−M is 1− Tr(ρM).

1) Distance measures for quantum states: We now define

the distance measures we use and some properties of these

measures. Before defining the distance measures, we intro-

duce the concept of fidelity between two states, which is not

a distance measure but a similarity measure. Note that all

the notions introduced below also apply to classical random

variables, when viewed as diagonal quantum states in some

basis.

Definition 27 (Fidelity). Let ρA, σA ∈ D(A) be quantum
states. The fidelity between ρ and σ is defined as

F(ρA, σA) := ‖√ρA√σA‖1 .
For two pure states |ψ〉 and |φ〉, we have

F(|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|. We now introduce the

two distance measures we use.

Definition 28 (Distance measures). Let ρA, σA ∈ D(A) be
quantum states. We define the following distance measures
between these states.

Trace distance: Δ(ρA, σA) :=
1

2
‖ρA − σA‖1.

Bures metric: B(ρA, σA) :=
√
1− F(ρA, σA).

Note that for any two quantum states ρA and σA, these

distance measures lie in [0, 1]. The distance measures are 0
if and only if the states are equal, and the distance measures

are 1 if and only if the states have orthogonal support, i.e.,

if ρAσA = 0.

Conveniently, these measures are closely related.

Fact 29. For all quantum states ρA, σA ∈ D(A), we have

B2(ρA, σA) ≤ Δ(ρA, σA) ≤
√
2 · B(ρA, σA).

Proof: The Fuchs-van de Graaf inequalities [25], [24]

state that

1− F(ρA, σA) ≤ Δ(ρA, σA) ≤
√
1− F2(ρA, σA).

Our fact follows from this and the relation

1− F2(ρA, σA) ≤ 2− 2F(ρA, σA)

.

We now review some properties of the Bures metric.

Fact 30 (Facts about Bures metric).

Fact 30.A (Triangle inequality [21]). The following triangle
inequality and a weak triangle inequality hold for the Bures
metric and the square of the Bures metric.

1) B(ρA, σA) ≤ B(ρA, τA) + B(τA, σA).
2) B2(ρ1A, ρ

t+1
A ) ≤ t ·∑t

i=1 B
2(ρiA, ρ

i+1
A ).

Fact 30.B (Averaging over classical registers). For classical-
quantum states θXB , θ

′
XB with θX = θ′X , we have

B2(θXB , θ
′
XB) = Ex←X [B2(θxB , θ

′x
B )].
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Finally, an important property of both these distance

measures is monotonicity under quantum operations [26],

[27].

Fact 31 (Monotonicity under quantum operations). For
quantum states ρA, σA ∈ D(A), and a quantum operation
E(·) : L(A)→ L(B), it holds that

Δ(E(ρA), E(σA)) ≤ Δ(ρA, σA) and

B(E(ρA), E(σA)) ≤ B(ρA, σA),

with equality if E is unitary. In particular, for bipartite states
ρAB , σAB ∈ D(AB), it holds that

Δ(ρAB , σAB) ≥ Δ(ρA, σA) and

B(ρAB , σAB) ≥ B(ρA, σA).

2) Mutual information: We start with the following

fundamental information theoretic quantities. We refer the

reader to the excellent sources for quantum information

theory [23], [24] for further study.

Definition 32. Let ρA ∈ D(A) be a quantum state. We then
define the following.

von Neumann entropy: H(ρA) := −Tr(ρA log ρA).

We now define mutual information and conditional mutual

information.

Definition 33 (Mutual information). Let ρABC ∈ D(ABC)
be a quantum state. We define the following measures.

Mutual information:

I(A : B)ρ := H(ρA) + H(ρB)−H(ρAB)

Conditional mutual information:

I(A : B | C)ρ := I(A : BC)ρ − I(A : C)ρ.

We will need the following basic properties.

Fact 34 (Properties of I). Let ρABC ∈ D(ABC) be a
quantum state. We have the following.

Fact 34.A (Nonnegativity).

I(A : B)ρ ≥ 0 and I(A : B | C)ρ ≥ 0.

If ρAB = ρA ⊗ ρB is a product state, then

I(A : B) = 0.

Fact 34.B (Chain rule).

I(A : BC)ρ = I(A : B)ρ + I(A : C | B)ρ.

Fact 34.C (Monotonicity). For a quantum operation E(·) :
L(A)→ L(B), I(A : E(B)) ≤ I(A : B) with equality when
E is unitary. In particular I(A : BC)ρ ≥ I(A : B)ρ.

Fact 34.D (Averaging over conditioning register). For
classical-quantum state (register X is classical) ρXAB:

I(A : B|X)ρ = Ex←XI(A : B)ρx .

The following lemma, known as the Average Encoding

Theorem [5], formalizes the intuition that if a classical and a

quantum registers are weakly correlated, then they are nearly

independent.

Lemma 35. For any ρXA =
∑

x pX(x) · |x〉〈x|X ⊗ ρxA with
a classical system X and states ρxA,∑

x

pX(x) · B2(ρxA, ρA) ≤ I(X :A)ρ . (1)

The following Shearer-type inequality for quantum infor-

mation was shown in Ref. [17]. Classical variants appeared

in [16], [28].

Lemma 36. Consider registers U1, U2, . . . Um, V and de-
fine U := U1U2 . . . Um. Consider a quantum state ΨUV

such that ΨU1U2...Um = ΨU1 ⊗ ΨU2 ⊗ . . . ⊗ ΨUm . Let
S =

{
i1, . . . , i|S|

} ⊆ [m] be a random set picked inde-
pendently of ΨUV satisfying Pr[i ∈ S] ≤ 1

k for all i and
US := Ui1Ui2 . . . Ui|S| . Then it holds that

I(US : V | S)Ψ ≤ I(U : V )Ψ
k

,

D. Quantum communication complexity
In quantum communication complexity, two players wish

to compute a classical function F : X×Y → {0, 1} for some

finite sets X and Y . The inputs x ∈ X and y ∈ Y are given

to two players Alice and Bob, and the goal is to minimize the

quantum communication between them required to compute

the function.
While the players have classical inputs, the players are

allowed to exchange quantum messages. Depending on

whether or not we allow the players arbitrary shared entan-

glement, we get Q(F ), bounded-error quantum communi-

cation complexity without shared entanglement and Q∗(F ),
for the same measure with shared entanglement. Obviously

Q∗(F ) ≤ Q(F ). In this paper we will only work with

Q∗(F ), which makes our results stronger since we prove

lower bounds in this work.
An entanglement assisted quantum communication proto-

col Π for a function is as follows. Alice and Bob start with

preshared entanglement |Θ0〉A0B0
. Upon receiving inputs

(x, y), where Alice gets x and Bob gets y, they exchange

quantum messages. At the end of the protocol, Alice applies

a two outcome measurement on her qubits and correspond-

ingly outputs 1 or 0. Let O(x, y) be the random variable

corresponding to the output produced by Alice in Π, given

input (x, y).
Let μ be a distribution over dom(F ). Let inputs to Alice

and Bob be given in registers X and Y in the state

ρμ :=
∑
x,y

μ(x, y) |x〉〈x|X ⊗ |y〉〈y|Y . (2)
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Let these registers be purified by RX and RY respectively,

which are not accessible to either players. Denote

|μ〉XRXY RY
:=

∑
x,y

√
μ(x, y) |xxyy〉XRXY RY

. (3)

Let Alice and Bob initially hold register A0, B0 with shared

entanglement Θ0,A0B0 . Then the initial state is

|Ψ0〉XYRXRY A0B0
:= |μ〉XYRXRY

|Θ0〉A0B0
. (4)

Alice applies a unitary U1 : XA0 → XA1C1 such that

the unitary acts on A0 conditioned on X . She sends C1 to

Bob. Let B1 ≡ B0 be a relabeling of Bob’s register B0. He

applies U2 : Y C1B1 → Y C2B2 such that the unitary acts

on C1B0 conditioned on Y . He sends C2 to Alice. Players

proceed in this fashion for t messages, for t even, until the

end of the protocol. At any round r, let the registers be

ArCrBr, where Cr is the message register, Ar is Alice’s

register and Br is Bob’s register. If r is odd, then Br ≡ Br−1
and if r is even, then Ar ≡ Ar−1. On input x, y, let the joint

state in registers ArCrBr be Θx,y
r,ArCrBr

. Then the global

state at round r is

|Ψr〉XYRXRY ArCrBr
:=∑

x,y

√
μ(x, y) |xxyy〉XRXY RY

|Θx,y
r 〉ArCrBr

. (5)

We define the following quantities.

Worst-case error: err(Π) := max
(x,y)
{Pr[O(x, y) �= F (x, y)]}.

Quantum CC of a protocol: QCC(Π) :=
∑
i

|Ci|.

Quantum CC of F : Q∗ε(F ) := min
Π:err(Π)≤ε

QCC(Π).

Our first fact links err(Π) with the distance Δ between a

pair of final states corresponding to inputs with different

outputs.

Fact 37 (Error vs. distance). Consider a non-constant func-
tion f , and let x, y and y′ be inputs such that f(x, y) �=
f(x, y′). For any protocol Π with t rounds, it holds that

Δ(Θx,y
t,AtCt

,Θx,y′
t,AtCt

) ≥ 1− 2err(Π).

In below, let A′r, B
′
r represent Alice and Bob’s registers

after reception of the message Cr at round r. That is, at

even round r, A′r = ArCr, B
′
r = Br and at odd r, A′r =

Ar, B
′
r = BrCr. We will need the following version of the

quantum-cut-and-paste lemma from [29] (also see [12], [13]

for similar arguments). This is a special case of [29, Lemma

7] and we have rephrased it using our notation.

Lemma 38 (Quantum cut-and-paste). Let Π be a quantum
protocol with classical inputs and consider distinct inputs
u, u′ for Alice and v, v′ for Bob. Let |Ψ0,A0B0

〉 be the initial
shared state between Alice and Bob. Also let

∣∣∣Ψu′′,v′′

k,A′kB
′
k

〉
be

the shared state after round k of the protocol when the inputs
to Alice and Bob are (u′′, v′′) respectively. For k odd, let

hk = B
(
Ψu,v

k,B′k
,Ψu′,v

k,B′k

)
and for even k, let

hk = B
(
Ψu,v

k,A′k
,Ψu,v′

k,A′k

)
.

Then

B
(
Ψu′,v

r,A′r
,Ψu′,v′

r,A′r

)
≤ 2

r∑
k=1

hk.

As discussed in the introduction, approximate rank lower

bounds bounded-error quantum communication complexity

with shared entanglement [30]:

Fact 39. For any two-party function F : X × Y → {0, 1}
and ε ∈ [0, 1/3], we have Q∗ε(F ) = Ω(log rkε(F )) −
O(log log(|X | · |Y|)).

E. Quantum information complexity

Definition 40. Given a quantum protocol Π with classical
inputs distributed as μ, the quantum information cost is
defined as

QIC(Π, μ) =
∑

i odd I(RXRY :Ci |Y Bi)

+
∑

i even I(RXRY :Ci |XAi) .

Definition 41. Given a quantum protocol Π with classical
inputs distributed as μ, the cumulative Holevo information

cost is defined as

HQIC(Π, μ) =
∑

i odd I(X :BiCi |Y )

+
∑

i even I(Y :AiCi |X) .

Definition 42. Given a quantum protocol Π and a product
distribution μ over the classical inputs, the cumulative
superposed-Holevo information cost is defined as

SQIC(Π, μ) =
∑

i odd I(X :Y RYBiCi)ρi

+
∑

i even I(Y :XRXAiCi)ρi
.

Note that for product input distributions on XY and for

each i,

I(X :BiCi|Y )ρi
= I(X :Y BiCi)ρi

≤ I(X :Y RYBiCi)ρi
,

(6)

I(Y :AiCi|X)ρi = I(Y :XAiCi)ρi ≤ I(Y :XRXAiCi)ρi .
(7)

Combining with other results in Ref. [19], we get the

following for any t round protocol Π and any product
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distribution μ:

2QCC(Π) ≥ QIC(Π, μ) (8)

≥ 1

t
SQIC(Π, μ) (9)

≥ 1

t
HQIC(Π, μ) (10)

≥ 1

2t
QIC(Π, μ). (11)

.

III. LOWER BOUND ON THE INFORMATION COMPLEXITY

OF SINK ◦ XOR

A. Reducing Equality to Sink ◦ Xor
We define the Equality function as

EQ(x, y) =

{
1 if x = y,

0 otherwise.

Recall the Sink function from Definition 4. Following [2]

we use projections of the inputs in our proof to analyze the

input of the Sink function. Let w ∈ {0, 1}(m2 ). Let Evi
be the

set of m− 1 input coordinates that correspond to the edges

incident to vi. We use the notation wvi to denote the input

projected to the coordinates in Evi
. Note that wvi

decides

whether or not vi is a sink. By zvi
, we refer to the m−1 bit

string such that vi is a sink if and only if wvi
= zvi

. Sink
can be written as

Sink(w) = ∨mi=1EQ(wvi
, zvi

)

since only one of the vertex can be a sink in the complete

directed graph. Our communication function is Sink ◦Xor :
{0, 1}(m2 )×{0, 1}(m2 ) → {0, 1}. Similar to Sink, Sink◦Xor
can be represented as

Sink ◦ Xor(x, y) = ∨mi=1EQ(xvi
, yvi
⊕ zvi

).

Our first result is as follows.

Theorem 43. Suppose m ≥ 10. Let Π be a protocol for
Sink ◦ Xor which makes a worst case error of at most 1

4 .
There exists a protocol Π′ for EQ that makes a worst case
error of at most 1

4 + m−1
2m−2 ≤ 1

3 . Furthermore, it holds that

IC(Π′, ν) ≤ 2

m
IC(Π, μ),

where ν is the uniform distribution over inputs to EQ and
μ is uniform over the inputs to Sink ◦ Xor.

Proof: We have

IC(Π, μ) = I(X : Π|Y RRB) + I(Y : Π|XRRA) (12)

= I(X : ΠY RRB) + I(Y : ΠXRRA), (13)

where the information quantities are evaluated on μ and the

associated Π. Let S be a random variable which takes values

in {Ev1
, Ev2

, . . . , Evm
} with uniform probability. Let XEvi

(similarly YEvi
) be the restriction of X (similarly Y ) to co-

ordinates in Evi
. Since each coordinate j appears in exactly

two sets in {Ev1 , Ev2 , . . . , Evm}, we have Pr[j ∈ S] = 2
m .

Thus, from Lemma 36, we have

2

m
IC(Π, μ) ≥ Es[I(XS : YΠRRB |S = s)

+ I(YS : XΠRRA|S = s)] (14)

= Es[I(XS : Π|Y RRB , S = s)

+ I(YS : Π|XRRA, S = s)].
(15)

The protocol Π′ for EQ is now as follows, for inputs

c, d ∈ {0, 1}m−1 (we use c, d as inputs here to avoid

confusion with x, y for Sink ◦ Xor).
• Alice and Bob take a sample s from S using shared

randomness. Let i be such that Evi
= s.

• They set xs = c and ys = d ⊕ zvi . Alice samples

xs̄ uniformly at random from private randomness and

Bob samples ys̄ uniformly at random from private

randomness. Here s̄ is the complement of s. This

specifies the input x, y for Sink ◦ Xor.
• They run the protocol Π and output accordingly.

Observe that xs and ys are distributed uniformly if c and d
are. Thus,

IC(Π′, ν) = Es[I(XS : Π|YSRYS̄RB , S = s)

+ I(YS : Π|XSRXS̄RA, S = s)]

= Es[I(XS : Π|Y RRB , S = s)

+ I(YS : Π|XRRA, S = s)],

where the information quantities are evaluated on μ and the

associated Π, and the desired information bound follows by

(14).

To bound the worst case error of Π′, we argue as follows.

Fix some input c, d to Π′. If c = d, then xs = ys ⊕ zvi

which implies that error of Π′ on this input is same as the

error of Π on the corresponding x, y, hence at most err(Π).
Now consider the case where c �= d. The function Sink◦Xor
evaluates to 1 only if xEvj

= yEvj
⊕ zvj for some j ∈ [m].

Since, c �= d, we conclude that j (if it exists) cannot be equal

to i. Moreover, the edge adjacent to i is already fixed by c, d,

and if it is not consistent with the corresponding value in zvi
,

then j is not a sink. Hence, similar to the argument in [2,

Claim 5.6], the probability that j is a sink is at most 1
2m−2 ,

as all m− 1 edges must be incoming and the edge adjacent

to i is already fixed. Hence by a union bound, the probability

for an x, y (that satisfy xvi = c, yvi = d ⊕ zvi , c �= d) to

form a 1 input at some other coordinate j is at most m−1
2m−2 .

This implies that err(Π′) ≤ err(Π)+ m−1
2m−2 . This completes

the proof.

B. Lower bound on information complexity of Equality

To complete the argument, we use the following lemma

(that uses a cut and paste argument) implicit in [10] and
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obtain a lower bound on the information complexity of EQ.

We repeat its proof for completeness (and consistency with

our notation).

Lemma 44. Let Π be a protocol for EQ that makes a worst
case error of at most 1

3 . Then it holds that IC(Π, ν) ≥ 1
432 ,

where ν is uniform over inputs to EQ .

Proof: Let RA and RB be private randomness of Alice

and Bob (respectively) in the protocol and R be the public

randomness. We have

IC(Π, ν) = I(Y : Π|XRAR) + I(X : Π|Y RBR).

By the average-encoding theorem (Fact 35), it holds that

added R below

I(X : Π | Y RBR) = I(X : RRBΠ | Y )

≥ I(X : RΠ | Y )

≥ Ex,y←XY B
2((RΠ)x,y, (RΠ)y).

Similarly,

I(Y : Π | XRAR) = I(Y : XRARΠ)

≥ I(Y : RΠ)

≥ Ey←Y B
2((RΠ)y, RΠ).

Using the weak triangle inequality (Fact 30.A), the above

two inequalities imply

Ex,y←XY B
2((RΠ)x,y, RΠ) ≤
2Ex,y←XY (B

2((RΠ)x,y, (RΠ)y)

+ B2((RΠ)y, RΠ))

≤ 2(I(X : Π | Y RBR)

+ I(Y : Π | XRAR))

= 2 IC(Π, ν).

Since x, y are uniform, we can write the above relation

as

Et←Y Ex←XB2((RΠ)x,x⊕t, RΠ) ≤ 2 IC(Π, ν).

Since Pr[t = 0] = 1
2m−1 , this implies that there exists an

t �= 0 such that

Ex←XB2((RΠ)x,x⊕t, RΠ) ≤ 3 IC(Π, ν).

An equivalent way to write the above inequality, by relabel-

ing x→ x⊕ t, is

Ex←XB2((RΠ)x⊕t,x, RΠ) ≤ 3 IC(Π, ν).

By the weak triangle inequality (Fact 30.A), we conclude

Ex←XB2((RΠ)x⊕t,x, (RΠ)x,x⊕t) ≤ 12 IC(Π, ν).

The pythagorean property (Fact 26) now implies that

Ex←XB2((RΠ)x,x, (RΠ)x,x⊕t) ≤ 24 IC(Π, ν).

Thus, there exists some x for which

B2((RΠ)x,x, (RΠ)x,x⊕t) ≤ 24 IC(Π, ν). Since Π makes

an error of at most 1
3 , we require (using relation between

Bures metric and triangle inequality, Fact 29)

B2((RΠ)x,x, (RΠ)x,x⊕t) ≥ 1

2
Δ2((RΠ)x,x, (RΠ)x,x⊕t)

≥ 1

2
Δ2((Π)x,x, (Π)x,x⊕t)

≥ 1

18
.

Thus, IC(Π, ν) ≥ 1
432 , which completes the proof.

Theorem 43 and Lemma 44 jointly imply that IC(Π, μ) ≥
m
864 , for any protocol Π that makes an error of at most 1

4 on

Sink ◦ Xor. This establishes the desired lower bound.

IV. REDUCING EQUALITY TO SINK FOR QUANTUM

INFORMATION

A. Shearer-type embedding
We begin by showing a general embedding result based on

the Shearer-type lemma for quantum information (Lemma

36). Consider a protocol Π acting on input registers

X1, X2, . . . , Xm and Y1, Y2, . . . Ym, with X1 ≡ X2 ≡
. . . ≡ Xm and Y1 ≡ Y2 ≡ . . . ≡ Ym. Define X =
X1X2 . . . Xm, Y = Y1Y2 . . . Ym. Consider a product input

distribution μ = μ1 ⊗ μ2 on XiYi. Consider t ∈ [m] and

let S = {i1, i2, . . . , it} ⊆ [m] be a random set of size t
picked independently of the input on XY and satisfying

Pr [i ∈ S] ≤ 1
k for all i. Let XS = Xi1Xi2 . . . Xit ,

YS = Yi1Yi2 . . . Yit . We define the following protocol ΠS

acting on input AinBin, with Ain ≡ XS , Bin ≡ YS .

Protocol ΠS on input σAinBin

1) Alice privately sample Xi for each i �∈ S as

|μ1〉XiRXi
.

2) Bob privately sample Yi for each i �∈ S as

|μ2〉YiRYi
.

3) Alice embeds Ain into XS .

4) Bob embeds Bin into YS .

5) They run Π, and output Π’s output.

Lemma 45.

ΠS(σAinBin
) = Π(σXSYS

⊗ (ρ⊗m−tμ )XS̄YS̄
),

SQIC(ΠS , μ
⊗t) =

∑
i odd

I(XS :Y RYBiCi)ρi +

∑
i even

I(YS :XRXAiCi)ρi
,

with ρi the state in round i when Π is run on input
distribution μ⊗m.

Proof: By the definition of protocol ΠS , the channel

it implements is Π(σXSYS
⊗ (ρ⊗m−tμ )XS̄YS̄

) (see (2) in

Section II-D for definition of ρμ) on input σAinBin
.
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For the information cost when ΠS is run on input distri-

bution μ⊗t, first notice that for a given S, we can rewrite

Y RY = YSRYS
YS̄RYS̄

. After embedding AinBin into

XSYS , the XSYS registers correspond to the input of ΠS

while RXS
RYS

correspond to the purification of the input

registers. The XS̄RXS̄
and YS̄RYS̄

registers correspond to

the part privately sampled according to μ = μ1 ⊗ μ2 by

Alice and Bob, respectively, in order to run Π. Hence, for a

given S, the terms in SQIC look like

I(XS : YSRYS
YS̄RYS̄

BiCi) = I(XS : Y RYBiCi),

I(YS : XSRXS
XS̄RXS̄

AiCi) = I(YS : XRXAiCi).

The result follows.

Let |φS〉SASB
be a quantum state shared between Alice

and Bob and encoding the distribution on S. Given S, let

PS
A and PS

B be permutations (over the computational basis)

acting on Ain and Bin, respectively, and such that μ is

invariant under their action, i.e.

(PS
A ⊗ PS

B)(ρ⊗tμ ) = ρ⊗tμ . (16)

We define the following protocol Π̂ also acting on AinBin.

Protocol Π̂ on input σAinBin

1) Alice and Bob share |φS〉SASB
.

2) Conditioned on the value of S shared in |φS〉,
Alice and Bob apply PS

A and PS
B to their inputs,

respectively.

3) Conditioned on value of S shared in |φS〉, Alice

and Bob run ΠS , and output ΠS’s output.

Lemma 46.

Π̂(σAinBin) = ES [ΠS ◦ (PS
A ⊗ PS

B)(σAinBin)],

SQIC(Π̂, μ⊗t) = ES SQIC(ΠS , μ
⊗t) ≤ SQIC(Π, μ⊗m)/k.

Proof:
By the definition of protocol Π̂, the channel it implements

is ES [ΠS ◦ (PS
A ⊗ PS

B)].
For the information cost, let ρ̂i be the state in round

i when Π̂ is run on input distribution μ⊗t. Similar com-

ments in the proof of Lemma 45 hold regarding XY vs.

XSYSXS̄YS̄ and the corresponding R purification registers.

Hence the terms for SQIC look like

I(XS : SBY RYBiCi)ρ̂i
= I(XS : Y RYBiCi|S)ρ̂i

(17)

= ESI(XS : Y RYBiCi)ρ̂S
i
, (18)

where ρ̂Si is the state on registers other than SASB , condi-

tioned on S. Let PS
A,XS

, PS
A,RXS

(similarly PS
B,YS

, PS
B,RYS

)

be the operator PS
A (similarly PS

B ) acting on the registers

XS , RXS
(similarly YS , RYS

) respectively. Then, for any S,

Equation 16 implies that

(PS
A,XS

⊗ PS
B,YS

)(PS
A,RXS

⊗ PS
B,RYS

)
∣∣μ⊗t〉

XSRXS
YSRYS

=
∣∣μ⊗t〉

XSRXS
YSRYS

.

Recall that ρi is the state in round i when Π is run on

input distribution μ⊗m. Thus

(PS
A,RXS

⊗ PS
B,RYS

)(ρ̂Si ) = ρi (19)

is independent of S, since the operations on the R registers

commute with the operations in protocol Π. By invariance

of mutual information under local unitaries, we get

ESI(XS : Y RYBiCi)ρ̂S
i
= ESI(XS : Y RYBiCi)ρi

(20)

= I(XS : Y RYBiCi|S)ρi
, (21)

in which we also used that S is picked independently of the

input and thus stays independent of ρi throughout. Similar

results hold for the terms accounting for Alice’s information

about Bob’s input in SQIC. It follows that

SQIC(Π̂, μ⊗t) = ES SQIC(ΠS , μ
⊗t).

To relate this to SQIC(Π, μ⊗m), we apply the Shearer

type lemma for quantum information (Lemma 36) to get

I(XS : Y RYBiCi|S)ρi ≤
1

k
I(X : Y RYBiCi)ρi

,

I(YS : XRXAiCi|S)ρi
≤ 1

k
I(Y : XRXAiCi)ρi

,

and the result follows.

B. From Sink ◦ Xor to EQ

We get the following theorem relating SQIC for Sink◦Xor
and EQ.

Theorem 47. Fix a t round quantum communication proto-
col Π making worst-case error ε on function Sink ◦ Xor
for inputs of size

(
m
2

)
bits. Then there exists a t round

quantum communication protocol ΠE making worst case
error ε + o(1) on EQ with inputs of size m − 1 bits and
satisfying the following for ν the uniform distribution on
1 + 1 bits :

SQIC(ΠE , ν
⊗m−1) ≤ 2

m
SQIC(Π, ν⊗(

m
2 )).

Proof: Recall the sets Evi
, for i ∈ [m], as defined in

Subsection III-A. In the setting of the Shearer-type embed-

ding above (Lemma 46), pick S = Evi with probability 1/m
for each i ∈ [m]. Let PSi

A be the map that performs bit-wise

addition ⊕zvi
, and PSi

B is the identity. Notice that each pair

(k, l), for k < l, appears for exactly two choices of i: once

for i = k, and once for i = l. Hence, Pr[l ∈ S] ≤ 2/m
for all l ∈ [m], and 2/m is the probability we use in the

Shearer-type embedding. By using ν the uniform distribution

on 1+1 bits as the product distribution μ in the Shearer-type

embedding, the SQIC bound follows.
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It is left to argue that the resulting protocol ΠE taken to

be Π̂ of the embedding is good at solving EQ. But this

follows as in the classical embedding argument (see the

proof of Theorem 43) since the probability that Alice and

Bob privately sampled inputs to Π on S̄ that already make

Sink ◦ Xor evaluate to 1 on S̄ is exponentially small in m,

hence the additional error is o(1).

C. Quantum information cost of Equality function

We use the following lemma about the quantum infor-

mation cost of the equality function EQ on the uniform

distribution, which was implicitly shown via a quantum cut

and paste argument in Ref. [11].

Lemma 48. Fix a t round quantum communication pro-
tocol Π making worst-case error at most 1

3 on EQ. Let
|Ψr〉XYRXRY ArCrBr

be the quantum state in r-th round,
as defined in (5) in Section II-D, when Π is run on the
uniform distribution μ⊗k on k + k bits. It holds that

HQIC(Π, μ⊗k) ≥ 1

40000t
.

The proof of our main result, Theorem 5, follows.

Proof of Theorem 5: Let Π be a t-round protocol for

Sink ◦ Xor making worst-case error at most 1/5 on input

graphs of size m, for m large enough. Then by Theorem 47

there exists a t-round protocol ΠE for EQ making error at

most 1/3 and with information cost satisfying

SQIC(Π, μ⊗(
m
2 )) ≥ m

2
SQIC(ΠE , μ

⊗m−1),

with μ the uniform distribution on 1 + 1 bits. Combining

with Lemma 48 and (9), the following chain of inequality

gives the result:

2t

m
QIC(Π, μ⊗(

m
2 )) ≥ 2

m
SQIC(Π, μ⊗(

m
2 ))

≥ SQIC(ΠE , μ
⊗m−1)

≥ HQIC(ΠE , μ
⊗m−1)

≥ 1

40000t
.

We add the proof of Lemma 48 for completeness.

Proof of Lemma 48: By averaging over the condition-

ing register and then applying the average encoding theorem

(Fact 34.D and Lemma 35), we conclude that

HQIC(Π, μ⊗k) :=
∑

r=odd

I(X : BrCr|Y )Ψr

+
∑

r=even

I(Y : ArCr|X)Ψr

≥ Ex,y←μ{
∑

r=odd

B
(
Ψx,y

r,BrCr
,Ψy

r,BrCr

)2

+
∑

r=even

B
(
Ψx,y

r,ArCr
,Ψx

r,ArCr

)2

}

≥ 1

t
{Ex,y←μ{

∑
r=odd

B
(
Ψx,y

r,BrCr
,Ψy

r,BrCr

)

+
∑

r=even

B
(
Ψx,y

r,ArCr
,Ψx

r,ArCr

)2

}}.
(22)

Let x1, x2, y2 be drawn uniformly from {0, 1}k and let

y1 := x1. Observe that, taken separately, (x1, y2), (x2, y1)
and (x2, y2) are distributed uniformly. Thus, (22) ensures

that

√
tHQIC(Π, μ⊗k) ≥

Ex1,y2←μ{
∑

r=odd

B
(
Ψx1,y2

r,BrCr
,Ψy2

r,BrCr

)

+
∑

r=even

B
(
Ψx1,y2

r,ArCr
,Ψx1

r,ArCr

)
}

√
tHQIC(Π, μ⊗k) ≥

Ex2,y1←μ{
∑

r=odd

B
(
Ψx2,y1

r,BrCr
,Ψy1

r,BrCr

)

+
∑

r=even

B
(
Ψx2,y1

r,ArCr
,Ψx2

r,ArCr

)
}

√
tHQIC(Π, μ⊗k) ≥

Ex2,y2←μ{
∑

r=odd

B
(
Ψx2,y2

r,BrCr
,Ψy2

r,BrCr

)

+
∑

r=even

B
(
Ψx2,y2

r,ArCr
,Ψx2

r,ArCr

)
}.

Moreover, it holds that Pr (EQ(x1, y2) = 1) =
Pr (EQ(x2, y1) = 1) = Pr (EQ(x2, y2) = 1) = 1

2k
.

Thus, by first conditioning (separately) on

EQ(x1, y2) = EQ(x2, y1) = EQ(x2, y2) = 0 and

then applying Markov’s inequality, we find that there exists

a choice of x1, x2, y2 satisfying the non-equality conditions

and such that

5
√
tHQIC(Π, μ⊗k) ≥∑

r=odd

B
(
Ψx1,y2

r,BrCr
,Ψy2

r,BrCr

)

+
∑

r=even

B
(
Ψx1,y2

r,ArCr
,Ψx1

r,ArCr

)
,

5
√
tHQIC(Π, μ⊗k) ≥∑

r=odd

B
(
Ψx2,y1

r,BrCr
,Ψy1

r,BrCr

)

+
∑

r=even

B
(
Ψx2,y1

r,ArCr
,Ψx2

r,ArCr

)
,

5
√
tHQIC(Π, μ⊗k) ≥
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∑
r=odd

B
(
Ψx2,y2

r,BrCr
,Ψy2

r,BrCr

)

+
∑

r=even

B
(
Ψx2,y2

r,ArCr
,Ψx2

r,ArCr

)
.

(23)

Applying the triangle inequality (Fact 30.A) to (23), we

conclude that

10
√
tHQIC(Π, μ⊗k) ≥

∑
r=odd

B
(
Ψx1,y2

r,BrCr
,Ψx2,y2

r,BrCr

)

10
√
tHQIC(Π, μ⊗k) ≥

∑
r=even

B
(
Ψx2,y1

r,ArCr
,Ψx2,y2

r,ArCr

)
.

Assume that t is even and Alice produces the output, we use

the quantum cut-and-paste Lemma (Lemma 38) to conclude

that

B
(
Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt

)
≤ 2(10

√
tHQIC(Π, μ⊗k)

+ 10
√
tHQIC(Π, μ⊗k))

= 40
√
tHQIC(Π, μ⊗k).

If HQIC(Π, μ⊗k) ≤ 1
40000t , we conclude that

40
√
tHQIC(Π, μ⊗k) ≤ 1

5 , and then

1− 2err(Π) ≤ Δ(Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt
)

≤
√
2B(Ψx1,y2

t,AtCt
,Ψx1,y1

t,AtCt
)

≤
√
2/5

< 1/3,

which leads to contradiction with the fact that protocol Π
makes an error of at most 1

3 . This completes the proof.

V. CONCLUSION AND OPEN PROBLEMS

Our main result exhibits that the function introduced in

[2] witnesses an exponential separation between quantum

communication complexity and log-approximate rank. A

consequence of our lower bound is that the randomized

and quantum communication complexities of this function

are polynomially related. Thus, the long-standing problem

of finding a total function, that provides an exponential

separation between randomized communication complexity

and quantum communication complexity, remains open.

An interesting question that our techniques do not re-

solve is if we can show a round independent exponential

separation between log-approximate rank and QIC. We

believe that it would be surprising if the log-approximate

rank and QIC were polynomially related. Known functions

witnessing exponential separation between QIC and QCC
have a completely different structure [16], [28], [17].

Further, we would like to understand if the Shearer-type

embedding can go beyond product input distributions, and if

it can be improved for QIC. Finally, it would be interesting

if the lower bound in Corollary 6 could be improved to

Ω(m1/2), matching the achievable protocol using distributed

Grover search (up to logarithmic terms; see [2, Conclusion]).
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R. Kothari, T. Lee, and M. Santha, “Separations in com-
munication complexity using cheat sheets and information
complexity,” Proceedings of the 57h IEEE Symposium on
Foundations of Computer Science (FOCS 2016), pp. 555–
564, 2016.

[11] A. Anshu, S. Ben-David, A. Garg, R. Jain, R. Kothari, and
T. Lee, “Separating quantum communication and approximate
rank,” in Proceedings of the 32nd Computational Complexity
Conference (CCC 2017), 2017, pp. 24:1–24:33.

[12] R. Jain, J. Radhakrishnan, and P. Sen, “A lower bound for
the bounded round quantum communication complexity of
set disjointness,” in Proceedings of the 44th IEEE Symposium
on Foundations of Computer Science (FOCS 2003), 2003, pp.
220–229.

[13] R. Jain and A. Nayak, “The space complexity of recognizing
well-parenthesized expressions in the streaming model: The
index function revisited,” IEEE Transactions on Information
Theory, vol. 60, no. 10, pp. 6646–6668, 2014.

[14] D. Touchette, “Quantum information complexity,” in Proceed-
ings of the 47th Annual ACM on Symposium on Theory of
Computing (STOC 2015), 2015, pp. 317–326.

[15] I. Kerenidis, M. Lauriere, F. Le Gall, and M. Rennela, “Infor-
mation cost of quantum communication protocols.” Quantum
Information & Computation, vol. 16, no. 3&4, pp. 181–196,
2016.

[16] A. Ganor, G. Kol, and R. Raz, “Exponential separation of
information and communication for boolean functions,” in
Proceedings of the 47th Annual ACM on Symposium on
Theory of Computing (STOC 2015), 2015, pp. 557–566.

[17] A. Anshu, D. Touchette, P. Yao, and N. Yu, “Exponential
separation of quantum communication and classical infor-
mation,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2017), 2017, pp.
277–288.

[18] R. Jain, J. Radhakrishnan, and P. Sen, “Prior entanglement,
message compression and privacy in quantum communica-
tion,” in 20th Annual IEEE Conference on Computational
Complexity (CCC’05), 2005, pp. 285–296.

[19] M. Laurière and D. Touchette, “The Flow of Information in
Interactive Quantum Protocols: the Cost of Forgetting,” in
8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), 2017, pp. 47:1–47:1.

[20] T. M. Cover and J. A. Thomas, Elements of Information
Theory (Wiley Series in Telecommunications and Signal Pro-
cessing). Wiley-Interscience, 2006.

[21] D. Bures, “An extension of Kakutani’s theorem on infinite
product measures to the tensor product of semifinite ω∗-
algebras,” Transactions of the American Mathematical Soci-
ety, vol. 135, pp. 199–212, 1969.

[22] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[23] M. M. Wilde, Quantum Information Theory. Cambridge:
Cambridge University Press, 12 2012.

[24] J. Watrous, The theory of quantum information. Cambridge
University Press, 2018.

[25] C. A. Fuchs and J. van de Graaf, “Cryptographic distin-
guishability measures for quantum-mechanical states,” IEEE
Transactions on Information Theory, vol. 45, no. 4, pp. 1216–
1227, 1999.

[26] G. Lindblad, “Completely positive maps and entropy inequal-
ities,” Communications in Mathematical Physics, vol. 40,
no. 2, pp. 147–151, 1975.

[27] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and
B. Schmacher, “Noncommuting mixed states cannot be broad-
cast,” Phys. Rev. Lett., vol. 76, no. 15, pp. 2818–2821, 1996.

[28] A. Rao and M. Sinha, “Simplified separation of information
and communication,” Theory of Computing, vol. 14, no. 1,
pp. 1–29, 2018.

[29] A. Nayak and D. Touchette, “Augmented index and quantum
streaming algorithms for DYCK(2),” in Proceedings of the
32nd Computational Complexity Conference (CCC 2017),
2017, pp. 23:1–23:21.

[30] T. Lee and A. Shraibman, “An approximation algorithm
for approximation rank,” in Proceedings of the 24th IEEE
Conference on Computational Complexity (CCC 2008), 2008,
pp. 351–357.

994


