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Abstract—We study multiprover interactive proof sys-
tems. The power of classical multiprover interactive proof
systems, in which the provers do not share entanglement,
was characterized in a famous work by Babai, Fortnow,
and Lund (Computational Complexity 1991), whose main
result was the equality MIP = NEXP. The power of
quantum multiprover interactive proof systems, in which
the provers are allowed to share entanglement, has proven
to be much more difficult to characterize. The best known
lower-bound on MIP∗ is NEXP ⊆ MIP∗ due to Ito and
Vidick (FOCS 2012). As for upper bounds, MIP∗ could
be as large as RE, the class of recursively enumerable
languages.

The main result of this work is the inclusion NEEXP =
NTIME[22

poly(n)

] ⊆ MIP∗. This is an exponential improve-
ment over the prior lower bound and shows that proof
systems with entangled provers are at least exponentially
more powerful than classical provers. In our protocol
the verifier delegates a classical, exponentially large MIP
protocol for NEEXP to two entangled provers: the provers
obtain their exponentially large questions by measuring
their shared state, and use a classical PCP to certify the
correctness of their exponentially-long answers. For the
soundness of our protocol, it is crucial that each player
should not only sample its own question correctly but
also avoid performing measurements that would reveal
the other player’s sampled question. We ensure this by
commanding the players to perform a complementary
measurement, relying on the Heisenberg uncertainty prin-
ciple to prevent the forbidden measurements from being
performed.

I. INTRODUCTION

This paper is about the complexity class MIP∗ of

multiprover interactive proof systems with entangled

quantum provers—the quantum version of the classical

class MIP. Classically, the study of MIP has had far-

reaching implications in theoretical computer science.

In complexity theory, the proof by Babai, Fortnow, and

Lund [1] that MIP = NEXP was the direct antecedent

of the PCP theorem [2], [3], a seminal result which

is the foundation of the modern theory of hardness

of approximation. In cryptography, the MIP model

was introduced to allow for information-theoretic zero-

knowledge proofs [4], and more recently MIP protocols

have become essential building blocks in designing

delegated computation schemes (see e.g. [5]). These

implications alone would be a sufficient motivation for

considering the quantum class MIP∗, but remarkably,

the study of MIP∗ is also deeply related to long-standing

questions in the foundations of quantum mechanics

regarding the nature of quantum entanglement. Indeed,

the MIP∗ model itself was anticipated by the nonlocal
games or Bell tests introduced in the work of John

Bell [6], who was in turn inspired by the thought exper-

iment proposed by Einstein, Podolsky, and Rosen [7].

These nonlocal games have had applications to quantum

cryptography [8], [9], [10], delegated quantum compu-

tation [11], and more.

Even though the class MIP is now well-understood,

it has proven difficult to determine the computational

power of MIP∗. A priori, it is not even clear that MIP∗

contains MIP, since adding entanglement could increase

or decrease the power of the proof system. This is

because the added resource of entanglement can make it

easier for dishonest provers to cheat the verifier. Indeed,

Cleve et al. [12] showed that for proof systems based on

so-called XOR games (where the verifier’s decision can

only depend on the XOR of the provers’ answer bits),

the quantum class ⊕MIP∗ ⊆ EXP, whereas classically

⊕MIP = NEXP. In particular, this result implied that

the classical ⊕MIP protocol for NEXP of Håstad [13]

could not be sound against entangled provers. In spite

of this, Ito and Vidick [14], [15] were able to show that

NEXP ⊆ MIP∗, by proving that a different classical

protocol is sound against entanglement. Note that the

protocol of [15] is identical to a protocol shown to be

unsound by Cleve et al., except in that it uses 3 provers

rather than 2 (the protocol is played by choosing a

random subset of 2 provers from the 3). This illustrates

the subtleties of dealing with entangled provers.

With the lower bound NEXP ⊆ MIP∗ established, a

natural follow-up question is whether MIP∗ is strictly
more powerful than MIP. Indeed, it was long known

that some MIP∗ protocols possess a uniquely quantum

property called self-testing, which has no direct analog
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in the classical setting. Roughly speaking, an MIP∗

protocol is a self-test for a particular entangled state |ψ〉
if only provers using states close to |ψ〉 can achieve

close to optimal success in the protocol. In such a

protocol, observing that the provers succeed with nearly

optimal probability certifies that they share a state close

to the target state |ψ〉. The germ of this idea came from

the work of Bell [6], who studied the types of bipartite

correlations that could be obtained from measuring an

entangled state called the EPR state, which had been

introduced by Einstein, Podolsky, and Rosen [7]. Bell

gave a protocol where provers using the EPR state could

succeed with a greater probability than purely classical

provers, and subsequent works of Tsirelson [16], and

Summers and Werner [17] showed that (a variant of)

Bell’s protocol certifies the EPR state in the sense of

self-testing.

In order to prove stronger lower bonds on MIP∗,
the post-Ito-Vidick phase of MIP∗ research aimed to

use this self-testing property to design protocols for

problems in Hamiltonian complexity, the quantum ana-

log of the theory of NP-completeness. In Hamiltonian

complexity, the complexity class QMA plays the role of

NP; it is the set of problems for which there exists a

quantum witness state that can be efficiently checked by

a polynomial-time quantum verifier. Problems in QMA
seemed like a natural match for the powers of MIP∗

as one could potentially construct a protocol for QMA
by designing a self-test for accepting witness states of

some QMA-complete problem. The connection between

MIP∗ and QMA was also well motivated from the point

of view of the “quantum PCP” research program, which

strives to find quantum analogues of the classical PCP

theorem. In the classical setting, the PCP theorem can

be viewed as a scaled-down version of MIP∗ = NEXP,

showing that there exists an MIP∗ protocol for 3SAT

(and thus for all of NP) with O(log(n))-sized mes-

sages. Drawing inspiration from this, Fitzsimons and

Vidick [18] stated a “quantum games PCP conjecture”:

that there should exist an MIP∗ protocol with log(n)-
sized messages for the local Hamiltonian problem, and

thus for the class QMA. This was proved by Natarajan

and Vidick [19] in 2018 with a 7-prover protocol. Along

the way to achieving this goal, [19] developed a highly

efficient self-test for high-dimensional entangled states:

their “quantum low-degree test” is a self-test for n EPR

pairs with only O(log(n)) communication.

Already, the result of [19] is strong evidence that

MIP∗ �= MIP, since it is believed that QMA �= NP.

But, at the same time, several other works showed that

even larger separations were possible in the regime of

subconstant soundness gaps. Here there are results in

two settings. For MIP∗ with a soundness gap scaling

inverse-exponentially (i.e. 1/ exp(n)) in the instance

size, Ji [20] showed a protocol for NEEXP: nonde-

terministic doubly-exponential time, and a subsequent

work by Fitzsimons, Ji, Vidick, and Yuen [21] showed

protocols for non-deterministic iterated exponential time

(e.g. NTIME(22
n

)) with a correspondingly small sound-

ness gap (e.g. 2−C·2
n

). In the “gapless” case, Slofs-

tra [22], [23] showed that given a description of an

MIP∗ protocol, determining whether there exists an

entangled strategy that succeeds with probability exactly

1 is undecidable by any Turing machine.

These results hint at the full power of MIP∗ but are

not conclusive, as it is not unusual for quantum com-

plexity classes to increase significantly in power when

a numerical precision parameter is allowed to shrink.

For instance, QIP (quantum interactive proofs with a

single prover) with an exponentially small gap is equal

to EXP [24], while QIP with a polynomial gap is equal

to IP = PSPACE. Likewise, QMA with exponentially

small gap (known as PreciseQMA) is known to be

equal to PSPACE [25], while QMA is contained PP,

and QMA(k) (QMA with multiple unentangled Merlins)

with exponentially small gap is equal to NEXP [26],

whereas in the constant-gap regime the best known

lower bound is that QMA(k) ⊇ QMA. Moreover, even

the QMA lower bound for MIP∗log obtained by [27]

holds for 7 provers only; with 2 provers, the best

known lower bound for MIP∗log is NP = MIPlog [19].

Could it be that 2-prover MIP∗ is equal to MIP, with

entanglement providing no advantage at all?

This paper conclusively answers this question in the

negative. Our main result (Theorem I.1) is to show

that MIP∗ contains NEEXP, with only two provers

and with a constant completeness-soundness gap. This

is establishes the first known unconditional separation

between MIP∗ and MIP in the constant-gap regime:

previously, such a separation was known only assuming

QMA �= NP, and only in the scaled-down setting of

logarithmic-sized messages.

Theorem I.1 (Theorem 17.12 in the full version).
There is a two-prover, one-round MIP∗ protocol for
the NEEXP-complete problem Succinct-Succinct-3Sat
with completeness 1, soundness 1/2, and question and
answer length poly(n).

As a corollary of Theorem I.1, we obtain a lower

bound on the hardness of approximation for the entan-

gled value ω∗ of a nonlocal game.

Corollary I.2. There exists a constant c < 1 such
that given a two-prover nonlocal game G of size
N , the problem of deciding whether ω∗(G ) = 1 or
ω∗(G ) ≤ 1/2, promised one of the two holds, is
NTIME(2N

log−c N

)-hard.

For two-player games, the best prior lower bound was
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NP [27]. The lower bound achieved in Corollary I.2 is

stronger as for any c < 1, the function 2N
log−c N

is

superpolynomial.

Techniques.: Our construction, inspired by [20]

and [21], involves “compression”: we show how to take

an MIP protocol for NEEXP with exponentially-long

questions and answers (the “big” protocol), and simulate

it by an MIP∗ protocol with polynomial-sized messages

(the “small” protocol). However, the techniques we

use to achieve our compression are quite different.

We eschew the Hamiltonian-complexity ideas that were

used in previous works, and in particular the use of

history states. In our protocol, honest provers need only

share a quantum resource state of (exponentially many)

EPR pairs, together with a classical assignment to the

NEEXP instance being tested. The use of history states

was the main barrier preventing previous works from

applying to the case of two provers.

We divide compression into two steps: question com-
pression and answer compression. We achieve question

compression by a technique which we call introspection,

in which we command the provers to perform measure-

ments on their shared EPR pairs whose outcomes are

pairs of questions from the “big” protocol. To force

the provers to sample their questions honestly, we use

a variant of the quantum low-degree test from [19],

which certifies Pauli measurements on exponentially

many EPR pairs using messages of only polynomial

size. A crucial challenge is to prevent each prover from

learning the other prover’s sampled question, since this

would destroy the soundness of the “big” protocol. To

achieve this, we use the “data-hiding” properties of

quantum measurements in incompatible bases: if a set of

qubits is measured in the Pauli X-basis, this “erases” all

information about Z-basis measurements. This means

that if Alice samples her question by measuring her

half of a block of EPR pairs in the Z-basis, then her

question can be hidden from Bob by forcing him (via

self-testing) to measure his half of the EPR pairs in the

X-basis. Interestingly, our data-hiding scheme does not
operate in a black-box way on the “big” protocol, but

rather makes essential use of its structure. In particular,

we start with a “big” protocol based on a scaled-up

version of a PCP construction using the low-degree

test, where the question distribution consists of pairs

of random points in a vector space and affine subspaces

containing them. The linear structure of the vector space

is essential for our data-hiding procedure to work.

Our approach to answer compression is more stan-

dard, essentially using composition with a classical PCP

of proximity. Here, the verifier asks the provers to

compute a PCP proof that their “big” answers satisfy the

success conditions of the protocol, and verifies this PCP

proof by reading an exponentially smaller number of

bits. Care is needed to deal with entanglement between

the provers. The first, fundamental challenge we face is

that the success condition of the “big” protocol is a func-

tion of both provers’ answers. Thus, to compute a PCP

proof that the condition is satisfied, one of the provers

must have access to both provers’ answers. Classically,

this is achieved using the technique of oracularization,

in which one prover receives both provers’ questions

and is checked for consistency against the other prover,

which only receives a single question. In the entangled

setting, this oracularization procedure is sound, but not

necessarily complete. This is because oracularization

requires that each prover, if given the other prover’s

question, could predict its answer with certainty, even

though this answer is obtained from a nondeterministic

quantum measurement. In our protocol, we are able

to use oracularization because honest provers always

use a maximally entangled state, which they measure

with projective measurements that pairwise commute

for every pair of questions asked in the game. While this

commutation requirement is restrictive, it still permits

non-trivial quantum behavior; indeed, the linear system

games used by Slofstra [23] involve similar commuta-

tion conditions.

The second challenge is to ensure that the PCP of

proximity we use for composition is itself sound against

entanglement. We achieve this by performing a further

step of composition: we ask the provers to encode

their PCP proof in the low-degree code and verify it

with the low-degree test, which is known to be sound

even against entangled provers [27]. This technique was

introduced in the QMA protocol of [19] in order to

perform energy measurements on the provers’ state.

Implications and future work: We believe that our

work opens up several exciting directions for further

progress. For the complexity theorist, the most obvious

future direction is to obtain even stronger lower bounds

on MIP∗ by iterating our protocol, as in [21]. At the

most basic level, we could imagine taking our MIP∗ pro-

tocol for NEEXP and performing a further layer of ques-

tion compression and answer compression on it, thus

obtaining an MIP∗ protocol with logarithmic message

size for NEEXP, or, scaling up, an MIP∗ protocol with

polynomial message size for NTIME(22
2poly(n)

). By

further iterating question reduction and answer reduc-

tion k times, we could obtain potentially obtain lower

bounds of NTIME(2·
·n

︸︷︷︸
k

) on MIP∗ while retaining a con-

stant completeness-soundness gap. The main obstacle to

achieving such results is that the question compression

procedure developed in this paper is tailored to a special

distribution of questions (that of the MIPexp protocol for

NEEXP), whereas our answer compression procedure

produces protocols whose question distribution is not
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of this form.

Assuming that this obstacle can be surmounted, we

could aspire to a more ambitious goal: a general “gap-

preserving compression procedure” for some subclass

of MIP∗ protocols, which we may label “compress-

ible” protocols. Such a procedure would consist of a

Turing machine that takes as input any compressible

MIP∗ protocol G , and generates a new compressible

protocol G ′ with exponentially smaller message size,

but approximately the same entangled value. It was

shown by [21] that the existence of such a compression

procedure for the set of all MIP∗ protocols would imply

that MIP∗ contains the set of all computable languages,

and moreover that there exists an undecidable language

in MIP∗. These consequences would continue to hold

as long as the set of compressible protocols contains a

family of protocols solving problems in NTIME(f(n)),
where f(n) is a growing function of n.

Showing that MIP∗ contains undecidable languages

would be significant not just for complexity theory but

also for the foundations of quantum mechanics, as it

would resolve a long-standing open problem known as

Tsirelson’s problem. Tsirelson’s problem asks whether

two notions of quantum nonlocality are equivalent: the

tensor-product model, in which two parties Alice and

Bob each act on their respective factor of a tensor-

product Hilbert spaceHAlice⊗HBob, and the commuting-
operator model, in which both parties act on a common

Hilbert space H, but the algebra of Alice’s measure-

ment operators must commute with Bob’s, and vice

versa. It was shown by Slofstra [22] that in the “zero-

error” setting, these two models differ: there are quan-

tum correlations which can be exactly achieved in the

commuting-operator model but not in the tensor product

model. Surprisingly, showing that MIP∗ contains unde-

cidable languages would imply that the two models are

separated even in the bounded-error setting: it would

imply that there exist correlations that can be achieved

in the commuting-operator model that cannot even be

approximated (up to constant precision) in the tensor-

product model. The reason for this implication is that

if the two models are indistinguishable up to bounded

error, then there exists a Turing machine that can decide

any language in MIP∗ and is guaranteed to halt. This

observation, which is folklore in the community, follows

from the completeness of the non-commutative sum of

squares hierarchy for the commuting-operator model, as

documented in [21]. Showing a separation between the

two models would have significant mathematical con-

sequences as well, as it would yield a negative answer

to the long-standing Connes’ embedding problem.

In addition to these connections to complexity and

mathematical physics, we hope that our results will have

applications in other areas such as to delegated compu-

tation or quantum cryptography. In particular, our use

of introspection is reminiscent of ideas used in quantum

randomness expansion, where randomness generated by

measuring EPR pairs is used to generate questions for

a nonlocal game. Could our results improve on the

infinite randomness expansion protocol of Coudron and

Yuen [28]?

II. OVERVIEW OF OUR PROOF

In this section we give a more detailed overview of

the technical parts of the paper.

A. Basic quantum notation and qudits

While the full version of the paper contains a more

complete set of quantum preliminaries in Section 4,

for the purposes of this introduction we define some

basic notation, aimed at the reader who is familiar

with the standard quantum computing formalism over

qubits but is less familiar with qudits: quantum systems

of dimension not equal to 2. In this paper, we make

extensive use of such qudits: in particular, for a finite

field FQ, we will consider qudits of dimension Q, with

a basis state |i〉 for every element i ∈ FQ. Under tensor

product, we obtain a basis for the space of M qudits of

dimension Q where each basis state |x〉 corresponds to

a vector x ∈ F
M
Q .

The basic resource state used in our protocols will

be the EPR state over 2M qudits of dimension Q. The

qudits are split into two registers of M qudits each, held

by the two provers Alice and Bob, respectively.

|EPRMQ 〉 =
1√
QM

∑
x∈FM

Q

|x〉Alice ⊗ |x〉Bob .

This state is a maximally entangled state between Alice

and Bob.

Acting on this state, we will ask the provers to

perform measurements from a special class called Pauli
basis measurements. To define these over a general field

FQ requires the introduction of some finite field tech-

nology, in particular the finite field trace function. For

simplicity, in this overview we will imagine that Q is

prime, allowing the addition in FQ to be identified with

the additive group ZQ, and simplifying the definition of

the Paulis; in the full version of the paper, we will work

with Q a power of 2. For a single qudit of dimension

Q, the Pauli X and Z bases are the sets {|τXu 〉}u∈FQ

and {|τZu 〉}u∈FQ
of vectors

|τXu 〉 =
1√
Q

∑
x∈FQ

ωxu |x〉 , |τZu 〉 = |u〉 ,

where ω = exp(2πi/Q) is the Q-th root of unity. We

denote the projectors onto these basis states by τXu and

τZu , respectively. For a system of M qudits, the Pauli X
and Z observables are a set of generalized observables

513



indexed by elements of FMQ : a generalized observable is

a Hermitian matrix with eigenvalues that are Q-th roots

of unity. They are given by

X(v) =
∑
u∈FM

Q

ωu·vτXu1
⊗ . . .⊗ τZuM

,

Z(v) =
∑
u∈FM

Q

ωu·vτZu1
⊗ . . .⊗ τZuM

,

where u1, . . . , uM are the components of the vector u,

and u · v is the dot product
∑M
i=1 ui · vi. Measuring a

generalized observable means performing a projective

measurement onto the eigenvectors of the observable,

with the outcome a corresponding to the eigenvector

with eigenvalue ωa.

B. Our starting point: a classical interactive proof for
NEEXP

We start with a classical multiprover interactive proof

protocol for NEEXP. The equality MIP = NEXP was

originally shown by Babai, Fortnow, and Lund [1] using

a protocol based on the multilinearity test: the idea

is that an exponentially-long witness for a problem in

NEXP is encoded in the truth-table of a multivariate

polynomial function over a finite field, which is linear

in each of the variables individually. The verifier is able

to verify the witness by evaluating the multilinear poly-

nomial over appropriately chosen points and subspaces.

To scale up to NEEXP, we use a much more efficient

version of the same idea, replacing the multilinearity test

with the low-degree test, which works with multivariate

polynomials of low total degree. This more efficient

construction comes from the PCP literature. We give

a relatively self-contained presentation of the protocol

in Section 11. For the purposes of this overview, it

is sufficient to know the following: any problem in

NEEXP can be reduced to satisfiability for a doubly

exponentially long 3Sat formula, succinctly encoded by

a polynomial-sized circuit. (We refer to this problem as

Succinct-Succinct-3Sat). Given a 3Sat formula ψ, we

would like the provers to prove to us that they have

a satisfying assignment a to this formula. Instead of

reading the assignment directly, we will ask the provers

to encode their assignment as a multivariate polynomial

ga : F
M
Q → FQ, where the number of variables M

and the finite field size Q are appropriately chosen

parameters, and return evaluations of this polynomial.

To check that a satisfies ψ, the verifier first uses a

technique called arithmetization to convert the formula

ψ into a multivariate polynomial gψ : F3M+k
Q → FQ.

The polynomial gψ is chosen such that the assignment

a satisfies ψ if and only if the expression

satψ,a(x, b, w) := gψ(x, b, w) · (ga(x1)− b1)
· (ga(x2)− b2)(ga(x3)− b3)

is equal to 0 at every point in a particular subset H ⊆
F
3M+k
Q . Our classical protocol for NEEXP checks this

condition:

Informal Theorem II.1 (Section 11 in the full version).
There exists a protocol G0 for Succinct-Succinct-3Sat
(and hence NEEXP), where the verifier’s questions to
the provers are constant-dimension subspaces of F

M
Q ,

and the provers’ responses are evaluations of degree-
D M -variate polynomials on these subspaces. The
parameters M,Q,D are all chosen to be exp(n), and
hence the question and answer lengths as well as the
runtime of the verifier in this protocol are exp(n).

The distribution over subspaces sent to the provers

in G0 is relatively simple, and in fact is independent

of the instance of Succinct-Succinct-3Sat being tested.

For the purposes of this overview, the reader can take

the distribution over pairs of questions to be the plane-
point distribution D. A pair (s,u) ∼ D consists of a

uniformly random affine plane s ⊆ F
M
Q , which is sent

to Alice, and a uniformly random point u ∈ s which

is sent to Bob. The full distribution over questions in

G0 is more complicated than this but the essential ideas

of our protocol will be illustrated by restricting to this

case.

C. Restricting the strategies: registers and compilers

One of the main challenges in working with entangled

provers is showing soundness against general entangled

strategies. An important technique in this area is to

force the provers to use a particular state and class of

measurements by playing a type of game known as a

self-test.

Informal Definition II.2. A game Gtest is a self-test
for a state |ψ〉 and measurements Mx if any strategy

that succeeds in Gtest with probability 1− ε must use a

state |ψ′〉 and measurements (M ′)x that are δ(ε)-close,

in the appropriate metric, to |ψ〉 and Mx.

Some of the earliest self-tests include the famous

CHSH game, which self-tests the Pauli X and Z
operators on a single EPR pair (of qubits). Self-testing

technology has greatly advanced over the years, and in

this paper we design a highly efficient self-test based

on the low-degree test of [19].

Informal Theorem II.3 (Theorem 6.2 in the full ver-

sion). The Pauli basis test Pauli(n, q) is a self-test
for the state |EPRnq 〉 and the Pauli X and Z basis
measurements. This test sends the players questions
of length O(log(n)) and receives answers of length
O(poly(n)).

The Pauli X and Z measurements are “complete”

measurements, and as a consequence, there is no non-
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trivial measurement on a set n qudits that can be

measured jointly with both the Pauli X and Z measure-

ments on those qudits. Using this property, we design a

game called the data-hiding game, which certifies that

a prover’s measurements act trivially on a specified set

of qudits.

Informal Theorem II.4 (Theorem 8.3 in the the full

version). The data-hiding game Ghide is a self test for
states |ψ〉 = |EPRnq 〉⊗|aux〉 and measurements Mx of
the form Mx = I ⊗ (M ′)xaux. It has questions of length
O(log(n)) and answers of length O(poly(n)).

Together, the Pauli basis test and the data-hiding

game allow us to restrict our analysis of our protocols to

a class of strategies we call register strategies: strategies

for which the shared state is a collection of � registers,

each in an EPR state, together with some auxiliary

register:

|ψ〉 = |EPRn1
q1 〉 ⊗ . . .⊗ |EPRn�

q�
〉 ⊗ |aux〉 ,

and where the provers can be commanded to perform

either (1) Pauli basis measurements on specified subsets

of the registers, or (2) measurements that do not act on

specified subset of the EPR registers (but act on the

auxiliary register or the remaining EPR registers). We

formalize this by designing a compiler, which takes in

a protocol G that is complete and sound for register

strategies, and produces a new protocol G ′ which is

complete and sound over all strategies.

Informal Theorem II.5 (Theorem 7.2 and Theorem 9.2

in the full version). Suppose G is a protocol for a com-
putation problem for which completeness and soundness
hold for register strategies, with O(1) many registers of
size n. (That is, for YES instances of the problem, there
exists a register strategy achieving value 1, and for NO
instances, no register strategy achieves value greater
than 1/2). Let the questions in G be of length Q and
the answers be of length A. Then there exists a protocol
G ′ which is complete and sound for general strategies,
and for which the question length is Q+log(n) and the
answer length is A+ poly(n).

The compiled protocol G ′ either runs the original

protocol G , or, with some probability, runs the Pauli

basis test, the data-hiding game, or a consistency test.

D. Question reduction through introspection

With our compiler in place, we have now given the

verifier the power to command the provers to perform

Pauli basis measurements on a set of EPR pairs. We

would like to use this to reduce the question size of

the classical protocol G0 for NEEXP described above

from exp(n) to poly(n). We will do so by forcing

the provers, rather than the verifier, to sample the

protocol’s exp(n)-length questions, a technique we call

“introspection”. That is, we would like to force the

provers to sample pairs (s,u) from the plane-vs-point

distribution D, where s is a uniformly random affine

plane in F
M
Q , and u a uniformly random point on s.

To design a scheme to sample from this distribution,

let us first fix a representation of affine planes. We will

represent an affine plane by an intercept u ∈ F
M
Q and

two slopes v1, v2 ∈ F
M
Q . The plane given by u, v1, v2

is the set svu = {u+ λ1v1 + λ2v2 : λ1, λ2 ∈ FQ}. As a

first attempt, we may try the following scheme:

1) Alice and Bob share three registers, each of which

contains an EPR state, so their shared state is

|ψ0〉 = |EPRMQ 〉R0
⊗ |EPRMQ 〉R1

⊗ |EPRMQ 〉R2
.

2) Alice first measures her half of registers R1 and

R2 in the Pauli Z-basis, to obtain uniformly

random outcomes v1,v2. The shared state is now

|ψ1〉 = |EPRMQ 〉R0
⊗ (|v1〉Alice ⊗ |v1〉Bob)R1

⊗ (|v2〉Alice ⊗ |v2〉Bob)R2
.

3) Now, Alice and Bob both measure register R0

in the Pauli Z-basis, both obtaining the same

outcome u. The shared state is now

|ψ2〉 = (|u〉Alice ⊗ |u〉Bob)R0

⊗ (|v1〉Alice ⊗ |v1〉Bob)R1

⊗ (|v2〉Alice ⊗ |v2〉Bob)R2
.

Alice sets her plane s to be svu and Bob sets his

point to be u.

Indeed, the pair (s,u) generated by this procedure is

distributed according to D. However, there is a problem:

through her measurement, Alice obtains additional side

information, specifically the value of Bob’s point u. Can

we command Alice to erase the side information? In

fact, we can, using the Heisenberg uncertainty principle:

if two observables anticommute, then measuring one

completely destroys information about the other. Using

this idea, we modify our protocol as follows:

1) As above.

2) As above. At this point, applying the definition of

|EPRMQ 〉, we can write the shared state as

|ψ1〉 ∝
∑
u∈FM

Q

(|u〉Alice ⊗ |u〉Bob)R0

⊗ (|v1〉Alice ⊗ |v1〉Bob)R1

⊗ (|v2〉Alice ⊗ |v2〉Bob)R2
.

3) New: Intuitively, we would like Alice to be

prevented from measuring the component of the

intercept along the directions v1,v2. This in-

formation would be obtained by measuring the
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observables1 Z(v1), Z(v2). To destroy it, we will

ask Alice to measure the complementary Pauli ob-

servables X(v1), X(v2) on register R0, obtaining

outcomes α1,α2 ∈ FQ. The shared state is now

|ψ′2〉 ∝∑
u,λ,μ

(
ωα1λ+α2μ|u+ λv1 + μv2︸ ︷︷ ︸

u′

〉Alice |u〉Bob
)
R0

⊗ (|v1〉Alice ⊗ |v1〉Bob)R1

⊗ (|v2〉Alice ⊗ |v2〉Bob)R2 .

where, as above, ω = exp(2πi/Q) is a Q-th root

of unity. Alice and Bob’s state on R0 is now a

uniform superposition over pairs u, u′ of points

lying on the same affine subspace with slopes

v1,v2.

4) Alice and Bob both measure register R0 in the Z
basis, obtaining outcomes u and u′, respectively.

The shared state is now

|ψ′3〉 = (|u〉Alice ⊗ |u′〉Bob)R0

⊗ (|v1〉Alice ⊗ |v1〉Bob)R1

⊗ (|v2〉Alice ⊗ |v2〉Bob)R2 .

Alice sets her plane to be svu and Bob sets his

point to be u′.

Now, from the calculation performed above, it’s clear

that Bob’s point u′ is uncorrelated with Alice’s intercept

u, apart from lying in the plane svu, and hence there

is no further information about Bob’s point that Alice

can learn by measuring her portion of the final state

|ψ′3〉. But Alice still obtains some additional information

from her measurements along the way, in particular

the outcomes α1, α2 of the X measurements. And

moreover, how can we certify that the X measurements

were performed correctly, since they are not Pauli basis

measurements as given to us by the compiler? To answer

these questions, we define a new game called the partial
data-hiding game (Theorem 10.4 in the full version),

which certifies that Alice and Bob perform the steps

described above and that no extra information is leaked.

Building on this game, we can now design a protocol

for NEEXP with small question size:

Informal Theorem II.6 (Theorem 15.8 in the full

version). There is an MIP∗ protocol G1 for NEEXP
with questions of length poly(n), and answers of length
exp(n). The verifier can generate the questions in
poly(n) time but needs exp(n) time to verify the
answers.

1Strictly speaking, this is only true when v1 ·v1 �= 0 and v2 ·v2 �=
0. A more rigorous treatment of this is given in Section 10 of the full
version.

E. Answer reduction through PCP composition

We have succeeded in obtaining a game with short

questions, but the answers are now exponentially long.

In the last step, we will use composition with a classi-

cal probabilistically checkable proof (PCP) to delegate

verification of the answers to the provers.

Schematically, the protocol G1 consists of the follow-

ing steps:

1) The verifier sends Alice a question x and Bob a

question y.

2) Alice returns an (exponentially-long) answer A
and Bob an exponetially-long answer B.

3) The verifier computes a verification predicate

V (x,y,A,B) in exponential time.

We would like to delegate the last step to the

provers by asking them to compute a PCP proof that

V (x,y,A,B) = 1, which the verifier can check by

communicating only polynomially many bits with the

provers. However, we face an obstacle: Alice cannot

know y and B, and neither can Bob know x and A,

and distributed PCPs (where neither party knows the

entire assignment) are known to be impossible [29]. To

proceed, we will first have to modify G1 by oracular-
izing it:

1) The verifier sends Alice the questions x,y, and

Bob either x or y, chosen uniformly at random.

2) Alice returns exponentially-long answers A,B,

and Bob returns an answer C.

3) The verifier computes a verification predicate

V (x,y,A,B) on Alice’s questions and answers,

and further checks that A = C, if Bob received

x, or that B = C, if Bob received y.

The idea is that the new Alice simulates both Alice

and Bob from the original protocol, and the new Bob

certifies that the new Alice does not take advantage

of her access to both questions to cheat. It is well-

known that oracularization does not harm the soundness

of interactive protocols, be they classical or quantum.

However, in the quantum world, it is not necessarily the

case that the oracularized protocol retains completeness.

This is because Alice and Bob may have been asked to

perform non-compatible measurements in the original

protocol, rendering it impossible for the new Alice to

simulate both the original Alice and Bob. Fortunately

for us, the honest strategy for protocol G1 is such that

completeness under oracularization.

Now that a single prover is in possession of all inputs

to the verification predicate V , we can implement our

idea of using a PCP proof. Classically, this idea is

known as PCP composition, and is extensively used

in the PCP literature. In the quantum case, the re-

quirement to maintain soundness against entanglement

makes composition technically difficult, and we defer
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the details to Part V of the full version. Once the

composition is performed, we reach our main result.

Informal Theorem II.7 (Theorem 17.12 in the full

version). There is an MIP∗ protocol G2 for Succinct-
Succinct-3Sat (and hence for NEEXP) with question
size, answer, and verifier runtime poly(n).

F. Organization

The full version of this paper is organized into five

parts. The first part is the introduction and this overview.

The remaining parts are organized as follows.

• Part II contains two sections of preliminaries, one

containing the classical background and another

the quantum background.

• Part III contains the register compiler, i.e. the proof

of Informal Theorem II.5. This involves designing

the Pauli basis test (Section 6) and the data hiding

test (Section 8). Section 5 serves as an introduc-

tion to this part and contains more details on the

organization.

• Part IV contains the “introspection” question re-

duction step, i.e. the proof of Informal Theo-

rem II.6. To begin, we sketch the classical MIP
protocol for Succinct-3Sat in Section 11. Then we

give the introspected, i.e. “big”, low-degree test in

Section 13, and finish by giving the entire small-

question NEEXP protocol in Section 15. Section 14

contains a test necessary for the protocol called the

“intersecting lines test”. It allows us carry over the

results of the low-degree test from one register to

another.

• Part V contains the answer reduction, i.e. the

proof of Informal Theorem II.7. The construc-

tion involves composing PCP protocols with error-

correcting codes, and so Section 16 surveys the

properties we need of an error-correcting code.

Finally, Section 17 contains the actual proof of the

answer reduction step.
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