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Abstract—We introduce a frame-
work of layered subsets, and give a suf-
ficient condition for when a set system
supports an agreement test. Agree-
ment testing is a certain type of prop-
erty testing that generalizes PCP tests
such as the plane vs. plane test. Pre-
vious work has shown that high di-
mensional expansion is useful for agree-
ment tests. We extend these results
to more general families of subsets,
beyond simplicial complexes. These in-
clude

– Agreement tests for set systems
whose sets are faces of high dimen-
sional expanders. Our new tests
apply to all dimensions of com-
plexes both in case of two-sided
expansion and in the case of one-
sided partite expansion. This im-
proves and extends an earlier work
of Dinur and Kaufman (FOCS
2017) and applies to matroids, and
potentially many additional com-
plexes.

– Agreement tests for set systems
whose sets are neighborhoods of
vertices in a high dimensional
expander. This family resembles
the expander neighborhood fam-
ily used in the gap-amplification
proof of the PCP theorem. This
set system is quite natural yet does
not sit in a simplicial complex, and
demonstrates some versatility in
our proof technique.

– Agreement tests on families of sub-
spaces (also known as the Grass-
mann poset). This extends the
classical low degree agreement
tests beyond the setting of low
degree polynomials.

Our analysis relies on a new random
walk on simplicial complexes which we
call the “complement random walk”
and which may be of independent
interest. This random walk general-
izes the non-lazy random walk on
a graph to higher dimensions, and

has significantly better expansion than
previously-studied random walks on
simplicial complexes.

Index Terms—agreement, Direct
Product Test, PCP
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I. Introduction

Agreement testing is a certain type
of property testing. The first agreement
testing theorems are the line versus line or
plane versus plane low degree agreement
tests [1], [2], [3] that play an important
part in various PCP constructions. We
discuss the history and evolution of these
tests further below.
Abstractly, an agreement test is the

following. Let V be a ground set and let
S be a family of subsets of V . The object
being tested is an ensemble of local func-
tions {fs ∈ Σs | s ∈ S} with one function
per set s ∈ S. The domain of fs is s itself.
A perfect ensemble is an ensemble that
comes from a global function g : V → Σ
whose domain is the entire vertex set. In
a perfect ensemble the local function at
s is the restriction of g to the set s, that
is, fs = g�s for all s ∈ S.
We let G be the set of all perfect

ensembles. An agreement test is a prop-
erty tester for G. It is specified by a
distribution over pairs1 of intersecting
subsets, s1, s2 ∈ S, and the test accepts
if the respective local functions agree on
the intersection: fs1�t = fs2�t where
t = s1 ∩ s2. A perfect ensemble is clearly
accepted with probability 1. The test is
c-sound if

dist(f ,G) � c · P
s1,s2

[fs1�t = fs2�t] .
(I.1)

Here the distance dist(f ,G) is the mini-
mal fraction of sets s ∈ S that we need
to change in f in order to get a function
in G.
It is well known (see Example II.3) that

in some cases exact soundness is impossi-
ble and we must allow a slightly weaker
notion, called γ-approximate soundness.
The γ-approximate distance between two
ensembles f and g, denoted distγ(f , g),
is the fraction of sets s in which
dist(fs, gs) > γ. An agreement test is
γ-approximately c-sound if

distγ(f ,G) � c · P
s1,s2

[fs1�t = fs2�t] .
(I.2)

1In some cases the test can query more than
two subsets, as in the so-called Z-test of [4], but
in this paper we restrict attention only to two
query tests.

This means that if the test succeeds with
probability 1− ε there must be a global
function g : V → Σ such that for all but
c · ε of the sets s, dist(fs, g�s) � γ.

a) Why study agreement tests.: The
original motivation for agreement tests
comes from PCP proof composition: a
key step in this construction is to combine
many small proofs into one global proof,
but without knowing whether the small
proofs are consistent with each other.
The agreement test ensures that they can
be combined together coherently. Indeed,
agreement tests are the basis of the “inner
verifier” constructed in recent works on
2 : 2 games [5], [6], [7], [8].
Recent work [9] used agreement tests in

a different context, for proving structure
theorems for Boolean functions. The idea
is to prove structure for small restrictions
of the function, often an easier task, and
then apply an agreement testing theorem
to combine these structures together.
Agreement tests are a natural family

of tests that seems interesting in its own
right. This work makes a step towards
developing a theory that explains which
set systems have agreement tests.
The STAV layered set system
We describe a three layered set system

which we call a STAV.
Looking closely at agreement tests, we

can always model them with three layers:
the vertices (V ), the sets (S) and the
possible intersections between sets (T ).
The STAV has an additional so-called
“Amplification” layer (A) that captures
an amplification property that occurs in
many interesting settings: given that we
know that two local functions agree on
part of the intersection, the probability
that they will agree on the whole inter-
section rises significantly.
We give an informal description of

STAV, for the detailed formal definition
please see Section II-B. A STAV is a tuple
(S,T ,A,V ) together with the following
three distributions
– The STAV distribution - a distribu-
tion over (s, t, a, v), s ⊃ t ⊃ a ·∪ v.

– The STS distribution - a distribution
over s1, t, s2 that gives the agreement
testing distribution and in addition
a subset t ⊆ s1 ∩ s2.
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– The VASA distribution - a distribu-
tion over v, a, s, a′ whose role will be
made clear in the analysis.

A STAV is called γ-good if these distri-
butions (and some local views of them)
satisfy certain spectral conditions.

b) The surprise parameter.: Based
on the STAV structure, it is natural to
define a parameter which we call the
surprise. This parameter depends both
on the ensemble f = {fs} and on the
STAV, and in some cases, it can be
bounded independently of f (this is the
case for simplicial complexes). The sur-
prise parameter is a measure of how much
amplification the A layer gives us. It is
the probability that two intersecting sets
agree on a given that they disagree on
t (See Definition II.17). This parameter
gives a unified way to address different
agreement scenarios.
Main Results
This paper is short version, therefore

some of the results and proofs are om-
mited. For the full version of this paper,
see [10].
Our main technical theorem

(Theorem II.26) says that every set
system that supports a γ-good STAV
must support a sound agreement test.
This reduces the task of proving an
agreement test to the much simpler task
of uncovering a STAV underneath the
set system.

We list here a few applications of this
theorem, starting with agreement tests for
high dimensional expanders. Introducing
high dimensional expanders is beyond the
current scope and we refer the reader to
Section C for more introductory defini-
tions.

Theorem I.1 (Agreement for two-sided
HDX ). There exists a constant c > 0 such
that for every d-dimensional simplicial
complex X the following holds. If X is
a 1

d3 -two-sided d-dimensional HDX, then
X(d) supports a c-sound agreement test.

In the full paper we describe some
corollaries of this theorem for matroids.
The only known constructions of sparse

two-sided HDXs are by truncating one-
sided HDXs, see the Ramanujan com-

plexes of [11] as well as the construction
of HDXs due to [12]. It is natural to study
agreement tests for the (non-truncated)
one-sided HDX itself. The following the-
orem gives such a result in the special
case that the complex is also d+ 1-partite.
Many Ramanujan complexes are natu-
rally d + 1-partite, as are the complexes
constructed in [12].

Theorem I.2 (Agreement for partite
one-sided HDX ). There exists a constant
c > 0 such that the following holds.
Suppose X is a (d + 1)-Partite complex
that is a 1

d3 -one sided HDX. Then X(d)
supports a c-sound agreement test.

Our next agreement theorem is for a
family of subsets that is derived from
a high dimensional expander, although
itself it does not sit inside a simplicial
complex. The subsets in this family are
balls, or neighborhoods, of a vertex or
a higher dimensional face in a simplicial
complex that is a HDX. This construction
resembles the set system underlying the
gap-amplification based proof of the PCP
theorem [13], in which an agreement the-
orem underlies the argument somewhat
implicitly.

Theorem I.3 (Agreement on neighbor-
hoods ). There exists a constant c > 0
such that the following holds. Let X be a
1

d3 -two-sided high dimensional expander.
For each vertex z ∈ X(0) let Bz be
the set of neighbors of z, and let S =
{Bz | z ∈ X(0)}. Then S supports a 1

d -
approximately c-sound agreement test.

Finally, our last agreement theorem is
for a family of subspaces of a vector space,
also called the Grassmann. Such families
were studied in PCP constructions for
special ensembles whose local functions
belong to some code. Such ensembles
are guaranteed to have the following
property. For all s1, t, s2, if fs1�t � fs2�t

then dist(fs1�t, fs2�t) � δ. We call such
ensembles δ-ensembles and prove,

Theorem I.4 (Agreement on subspaces
- informal). There exists a constant c > 0
such that the following holds. Let Fn be a
vector space and let S have a set for every
affine subspace of dimension d. Then S
supports a 1/qΩ(d)-approximately c-sound
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agreement test for δ-ensembles.

For the benefit of the reader we added
in Section C a list of theorems proven in
this work.

Overview of the proof of our main theorem
(Theorem II.26)
Our main agreement theorem on STAV

structures has two parts, as in many
previous works. The first part of the
proof uses the amplification given by
the surprise parameter to construct a
family of functions for each a ∈ A, that
is g = {ga : reacha → Σ | a ∈ A}. The
reach of a is the set of all vertices v,
so that {v} ·∪ a ⊂ s for some s ∈ S.
The value ga(v) is defined by popularity
of fs(v) for all s ⊃ a. This part is
standard and occurs in many agreement
test analyses.
The second part of the proof is our

main new technical contribution. In this
step one constructs a global G : V →
Σ from the pieces ga. This is done by
showing sufficient agreement between the
different ga’s. We consider a graph con-
necting a pair a, a′ when they sit together
inside some s. In earlier works this graph
is dense and has very low diameter (2
typically). This can only happen when
the functions ga are defined on a pretty
large part of the vertex set (as in [14],
[15], [9], [3]) unlike our context where
each reacha is quite tiny (its size can be a
constant, far smaller than |V |). When the
diameter is small and reacha is huge it is
easy to stitch the different ga’s together,
even when the agreement between the
ga’s is rather crude, by taking a very short
random walk from a to a′ to a′′.
In contrast, in our case the diameter

is logarithmic and we cannot afford a
random walk because the error would
build up badly. Instead, we construct the
global function G : V → Σ by

G(v) = pop {ga(v) | a ∈ reachv} ,
i.e. the most popular opinion of the ga’s
on v. We show that it has the desired
properties. This argument relies on the
fact that the VASA random walk (in
particular, moving from a to s to a′)
is a very strong expander. That such
VASA distributions are available is proven

through a new type of random walk which
we call the complement random walk, and
is discussed separately below.
The only previous work that analyzed

an agreement test on a sparse set system
(where this “large diameter” problem ap-
pears) was in [16]. Their solution circum-
vented this problem by reducing to the
dense case in a certain way. That reduc-
tion is ad-hoc and required an additional
external layer of sets above S, which
limited the generality of the theorem.
Whereas the current proof is more direct
and works without this technical caveat.
The complement random walk in high

dimensional expanders: Several previous
works [17], [16], [18] analyzed random
walks on high dimensional expanders2. In
this work we study a new type of ran-
dom walk which we call the complement
random walk.
Interestingly, independent recent work

of Alev, Jeronimo, and Tulsiani [19], stud-
ies the same walk, where it is called
“swap walk”. The authors use this walk
for analyzing an algorithm that solves
constraint satisfaction problems (CSPs)
on high dimensional expanders.
The complement walk goes from i-face

to i-face via a shared j-face, just like the
upper and lower random walks previously
studied. However it has significantly bet-
ter expansion, and is hence much more
useful for us. We construct with it γ-
good STAVs in many of our applications.
The problem with many of the previously
studied random walks is that they have
an inherent “laziness” built in: starting
from an i face and walking down to a j
face, and then back up to another i face,
the j + 1 common vertices are limiting
the expansion of this walk (the family of
all sets containing a fixed vertex will have
not-so-good expansion). In contrast, the
complement walk starts with an i-face a
moves up to a j-face b ⊃ a and then moves
down to another i-face a′ ⊂ b conditioned
on a, a′ being disjoint (of course we need
j � 2i+ 1, note that any choice of such j
would give the exact same random walk).
It turns out (see Theorem A.21) that this

2In this section we assume familiarity with
high dimensional link expansion, see Section C
for formal definitions.
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walk has great expansion. This can be
seen by examining for example the case
of i = 0 and noting that this is just the
non-lazy random walk on a graph.
We prove the properties of this (and

other) walks in the full paper. The proof
goes through Garland’s method. This
method, proves global properties of the
simplicial complexes by properties on the
links. This method, originally developed
by Garland in [20], is used in many works
such as [21], [16], [22].
We believe these random walks are

interesting on their own account. These
walks generalize the non-lazy adjacency
operator in a graph, and the bipartite
adjacency operator in a bipartite graph
to high dimensions. As a bonus we show
an immediate application for these walks:
a new high dimensional expander mixing
lemma for sets in all dimensions , extend-
ing the work of [23], [24].
More background and context
As mentioned earlier the first agree-

ment testing theorems are the line ver-
sus line or plane versus plane low de-
gree agreement tests [1], [2], [3] that
play an important part in various PCP
constructions. Combinatorial analogs of
these theorems were subsequently dubbed
“direct product tests” and studied in a
sequence of works [25], [26], [27], [4], [14],
[28]. For a long while there were only
two prototypical set systems for which
agreement tests were known:
– All k-dimensional subspaces of some
vector space

– All k-element subsets of an underly-
ing ground set

Each of these has several variants (varying
the field size and ambient dimension,
deciding whether the sets are ordered or
not, etc.).
The study of agreement tests initially

came as a part of a PCP construction, as
in the case of the low degree agreement
tests and later in works leading towards
combinatorial proofs for the PCP theo-
rem, as started in [25] and continued in
[26], [13].
Further works relied on agreement tests

for hardness amplification: [4] showed
hardness for label cover (called a two-
query PCP) based on their direct product

agreement test. A recent line of work
[5], [6], [7], [8] concerning unique and
2 : 2 games used agreement tests on the
Grassmann as an inner verifier (see in
particular [6]).
In hope of getting more efficient PCPs

and LTCs it seemed that understand-
ing the power of agreement tests in a
more general setting would give us a
better handle on domains in which locally
testable codes and PCP constructions can
reside. However, despite some attempts,
no derandomization techniques managed
to find further (and hopefully sparser)
constructions.
A couple of years ago [16] discovered

a new and very sparse set system that
supports an agreement test. This new
system is based on group theoretic (and
number theoretic) constructions of so-
called high dimensional expanders. The
number of sets in this set system is linear
in the size of the ground set, a feature
that seems key towards new and more
efficient locally testable codes and PCPs.
This suggested that there is possibly a

much richer collection of set systems that
support agreement tests, and brought
to the fore once more the question of
understanding which set systems support
agreement tests.

II. Agreement Tests for STAV

Structures

A. Agreement tests and agreement expan-
sion
We begin with the definition of an

agreement expander, similar to that of
[16]. Let S be a family of subsets of a
ground set V . An ensemble of local func-
tions is a collection {fs : s → Σ | s ∈ S}
consisting, for each subset s ∈ S, of a
function whose domain is s. A perfect
ensemble is one that comes from a global
function g : V → Σ, namely fs = g�s for
all s ∈ S. We denote the set of all perfect
ensembles by

G(V ;Σ) = {{g�s}s∈S | g : V → Σ} .
An agreement test is given by a dis-

tribution D over pairs of intersecting
subsets,
– Input: An ensemble of local functions

{fs : s → Σ | s ∈ S}
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– Test: Choose a random edge {s1, s2}
according to the distribution D, let
t = s1 ∩ s2 and accept iff fs1�t =
fs2�t.

We denote by rejD(f) the probability
that the agreement test rejects a given
ensemble f = {fs}. A perfect ensemble
is clearly accepted with probability 1.
We say that the test is sound if it is a
sound test for the property G(V ;Σ) in the
standard property testing sense, namely,

Definition II.1 (Sound agreement test).
An agreement test is c-sound if every
ensemble f = {fs} satisfies

dist(f ,G) � c · rejD(f) .

Finally we can define an agreement
expander,

Definition II.2 (c-agreement expander).
An agreement expander is a family S of
subsets of a ground set V that supports
a c-sound agreement test.

The reason for the term “agreement
expander” is the similarity to a Rayleigh
quotient given by

1
c
= inf

f�G
rejD(f)

dist(f ,G) ,

where the numerator counts the number
of rejecting edges and the denominator
measures the distance from the property.
See [29] for a more detailed analogy
between expansion and property testing.

Approximate versus exact agreement
For some agreement tests one cannot

expect a conclusion as strong as in Def-
inition II.2. For example, suppose that
the testing distribution D selects pairs
s1, s2 that typically intersect on an η 	 1
fraction of s1 (and of s2). In such a case
consider the following ensemble,

Example II.3. Construct an ensemble
f = {fs} at random as follows. For all
s set fs = 0�s and then for each s with
probability α do: change one bit of fs at
random.

This ensemble passes the test with
probability at least 1− 2αη while being
roughly α-far from G. Setting α = 1
rules out any kind of conclusion as in
Definition II.2. However, not all is lost,

and a meaningful theorem can still be
proven if we move to a softer notion of
approximate agreement. Let us denote by
distγ(f , f ′) the fraction of sets s on which
fs, f ′

s differ on more than γ fraction of s.
Namely,

distγ(f , f ′) = P
s
[dist(fs, f ′

s) > γ].

Definition II.4 (γ-approximate
soundness). An agreement test is γ-
approximately c-sound if every ensemble
f = {fs} satisfies

distγ(f ,G) � c · rejD(f) .

When γ < 1/|s| we recover the previ-
ous notion of soundness which we now
call exact soundness. So a test is c-sound
or exactly c-sound if it is γ-approximately
c-sound for some γ < 1/|s|.
B. STAV structures
A STAV structure introduces two ad-

ditional layers of subsets of V : layer T
and layer A. These come in addition to
the top layer S that we already have in
the definition of an agreement expander.
The layer T represents the intersections
of pairs of subsets s1, s2 ∈ S, and is
implicit in the definition of the agreement
test distribution. The layer A is new
and sits below T . It provides a certain
amplification needed for the analysis.

ݏ ݐ ܽ ݒ ݒ ܽ ݏ ݏݐ′ܽ ′ݏ
Figure 1. The STAV, STS, and VASA distribu-
tions

Definition II.5 (STAV structure). A
STAV structure is a tuple X =
(S,T ,A,V ; Dstav) consisting of a ground
set V and three layers of subsets
A,T ,S ⊂ P(V ), together with a stochas-
tic process Dstav that samples (s, t, a, v)
as follows.
– Choose s
– Choose t conditioned on s
– Choose a, v conditioned on t (but not
dependent on s)

The distributions in which the above
are chosen are not restricted except for
assuming that the marginal of this process
is uniform over v and that the probability
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to choose a vertex or a set is never zero.
The STAV comes with two distributions,
– STS distribution: A distribution over
triples (s1, t, s2) that is symmetric
with respect to s1, s2 and satisfies
that the marginal of (s1, t) (and
therefore (s2, t)) is identical to the
marginal of Dstav.

– VASA distribution: A distribution
Dvasa over tuples (v, a1, s, a2) that
is symmetric with respect to a1, a2
and satisfies that the marginal of
(v, a1, s) (and therefore (v, a2, s)) is
identical to the marginal of Dstav.

Notation: Throughout this paper
we use the letters s, t, a, v to denote
elements in S,T ,A and V respectively
without specifically mentioning this.
So for example fixing a0, {s ⊃ a0}
stands for all elements of S that contain
a0 ∈ A. Unless specified otherwise, all
random choices are with respect to the
distributions Dstav or the STS or VASA
distributions.

Before we continue to define what a
“good” STAV is, let us mention a couple
of examples that might be useful to keep
in mind.

Example II.6 (The direct product test
STAV). Fix k and let � = k/3. We
construct the following family of STAVs
for all n 
 k, n → ∞. Let V = [n], let
S = ([n]k ),T = ([n]� ) and A = ( [n]�−1). The
STAV distribution is choosing a k-element
set uniformly, then an �-element subset
of it, and then splitting t randomly into
a and v. A possible STS distribution is to
choose a random t and then two indepen-
dent s1, s2 ⊃ t. Another possibility is to
choose s1, s2 ⊃ t so that their intersection
is exactly t. The VASA distribution is
to choose s uniformly and in it a, a′, v
uniformly so that they are all disjoint.
An agreement test for this example

appears in [14] under the name direct
product test.

Example II.7 (HDX simplicial com-
plexes, generalizing Example II.6). Fix
k and let � = k/3. We construct the
following family of STAVs for infinitely
many n 
 k. Suppose X is a high
dimensional expander on n vertices. Let

V = X(0), let S = X(k),T = X(�) and
A = X(� − 1). The STAV distribution is
choosing a random s from the distribution
of X, then a uniform t ⊂ s, and then
splitting t randomly into a and v. A
possible STS distribution is to choose
a random t and then two independent
s1, s2 ⊃ t. Another possibility is to choose
s1, s2 ⊃ t so that they must be disjoint.
The VASA distribution is to choose s
according to the X distribution and in
it a, a′, v uniformly so that they are all
disjoint.

Agreement tests for this example were
analyzed in [16] for certain complexes X
and certain bounds on the dimension k.

Example II.8 (Subspaces STAV). Fix
m > d > �. We construct the follow-
ing family of STAVs for all finite fields
F = Fq, q → ∞. Let V = Fm, let S
be all d-dimensional spaces of V , let T
be all �-dimensional spaces of V and let
A be all (� − 1)-dimensional spaces of
V . The STAV distribution is choosing s
uniformly, t ⊂ s uniformly, then a ⊂ t
uniformly, then v uniformly from t \ a. A
possible STS distribution is to choose a
random t and then two uniform s1, s2 ⊃ t.
The VASA distribution is to choose s
uniformly and in it a, a′, v uniformly so
that they are all disjoint.
This example generalizes the plane

vs. plane low degree agreement test. An
agreement test for it is proved in [3] for
ensembles whose local functions are low
degree functions, and in [4] for general
ensembles (in both cases the focus was
on a different parameter regime).

We now define several graphs that arise
as local views of the STS and VASA
distributions. The first of these is the
bipartite graph obtained by the marginal
of Dstav on A and V ,

Definition II.9 (The AV-Graph (reach
graph)). The AV-graph, or reach graph,
is a bipartite graph (V ,A,E) where
the probability of choosing an edge
(v, a) is given by the marginal of
Dstav on V × A, namely, Pr[(v, a)] =∑

s,t PDstav
[(s, t, a, v)].

We denote reacha ⊂ V the set of
neighbors of a in this graph, and by
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reachv ⊂ A the set of neighbors of v
in this graph.

Definition II.10 (The local reach
graphs). Let X be a STAV-structue, and
fix s ∈ S. The s-local reach graph, or
AVs-graph, is a bipartite graph where:

L = {a | a ⊂ s} .

R = {v | v ∈ s} .

E = {(a, v) | v ∈ reacha} .
The probability of choosing an edge (a, v)
is the probability of choosing (a, v) in the
STAV-distribution given that we chose s.

The STS graph and its local views: The
STS distribution is conveniently viewed
as a graph whose vertex set is S and
whose edges are labeled by elements of T ,
with the weight of the edge from s1 to s2
labeled by t given by the probability of
(s1, t, s2). The graph is undirected since
the STS distribution is symmetric wrt
s1, s2.
We consider “local views” of the sts

graph - obtained by inducing it on a
smaller set of vertices.

Definition II.11 (stsa-Graph). For a
fixed a, an stsa-Graph is has vertex
set {s | s ⊃ a} and the probability of
choosing an edge {s1, s2}t is given by
2Psts [(s1, t, s2) | t ⊃ a].

Definition II.12 (stsa,v-Graph). For a
fixed a, v, an stsa,v-Graph is has vertex
set {s | s ⊃ a ∪ {v}} and the probability
of choosing an edge {s1, s2}t is given by
2Psts [(s1, t, s2) | t ⊃ a ∪ v].

Local views of the VASA distribution:
When fixing one of the four terms in
(v, a, s, a′), we can define the following
two graphs by the marginal:

Definition II.13 (vASA-Graph).
For a fixed v, an vASA-Graph
is the graph whose vertex set is
reachv, and labeled edges are E =

{{a1, a2}s | a1, a2 ∈ A, s ∈ S, v, a1, a2 ⊂ s} .
The probability to choose an
edge {a1, a2}s is given by
PDvasa

[(v′, a1, s, a2) | v′ = v] .

Definition II.14 (Bipartite
V ASa-Graph). For a fixed a, an

V ASa-Graph is the bipartite graph
(L,R,E) where

L = reacha,
R ={

(a′, s)
∣∣ ∃v ∈ L (v, a, s, a′) ∈ Supp(Dvasa)

}
,

E =
{
(v, (a′, s))

∣∣ (v, a, s, a′) ∈ Supp(Dvasa)
}
.

The probability of choosing
an edge (v, (a′, s)) is given by
PDvasa

[(v, a0, s, a′) | a0 = a].

Good STAV-Structures: Having defined
all the relevant graphs, we come to the
requirements for a good STAV:

Definition II.15 (A good STAV-Struc-
ture). Let X be STAV structure and
γ < 1 be some constant. We say X is
a γ-good if assumptions (A1)-(A3) and
one of (A4(r)) or (A4) below hold for X:
(A1) The reach graph is a √

γ-bipartite
expander.

(A2)a) For all a ∈ A, the STSa-Graph is
a 1

3 -edge expander.
b) For all a ∈ A and v ∈ reacha, the

STS(a,v)-graph is an γ-two-sided
spectral expander.

(A3)a) For all v ∈ V , the vASA-graph is
a either a γ-bipartite expander or
a γ-two-sided spectral expander.

b) For all a ∈ A, the V ASa-graph is
a √

γ-bipartite expander.
(A4(r)) For all s ∈ S, the AVs-
graph is a rγ-sampler graph. Here
r > 0 is a parameter. A rγ-sampler
graph is defined in Definition A.5.

(A4) For every pair a, s so that a ⊂ s, the
size of reacha inside s is relatively
large, that is

P
v∼D

[v ∈ reacha | v ∈ s] �
1
2 .

Remark II.16. The constants 1
2 ,

1
3 are

arbitrary. In addition, in the proof of
the main theorem, we will use the fact
that the graphs in Assumption (A3),
Assumption (A2)b are 1

3 -edge expanders.
By the famous Cheeger’s inequality, for a
small enough γ, if the graphs above are
γ-spectral expanders, then they are also
1
3 -edge-expanders.

C. The surprise parameter
Let f = {fs}s∈S be an ensemble.

In this section we discuss an additional
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parameter of f and the underlying STAV
structure X that influences the agreement
theorem. This is the so-called surprise
parameter. This parameter measures how
surprised we are when fs and fs′ agree on
a given that we already know that they
disagree on t, where t ⊃ a. If this proba-
bility is small, we get strong amplification.
This idea played an important role in
several previous works and it seems useful
to consider this parameter explicitly.

Definition II.17 (Surprise of an ensem-
ble). Let X be a STAV structure. The
surprise of a given ensemble f = {fs}
with respect to X is

ξ(X, f) =
P

s1,s2,t,a,v
[fs1�a = fs2�a and fs1(v) � fs2(v)∣∣fs1�t � fs2�t]

where the probability is over choosing
s1, t, s2 from the sts distribution and
then choosing (a, v) conditioned on t.
Note that both s1, t, a, v and s2, t, a, v are
distributed as in Dstav.

It is sometimes natural to restrict atten-
tion to a sub-family of ensembles which
we call δ-ensembles.

Definition II.18 (δ ensemble). An en-
semble f is a δ-ensemble if for every
labeled edge (s1, t, s2) in the sts graph,

fs1�t � fs2�t =⇒
dist(fs1�t, fs2�t) > δ

(where dist(·, ·) stands for relative ham-
ming distance).

Remark II.19. Note that every ensemble
is a 1

|t| ensemble.
Remark II.20. Agreement theorems are
often considered for special ensembles
where each fs belongs to an error correct-
ing code, such as the Reed-Muller code in
the case of low degree tests. Furthermore,
in the low degree test examples, for all
t ⊂ s, fs�t itself belongs to an error
correcting code with some distance δ.
Clearly, such ensembles are automatically
δ-ensembles.
In some important cases the STAV

structure itself implies a non-trivial sur-
prise parameter for all possible ensembles.

We are thus led to define the surprise
of the STAV as the supremum over all
possible ensembles,

Definition II.21 (Global surprise). Let
X be a STAV structure. The surprise of
X is

ξ(X) = sup
f

ξ(f) .

While the agreement of f is a property
of the ensemble f , the surprise is influ-
enced by the STAV-structure itself. For
this, the following graphs play a role:

Definition II.22 (T-Lower Graph). Fix
t ∈ T . The T-lower graph of t is a
bipartite graph where

L = {v | v ∈ t} , R = {a | a ⊂ t} ,
E = {(a, v) | v ∈ a} .

Notice that here, we require v ∈ a
and not v ∈ reacha as we required
in the STAV-structure. The probability
to choose an edge (a, v) ∈ E is the
probability of choosing a given that a ⊂ t
and then choosing v at random inside a.

A priori, the T-lower graphs need not
be good expanders, as in the STAV-
structures defined for one-sided high di-
mensional expanders. However, when they
are, we can use their expansion properties
to establish the “surprise”. We can give
the following easy bound on the surprise
parameter,

Lemma II.23. Let X be a STAV-
structure so that for every t ∈ T , the T-
lower graph is a η-bipartite expander. For
any δ ensemble f , ξ(X, f) � O( η2

δ ).

Before proving the lemma let us give
a couple of examples demonstrating its
usefulness.

Example II.24 (HDX simplicial com-
plexes, continued). Consider the STAV
from Example II.7. For any t ∈ X(�), the
T -lower graph of t is the graph where R
is the vertices of t, and L are subsets of
t of size |t| − 1, where the edges denote
containment. The reader may calculate
that this graph is a η-bipartite expander
with η = 1

� . Plugging in δ = 1/� we get
ξ(X) � η2/δ = 1/�.
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Example II.25 (The Grassmann Poset).
Let F be a finite field, let X is a STAV-
structure where V = Fn, T is the
set of �-dimensional linear subspaces of
Fn, A is the set of (� − 1)-dimensional
spaces. For any t ∈ X(�), the T -lower
graph of t is the graph where R are
the 1-dimensional subspaces of t, and
L are the �-dimensional subspaces of t,
where the edges denote containment. The
reader may calculate that this graph is
an O

( √
1

qt−1

)
-bipartite expander. One

is often interested in agreement theorems
on the Grassmann poset where the local
functions are promised to come from
some error correcting code. In this case
the ensemble f will be a δ-ensemble for
constant δ, and therefore we bound the
surprise by ξ(X) � O(1/qt−1).

Proof of Lemma II.23. It suffices to show
that P [fs1�a = fs2�a | fs1�t � fs2�t] =

O
(

η2

δ

)
.

Denote by B =
{v ∈ t | fs1(v) � fs2(v)}. By our
assumption on the distance, we are
promised that P [B] � δ. And indeed,
we can invoke the sampler lemma,
Lemma A.9, and get that the probability
of a to see no vertices in B is O( η2

δ ). �

D. Main theorem: agreement on STAV
structures

We are now ready to state our main
technical theorem. Recall that for a given
distribution D over pairs s1, s2 we de-
noted by rejD(f) the probability that
fs1�t � fs2�t when choosing s1, s2 ∼ D
and setting t = s1 ∩ s2. For a given STAV
X we extend this notation to rejX (f)
understanding that the sets s1, t, s2 are
now chosen via the STS distribution that
comes with X.

Theorem II.26 (STAV Agreement The-
orem). Let Σ be some finite alpha-
bet (for example Σ = {0, 1}). Let
X = (S,T ,A,V ) be a γ-good STAV-
structure for some γ < 1

3 . Let f =
{fs : s → Σ | s ∈ S} be an ensemble such
that
1) Agreement:

rejX (f) � ε, (II.1)

2) Surprise:

ξ(X, f) � O(γ) (II.2)

Then assuming either Assumption for
r = 1 or Assumption (A4),

distγ(f ,G) � O(ε).

More explicitly, there exists a global func-
tion G : V → Σ s.t.

P
s∈S

[
fs

γ
� G�s

]
def
=

P
s∈S

[
P

v∈V
[fs(v) � G�s | v ∈ s] � γ

]
= O (ε) . (II.3)

Moreover, for any r > 0, if either Assump-
tion (A4(r))or Assumption (A4) holds
then

P
s∈S

[
fs

rγ
� G�s

]
= O

((
1+ 1

r

)
ε

)
.

(II.4)
The O notation does not depend on any

parameter including γ, ε, the size of the
alphabet, the size of |S|, |T |, |A|, |V | and,
size of any s ∈ S.

III. Proof of Main Theorem

In this section we prove our main
theorem, Theorem II.26.
We first give a direct proof for the case

of two-sided high dimensional expanders,
that follows the same line of general proof.
Afterwards we prove the theorem in full
generality.

A. Proof for a Representative Case: Two-
Sided High Dimensional Expanders
In this section we give a direct proof

to a special case of our main theorem.
We give a sound agreement test on set
systems coming from a two-sided high
dimensional expander.
We recall that a simplicial complex X

is a family of subsets that is downwards
closed to containment, i.e. if s ∈ X and
t ⊂ s the then t ∈ X. We denote by
X(�) all subsets (also called faces) of size
� + 1. We identify X(0) with the set of
vertices. A complex is d-dimensional if
the largest faces have size d+ 1. Our test
is the following:

Definition III.1 (d, �-agreement distri-
bution). Let X be a d-dimensional sim-
plicial complex and � < d be a positive
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integer. We define the distribution Dd,�
by the following random process
1) Sample t ∈ X(�).
2) Sample s1, s2 ∈ X(d) independently,

given that t ⊂ s1, s2.

The d, �-agreement test is the test as-
sociated with the d, �-agreement distribu-
tion on this family.

Theorem III.2 (Agreement for High
Dimensional Expanders). There exists a
constant c > 0 such that for every d > 0
such that the following holds. Suppose that
X is a 1

d3 -two-sided d-dimensional HDX,
and � = �d

3 �. Then the d, �-agreement test
is exactly c-sound.

This theorem holds for a wider range
of parameters. Also, in this section we
will assume that the alphabet is binary,
namely that the local functions are fs :
s → {0, 1}. The full theorem, is discussed
and proven in the full paper.
1) Proof of Theorem III.2: The proof of

the theorem goes through some auxiliary
functions:

Definition III.3 (local popularity func-
tion). For every a ∈ X(� − 1) define
ha : a → Σ by popularity, i.e. ha =
pops⊃a{fs�a}. The notation pop refers
to the value fs�a with highest probability
over s ⊃ a, ties are broken arbitrarily.

Definition III.4 (the reach function).
For every a ∈ X(� − 1) define ga :
Xa(0) → Σ by the popularity conditioned
on fs�a = ha, i.e.

ga(v) = pop{fs(v) : s ⊃ a, fs�a = ha}.
Ties are broken arbitrarily.

First, we will prove the following lemma
on the local popularity functions:

Lemma III.5. For any a ∈ X(� − 1), let
ha be as in Definition III.3. Denote by εa

the disagreement probability given that the
intersection t ∈ X(�) contains a. That is,

εa = P [fs1�t � fs2�t | a ⊂ t] .

Then for every a ∈ X(� − 1):

P
s∈X(d)

[fs�a � ha | s ⊃ a] = O (εa) .

Next, we move towards showing that
when fs�a = ha, then for a typical a,

fs(v) = ga(v) occurs with probability 1−
O

(
ε
d

)
.

Consider the distribution (a, s, a′) ∼
Dcomp, where we choose s ∈ X(d) and
then two a, a′ ⊂ s uniformly at random
given that they are disjoint.
We say that a triple (a, s, a′) is bad if

fs�a � ha or fs�a′ � ha′ . It is easy to see
from Lemma III.17 that there are O (ε)
bad triples at most.
We use the bad triples to define the

set of globally bad elements in X(� − 1).
These are all a ∈ X(� − 1) with many
bad triples touching them

A∗ = {
a ∈ X(� − 1)

∣∣
P

(s,a2)
[(a, s, a2) is a bad triple] � 1

40
}
.

(III.1)

We shall use this set A∗ to filter and
disregard certain a ∈ X(� − 1), that
ruin the probability to agree with the
{ga}a∈X(�−1), and later on with the
global function. The constant 1

40 is arbi-
trary, and once it is fixed, we can say that
P [A∗] = O (ε) by Markov’s inequality.

Lemma III.6 (agreement with link func-
tion). Let (a, s, v) ∼ D be the distribution
where we choose s ∈ X(d) and from it a, v
uniformly at random so that v � a. Then

P
(a,v,s)∼D

[
fs(v) � ga(v) and fs�a = ha

and a � A∗]
= O

( ε

d

)
. (III.2)

Finally our goal is to stitch the ga’s
functions together to one global function.
Lemma III.18 motivates us to define

the global function as the popularity vote
on ga(v) for all a ∈ Xv(� − 1) that
see few bad triples when conditioned on
v. However, in order to properly define
the global function, we need to define
another process that takes into account
the agreement of two functions ga, ga′ .
For this we need to look at each vertex
v ∈ X(0) separately.
To do so, we define the following graph:

Definition III.7 (Local Complement
Graph). Fix any v0 ∈ X(0). The local
complement graph Hv0 is the graph whose
vertices are V = Xv0(� − 1). Our labeled
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edges are chosen as follows: Given that
we are at element a we traverse to a′ via
edge s, by choosing some s ⊃ a ·∪ {v0}
and then choosing some a′ ⊂ s given that
a ∩ a′ = ∅.
For v ∈ V , we say a ∈ Xv(� − 1) is

locally bad for v, if

P
(a1,s,a2)∈E(Hv)

[(a1, s, a2) is bad | a1 = a]

>
1
20 .

The constant here is also arbitrary.
Finally, for every v ∈ V , we define A∗

v

to be the set of all a ∈ X(� − 1) that are
either globally bad, or locally bad for v.
We show using the sampler lemma,

Lemma A.9, that if a ∈ X(� − 1) is not
globally bad, then the probability over
v ∈ V , that it will be locally bad for v is
small, i.e.
Claim III.8 (Not Globally Bad implies
Not Locally Bad).

P
a∈X(�−1),v∈Xa(0)

[a ∈ A∗
v and a � A∗]

= O
( ε

d

)
.

Now we can define our global function
G : V → Σ as follows:

G(v) = pop {ga(v) | a ∈ Xv(� − 1), a � A∗
v} ,

as usual, ties are broken arbitrarily. In
words, we remove a small amount of bad
a ∈ X(� − 1), where many functions fs’s
don’t agree with the ga’s, and take the
popular vote of the remainder.
Using the local complement graph and

Claim III.8, we can now prove:

Lemma III.9 (agreement with global
function).

P
a∈X(�−1),v∈X0(a)

[ga(v) � G(v) and

a � A∗
v ]

= O
( ε

d

)
.

Given the lemmata above, we prove the
theorem.

Proof of Theorem III.2. We note that it
is enough to show

P
s∈X(d),a∈X(�−1),a⊂s

[
fs�s\a � G�s\a

]

= O (ε) . (III.3)

This is due to the fact that |s \ a| � 1
2 |s|,

thus if fs � G�s, then fs�s\a � G�s\a for
at least half of the possible a ⊂ s.
Next, we prove (III.3). We define the

following events, when we choose (a, s, v)
in the simplicial complex:
1) E1 - the event that fs�a � ha.
2) E2 - the event that a ∈ A∗, i.e. the

a chosen has many bad edges.
Define a random variable Z, that samples
s, a and outputs

Z(s, a) = P
v∈s\a

[fs(v) � G(v)] , (III.4)

i.e. the fraction of vertices in s \ a so that
fs(v) � G(v).
The probability for E1 ∨ E2 is O (ε) by

Lemma III.5 and Markov’s inequality.
If ¬(E1 ∨ E2), yet a vertex v con-

tributes to the probability in (III.4), then
one of the three must occur:
1) a ∈ A∗

v.
2) fs(v) � ga(v) and a � A∗

v.
3) a � A∗

v but fs(v) = ga(v) � G(v).
The first event occurs with probability
O

(
ε
d

)
by Claim III.8. The second occurs

with probability O
(

ε
d

)
by Lemma III.6.

The third occurs with probability O
(

ε
d

)
by Lemma III.9. Thus by the expectation
of Z given that ¬(E1 ∨ E2) is O

(
ε
d

)
. By

Markov’s inequality

P
s∈X(d),a∈X(�−1),a⊂s

[
fs�s\a � G�s\a

∣∣
¬(E1 ∨ E2)] =

P

[
Z �

1
d

∣∣∣∣ ¬(E1 ∨ E2)

]

= |s \ a|O
( ε

d

)
= O (ε) .

In conclusion

P
s∈X(d)

[fs � G�s] � P [E1 ∨ E2] +

P
s∈X(d),a∈X(�−1),a⊂s

[
fs�s\a � G�s\a

∣∣ ¬(E1 ∨ E2)
]

= O (ε) .

�
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2) Proof of the Lemmata:

Lemma (Restatement of Lemma III.5).
For any a ∈ X(� − 1), let ha be as in
Definition III.3. Denote by εa the disagree-
ment probability given that the intersection
t ∈ X(�) contains a. That is,

εa = P [fs1�t � fs2�t | a ⊂ t] .

Then for every a ∈ X(� − 1):

P
s∈X(d)

[fs�a � ha | s ⊃ a] = O (εa) .

Proof of Lemma III.5. Fix a ∈ X(� − 1).
If εa � 1

6 we are trivially done, so assume
otherwise. Consider the following graph:
1) The elements in the graph are all

s ⊃ a.
2) We connect two elements s1, s2 when-

ever there exists some t ∈ X(�),
t ⊃ a so that s1 ∩ s2 ⊃ t.

The random walk in this graph is as
follows: given s1 we traverse to s2 by the
d, �-agreement test’s distribution, that is,
given that the intersection contains a.
We denote the walk we just described,

by the d, �-containment walk. In [18], the
authors proved the following theorem,
regarding this walk:

Theorem III.10. Let X be a λ-one sided
link expander. Then the d, �-containment
walk is �+1

d+1 + O (dλ)-two-sided spectral
expander.

This theorem is thoroughly discussed
in the full version of this paper.
By Theorem III.10, this graph is a very

good spectral expander. In particular, it is
a 1

3 -edge expander, when d is sufficiently
large.
We color the vertices of this graph

according to their value at a. Denote
by S1,S2, ... the colors, where S1 is the
largest. Namely, S1 are all the s so that
fs�a = ha.
Denote by Si = {s : fs�a = hi

a}. We
need to show that the set of vertices S1 =
{s : fs�a = ha} (the largest of all Si) is
1− O (εa).
The quantity εa, i.e. the amount of

edges between Si’s, is by assumption less
than 1

6 .
By Claim A.6, using the fact that the

graph is a 1
3 -edge expander and the fact

that the fraction of edges between the Si’s
is less that 1

6 . We get that P [S1] � 1
2 .

Furthermore, by the edge-expander
property P [Sc

1] � 3E(S1,Sc
1) � 3εa. �

Corollary III.11. P [A∗] = O (ε).

Proof of Corollary III.11. Each
a ∈ X(� − 1) contributes to A∗ if the
amount of bad triples that a participates
in is � 1

40 . The total amount of bad
triples is O (ε) by Lemma III.5. Thus by
Markov’s inequality P [A] = O (ε). �

We move to Claim III.8.
Claim (Restatement of Claim III.8).

P
a∈X(�−1),v∈Xa(0)

[a ∈ A∗
v and a � A∗]

= O
( ε

d

)
.

Proof of Claim III.8. Fix some a � A∗.
Consider the following bipartite graph:
– L = {(a′, s) : a′ ·∪ a ⊂ s}.
– R = Xa(0).
– E = {(v, (a′, s)) : {v} ·∪ a′ ·∪ a ⊂ s},

The probability to choose each edge is
given by the following distribution in the
link Xa):
1) Sample v ∈ Xa(0).
2) Sample s \ a ∈ Xa(d − �) so that v ∈

s.
3) Sample a′ ∈ Xa(� − 1) so that a′ ⊂

s \ {v}.
Note that the probability of (a′, s) in

the left side, is precisely the probability to
choose the triple (a, s, a′) ∼ Dcomp, given
that the first element is a.
Denote by B ⊂ L the that consists of

all (s, a′) s.t. (a, s, a′) is a bad triple. If
a � A∗ then P [B] < 1

40 .
In the full version of the paper, we

give an analysis of this graph’s random
walk. In particular we prove the following
statement:

Proposition III.12. Fix some a ∈ A,
and consider the following graph
– L = {(a′, s) : a′ ·∪ a ⊂ s}.
– R = reacha = Xa(0).
– E = {(v, (a′, s)) : {v} ·∪ a′ ·∪ a ⊂ s},
and the probability to choose each
edge is given by the distribution that
chooses (s, a′, v) in the link of a.
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The graph described above is an
O

(
1√

�

)
-bipartite expander.

By Proposition III.12, this graph is a
O

(
1√
d

)
-bipartite expander.

Define the set

V ∗ =

{
v ∈ reacha

∣∣∣∣ P
(s,a′)

[
B

∣∣ v ∼ (s, a′)
]

�
1
20

}
,

the set of v ∈ reacha so that the prob-
ability for a bad edge is larger than 1

20 ,
namely, that a is locally bad for v.
In the sampler lemma, Lemma A.9,

we see that bipartite-expanders are good
samplers. We use Lemma A.9 to get that
P [V ∗] = O

( 1
d

)
P [B]. Taking expecta-

tion on all a ∈ A we get that

P
a∈X(�−1),v∈Xa(0)

[a ∈ A∗
v and a � A∗] =

P [a � A∗] · E
a�A∗ [P [V ∗]] =

P [a � A∗] · O

(
1
d

)
E

a�A∗ [P [B]] �

O

(
1
d

)
E

a∈A
[P [B]] = O

( ε

d

)
,

The last inequality is due to the fact that
taking expectation on this set conditioned
on a � A∗, is less than the expectation on
all A (by definition when a ∈ A∗, then
P [B] � 1

40 , and when a � A∗, P [B] <
1
40 ). The last equality is since P [B] =
O (ε) by Corollary III.11. �

We move towards proving Lemma III.6.
We shall use the following “surprise”
claim.
Claim III.13 (Surprise). Let D̂ denote the
distribution where we sample:
1) a ∈ X(� − 1).
2) v ∈ Xa(0).
3) s1, s2 ∈ X(d) independently, given

that they contain t = a ·∪ {v}.
Then

P
D̂
[fs1(v) � fs2(v) and fs1�a = fs2�a]

= O
( ε

d

)
.

This claim is given in full generality in
that is given in the full paper. For this
section to be self contained, we give it an
elementary proof:

Proof of Claim III.13. D̂ can be de-
scribed as first choosing s1, s2, t and then
partitioning t = a ·∪ {v}. So from the law
of total probability we obtain:

P
D̂
[fs1(v) � fs2(v) and fs1�a = fs2�a] =

E
(t,s1,s2)

[
P

v∈t,a=t\{v}
[fs1(v) � fs2(v)

and fs1�a = fs2�a]
]
.

Notice that for every t ∈ X(�), the
{s1, s2} pairs that contribute to the prob-
ability above, are the ones that fail the
test (but do so on exactly one vertex). By
the agreement test, there are at most an
ε-fraction of such pairs. Given that we
choose such a pair, their contribution to
the expectation is 1

� = O
( 1

d

)
since that

is the probability of choosing the v ∈ t
s.t. fs1(v) � fs2(v). �

Now we are ready to prove
Lemma III.6.

Lemma (Restatement of Lemma III.6).
Let (a, s, v) ∼ D be the distribution where
we choose s ∈ X(d) and from it a, v
uniformly at random so that v � a. Then

P
(a,v,s)∼D

[
fs(v) � ga(v) and fs�a = ha

and a � A∗]
= O

( ε

d

)
.

The proof we give here relies on the fact
that the alphabet is binary, or at least of
size O (1). It is possible to prove this for
an alphabet of unbounded size, as we do
in the main proof.

Proof of Lemma III.6. First, note that
by Claim III.8, (III.2) is less or equal
to

P [a � A∗ and a ∈ A∗
v ] +

P
(a,v,s)∼D

[fs(v) � ga(v)

and fs�a = ha and a � A∗
v ] =

O
( ε

d

)
+ P

(a,v,s)∼D
[fs(v) � ga(v)

and fs�a = ha and a � A∗
v ].

Thus we focus on bounding

P
(a,v,s)∼D

[fs(v) � ga(v) and fs�a = ha and a � A∗
v ] .

(III.5)
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We write the expression we want to
bound in (III.5) as

E
a,v

[
P

s
[fs(v) � ga(v) and fs�a � ha and a � A∗

v ]
]
.

We denote the expression inside
the expectation as pa,v =
Ps [fs(v) � ga(v) and fs�a � ha and a � A∗

v ] .
Thus we want to show that

E
a,v

[pa,v ] = O
( ε

d

)
.

By Claim III.13, we got that

P
(a,v,s1,s2)∼D̂

[fs1(v) � fs2(v) and fs1�a = fs2�a]

= O
( ε

d

)
.

We can write this also as an expectation
over a, v:

E
a,v

[
P

(s1,s2)
[fs1(v) � fs2(v) and fs1�a = fs2�a]

]

= O
( ε

d

)
.

We denote the expression in
the expectation by qa, v =

P(s1,s2) [fs1(v) � fs2(v) and fs1�a = fs2�a] .
Our goal is to relate the two quantities,

namely, to show that pa,v = O (qa,v).
This will show that

E
a,v

[pa,v ] = O

(
E
a,v

[qa,v ]

)
= O

( ε

d

)
.

Fix some a ∈ X(� − 1) and v ∈ Xa(0).
If a ∈ A∗

v then pa,v = 0 and we are done.
So assume a � A∗

v.
Denote by H0 the set of all s ⊃ t = a ·∪

{v}. In the sampling process for pa,v we
choose some s ∈ H0, and in the sampling
process for qa,v we choose s1, s2 ∈ H0
independently.
We can partition H0 to

H0 = G ·∪ B,

where G contains all s ∈ H0 so that
fs�a = ha. B is all s ∈ H0 so that
fs�a � ha.

a � A∗
v, thus

P
s∈H0

[B] <
1
20 ,

or
P

s∈H0
[G] >

19
20 .

Thus, conditioning on G doesn’t change
the probability of qa,v significantly,
namely

P
s1,s2

[fs1�a = fs2�a and

fs1(v) � fs2(v)
∣∣s1, s2 ∈ G]

� 2qa,v.

The first equality in the probability,
fs1�a = fs2�a, is immediately satisfied
in this set, since if s1, s2 ∈ G then
fs1�a = ha = fs2�a. So we get

P
s1,s2

[fs1(v) � fs2(v) | s1, s2 ∈ G] � 2qa,v.

Because s1, s2 are chosen independently,
we can say that

P
s1,s2

[fs1(v) � fs2(v) | s1, s2 ∈ G] =

2P
s1
[fs1(v) = ga(v) | s1 ∈ G] ·
P
s2
[fs2(v) � ga(v) | s2 ∈ G] .3

The definition of ga(v) is taking the
majority of fs(v) for all s ∈ G. Thus
Ps1 [fs1(v) = ga(v) | s1 ∈ G] � 1

2 .

P
s1,s2

[fs1(v) � fs2(v) | s1, s2 ∈ G] �

P
s2
[fs2(v) � ga(v) | s2 ∈ G] � pa,v.

The last inequality is by the definition of
pa,v. In conclusion, pa,v � 2qa,v and we
are done. �

We state this immediate corollary:

Corollary III.14. Consider the follow-
ing distribution (v, a, s, a′) ∼ Dvasa,
where (a, s, a′) are chosen by Dcomp and
v is sampled from s \ (a ·∪ a′) uniformly
at random. Then

P
(v,a,s,a′)∼Dvasa

[fs�ai
= hai and ga1 � ga2

and ai � A∗
v for i = 1, 2]

= O
( ε

d

)
.

�

The proof for this corollary is just
applying Lemma III.6 for each ai and
using a union bound.
It remains to prove Lemma III.9.

Lemma (Restatement of Lemma III.9).

P
a∈X(�−1),v∈X0(a)

[ga(v) � G(v) and
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a � A∗
v ]

= O
( ε

d

)
.

For the proof of the lemma, we’ll need
the following property of expander graphs.
In an expander graph, the number of
outgoing edges from some A ⊂ V , is an
approximation to the size of A or V \ A.
Claim A.10 generalizes this fact to the
setting where we count only outgoing
edges from A to a (large) set B ⊂ V \ A.

Proof of Lemma III.9. Fix some v0 ∈
X(0). We view the local complement
graph H0 from Definition III.7.
The walk on this graph is the � − 1, � −

1-complement walk in the link of v. By
Theorem A.21,that we prove in the full
paper, this graph is a O

( 1
d

)
-two-sided

spectral expander.
Consider the following

sets in this graph: Mv0 ={
a ∈ Xv0(� − 1) \ A∗

v0

∣∣ ga(v0) = G(v)
}

the popular vote, Nv0 ={
a ∈ Xv0(� − 1) \ A∗

v0

∣∣ ga(v0) � G(v)
}

the other votes, and Cv0 = A∗
v0 . The

a ∈ Nv0 are those where ga(v0) � G(v0)
and a � A∗

v0 . Hence we need to bound

E
v0
[P [Nv0 ]] .

We invoke Claim A.10 for
Nv0 ,Mv0 ,Cv0 and get that

P [Nv0 ] �
1

(1− O
( 1

d

)
)P [Mv0 ]

P [E(Nv0 ,Mv0)]

+ O

(
1
d

)
P [Cv0 ] . (III.6)

The proof now has two steps:
1) We show that P [Mv0 ] �

9
20 for all

but O
(

ε
d

)
of the vertices v0 (the con-

stant is arbitrary). This will imply
that the denominator in (III.6) is
larger than some constant (say 1

2 ).
2) We show that the right hand side of

(III.6) is O
(

ε
d

)
in expectation.

a) To show step 1.: We will need to
show that for all but O

(
ε
d

)
of the v0, the

size of Cv0 is smaller than 1
20 , namely

P
v

[
P [A∗

v ] >
1
20

]
= O

( ε

d

)
(III.7)

Assuming that for P [Cv0 ] �
1
20 , it is

obvious that P [Mv0 ] �
9
20 , using the fact

that the alphabet is binary in this special
case, thus Mv0 is the larger set between
Mv0 ,Nv0 .

To show (III.7) consider the comple-
ment graph between X(0) and X(� − 1),
where the edges are all (v, a) so that
{v} ·∪ a ∈ X(�). This is the 0, (� − 1)-
complement walk.
The set of vertices v that we need to

bound is the set of v’s with large P [A∗
v ] >

1
20 . There are two types of vertices v:
– P [A∗

v ∩ A∗] � 1
40

– P [A∗
v ∩ A∗] > 1

40
By Claim III.8,
P(a,v) [a ∈ A∗

v and a � A∗] = O
(

ε
d

)
.

Thus by Markov’s inequality, only O
(

ε
d

)
of the vertices can see 1

40 fraction of
neighbors a ∈ A∗

v \ A∗, thus bounding by
O

(
ε
d

)
the fraction of v’s of the first type.

To bound the vertices of the second
type, note that these are vertices that
have a large (> 1

40 ) fraction of neighbors
in A∗. By Corollary III.11, P [A∗] =
O (ε). According to Theorem A.21, our
graph is a

√
1
d -bipartite expander. Thus

by the sampler lemma Lemma A.9, the set
of vertices v0 ∈ X(0) who have more than
1
40 -fraction neighbours in A∗, is O

(
ε
d

)
.

b) As for step 2.: Taking expectation
on (III.6) we have that

E[P [Nv0 ]] �

E[
1

(1− O
( 1

d

)
)P [Mv0 ]

P [E(Nv0 ,Mv0)]]

+ O

(
1
d

)
E[P [Cv0 ]]

� P
v

[
P [A∗

v ] >
1
20

]
+ E[4P [E(Nv0 ,Mv0)]]

+ O

(
1
d

)
E[P [Cv0 ]], (III.8)

where the second inequality is due to the
fact that when Pv

[
P [A∗

v ] �
1
20

]
then

1
(1− O

( 1
d

)
)P [Mv0 ]

� 4.

We bound each of the terms on the
right hand side of (III.8) separately.
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By (III.7),

P
v

[
P [A∗

v ] >
1
20

]
= O

( ε

d

)
.

By Corollary III.11 and Claim III.8

O

(
1
d

)
E
v0
[P [Cv0 ]] = O

(
1
d

)
E
v
[P [A∗

v ]]

= O
( ε

d

)
.

We continue to bound P [E(Nv0 ,Mv0)]
in expectation. Every edge counted in
E(Nv0 ,Mv0) is either a bad triple (i.e.
and edge (a1, s, a2) s.t. fs�ai

� hai for
i = 1 or 2), or a non-bad edge (an
edge who is not bad) for which we see
a disagreement. By Corollary III.14 there
are O

(
ε
d

)
non-bad edges in the cut.

As for the bad edges, notice that a ∈
Nv0 is not a member of A∗

v0 , thus the
amount of bad edges that are connected
to a is at most 1

20 -fraction of the edges
connected to a (by definition). Thus
the amount of bad edges is bounded by
1
20 P [Nv0 ], and

P [E(Nv0 ,Mv0)] � O
( ε

d

)
+

1
20 P [Nv0 ] .

By summing up the bounds we get that

E[P [Nv0 ]] � O
( ε

d

)
+

4
20 E[P [Nv0 ]]

hence

E[P [Nv0 ]] = O
( ε

d

)
.

�

B. Proof for the General Case
Next we prove Theorem II.26 in full

generality.
The proof of the theorem goes through

these auxiliary functions:

Definition III.15 (local popularity func-
tion). For every a ∈ A define ha : a → Σ
by popularity, i.e. ha = pops⊃afs�a. The
notation pop refers to the value fs�a with
highest probability over s ⊃ a, ties are
broken arbitrarily.

Definition III.16 (the reach function).
For every a ∈ A define ga : reacha → Σ
by the popularity conditioned on fs�a =
ha, i.e.

ga(v) = pop{fs(v) : a ⊂ s, fs�a = ha}.
Ties are broken arbitrarily.

First, We will prove the following
lemma on the local popularity functions:

Lemma III.17. For any a ∈ A, let ha be
as in Definition III.15. Denote by εa the
disagreement probability given that t′ ⊃ a,
i.e.

εa = P
[
fs1�t′ � fs2�t′

∣∣ t′ ∈ {t ⊃ a}]
.

Then for every a ∈ A:

P
s∈{s⊃a}

[fs�a � ha] = O (εa) .

Next, we move towards showing that
when fs�a = ha, then for a typical a,
fs(v) = ga(v) occurs with probability 1−
O (γε).
We consider the V ASA-distribution.

We say that a triple (a, s, a′) is bad if
fs�a � ha or fs�a′ � ha′ , in the context of
the vASA-graphs defined in Section II-B,
we call these triples bad edges, since the
edges of the vASA-graphs correspond to
triples (a, s, a′). It is easy to see from
Lemma III.17 that there are O (ε) bad
edges at most.
We use the bad triples to define the

set of globally bad elements in A, to be
all a ∈ A with many bad triples touching
them

A∗ =
{

a ∈ A
∣∣

P
(s,a2)

[(a, s, a2) is a bad edge] � 1
40

}
namely, all the a ∈ A so that the probabil-
ity in Lemma III.17 given that we chose a
fixed a ∈ A, is larger than a constant. We
shall use this set A∗ to filter and disregard
certain a ∈ A, that ruin the probability
to agree with the {ga}a∈A, and later on
with the global function. The constant
1
40 is arbitrary, and once it is fixed, we
can say that P [A∗] = O (ε) by Markov’s
inequality.

Lemma III.18 (agreement with link
function). Let D be a distribution over
(a, s, v) ∈ A × S × V defined by the STAV-
structure, that is:
1) Choose some (a, v) where v ∈

reacha.
2) Choose some (a, v) ⊂ s (where we
mean {v}, a ⊂ s).

Then
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P
(a,v,s)∼D

[fs(v) � ga(v) and fs�a = ha and a � A∗
v ]

= O (γε) . (III.9)

Finally our goal is to stitchga’s func-
tions together to one global function.
Lemma III.18 motivates us to define

the global function as the popularity
vote on ga(v) for all a � A∗

v such that
v ∈ reacha. However, in order to properly
define the global function, we need to
define another process that takes into
account the agreement of two functions
ga, ga′ . For this we use the vASA-graphs
described in Assumption (A3)a.
For v ∈ V , we say a ∈ reachv is locally

bad for v, if

P
(a1,s,a2)∈E(vASA)

[(a1, s, a2) is bad | a1 = a] >
1
20 .

The constant here is also arbitrary.
Finally, for every v ∈ V , we define A∗

v

to be the set of all a ∈ reachv that are
either globally bad, or locally bad for v.
We show using the sampler lemma,

Lemma A.9, that if a ∈ A is not globally
bad, then the probability over v ∈ V , that
it will be locally bad for v is small, i.e.
Claim III.19 (Not Globally Bad implies
Not Locally Bad).

P
a∈A,v∈ reacha

[a ∈ A∗
v and a � A∗] = O (γε) .

Now we can define our global function
G : V → Σ as follows:

G(v) = pop {ga(v) | a ∈ reachv, a � A∗
v} ,

as usual, ties are broken arbitrarily. In
words, we remove a small amount of bad
a ∈ A, where many functions fs’s don’t
agree with the ga’s, and take the popular
vote of the remainder.
We can now prove:

Lemma III.20 (agreement with global
function).

P
a∈A,v∈ reacha

[ga(v) � G(v) and a � A∗
v ]

= O (γε) .

Given the lemmata above, we prove the
theorem for STAV-structures.

Proof of Theorem II.26. We first show
that based on Assumption (A4) or As-
sumption , it is enough to prove

P
s∈S,a∈s

[
fs�s∩ reacha

1
2 rγ

� G�s∩ reacha

]

= O

((
1+ 1

r

)
ε

)
. (III.10)

Indeed for any r > 0,
– If Assumption (A4) holds, and

fs

rγ
� G�s.

it implies that

fs�s∩ reacha

1
2 rγ

� G�s∩ reacha

for all a ⊂ s. Thus there cannot be
more than O

((
1+ 1

r

)
ε
)

s ∈ S as
above.– If Assumption (A4(r)) holds for rγ,
then for any

fs�s∩ reacha

rγ
� G�s∩ reacha

,

it is true by the assumption that
a 2

3 -fraction of the a ⊂ s have the
property that

fs�s∩ reacha

1
3 rγ

� G�s∩ reacha
.

Hence

P
s

[
fs

rγ
� G�s

]
�

3
2 P

s∈S,a∈s

[
fs�s∩ reacha

1
3 rγ

� G�s∩ reacha

]

= O

((
1+ 1

r

)
ε

)
and we are done.

Next, we prove (III.10). We define the
following events:
1) E1 - the event that fs�a � ha.
2) E2 - the event that a ∈ A∗, i.e. the

a chosen has many bad edges.
Define a random variable Z, that samples
s, a and outputs

P
v∈s∩ reacha

[fs(v) � G(v)] . (III.11)

The probability for E1 ∨ E2 is O (ε) by
Lemma III.17 and Markov’s inequality.
If ¬(E1 ∨ E2), yet a vertex v con-

tributes to the probability in (III.11),
then one of the three must occur:
1) a ∈ A∗

v.
2) fs(v) � ga(v) and a � A∗.
3) a � A∗

v but fs(v) = ga(v) � G(v).
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The first event occurs with probability
O (γε) by Claim III.19. The second occurs
with probability O (γε) by Lemma III.18.
The third occurs with probability O (γε)
by Lemma III.20. Thus by the expecta-
tion of Z given that ¬(E1 ∨ E2) is O(γε).
By Markov’s inequality for any r > 0,

P
s∈S,a∈s

[
fs�s∩ reacha

rγ
� G�s∩ reacha

∣∣∣∣ ¬(E1 ∨ E2)

]

= O
(ε

r

)
.

In conclusion

P
s∈S,a∈s

[
fs�s∩ reacha

rγ
� G�s∩ reacha

]
�

P [E1 ∨ E2] +

P
s∈S,a∈s

[
fs�s∩ reacha

rγ
� G�s∩ reacha

∣∣∣∣ ¬(E1 ∨ E2)

]

= O

((
1+ 1

r

)
ε

)
.

�

C. Proof of the Lemmata
Lemma (Restatement of Lemma III.17).
For any a ∈ A, let ha be as in Defini-
tion III.15. Denote by εa the disagreement
probability given that t′ ⊃ a, i.e.

εa = P
[
fs1�t′ � fs2�t′

∣∣ t′ ∈ {t ⊃ a}]
.

Then for every a ∈ A:

P
s∈{s⊃a}

[fs�a � ha] = O (εa) .

Proof of Lemma III.17. Fix a ∈ A, and
denote by εa the probability to succeed
in the STS-test given that s1, s2, t ⊃ a. If
εa � 1

6 we are trivially done, so assume
otherwise. Denote by {hi

a}i all possible
functions from a to Σ, where h1

a = ha.
Consider the STSa-graph. According to
Assumption (A2)a, this is a 1

3 -edge ex-
pander.
Denote by Si = {s : fs�a = hi

a}. We
need to show that the set of vertices S1 =
{s : fs�a = ha} (the largest of all Si) is
1− O (εa).
The quantity εa, i.e. the amount of

edges between Si’s, is by assumption less
than 1

6 . The STSa-graph is a 1
3 -edge

expander.
It is a known fact that if we partition

a vertex of an edge-expander graph, and
there are few outgoing edges, then one of

the parts in the partition is large. This
fact is formulated in Claim A.6.
We invoke Claim A.6, using the fact

that the graph is a 1
3 -edge expander

and the fact that the fraction of edges
between the Si’s is less that 1

6 . We get
that P [S1] � 1

2 .
By the edge-expander property

P [Sc
1] � 3E(S1,Sc

1) � 3εa.
�

Corollary III.21. P [A∗] = O (ε).

Proof of Corollary III.21. a ∈ A con-
tributes to A∗ if the amount of bad
edges that a participates in is � 1

40 . The
total amount of bad edges is O (ε) by
Lemma III.17. Thus by Markov’s inequal-
ity P [A] = O (ε). �

We move to Claim III.19.
Claim (Restatement of Claim III.19).

P
a∈A,v∈ reacha

[a ∈ A∗
v and a � A∗] = O (γε) .

Proof of Claim III.19. Fix some
a � A∗. Consider the V ASa-graph
for this a. This is the bipartite
graph, where L = reacha0 , R =
{(a, s) | ∃v ∈ L (v, a0, s, a) ∈ Supp(D)} ,
E = {(v, (a, s)) : (v, a0, s, a) ∈
Supp(D)}. The probability of choosing
an edge (v, (a′, s)) is given by
PD [(v, a0, s, a′) | a0 = a].
Denote by B ⊂ L the that consists

of all (s, a′) s.t. (a, s, a′) is bad. If a �
A∗ then P [B] < 1

40 . From Assump-
tion (A3)b, this graph is a √

γ-bipartite
expander. Define the set

V ∗ ={
v ∈ reacha

∣∣∣∣ P
(s,a′)

[
B

∣∣ v ∼ (s, a′)
]
�

1
20

}
,

the set of v ∈ reacha so that the prob-
ability for a bad edge is larger than 1

20 ,
namely, that a is locally bad for v. In the
sampler lemma, Lemma A.9, we see that
bipartite-expanders are good samplers.
We use Lemma A.9 to get that

P [V ∗] = O (γ)P [B]. Taking expecta-
tion on all a ∈ A we get that

P
a∈A,v∈ reacha

[a ∈ A∗
v and a � A∗] =

P [a � A∗] · E
a�A∗ [P [V ∗]] =
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P [a � A∗] · O (γ) E
a�A∗ [P [B]] �

O (γ) E
a∈A

[P [B]] = O (γε) ,

The last inequality is due to the fact that
taking expectation on this set conditioned
on a � A∗, is less than the expectation on
all A (by definition when a ∈ A∗, then
P [B] � 1

40 , and when a � A∗, P [B] <
1
40 ). The last equality is since P [B] =
O (ε) by Lemma III.17. �

Moving on to Lemma III.18:

Lemma (Restatement of Lemma III.18).
Let D be a distribution over (a, s, v) ∈
A × S × V defined by the STAV-structure,
that is:
1) Choose some (a, v) where v ∈

reacha.
2) Choose some (a, v) ⊂ s (where we
mean {v}, a ⊂ s).

Then

P
(a,v,s)∼D

[fs(v) � ga(v) and

fs�a = ha and a � A∗
v ]

= O (γε) .

For the proof of the lemma, we’ll need
the following property of expander graphs.
In an expander graph, the number of
outgoing edges from some A ⊂ V , is an
approximation to the size of A or V \ A.
Claim A.10 generalizes this fact to the
setting where we count only outgoing
edges from A to a (large) set B ⊂ V \ A.

Proof of Lemma III.18. For a fixed
(a0, v0) we consider he conditioned
STSa0,v0-graph. Recall that the vertices
in this graph are all the s ⊃ (a, v) and
the edges are (s, t, s′) so that t ⊃ (a, v).
We partition this graph

to three sets: Ma0,v0 ={
s ∈ V

∣∣ fs�a0 = ha0 , fs(v0) = ga(v0)
}
,

Na0,v0 ={
s ∈ V

∣∣ fs�a0 = ha0 , fs(v0) � ga(v0)
}
,

Ca0,v0 =
{

s ∈ V
∣∣ fs�a0 � ha0

}
. For

(a0, v0) so that a0 � A∗
v0 , the elements

s ∈ Na0,v0 are exactly those who
contribute to the probability in (III.9).
Thus the probability in (III.9) is

P
(a0,v0)

[
a0 � A∗

v0

]
E

(a0,v0): a0�A∗
v0

[P [Na0,v0 ]] .

We also denote by Ha0,v0 the set of
edges (s1, t, s2) in the STSa0,v0 -graph, so
that

fs1(v0) � fs2(v0) and fs1�a0 = fs2�a0 .

Note that any edge between Na0,v0 and
Ma0,v0 is an edge of Ha0,v0 . By (II.2),
ξ(f) = γ. Thus in particular

P
(s1,s2,t,a,v)

[fs1(v) � fs2(v) and

fs1�a = fs2�a] �

P
(s1,s2,t,a,v)

[fs1�t � fs2�t and

fs1�a = fs2�a]

= P [fs1�t � fs2�t] ξ(f)

= γε.

Thus

E
(a0,v0)

[P [Ha0,v0 ]] =

P [fs1(v) � fs2(v) and fs1�a = fs2�a] =

O (γε) .

According to Assumption (A2)b, the
STSa0,v0 -graph is a γ-two-sided spectral
expander, thus we can use the almost cut
approximation property Claim A.10 to
show that

(1− γ)P [Ma0,v0 ]P [Na0,v0 ] =

O (P [E(Na0,v0 ,Ma0,v0)] + γ P [Ca0,v0 ]) .
(III.12)

To conclude the proof we show first that
the right hand side of (III.12) is bound by
O (γε) in expectation over (a0, v0). Then
we show that for all but O (γε) of the
(a0, v0),

P [Ma0,v0 ] �
1
2 . (III.13)

Indeed, as

E(Na0,v0 ,Ma0,v0) ⊂ Ha0,v0 ,

we get that

P
(a0,v0)

[
a0 � A∗

v0

] ·

E
(a0,v0): a0�A∗

v0

[P [E(Na0,v0 ,Ma0,v0)]]

� E
(a0,v0)

[P [Ha0,v0 ]] = O (γε) .

Furthermore, Note that

P
(a0,v0)

[
a0 � A∗

v0

]
E

(a0,v0): a0�A∗
v0

[γ P [Ca0,v0 ]] �
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γ E
(a0,v0)

[P [Ca0,v0 ]] =

γ P [fs�a � ha] .
This is bounded by O (γε) by
Lemma III.17.
Hence the right hand side of (III.12)

is bound by O (γε) in expectation over
(a0, v0).
To complete the proof, we turn to

showing (III.13) for all but O (γε) of
the (a0, v0). For this, we use the edge
expander partition property, Claim A.6.
Partition the vertices of the STSa0,v0-

graph to B1,B2, ...Bn+1 where B1 =
Ma0,v0 ,B2 = Ca0,v0 and Na0,v0 = B3 ·∪
... ·∪ Bn, where each Bj is the set of s so
that fs(v) = σj for all σj ∈ Σ.
We assumed that P [Cv0 ] �

1
20 hence

E(B2,Bc
2) = E(C,Cc) � 1

20 .
From (II.2), E(a0,v0 [P [Ha0,v0 ]] =

O (γε). From Markov’s inequality,
P [Ha0,v0 ] < 1

20 , for all but O (γε) of the
(a0, v0). When this occurs, the amount
of edges between the partition parts is
3
20 < 1

6 .
From the edge expander partition prop-

erty Claim A.6 we get that one of the
partition sets has probability � 1

2 . This
is not B2 = C, as its probability is � 1

20 .
Thus P [Ma0,v0 ] �

1
2 .

Thus by using the fact that γ < 1
3 , for

all but O (γε) of the (a0, v0),

P [Na0,v0 ] =

O (P [E(Na0,v0 ,Ma0,v0)] + γ P [Ca0,v0 ]) .
Hence

E
(a0,v0)

[P [Na0,v0 ]] = O (γε) .

�

Corollary III.22. Consider the V ASA-
distribution promised for us in Assump-
tion (A3).

P
(v,a1,s,a2)

[fs�ai
= hai and

ga1(v) � ga2(v) and ai � A∗
v for i = 1, 2]
= O (γε) .

Proof of Corollary III.22. The probabil-
ity is bounded by twice the probability
we bound in Lemma III.18, and the
probability we bound in Claim III.19. �

1) Proof of Lemma III.20: We restate
Lemma III.20:

Lemma (Restatement of Lemma III.20).

P
a∈A,v∈ reacha

[ga(v) � G(v) and a � A∗
v ]

= O (γε) .

Proof of Lemma III.20. Fix some v0 ∈ V
and consider its vASA-graph defined in
Section II-B, namely the graph whose
vertices reachv0 and edges are all the
(a1, s, a2) so that (v0, a1, s, a2) is in the
support of our V ASA-distribution.
Consider the following

sets in this graph: Mv0 ={
a ∈ reachv0 \ A∗

v0

∣∣ ga(v0) = G(v)
}

the popular vote, Nv0 ={
a ∈ reachv0 \ A∗

v0

∣∣ ga(v0) � G(v)
}

the other votes, and Cv0 = A∗
v0 . The

a ∈ N are those where ga(v0) � G(v0)
and a � A∗

v0 . Hence we need to bound

E
v0
[P [Nv0 ]] .

By Assumption (A3)a it is a either a γ-
bipartite expander or a γ-two-sided spec-
tral expander. Claim A.11, the bipartite
almost cut approximation property, is the
analogue claim to Claim A.10 for bipar-
tite graphs. We invoke either Claim A.11
or Claim A.10 for Nv0 ,Mv0 ,Cv0 and get
that

(1− 2γ)P [Mv0 ]P [Nv0 ] �

P [E(Nv0 ,Mv0)] + 4γ P [Cv0 ] ,

or

P [Nv0 ] �
1

(1− 2γ)P [Mv0 ]
P [E(Nv0 ,Mv0)] +

4γ P [Cv0 ] . (III.14)

The proof now has two steps:
1) We show that P [Mv0 ] �

1
2 for all

but O (γε) of the vertices v0.
2) We show that the right hand side of

(III.14) is O (γε).
a) To show step 1.: we will need to

show that for all but O (γε) of the v0, the
size of Cv0 is smaller than 1

20 .

P
v

[
P [A∗

v ] >
1
20

]
= O (γε) (III.15)
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Assuming that for P [Cv0 ] �
1
20 , we

show that P [Mv0 ] �
1
2 using the edge

expander partition property, Claim A.6.
By Assumption (A3)a, the v0ASA-

graph is a either γ-bipartite expander
or a γ-two-sided spectral expander for
γ < 1

3 , thus it is also a
1
3 -edge expander.

We indend to invoke Claim A.6. Partition
V to:
– B0 = A∗

v0 = Cv0 .
– B1 = Mv0 .
– B2, ...,Bn - elements a ∈ A s.t.

ga(v) = σi for all σi ∈ Σ that are
not the majority assumption. Note
that Av0 = B2 ·∪ ... ·∪ Bn.

By (III.15), the set B0 = A∗
v0 is � 1

20
for all but O (γε) of the v’s. When this
occurs, then E(C,Cc) � 1

10 .
We bound the amount of edges between

the Bi’s that are not B0. We can divide
the edges to bad edges, and edges that
are not bad.
The “bad edges” between the Bi’s

account for at most 1
20 as for every i and

every a ∈ Bi, the amount of bad edges
connected to it is � 1

20 (since a � A∗
v0).

Finally, from Corollary III.22 and
Markov’s inequality, there are at most
O (γε) of the v’s where the amount of
edges between different Bi’s that are not
bad is greater than 1

20 .
Thus for all but O (γε) of the v’s, the

amount of edges between parts of this
partition is � 2

20 < 1
6 . Invoke Claim A.6,

to get that one set above must be of size
at least 1

2 . This must be B1 = Mv0 , as it
is larger than the other Bi’s where i � 1,
and since B0 = Cv0 is of size � 1

20 .

We move to show that (III.15) is true
for all but O (γε) of the vertices v0 ∈ V .
Consider the graph between STAV-parts
V and A where we choose a pair (a, v)
according to the probability to chose them
in the STAV -structure.
The set of vertices v that we need to

bound is the set of v’s with large P [A∗
v ] >

1
20 . There are two types of vertices v:
– P [A∗

v ∩ A∗] � 1
40

– P [A∗
v ∩ A∗] > 1

40
By Claim III.19,
P(a,v) [a ∈ A∗

v and a � A∗] = O (γε).
Thus by Markov’s inequality, only O (γε)
of the vertices can see 1

40 -fraction of

neighbors a ∈ A∗
v \ A∗, thus bounding

by O (γε) the fraction of v’s of the first
type.
To bound the vertices of the second

type, note that these are vertices that
have a large (> 1

40 ) fraction of neighbors
in A∗. By Corollary III.21, P [A∗] =
O (ε). According to Assumption (A1),
our graph is a √

γ-bipartite expander.
Thus by the sampler lemma Lemma A.9,
the set of vertices v0 ∈ X(0) who have
more than 1

40 -fraction neighbours in A∗,
is O (γε).

b) As for step 2.: Taking expectation
on (III.14) we get that

E[P [Nv0 ]] �

E[
1

(1− 2γ)P [Mv0 ]
P [E(Nv0 ,Mv0)]]

+ 4γ E[P [Cv0 ]] �

P
v

[
P [A∗

v ] >
1
20

]
+ E[6P [E(Nv0 ,Mv0)]]

+ 4γ E[P [Cv0 ]], (III.16)

where the second inequality is due to the
fact that we assumed that γ < 1

3 and that
when Pv

[
P [A∗

v ] �
1
20

]
then P [Mv0 ] �

1
2 ,

hence
1

(1− 2γ)P [Mv0 ]
� 6.

We bound each of the terms on the
right hand side of (III.16) separately.
By (III.15),

P
v

[
P [A∗

v ] >
1
20

]
= O (γε) .

By Corollary III.21 and Claim III.19

4γ E
v0
[P [Cv0 ]] = 4γ E

v
[P [A∗

v ]] = O (γε) .

We continue to bound P [E(Nv0 ,Mv0)]
in expectation. Every edge counted in
E(Nv0 ,Mv0) is either a bad triple (i.e.
and edge (a1, s, a2) s.t. fs�ai

� hai for
i = 1 or 2), or a non-bad edge (an
edge who is not bad) for which we see
a disagreement. By Corollary III.14 there
are O

(
ε
d

)
non-bad edges in the cut.

As for the bad edges, notice that a ∈
Nv0 is not a member of A∗

v0 , thus the
amount of bad edges that are connected
to a is at most 1

20 -fraction of the edges
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connected to a (by definition). Thus
the amount of bad edges is bounded by
1
20 P [Nv0 ], and

P [E(Nv0 ,Mv0)] � O (γε) +
1
20 P [Nv0 ] .

By summing up the bounds we get that

E[P [Nv0 ]] � O (γε) +
6
20 E[P [Nv0 ]]

hence

E[P [Nv0 ]] = O (γε) .

�
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Appendix

In this appendix we give the neces-
sary background and conventions we use
throughout the paper. Most results and
claims in this section are standard, and
thus given without proof.

A. Expander graphs

Every weighted undirected graph in-
duces a random walk on its vertices:
Let G = (V ,E) be a finite weighted
graph with a probability weight function
μ : E → [0, 1]. The transition probability
from v to u is

μ({u, v})∑
w∼v μ({v,w}) .

Denote by A = A(G) the Markov opera-
tor associated with this random walk. We
call this operator the adjacency operator.

A is an operator on real valued func-
tions on the vertices, where

∀v ∈ V Af(v) = E
u∼v

[f(u)] .

The expectation is taken with respect
to the graph’s probability on vertices,
conditioned on being adjacent to v.

A’s eigenvalues are in the interval
[−1, 1]. We denote its eigenvalues by λ1 �
λ2 � ... � λn (with multiplicities). The
largest eigenvalue is always λ1 = 1, and
it is obtained by the constant function.
The second eigenvalue is strictly less than
1 if and only if the graph is connected.

Definition A.1 (spectral expanders).
Let G be a graph. G is a λ-one sided
spectral expander for some 0 � λ < 1, if

λ2 � λ.

G is a λ-two sided spectral expander for
some 0 � λ < 1, if

max(|λ2|, |λn|) � λ.

There is another notion of graph ex-
pansion that we’ll need in this paper,
called edge expansion. Intuitively, an edge
expander is a graph where every set of
vertices has a large number of outgoing
edges.

Definition A.2 (edge expansion).
Let G be a weighted graph. The
edge expansion of G is Φ(G) =

min
{

P[E(S,V \S)]
P[S]

∣∣∣ S ⊂ V , 0 < P [S] � 1
2

}
,

where E(S,V \ S) is the set of all edges
between S and V \ S.

There is a connection between spectral
expansion and edge expansion:

Theorem A.3 (Cheeger’s inequality).
Let G be any weighted graph. Then

1− λ2
2 � Φ(G) �

√
2(1− λ2).

�

1) Bipartite Graphs and Bipartite Ex-
panders: A bipartite graph is a graph
where the vertex set can be partitioned
to two independent sets V = L ·∪ R, called
sides. Bipartite graphs are sometimes eas-
ier to analyze than graphs, and arise nat-
urally when studying STAV-structures.
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a) The Bipartite Adjacency Oper-
ator.: In a bipartite graph, we view
each side as a separate probability space,
where for any v ∈ L (resp. R), P [v] =∑

w∼v μ({v,w}). We can define the bipar-
tite adjacency operator as the operator
B : �2(L) → �2(R) by

∀f ∈ �2(L), v ∈ R, Bf(v) = E
w∼v

[f(u)]

where the expectation is taken with re-
spect to the probability space L, condi-
tioned on being adjacent to v.
We denote by λ(B) the spectral norm

of B when restricted to �0
2(L) = {1}⊥,

the orthogonal complement of the con-
stant functions (according to the inner
product the measure induces). Namely

λ(B) = sup {〈Bf , g〉 | ‖g‖, ‖f‖ = 1} .

Definition A.4 (Bipartite Expander).
Let G be a bipartite graph, let λ < 1.
We say G is a λ-bipartite expander, if
λ(B) � λ.

b) Sampling Graph.: We also define
a sampling graph, a notion close in some
sense to expanders.

Definition A.5 (Sampling Graph). Let
G = (L,R,E) be a bipartite graph,
and δ < 1. We say that G has the δ-
sampling property if the following holds:
For any set B ⊂ V of size greater
than P [C] � δ, the set T = {a :
Pv∈V [v ∈ C | v ∈ reacha] � 1

3δ} has
size at least 1

3 .

B. Properties of Expander Graphs

In this subsection we develop the neces-
sary properties of expander graphs, that
we will need in Section III.

a) Edge-Expander Partition Prop-
erty.: The following claim is also useful
in the proof of the main theorem. It says
that if we partition the vertices, and there
are few edges between the partition’s
parts, then one set in the partition is
larger than 1

2 .
Claim A.6 (Edge-Expander Partition
Property). Let G = (V ,E) be a c-
edge expander. Let V = B1 ·∪ ... ·∪ Bn,
partitioned into sets, and suppose that

there are less than c
2 edges between parts

of the partition, namely:

1
2

n∑
i=1

P [E(Bi,Bc
i )] <

c

2 .

Then there exists i such that P [Bi] � 1
2 .

Proof of Claim A.6. Assume towards
contradiction that for all 1 � i � n,
P [Bi] < 1

2 .
From our assumption, there are less

than c
2 edges between parts of the parti-

tion, namely

c

2 >
1
2

n∑
i=1

P [E(Bi,Bc
i )] �

c

2

n∑
i=1

P [Bi] ,

where the second inequality is from edge
expansion. Bi’s are a partition of the
vertices, thus

∑n
i=1 P [Bi] = 1, a contra-

diction.
�

b) Expander Mixing Lemma.: A clas-
sical result in expander graphs is the
expander mixing lemma, that intuitively
says that the weight of the edges between
any two vertex sets S,T ⊂ V is propor-
tionate to the probabilities of S,T .

Lemma A.7 (Expander Mixing Lemma).
Let G = (V ,E) be a λ-two sided spectral
expanders. Then for any S,T ⊂ V

|P [E(S,T )] − P [S]P [T ]| �
λ

√
P [S]P [T ] (1− P [S])(1− P [T ]).

�

Bipartite graphs have their own type
of expander mixing lemma:

Lemma A.8 (Bipartite Expander Mix-
ing Lemma). Let G = (L,R,E) be a
bipartite λ-one sided spectral expander.
Then for any S ⊂ L,T ⊂ R

|P [E(S,T )]− P
v∈L

[v ∈ S] P
w∈R

[w ∈ T ]| �

λ
√

P [S]P [T ] (1− P [S])(1− P [T ]).

�
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c) Expander Sampler Property.: In
[16] the authors showed that bipartite
λ-one sided spectral expander has the
following useful sampler property.

Lemma A.9 (Sampler Property, by
[16]). Let G = (L,R,U) be a bipartite
λ-one sided spectral expander. Let B ⊂ R
be any set of vertices, and c > 0. then T =
{v ∈ L | |Pw∈R [w ∈ S | w ∼ v] − P [S]| > c}
of vertices who view S as "large", satisfies:

P [T ] �
λ2

c2 P [S] .

d) Almost Cut Approximation Prop-
erty.: As a corollary to the expander
mixing lemma, we get the following useful
approximation property. In an expander
graph, if the number of outgoing edges
from some A ⊂ V , is an approximation
to the size of A or V \ A. The following
claim generalizes this fact to the setting
where we count only outgoing edges from
A to a (large) set B ⊂ V \ A.
Claim A.10 (Almost Cut Approximation
Property). Let G = (V ,E) be a λ-two
sided spectral expander. Let V = A ·∪
B ·∪ C, s.t. P [A] � P [B]. Then

P [A] �
1

(1− λ)P [B]
(P [E(A,B)] + λ P [C]) .

(A.1)
In particular, if P [A] , 1 − λ = Ω(1)

then

P [A] = O (P [E(A,B)] + λ P [C]) .

For bipartite expanders we have an ana-
logues almost approximation cut property,
similar to Claim A.10.
Claim A.11 (Almost Cut Approximation
Property - Bipartite expanders). Let G =
(L,R,E) be a λ-bipartite expander for
λ < 1

2 . Let V = A ·∪ B ·∪ C, s.t. P [A] �
P [B] (where the probability is taken over
all the graph). Then

P [A] �
1

2(1− 2λ)P [B]
(P [E(A,B)] + λ4P [C]) .

In particular, if P [A] , 1− λ = Ω(1) then

P [A] = O (P [E(A,B)] + λ P [C]) .

Proofs for Claim A.10 and Claim A.11
are elementary. They can be found in the
full version of the paper.

C. Simplicial Complexes and high dimen-
sional expanders
We include here the basic definitions

needed for our results. For a more com-
prehensive introduction to this topic we
refer the reader to [16] and the references
therein.
A simplicial complex is a hypergraph

that is closed downward with respect to
containment. It is called d-dimensional
if the largest hyperedge has size d + 1.
We refer to X(�) as the hyperedges (also
called faces) of size � + 1. X(0) are the
vertices.
We define a weighted simplicial com-

plex. Suppose we have a d-dimensional
simplicial complex X and a probability
distribution μ : X(d) → [0, 1]. We con-
sider the following probabilistic process
for choosing lower dimensional faces:
1) Choose some d-face sd ∈ X(d) with

probability μ(sd).
2) Given the choice of sd, choose sequen-

tially a chain of faces contained in sd,
(∅ ⊂ s1 ⊂ ... ⊂ sd) uniformly, where
si ∈ X(i).

For any s ∈ X(k) we denote by

P [s] = P [{(∅ ⊂ s0 ⊂ ... ⊂ sd)} | sk = s] .

For all sk ∈ X(k), s� ∈ X(l), we will
write P [sk | s�] the probability of the k-
face in the sequence is s, given that the
l-face is s�.
From here throughout the rest of the

paper, when we refer to a simplicial
complex X, we always assume that there
is a probability measure on it constructed
as above.
A link of a face in a simplicial complex,

is a generalization of a neighbourhood of
a vertex in a graph:

Definition A.12 (link of a face). Let
s ∈ X(k) be some k-face. The link of
s is a d − (k + 1)-dimensional simplicial
complex defined by:

Xs = {t\s : s ⊆ t ∈ X}.
The associated probability measure PrXs ,
for the link of s is defined by

P
Xs

[t] = P
X
[t ∪ s | s] ,

where PrX is the measure defined on X.
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Definition A.13 (underlying graph).
The underlying graph of a simplicial com-
plex X with some probability measure as
define above, is the graph whose vertices
are X(0) and edges are X(1), with (the
restriction of) the probability measures
of X to the vertices and edges.

We are ready to define our notion
of high dimensional expanders: the one-
sided and two-sided link expander.

Definition A.14 (one-sided and
two-sided link expander). Let 0 � λ < 1.
A simplicial complex X is a λ-two sided
link expander (or λ-two sided HDX) if for
every −1 � k � d − 2 and every s ∈ X(k),
the underlying graph of the link Xs is a
λ-two sided spectral expander.
Similarly, X is a λ-one sided link ex-

pander (or λ-one sided HDX) if for every
−1 � k � d − 2 and every s ∈ X(k), the
underlying graph of the link Xs is a λ-one
sided spectral expander.

When X is a graph, this definition
coincides with the definition of a spectral
expander.
We remark that it is a deep theorem

that there exist good one-sided and two-
sided high dimensional expanders with
bounded degree [30].

d + 1-partite simplicial complexes:
A d + 1-partite simplicial complex is a
generalization of a bipartite graph. We
say a d-dimensional simplicial complex is
d+ 1-partite if we can partition the vertex
set

V = V0 ·∪ V1 ·∪ ... ·∪ Vd,

s.t. any d-face s ∈ X(d), contains a vertex
from each Vi, i.e. |s ∩ Vi| = 1.
The color of a k-face s ∈ X(k), is the

set of all indexes of Vi’s, that intersect
with s. I.e.

col(s) = {j ∈ [d] : |s ∩ Vj | = 1}.

For any J ⊂ [d], we denote

X [J ] = {s ∈ X : col(s) = J}.

When J = {i}, we abuse the notation
and write X [i] instead of X [{i}] (not to
be confused with X(i)).

D. Main Theorem
Theorem A.15 (Restatement of The-
orem II.26). Let Σ be some finite al-
phabet (for example Σ = {0, 1}). Let
X = (S,T ,A,V ) be a γ-good STAV-
structure for some γ < 1

3 . Let f =
{fs : s → Σ | s ∈ S} be an ensemble such
that
1) Agreement:

rejX (f) � ε, (A.2)

2) Surprise:

ξ(X, f) � O(γ) (A.3)

Then assuming either Assumption for
r = 1 or Assumption (A4),

distγ(f ,G) � O(ε).

More explicitly, there exists a global func-
tion G : V → Σ s.t.

P
s∈S

[
fs

γ
� G�s

]
def
=

P
s∈S

[
P

v∈V
[fs(v) � G�s | v ∈ s] � γ

]
= O (ε) . (A.4)

Moreover, for any r > 0, if either Assump-
tion (A4(r))or Assumption (A4) holds
then

P
s∈S

[
fs

rγ
� G�s

]
= O

((
1+ 1

r

)
ε

)
.

(A.5)
The O notation does not depend on any

parameter including γ, ε, the size of the
alphabet, the size of |S|, |T |, |A|, |V | and,
size of any s ∈ S.

E. Applications of Main Theorem
1) Agreement tests on two-sided HDX.

Theorem A.16 (Agreement for
High Dimensional Expanders).
There exists a constant c > 0 such
that for every two natural numbers
d > � such that 1

2d − � = Ω(d) the
following holds. Suppose that X
is a 1

d2�
-two-sided d-dimensional

HDX. Then for every r > 0 the d, �-
agreement test is r

� -approximately(
c(1+ 1

r )
)
-sound. In particular, if

� = Ω(d), then the test is exactly
c-sound.

2) Agreement tests on one-sided HDX.
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Theorem A.17 (Agreement for
(d+ 1)-Partite High Dimensional Ex-
panders). There exists a constant
c > 0 such that for every two
natural numbers k, � so that k �
4� + 4 the following holds. Suppose
X is a k-dimensional skeleton of a
(d + 1)-Partite 1

k2�
-one sided HDX

(including k = d)4. Then for every
r > 0 the d, �-agreement test is r

� -
approximately

(
c

(
1+ 1

r

))
-sound. In

particular, if � = Ω(k), then the test
is exactly c-sound.

3) Agreement tests on vertex neighbour-
hoods.
Theorem A.18 (Agreement on
neighborhoods). There exists a con-
stant c > 0 such that for every
non-negative integers �, k, d such that
4 � � � d−2

2 and � + 2k + 2 �
d, the following holds. Let X be
a d-dimensional 1

� (k+�)2 -two-sided
high dimensional expander. Then the
�, k-weak independent agreement test
(where we choose two links of k-faces
that share a common � face), is 1

� -
approximately c-sound.

4) Agreement tests on the Affine and
Linear Grassmann Posets:
Theorem A.19 (Agreement on the
Affine Grassmann Poset). There ex-
ists a constant c > 0 such that for
every prime power q, r, δ > 0, and
integers �, d,n such that 3� + 2 <
d � n the following holds. The
d, �-Grassmann agreement test 5 on
X = Graff (F

n, d) (affine spaces of
dimension d) is q−�rδ-approximately
c

(
1+ 1

r

)
-sound for δ-ensembles.

Theorem A.20 (Agreement on the
Linear Grassmann Poset). There ex-
ists a constant c > 0 such that for
every prime power q, r, δ > 0, and
integers �, d,n such that 3� + 2 <
d � n the following holds. The d, �-
Grassmann agreement test on X =
Grlin(F

n, d) (linear subspaces of di-
mension d) is q−�+1rδ-approximately
c

(
1+ 1

r

)
-sound for δ-ensembles.

4a k-skeleton of a d-dimensional simplicial
complex Y is X = {s ∈ X | |s| � k + 1}.

5That is, sampling two d-dimensional affine
spaces that share an �-dimensional affine sub-
space.

F. Analysis of the Complement Walk
Theorem A.21. 1) Let X be a λ two-

sided d-dimensional link-expander.
Let �1, �2 integers so that �1 + �2 +
1 � d. Denote by M �1,�2 , the bipar-
tite operator of the �1, �2-complement
walk. Then λ(M �1,�2) � (�1 + 1)(�2 +
1)λ.

2) Let X be a d + 1-partite λ
(d+1)λ+1 -

one-sided link expander, where λ < 1
2 .

Let I,J ⊂ [d] be two disjoint colors.
Denote byM I,J the I,J-colored walk.
Then λ(M I,J ) � |I||J |λ.

G. High Dimensional Expander Mixing
Lemma
1) Two sided case:

Lemma A.22 (High dimensional
expander mixing lemma - two-sided).
Let X be a d-dimensional λ-two sided
link expander. Let j1, j2, ..., jm �
d, and A1 ⊂ X(j1),A2 ⊂
X(j2), ...,Am ⊂ X(jm) s.t. for any
j�1 � j�2 , and any s ∈ Aj�1

, t ∈ Aj�2
,

s ∩ t = ∅. Then∣∣∣ P [F (A1,A2, ...,Ak)]−(
k + 1

j1 + 1, j2 + 1, ..., jm + 1

) m∏
j=1

P [Aj ]
∣∣∣

� Cλ m

√√√√ m∏
j=1

P [Aj ]

where C depends on m, d only.6
2) One sided partite case:

Lemma A.23 (High dimensional
expander mixing lemma - one-sided
d + 1-partite). Let X be a λ-one
sided d + 1-partite link expander.
Let I1, ..., Im ⊂ [d + 1] be pair-
wise disjoint colors, and let A1 ⊂
X [I1], ...,Am ⊂ X [Im]. Then∣∣∣ P [F (A1,A2, ...,Ak)]−

m∏
j=1

P
[
Aj

∣∣ X [Ij ]
] ∣∣∣

� Cλ m

√√√√ m∏
j=1

P
[
Aj

∣∣ X [Ij ]
]

6here
(

k+1
j1+1,j2+1,...,jm+1

)
is the number of

partitions of a set of size k + 1 to sets of size
j1 + 1, j2 + 1, ..., jm + 1.
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where C depends on m, d only.
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Name Definition Reference
STAV-Structure A system of sets with four layers: S - sets, T -

intersections, A - amplification, V - vertices.
It is accompanied by a distribution
(s, t, (a, v)) ∼ Dstav.

Definition II.5

STS-distribution A distribution where we sample t ∈ T , and then
s1, s2 ∈ S so that s1 ∩ s2 ⊃ t. The marginal (si, t) is
the same as the marginal in Dstav.

Definition II.5

VASA-distribution A distribution (v, a, s, a′) ∼ Dvasa where the
marginals (v, a, s), (v, a′, s) are the same as Dstav.

Definition II.5

Reach Graph The bipartite graph between V and A where we
choose an edge (v, a) according to the STAV-
distribution.
We denote by reacha or reachv then neighbours of
a or v in this graph, respectively.

Definition II.9.

Local Reach Graph
(AVs-graph)

For a fixed s0 ∈ S, the AVs0 -graph is a bipartite graph
where L = {a | a ⊂ s0} and R = {v | v ∈ s0}. The
edges are chosen according to the STAV-distribution
given that s = s0.

Definition II.10

stsa-Graph For a fixed a0 ∈ A, the stsa0-graph is a graph
whose elements are {s | s ⊃ a0}. We connect s, s′
when there exists t ∈ T so that a0 ⊂ t ⊂ s ∩ s′.

Definition II.11

stsa,v-Graph For a fixed a0 ∈ A and v0 ∈ reacha0 , the
stsa0,v0-graph is a graph whose elements are
{s | s ⊃ (a0, v0)}. We connect s, s′ when there exists
t ∈ T so that (a0, v0) ⊂ t ⊂ s ∩ s′.

Definition II.12

vASA-graph For a fixed v0 ∈ V the v0ASA-graph is a graph whose
elements are a ∈ reachv0 . We connect a, a′ with a
labeled edge (a, s, a′) if (v0, a, s, a′) is in the support
of Dvasa.

Definition II.13

Bipartite
V ASa-Graph

For a fixed a0 ∈ A, the V ASa0-Graph is a bipartite
graph where one side is L = reacha0 . The other side
is the set of (s, a′) so that (a0, s, a′) is in the support
of the marginal of Dvasa.
We sample an edge in this graph by sampling
(v, a, s, a′) given that a = a0.

Definition II.14

Surprise Let {fs}s∈S be some local ensemble. The surprise
of the ensemble is the probability over (s, a, v) that
fs�a = fs′�a but fs(v) � fs′(v).

Definition II.17
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