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Abstract—Prior work has shown that there exists a relation
problem which can be solved with certainty by a constant-depth
quantum circuit composed of geometrically local gates in two
dimensions, but cannot be solved with high probability by any
classical constant depth circuit composed of bounded fan-in
gates. Here we provide two extensions of this result. Firstly,
we show that a separation in computational power persists
even when the constant-depth quantum circuit is restricted to
geometrically local gates in one dimension. The corresponding
quantum algorithm is the simplest we know of which achieves
a quantum advantage of this type. Our second, main result, is
that a separation persists even if the shallow quantum circuit
is corrupted by noise. We construct a relation problem which
can be solved with near certainty using a noisy constant-
depth quantum circuit composed of geometrically local gates
in three dimensions, provided the noise rate is below a certain
constant threshold value. On the other hand, the problem
cannot be solved with high probability by a noise-free classical
circuit of constant depth. A key component of the proof is a
quantum error-correcting code which admits constant-depth
logical Clifford gates and single-shot logical state preparation.
We show that the surface code meets these criteria.
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I. INTRODUCTION

The appeal of quantum computing lies in the hope that

quantum devices may surpass their classical counterparts

in certain information processing tasks. Indeed, a universal

quantum computer could efficiently solve certain computa-

tional problems such as factoring, for which no efficient clas-

sical algorithms are known to date. Yet, even an experimental

realization of such universal quantum machines – while

impressive and potentially useful in applications – would not

conclusively establish a computational quantum advantage in

the complexity-theoretic sense. Instead, an efficient quantum

algorithm must be accompanied with a proof of the classical

hardness of the considered problem. For almost any problem

of interest, such a proof would itself constitute a major

complexity-theoretic advance.

To solidify the theoretical underpinnings of quantum

computation, recent work has focused on computational

problems where quantum advantage can be established,

either conditionally or information-theoretically. Results of

the former category rely on certain complexity-theoretic

conjectures such as the non-collapse of the polynomial hi-

erarchy as well as specific hardness assumptions for a given

problem. For example, so-called IQP circuits and related

proposals [1]–[4] provide evidence that classically sampling

from the output distribution of certain shallow quantum

circuits may be intractable – a key feature first identified

by Terhal and DiVincenzo [5] and later strengthened by

Aaronson’s characterization of postBQP [6]. Some of these

works also provide experimental proposals for using a near-

term quantum computer to perform a computational task that

cannot be performed by any existing classical computer [7].

A rich debate concerning the feasibility of such proposals

has prompted improvements to the performance of classical

simulation algorithms for quantum computers [8]–[12].

While these results seek to separate efficient (i.e.,

polynomial-time) quantum computation from efficient clas-

sical computation, complementary unconditional results

have been obtained for a more narrow question. It has

been shown [13] that constant-depth quantum circuits pro-

vide a provable computational advantage over constant-

depth classical circuits, where both types of circuits are

assumed to have bounded fan-in gates. Ref. [13] introduced

a computational problem such that

(i) the problem can be solved with certainty by a constant-

depth quantum circuit composed of geometrically local

gates on a 2D grid of qubits, while

(ii) any classical probabilistic circuit which solves the

problem with success probability at least 7/8 must

have depth growing logarithmically with the input size.

This separation also holds in the average-case setting when
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the classical circuit only needs to solve a few instances

of the problem that are drawn randomly from a suitable

distribution [13, Supplementary Material]. Similar proofs of

quantum advantage with associated average-case hardness

results for classical circuits have been obtained more re-

cently in [14], [15], see also [16]. In this work we extend

these results in two distinct ways.
First, since the quantum algorithm described in Ref. [13]

is geometrically local in two dimensions, it is natural to ask

whether a provable quantum advantage can also be achieved

in a one-dimensional geometry. We answer this question in

the affirmative.
Following Ref. [13], below we consider relation problems.

Recall that a relation R is defined as a set of valid input-

output pairs (zin, zout), where zin and zout are bit strings of

appropriate length. We shall describe a relation by a function

R(zin, zout) that takes values 0 or 1. A classical or quantum

circuit is said to solve a relation problem R for some input

zin if it outputs a string zout such that R(zin, zout) = 1. A

relation problem has l input-output bits if |zin|+ |zout| = l.

Result 1 (Quantum advantage with 1D shallow circuits).
For each n there exists a relation problem R with roughly n
input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:
• The problem R can be solved with certainty for all

inputs by a constant-depth quantum circuit composed
of geometrically local gates on a 1D grid.

• Any classical probabilistic circuit composed of constant
fan-in gates that solves R with probability exceeding
0.9 for a uniformly random input from S must have
depth at least Ω(logn).

The formal statement and a proof of this result are given

in the full version [17]. As in previous work [13], [14], the

separation described in Result 1 is achieved by a quantum

algorithm with input/output statistics that are related to those

of a certain nonlocal game. Recall that in a nonlocal game,

cooperating players are each provided with an input and

must each produce an output without communicating with

the other players. Their aim is to satisfy a given winning

condition, or input/output relation. It is known that quantum

players who share entanglement can win certain nonlocal

games with higher probability than classical players who

share randomness. To prove the above result, we exhibit a

constant-depth one-dimensional quantum circuit and a set S
of inputs such that the input/output statistics of the circuit

given any input in S are directly related to a variant of

the well known magic-square game [18], [19]. We further

establish that for any classical circuit with low enough depth

there are a significant fraction of inputs in S for which the

circuit can be viewed as executing a classical strategy for

winning this nonlocal game. The result then follows as a

result of upper bounds on the winning probability of any

classical strategy. The constant-depth quantum circuit which

achieves this quantum advantage is a classically controlled

Clifford circuit with a particularly simple one-dimensional

structure, and may be suitable for a near-term experimental

demonstration.

Secondly, we ask if the separation between the power of

constant-depth classical and quantum circuits persists even

for noisy quantum circuits, i.e., quantum circuits where each

qubit/gate can be erroneous with a constant probability. In

this paper we compare the computational power of noisy

shallow quantum circuits with that of noise-free shallow

classical probabilistic circuits. The quantum circuits we

consider will be subject to local stochastic noise [20]. This

noise model assumes that a random Pauli error occurs at

each time step in the ideal circuit. The error may affect

multiple qubits, but the probability of high-weight errors

must be exponentially suppressed. This is quantified by a

noise rate p ∈ [0, 1] such that the probability of observing k
single-qubit errors at any given subset of k qubits must be

at most pk, see the full version [17] for formal definitions.

The (probabilistic) classical circuits we consider will be

composed of gates of bounded fan-in.

We note that standard fault-tolerance constructions which

emulate a noise-free universal quantum computation using

faulty gates and measurements do not directly apply in this

setting: these constructions typically lead to non-constant

depth circuits. As an example, a quantum error-correcting

code with extensive code distance does not have a constant-

depth encoding circuit [21]–[23]. Thus, standard quantum

error correction methods do not directly provide a generic

way to turn a separation such as that established in [13],

or the one described in Result 1, into a separation between

noisy constant-depth quantum and (noiseless) constant-depth

classical circuits. Nevertheless, in this paper we do provide

such a generic recipe. Applying the recipe to the separation

described in Result 1 we obtain the following.

Result 2 (Quantum advantage with noisy shallow circuits).
For each n there exists a relation problem R with roughly n
input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:
• The problem R can be solved with probability at least

0.99 for all inputs by a constant-depth quantum circuit
composed of geometrically local gates on a 3D grid,
subject to local stochastic noise. The noise rate must
be below a constant threshold value independent of n.

• Any classical probabilistic circuit composed of constant
fan-in gates that solves R with probability exceeding
0.9 for a uniformly random input from S must have
depth at least

Ω

(
log(n)

log(log(n))

)
.

Let us briefly describe the main idea which allows us to

convert a quantum advantage with ideal quantum circuits,
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such as in Result 1, into one with noisy quantum circuits.

The recipe is detailed in the full version [17]. It uses the facts

that (A) the quantum circuits which achieves the separation

are controlled Clifford circuits with a classical control (i.e.,

for any fixed input a Clifford unitary is applied), and (B)

Certain classical computations, such as the decoding needed

for quantum error correction, can be incorporated into the

definition of the relation problem rather than performed

explicitly in the quantum algorithm.

Consider a relation problem R such that a constant-depth

controlled-Clifford circuit produces a solution to a given

instance with certainty. We are interested in the setting where

R cannot be satisfied by any constant-depth classical circuit.

Such relations R are provided in Ref. [13] and Result 1.

For a fixed input the controlled-Clifford circuit implements

a constant-depth Clifford unitary C acting on n qubits

followed by measurement of all qubits in the computational

basis. Suppose that our goal is to perform a fault-tolerant

version of this computation. We imagine encoding each

logical qubit using m physical qubits of some CSS-type [24],

[25] stabilizer code Qm.

As noted above, since good codes do not admit constant-

depth encoding circuits, we are unable to initialize all logical

qubits in the state |0〉. However, we can hope to prepare a

version of this state which is corrupted by a known Pauli

operator (which may act nontrivially on all physical qubits).

To do this we can initialize all m physical qubits, along

with a suitable number manc of ancilla qubits, in the all-

zeros state, and then perform a Clifford circuit W which

measures all stabilizers of the code to obtain a syndrome s.

The resulting state is then

(I ⊗ |s〉〈s|)W |0m〉|0manc〉 ∝ Rec(s)|0〉|s〉. (1)

where the “recovery” Pauli operator Rec(s) is a function of

the syndrome s. We shall be interested in the case when the

code Qm is a low-density parity-check (LDPC) code, i.e.,

it has constant weight stabilizer generators such that each

qubit is acted upon nontrivially by at most a constant number

of them. The syndrome of such codes can be measured by

a constant depth Clifford circuit W . Using this procedure

we can prepare the desired logical state |0〉 modulo a Pauli

recovery operator Rec(s). The same method can be used to

prepare n copies of the state |0〉, modulo a Pauli recovery

Rec(s) acting on nm qubits. Let C be the logical version of

the Clifford circuit C. Applying this circuit to the prepared

logical all-zero state we obtain

CRec(s)|0〉⊗n = P (s)C|0〉⊗n (2)

where P (s) = CRec(s)C
†

is another Pauli operator which

is a simple function of s. Here we require that the logical

Clifford C is implementable by a constant-depth physical

circuit (for example, this holds for any CSS code with

transversal logical Hadamard and phase gates). In other

words, using such a code Qm we are able to implement

a logical encoded version of the constant-depth Clifford

circuit C, masked by a Pauli operator P (s) that depends

on the initial syndrome measurement s obtained in state

preparation. The computational basis measurement statistics

of the encoded state with the mask Eq. (2) are related

to those of the unencoded state with no mask C|0〉⊗n by

flipping the bits corresponding to the X-type part of P (s)
and then decoding the resulting bit string. Thus we can

simulate the desired encoded quantum computation using

a constant-depth quantum circuit along with some simple

classical postprocessing. If we chose to incorporate this

classical postprocessing into the quantum algorithm, it could

pose a problem as its depth may not be constant. Happily, it

turns out, we can instead modify the definition of the relation

problem R to account for the difference.

Now let us consider the noise-tolerance of this procedure.

Since the above quantum circuit has a constant depth and

uses logical encoded qubits and operations, it can be made

to work in the presence of noisy physical gates and mea-

surements, as long as they occur after the state preparation

step. Unfortunately, the state preparation step Eq. (1) is not

generally fault-tolerant and the whole algorithm can fail due

to errors in the measured syndrome s. For example, a single

faulty bit of s can potentially damage the recovery operator

Rec(s) at multiple qubits resulting in an uncorrectable error.

This can be addressed by using a code Qm that admits a

so-called single-shot state preparation procedure. The latter

is closely related to a single-shot error correction [26]. The

code Qm is said to admit a single-shot state preparation

for a single-qubit logical state φ if there exists a number

of ancillas manc (upper bounded by a polynomial function

of m) and a constant-depth Clifford circuit W acting on

m + manc qubits such that, for any local stochastic Pauli

error E with noise rate p, we have

(I ⊗ |s〉〈s|)EW |0m〉|0manc〉 ∝ FRec(s)|φ〉|s〉.
where F is also a local stochastic Pauli error with a possibly

larger noise rate p′ ≤ c1p
c2 for positive constants c1, c2. For

example, single-shot state basis state preparation allows us

to use a constant-depth circuit composed of noisy gates and

measurements to prepare a state FRec(s)|0〉|s〉, where F is a

random Pauli error that can be viewed as residual noise. We

can also consider single-shot preparation of k-qubit encoded

states, with k > 1, in which case m should be replaced by

mk above.

Putting together these ingredients we obtain a recipe

which starts with a relation R defined by the input-output

statistics of a constant-depth controlled-Clifford circuit, and

converts this “bare relation” into a “noise-tolerant” rela-

tion R that is based on the encoded circuit with single-

shot state preparation, and which incorporates the classical

postprocessing in its definition. We further show that the

input/output statistics of a constant-depth quantum circuit
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satisfyR, and we show that the depth required for a classical

circuit to satisfy R is comparable to that required to satisfy

the bare relation R.

A crucial requirement for the recipe outlined above is the

existence of a CSS stabilizer code Qm such that elementary

logical Clifford gates are implemented by constant-depth

Clifford circuits, and which admits a single-shot state prepa-

ration procedure. Here we show that the standard surface

code satisfies these desiderata. The first requirement follows

from previous work [27] which describes how to implement

logical single-qubit Hadamard and phase gates in the surface

code using constant-depth Clifford circuits. Together with

the transversal logical CNOT gate this provides a complete

set of Clifford generators which can each be implemented

in constant depth. A central technical contribution of our

work is to provide a single-shot state preparation procedure

for the surface code. Specifically, we show how to prepare

a logical Bell state encoded in two identical surface codes.

Result 3 (Single-shot logical Bell state preparation).
For each d ≥ 4, there is a single-shot state preparation
procedure for the encoded Bell state 2−1/2

(|00〉+ |11〉)
shared between two distance-d surface codes, each encoding
one logical qubit into m = d2 + (d − 1)2 physical qubits.
The procedure uses a depth-6 Clifford circuit W composed
of geometrically local gates on a 3D grid and computational
basis measurements.

The proof relies crucially on ideas introduced in Ref. [28].

The authors of Ref. [28] showed how to prepare a logical

Bell state encoded into a pair of surface codes starting

from a 3D grid of qubits initially prepared in a (noisy)

cluster state and measuring a suitable subset of qubits. Here

we extend the analysis of Ref. [28] and prove that the

same protocol yields a single-shot state preparation scheme

with a constant error threshold in the presence of local

stochastic noise. We leave as an open question whether

Result 3 in conjunction with Knill’s syndrome measurement

method [29], [30] provides a single-shot error correction

scheme based on the surface code.

The 3D constant-depth quantum circuit described in Re-

sult 2 is obtained by combining the 3D Bell state preparation

circuit of Result 3 with the 1D circuit of Result 1 encoded

by the surface code (we shall see that the first few gates

of this circuit simply prepare Bell states). We show that the

encoded 1D circuit can be made geometrically local on a 3D

grid using the lattice folding trick introduced in Ref. [27].

The folded encoded 1D circuit uses only nearest-neighbor

two-qubit gates on a 3D grid with O(1) qubits per site, as

detailed in the full version [17].
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