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Abstract—In 1994, Thomassen proved that every planar graph
is 5-list-colorable. In 1995, Thomassen proved that every planar
graph of girth at least five is 3-list-colorable. His proofs naturally
lead to quadratic-time algorithms to find such colorings. Here,
we provide the first linear-time algorithms to find such colorings.

For a fixed surface S, Thomassen showed in 1997 that there
exists a linear-time algorithm to decide if a graph embedded in
S is 5-colorable and similarly in 2003 if a graph of girth at least
five embedded in S is 3-colorable. Using the theory of hyperbolic
families, the author and Thomas showed such algorithms exist for
list-colorings. Around the same time, Dvorak and Kawarabayashi
also provided such algorithms. Moreover, they gave an algorithm
to find such colorings (if they exist). Here we provide the first
such algorithm which is fixed parameter tractable with genus
as the parameter; indeed, we provide a linear-time algorithm to
find such colorings.

In 1988, Goldberg, Plotkin and Shannon provided a determin-
istic distributed algorithm for 7-coloring n-vertex planar graphs
in O(log n) rounds. In 2018, Aboulker, Bonamy, Bousquet, and
Esperet provided a deterministic distributed algorithm for 6-
coloring n-vertex planar graphs in polylogarithmic rounds. Their
algorithm in fact works for 6-list-coloring. They also provided a
polylogarithmic algorithm for 4-list-coloring triangle-free planar
graphs. Chechik and Mukhtar independently obtained such
algorithms for ordinary coloring in O(log n) rounds, which is
best possible in terms of running time. Here we provide the
first polylogarithmic deterministic distributed algorithms for 5-
coloring n-vertex planar graphs and similarly for 3-coloring
planar graphs of girth at least five. Indeed, these algorithms
run in O(log n) rounds, work also for list-colorings, and even
work on a fixed surface (assuming such a coloring exists).

Index Terms—Graph Coloring; Distributed Algorithms; Pla-
nar Graphs; List Coloring

I. INTRODUCTION

List Coloring Planar Graphs. Graph coloring is a widely

studied area in graph theory. In particular, coloring planar

graphs - and more generally coloring graphs embedded in

surfaces - has received much attention. Recall that a k-coloring
of a graph G is an assignment of colors {1, . . . , k} such that

adjacent vertices do not receive the same color. In 1977, Appel

and Haken [1], [2] proved the Four Color Theorem that every

planar graph has a 4-coloring. In 1989, they [3] gave a quartic-

time algorithm to find such a coloring, which was improved

to a quadratic-time algorithm by Robertson, Sanders, Seymour

and Thomas [24] in 1996. In 1959, Grötzsch proved that every

triangle-free planar graph G has a 3-coloring. Thomassen’s

short proof [29] of Grötzsch’s theorem can easily be converted

to a quadratic-time algorithm to find such a coloring. This

was improved to O(v(G) log v(G)) by Kowalik [13] in 2004

and finally to a linear-time algorithm in 2009 by Dvořák,

Kawarabayashi and Thomas [9].

List-coloring is a generalization of coloring introduced by

Erdős, Rubin and Taylor [10] in 1979 and independently by

Vizing [30] in 1976. A list-assignment L of a graph G is

an assignment of lists of colors L(v) to each vertex of v
of G; we say L is a k-list-assignment if |L(v)| ≥ k for

every vertex v. An L-coloring φ is a coloring such that

φ(v) ∈ L(v) for each vertex v. We say a graph G is k-list-
colorable if G has an L-coloring for every k-list-assignment

L. In 1994, Thomassen [25] proved that every planar graph

is 5-list-colorable; this is best possible in that Voigt [31]

constructed a planar graph that is not 4-list-colorable. In 1995,

Thomassen [26] proved that every planar graph having girth at

least five is 3-list-colorable; this is best possible as Voigt [32]

constructed a triangle-free planar graph that is not 3-list-

colorable. Of course, every triangle-free planar graph is 4-

list-colorable as such graphs are 3-degenerate.

For the sake of convenience when stating theorems, we say

a list assignment L of a graph G is type 345 if L is a k-list-

assignment for some k ∈ {3, 4, 5} and G has girth at least

8 − k. Thomassen’s proofs naturally lead to quadratic-time

algorithms to find L-colorings for type 345 list-assignments.

It seems conceivable that a clever algorithmic implementation

of Thomassen’s proofs would yield linear-time algorithms;

however, no such algorithm has appeared in the literature to

date.

Our first main result (a special case of our more general

result about surfaces stated later) is to provide the first linear-

time algorithms to find such colorings.

Theorem I.1. There exists a linear-time algorithm to find
an L-coloring of a planar graph G if L is a type 345 list
assignment for G.

Coloring and List-Coloring Graphs on Surfaces. It is natu-

ral to wonder if the results mentioned above can be extended

to graphs embedded in a fixed surface. Of course, there do

exist graphs that are not 5-list-colorable. Since coloring is

a monotone property, it is natural to study minimally non-

colorable graphs. To that end, we say a graph G is critical for
k-coloring if G is not k-colorable but every proper subgraph of
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G is. Similarly we say a graph G is critical for k-list-coloring
if there exists a k-list-assignment L such that G does not have

an L-coloring but every proper subgraph of G does.

In a lengthy breakthrough work in 1997, Thomassen [27]

proved that for every surface Σ, there exist only finitely many

graphs embeddable in Σ that are critical for 5-coloring. As a

corollary, it follows that there exists a linear-time algorithm

for each surface Σ to decide if a graph embeddable in Σ
is 5-colorable. Similarly in 2003 in yet another deep work,

Thomassen [28] proved that for every surface Σ, there exist

only finitely many graphs of girth at least five embeddable in

Σ that are critical for 3-coloring. Hence there exists a linear-

time algorithm for each surface Σ to decide if a graph of girth

at least five embeddable in Σ is 3-colorable.

Thomassen [27] naturally asked if such results could be

generalized to list-coloring. For 5-list coloring, the author and

Thomas [23] proved the analogous result while the author [19]

proved the analogous result for 3-list-coloring graphs having

girth at least five. These proofs are rather lengthy and rely on

the theory of strongly hyperbolic families developed by the

author and Thomas in [23]. Moreover, we proved that such

critical graphs have at most O(g(Σ)) vertices, where g(Σ)
denotes the Euler genus of Σ (that is 2h + c where h is the

number of handles of Σ and c is the number of crosscaps).

These results imply linear-time algorithms to decide if graphs

embeddable in a fixed surface are 5-list-colorable or 3-list-

colorable if they have girth at least five. Indeed, our algorithms

can also decide if an L-coloring exists for a fixed type 345-

list-assignment L.

As for finding such an L-coloring (if it exists) given a fixed

type 345 list-assignment L, Dvořák and Kawarabayashi [8]

used some of the results on hyperbolic families combined

with some results about the treewidth of graphs on surfaces

to provide an O(v(G)O(g(Σ)+1))-time algorithm to find an L-

coloring of a graph embedded in Σ, provided such a coloring

exists. Dvořák and Kawarabayashi [8] asked whether the

dependence on g(Σ) in the exponent could be removed. This

would imply that finding a 5-list-coloring of a graph (if it

exists) and similarly finding a 3-list-coloring for a girth five

graph (if it exists) is fixed parameter tractable (FPT) where

the parameter is the genus. We answer this question in the

affirmative. Indeed, we generalize Theorem I.1 as follows.

Theorem I.2. For each surface Σ, there exists a linear-time
algorithm to find an L-coloring (if it exists) of a graph G
embeddable in Σ if L is a type 345 list assignment for G.

We note that there are many graphs on surfaces which do

have an L-coloring for every type 345 list assignment. In

particular, the author and Thomas [23] showed that graphs

with edge-width Ω(log g(Σ)) have this property.

Deterministic Distributed Algorithms for Coloring and
List-Coloring Planar Graphs. Another paradigm of studying

for coloring algorithms is distributed algorithms. Here we

study the synchronous message-passing model of distributed

computing, in particular the LOCAL model (where unlim-

ited size messages are allowed). However, we believe our

algorithm should also work in the CONGEST model (where

there are limits on message sizes) but do not pursue this

direction of study. Moreover, we restrict our attention to the

study of deterministic algorithms in the LOCAL model. In

these models, round complexity is the benchmark. Indeed,

efficiency is usually defined as having round complexity at

most polylogarithmic in the number of vertices. We refer the

reader to the survey book of Barenboim and Elkin [6] for more

details on distributed computing.

What then is known for deterministic distributed algorithm

for coloring planar graphs? In 1988, Goldberg, Plotkin and

Shannon [12] provided a deterministic distributed algorithm

for 7-coloring n-vertex planar graphs in O(log n) rounds. It

should be noted that Goldberg, Plotkin and Shannon gave

an O(log n log∗ n) round parallel algorithm for 5-coloring n-

vertex planar graphs. They falsely claimed that all of the

results in that paper carried over to the distributed setting

but this turns out not to be the case for 5-coloring planar

graphs. Rather their algorithm for 5-coloring planar graphs

would give O(n) round complexity in the distributed setting.

This inaccuracy seems to have been perpetuated (e.g. in [5])

until the authors in [4] noticed the flaw. Hence the question

of improving the distributed result for 5-coloring and even

6-coloring planar graphs had in fact been open.

In 2018, Aboulker, Bonamy, Bousquet, and Esperet [4]

provided a deterministic distributed algorithm for 6-coloring

n-vertex planar graphs in O(log3 n) rounds. Their algorithm

in fact works for 6-list-coloring. They also provided an

O(log3 n)-round algorithm for 4-list-coloring triangle-free pla-

nar graphs. Chechik and Mukhtar [7] independently obtained

such algorithms for ordinary coloring in O(log n) rounds,

which is best possible in terms of round complexity. Aboulker

et al. [4] asked whether such efficient algorithms exist for 5-

coloring planar graphs and 3-coloring planar graphs of girth

at least five.

Aboulker et al. [4] proved that no such efficient algorithms

exist for 4-coloring planar graphs and 3-coloring triangle-

free planar graphs. This is because such algorithms would

imply that graphs whose Ω(logn) neighborhoods are planar

are 4-colorable (and 3-colorable if triangle-free) and there exist

graphs which do not satisfy these properties. They thus also

noted that their conjectures for the remaining cases would then

imply that Ω(logn) locally planar graphs are 5-colorable and

3-colorable if girth at least five. That result is true but the

only known proof of it follows from the author and Thomas’

general result [23] about hyperbolic families.

Here we provide the first polylogarithmic deterministic

distributed algorithms for 5-coloring n-vertex planar graphs

and similarly for 3-coloring n-vertex planar graphs of girth

at least five. Indeed, these algorithms run in O(log n) rounds

and work even for list-colorings. In addition, they even work

on a fixed surface assuming a coloring exists.

Theorem I.3. For each surface Σ, there exists a deterministic
distributed algorithm that given a graph G embeddable in Σ
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and a type 345 list-assignment L for G, finds an L-coloring
of G (if it exists) in O(log v(G)) rounds.

II. PROOF OVERVIEW AND ALGORITHM

In this section, we first provide an overview of the proofs

of Theorems I.2 and I.3 at a high level. Then in the remaining

subsections of this section, we proceed to give the formal

definitions and statements of the major theorems used in their

proofs. We also state the algorithm used for both Theorem I.2

and Theorem I.3. Finally, we provide an outline of the rest of

the paper at the end of the section.

Proof Overview. We provide the same algorithm (Algo-

rithm 1, stated in Section II-C) for both Theorems I.2 and I.3.

The complexity analysis for the two theorems is of course

different but in both cases is rather straightforward (see

Section III for details). The proof of the correctness, however,

relies on the deep theorems proved by the author and Thomas

described in the introduction. Nevertheless, there are two key

new contributions in this work.

The first contribution is a structure theorem (Theorem II.3)

for planar graphs. Theorem II.3 roughly says that a planar

graph either has a 2-separation with a constant-size side, or has

a constant-size subgraph that is ‘deep’ (i.e. the ratio between

its vertices and its neighbors is large). More than that, the

theorem guarantees linearly many pairwise non-touching such

subgraphs. We note that Theorem II.3 is not about coloring

and hence may be of independent interest for developing

efficient algorithms. Indeed, this structure theorem is essential

for establishing the running time in both algorithms.

The second contribution is to combine this structure theorem

with the deep coloring theorems proved elsewhere to prove a

startling new coloring theorem (Theorem II.7). Theorem II.7

roughly says that for every planar graph G, there exists a

constant-size, constant-degree subgraph that is ‘deletable’ for

type 345 list assignments (i.e. every coloring of the remaining

graph extends to a coloring of the subgraph no matter the list

assignment). More than that, the theorem guarantee linearly

many pairwise non-touching such subgraphs. We note that

our notion of deletable (see Definition II.5) is quite strong,

essentially the strongest such notion one could define.

The algorithm then consists in finding and deleting such

deletable subgraphs, then recursively finding a coloring of

the smaller graph and finally extending that coloring to the

deleted subgraphs. Since these subgraphs are constant-size

and constant-degree these searches, deletions and extensions

can be performed very efficiently. Since there are linearly

many such subgraphs, the smaller graph will be proportionally

smaller (i.e. (1 − ε)v(G) for some fixed ε). Combined these

two facts lead to a linear-time algorithm (or a O(log n)-round

algorithm in the distributed case).

We note that in the distributed case some care is needed

when extending the colorings to guarantee O(log n)-round

complexity as opposed to O(log n log∗ n)-round complex-

ity. Namely that while the algorithm recurses, the deleted

vertices must compute a constant coloring of an auxiliary

graph on the deletable subgraphs needed for extending the

coloring efficiently. Such a coloring can be computed in

Õ(
√
Δ(G)) + O(log∗ n)-round (where Δ(G) denotes the

maximum degree of G) using the algorithm of Fragniaud,

Heinrich and Kosowski [11]. Since Δ(G) will be a constant

in our application, this will run in O(log∗ n) time. To avoid

O(log n log∗ n)-round complexity, though, it is crucial that this

coloring be computed while the algorithm recurses so that

the overall complexity is O(log n) + O(log∗ n) = O(log n)-
rounds.

In the remainder of this section, we present the formal

versions of Theorems II.3 and II.7 and then state Algorithm 1.

In the remaining sections of the paper, we then present the

proof of the theorems and algorithm complexity.

A. A Structure Theorem for Planar Graphs

Here we state our structure theorem for planar graphs but

first some definitions.

Definition II.1. Let G be a graph, H be an induced sub-

graph of G and C, k > 0. The boundary of H in G is

{v ∈ V (H) : N(v) \V (H) �= ∅}. The coboundary of H in G
is

⋃
v∈H N(v)\V (H) (i.e. the boundary of G[V (G)\V (H)]).

We say H is

• a purse if H is connected, the size of the coboundary of

H (call it S) is at most two, and G[S ∪ V (H)] + {uv :
u �= v ∈ S} is planar,

• a C-pocket if H is connected, v(H) ≤ C and dG(v) ≤ C
for every v ∈ V (H),

• a C-purse if H is a purse and a C-pocket,

• k-deep if the coboundary of H is non-empty and has size

at most 1
kv(H).

We say two subgraphs H1, H2 of G are non-touching if

V (H1) ∩ V (H2) = ∅ and there does not exist a1 ∈
V (H1), a2 ∈ V (H2) such that a1a2 ∈ E(G).

As described in the proof overview, we will prove a structure

theorem that every planar graph has a C-purse or a k-deep C-

pocket. More than that, we will prove it has linearly many

pairwise non-touching such subgraphs. Hence the following

definition.

Definition II.2. Let G be a graph and C > 0. A C-wallet of

G is a set H such that all of the following hold:

• every H ∈ H is a C-pocket, and

• every pair H1 �= H2 ∈ H are non-touching, and

• |{H ∈ H}| ≥ 1
2C v(G).

Let k > 0. We say a C-wallet H is k-deep if for every H ∈ H,

H is a purse or k-deep.

We are now prepared to state our structure theorem.

Theorem II.3. For every k ≥ 1, there exists C > 0 such that
the following holds: if G is a planar graph, then there exists
a k-deep C-wallet H of G.

We can extend Theorem II.3 more generally to surfaces

under the assumption the graph is large as follows.
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Theorem II.4. For every k ≥ 1 and surface Σ, there exists
C > 0 such that the following holds: if G is a graph
embeddable in Σ with v(G) ≥ Cg(Σ), then there exists a
k-deep C-wallet H of G.

B. A Coloring Theorem

Here we state our new coloring theorem but first we define

our notion of deletable as follows.

Definition II.5. We say an induced subgraph H of a graph

G is r-deletable in G if for for every list-assignment L of H
such that |L(v)| ≥ r − (dG(v)− dH(v)) for each v ∈ V (H),
H has an L-coloring.

Definition II.6. We say a C-wallet H of a graph G is r-

deletable if every H ∈ H is r-deletable in G.

We will prove that in graphs embedded on surfaces having

girth at least g ∈ {3, 4, 5}, purses and k-deep pockets (for

some large enough k) contain (8 − g)-deletable subgraphs

(Lemmas V.1 and V.2 respectively). Combined with Theo-

rem II.4, we obtain the following result which we now state

as our main coloring theorem as follows.

Theorem II.7. For each surface Σ, there exists C > 0 such
that the following holds: If G is a graph embeddable in Σ
having girth at least g ∈ {3, 4, 5} and v(G) ≥ Cg(Σ), then
there exists an (8− g)-deletable C-wallet of G.

Theorem II.7 is quite surprising. It implies that a minimum

counterexample to the strong hyperbolicity of 5-list-coloring

or 3-list-coloring graphs of girth five (e.g. for Theorem V.15)

has constant size and hence that theorem can be proved by

brute-force methods. It also implies that minimum counterex-

amples to Thomassen’s theorems that planar graphs are 5-list-

colorable and that planar graphs of girth at least five are 3-

list-colorable have constant size and hence that those theorems

can also be proved by brute-force methods (instead of clever

inductive arguments).

C. A Coloring Algorithm

Before stating our algorithm, we need one definition as

follows.

Definition II.8. If H is a graph and k ≥ 1 is an integer, then

Hk denotes the graph with V (Hk) = V (H) and E(Hk) =
{u �= v ∈ V (H) : u is at distance at most k from v}.

We are now ready to state our algorithm for both Theorem I.2

and I.3:

Let Σ be a fixed surface, let C0 be as in Theorem II.7 for Σ
and let C = max{C0, 2}.
Algorithm 1: Finding an L-coloring of a graph
G embedded in Σ for a type 345 list-assignment
L

1: if v(G) ≤ Cg(Σ) then find and return an L-coloring of

G by exhaustive search

2: for each vertex v of G of degree at most C:

Find (if one exists) an (8 − g)-deletable C-pocket Hv

containing v

Let H =
⋃

vHv

3: recurse on G0 = G− V (H) to find an L-coloring ψ0 of

G0

4: While recursing, also find (simultaneously for LOCAL) a

C2C-coloring φ of H2C

5: for each i ∈ {1, . . . , C2C}:
(i) Let Hi = (

⋃
vHv : φ(v) = i)

(ii) Restrict the coloring ψi−1 to V (Gi−1) \ V (Hi)
(iii) Extend the restriction to a coloring ψi of Gi =

G[V (Gi−1) ∪ V (Hi)]

6: return ψC2C

D. Outline of Paper

In Section III, we prove Theorem I.2 and Theorem I.3,

namely, by proving the correctness and runtime complexity

of Algorithm 1. In Section IV, we prove Theorem II.4 and

hence also its special case Theorem II.3. Finally in Section V,

we prove Theorem II.7.

III. ALGORITHM ANALYSIS

In this section, we prove the correctness, termination and

runtime complexity of Algorithm 1. First, we need the follow-

ing lemma to lower bound the size of H in Step 2. Crucially,

we need Theorem II.7 to do this.

Lemma III.1. Let Σ be a surface and let C be as in
Theorem II.7 for Σ. Let G be a graph embeddable in Σ having
girth at lest g ∈ {3, 4, 5} such that v(G) ≥ Cg(Σ). If S is
the set of all vertices in G that are contained in an (8 − g)-
deletable C-pocket, then |S| ≥ v(G)

2C .

Proof. Since v(G) ≥ Cg(Σ), we have by Theorem II.7 that

there exists an (8−g)-deletable C-walletH of G. By definition

then |{H ∈ H}| ≥ 1
2C v(G). Hence

∑
H∈H v(H) ≥ 1

2C v(G).
Yet

⋃
H∈H V (H) ⊆ S. Since the subgraphs in H are pairwise

vertex-disjoint, it follows that |S| ≥ 1
2C v(G).

Lemma III.1 implies an upper bound on G0 in Step 2 as

follows.

Corollary III.2. If G is as in Algorithm 1 and G0 is defined
as in Step 2, then v(G0) ≤

(
1− 1

2C

)
v(G).
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Proof. Since V (H) is precisely the set of vertices contained

in an (8 − g)-deletable C-pocket, we find by Lemma III.1

that v(H) ≥ 1
2C v(G). Hence v(G0) ≤ v(G) − v(H) ≤(

1− 1
2C

)
v(G) as desired.

We are now ready to prove the termination and correctness

of Algorithm 1.

Lemma III.3. Algorithm 1 terminates and returns an L-
coloring of G.

Proof. We prove this by induction on v(G). If v(G) ≤ Cg(Σ)
as tested in Step 1, then the algorithm returns a coloring by

exhaustive search. That search runs in constant time. Note

that for planar graph an L-coloring always exists since L is

a type 345 list-assignment (this follows from the results of

Thomassen mentioned in the introduction; see Lemma V.1 for

more details). As for graphs embedded in surfaces other than

the plane, we assumed that G has an L-coloring and hence so

does every subgraph of G.

So we may assume v(G) ≥ Cg(Σ). Step 2 is simply

definitional for the purposes of terminations and correctness.

By Corollary III.2, v(G0) ≤
(
1− 1

2C

)
v(G) < v(G). Hence

by induction, Step 3 returns an L-coloring ψ0 of G0.

As for Step 4, we note that Δ(H) ≤ C since every vertex

in H has degree at most C in G. Since C ≥ 2, it follows that

Δ(H2C) < C2C . Thus H2C has a C2C-coloring using the

greedy bound of Δ(H2C) + 1.

As for Step 5, we now prove by induction that for each

i ∈ {1, . . . , C2C} there exists an L-coloring ψi of Gi as in

Step 5(iii) whose restriction to V (Gi−1) \ V (Hi) agrees with

ψi−1. Let u �= v ∈ V (H) such that φ(u) = φ(v) = i. Since

v(Hu), v(Hv) ≤ C and the distance between u and v in G is

at least 2C +1 as φ(u) = φ(v), we have that Hu and Hv are

non-touching. Thus the set of subgraphsH = {Hv : φ(v) = i}
are pairwise non-touching.

Now we define a list assignment Li of Hi as follows.

For each v ∈ V (Hi), let Li(v) = L(v) \ {ψi−1(u) : u ∈
N(v)∩(V (Gi−1)\V (Hi))}. Now |Li(v)| ≥ |L(v)|−(dG(v)−
dHi

(v)) = 8− g− (dG(v)− dHi
(v)). Let Hv ∈ H. Since Hv

is (8 − g)-deletable in G, it follows by definition that there

exists an Li-coloring ψv of Hv . Now we define ψi as follows:

let ψi(w) = ψi−1(w) if w ∈ V (Gi−1) \V (Hi) and otherwise

let ψi(w) = ψv(w) where w ∈ Hv . By the definition of Li

and since the Hv are pairwise non-touching, it follows that ψi

is an L-coloring of Gi as desired.

Hence in Step 6, Algorithm 1 returns ψC2C which is an

L-coloring of GC2C = G as desired.

Next we prove that Algorithm 1 runs in linear-time in the

centralized setting as follows.

Lemma III.4. Algorithm 1 runs in O(v(G))-time.

Proof. We proceed by induction on n = V (G). We prove

the runtime is an for some constant a as follows. Specifically

a = 2CB where B is as defined below.

We note that Step 1 runs in constant time. As for Step 2,

we note that deciding if a given constant-size subgraph is r-

deletable can be done in constant time (since it is necessary

to only a check a finite number of list assignments). Thus for

each vertex v, deciding if an Hv exists and finding one if

it does can be done in constant time (since there are only a

constant number of candidates as they have constant-size, have

constant-degree in G, are connected and contain v). Hence

Step 2 runs in O(n) time (admittedly for some very large

constant).

Finding G0 for use in Step 3 can also be done in linear

time (since planar graphs have at most 3n edges). Similarly

for Step 4, finding H and H2C can be done in linear time

(since H has maximum degree at most C).

Step 4 then runs in C2Cn time since Δ(H2C) < C2C and a

(Δ(H)+1)-coloring of H can be found in (Δ(H)+1)n time

by greedy coloring. As for Step 5, for each i ∈ {1, . . . , C2C},
steps 5(ii) and 5(iii) can be done in linear time. Hence step 5

runs in linear-time.

Altogether each run of the algorithm (not counting recur-

sion) is linear-time, specifically at most Bn for some univer-

sal constant B (depending only on C). By Corollary III.2,

v(G0) ≤
(
1− 1

2C

)
n. Let r = 1 − 1

2C . By induction, Step 3

takes a|V (G0)| = a(rn) time. Hence the total runtime of the

algorithm is at most Bn+arn = (B+ar)n which is at most

an as desired if B + ar ≤ a, that is, a ≥ B
1−r .

Next we prove the runtime of Algorithm 1 in the determin-

istic distributed setting.

Lemma III.5. Algorithm 1 runs in O(log v(G))-rounds in the
deterministic distributed setting.

Proof. We proceed by induction on n = V (G).

Step 1 runs in Cg(Σ) rounds (i.e. a constant number). Step

2 runs in C rounds (i.e. a constant number). For Step 4, we use

the deterministic distributed algorithm of Fragniaud, Heinrich

and Kosowski [11] to find a (Δ(H2C)+1)-coloring of H2C in

Õ(
√
Δ)+O(log∗ n) rounds. Since Δ(H) < C2C , this yields

a C2C-colorng φ of H2C as desired. The number of rounds

required for Step 3 is thus Õ(CC) +O(log∗ n) = O(log∗ n).
As for Step 5, for each i ∈ {1, . . . , C2C}, steps 5(i)-(iii) run in

C rounds. Hence Step 5 runs in C2C+1 rounds (i.e. a constant

number).

By Corollary III.2, v(G0) ≤
(
1− 1

2C

)
n. Thus the re-

cursive step (Step 3) takes by induction O(log(v(G0)) =
O(

(
1− 1

2C

)
n) rounds. Since Step 4 is performed separately

while the recursion runs, the total runtime is O(log∗ n) +
O(log n) = O(log n) rounds.

Finally, we have that Theorem I.2 and I.3 follow immedi-

ately from the above lemmas.

Proof of Theorem I.2. Follows from Lemmas III.3 and III.4.

Proof of Theorem I.3. Follows from Lemmas III.3 and III.5.
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IV. SURFACE STRUCTURE THEOREM

Theorems II.3 and its generalization Theorem II.4 are

mostly straightforward consequences of the following theorem

of Lipton and Tarjan [14] about the separator hierarchy.

Lemma IV.1. For every proper minor-closed family F and
every ε > 0, there exists a constant C such that the following
holds: If G is a graph in F , then there exists X ⊆ V (G) with
|X| ≤ εv(G) such that every component of G − X has size
at most C.

The proof of the result is essentially iteratively finding

sublinear separators and taking X to be their union, wherein

we terminate the procedure right before X becomes too large,

whence the size of components in G − X will be a small

constant depending on ε.
We recall that for every proper minor-closed family F ,

there exists cF such that for every graph G ∈ F , we have

that e(G) ≤ cFv(G). That is, graphs in proper minor-closed

families have a linear number of edges. Such a result was

first shown by Mader [15], [16]. Using this, we obtain the

following proposition.

Proposition IV.2. For every proper minor-closed family F and
every ε > 0, there exists a constant C such that the following
holds: If G is a graph in F , then there exists X ⊆ V (G) with
|X| ≤ εv(G) such that every v ∈ V (G) \ X has degree at
most C in G.

Proof. Let C = 2cF
ε . Let X = {v ∈ V (G) : d(v) > C}. Note

that 2e(G) =
∑

v∈V (G) d(v) > |X|C. Yet e(G) ≤ cFv(G)
for some constant cF as noted above. Hence |X| ≤ 2e(G)

C ≤
2
C (cFv(G)) = εv(G) as desired.

Combining Lemma IV.1 with Proposition IV.2 yields the

following corollary.

Corollary IV.3. For every proper minor-closed family F and
every ε > 0, there exists a constant C such that the following
holds: If G is a graph in F , then there exists X ⊆ V (G)
with |X| ≤ εv(G) such that every component of G−X is a
C-pocket of G.

Proof. Let C1 be as in Lemma IV.1 for F and ε
2 . By

Theorem IV.1, there exists X1 ⊆ V (G) with |X1| ≤ ε
2v(G)

such that every component of G−X1 has size at most C1.

Let C2 be as in Proposition IV.2 for F and ε
2 . By Proposi-

tion IV.2, there exists X2 ⊆ V (G) with |X2| ≤ ε
2v(G) such

that every v ∈ V (G) \X2 has degree at most C2.

Let C = max{C1, C2}. Let X = X1 ∪ X2. Now |X| ≤
|X1|+ |X2| ≤ εv(G). Moreover, every component of G−X
is a subgraph of a component of G−X1 and hence has size at

most C1 ≤ C. On the other hand, every vertex in V (G)\V (X)
is a vertex in V (G) \ V (X2) and hence has degree at most

C2 ≤ C in G. Thus every component of G−X is a C-pocket

of G and hence X is as desired.

Next we prove a crucial lemma which shows how common

purses are. To that end, recall the following definitions.

Definition IV.4. A vertex (resp. edge) amalgamation of two

graphs G1 and G2 is a graph obtained by identifying a vertex

(resp. edge) in G1 with a vertex in G2.

Thus a vertex amalgamation is simply a 1-sum, while an

edge amalgamation is a 2-sum where the edge is retained.

Definition IV.5. The (Euler) genus of graph G is the minimum

k such that G embeds in a surface of Euler genus k.

We need the following result of Miller [17].

Theorem IV.6 (Miller [17]). Euler genus is additive under
vertex and edge amalgamations.

For ease of reading in the proof, we adopt the following

notation: if H is a set of subgraphs of a graph G, we let

V (H) = ⋃
H∈H V (H), let v(H) = |V (H)| and finally let |H|

denote the number of subgraphs in H.

Lemma IV.7. If G is a connected graph embeddable in a
surface Σ and X ⊆ V (G), then there are most 12k|X| +
16kg(Σ) vertices in G−X that are in components of G−X
that are neither purses of G nor k-deep in G.

Proof. Let H0 = {H : H is a component of G − X : H is

neither a purse nor k-deep}. Consider the following partition

of H0:

• H1 = {H ∈ H0 : the coboundary of H has size one},
• H2 = {H ∈ H0 : the coboundary of H has size two},
• H3 = {H ∈ H0 : the coboundary of H has size at least

three}.
We further partition H2 as follows:

• H2,1 = {H ∈ H2 : there does not exist H ′ �= H ∈ H2

with the same coboundary as H},
• H2,2 = H2 \ H2,1.

Claim IV.8.

v(H1) + v(H2,2) ≤ 4kg(Σ).

Proof. Let P be the set of unordered pairs x �= y ∈ V (G)
such that there exists H ∈ H2,2 with coboundary {x, y}. For

each {x, y} ∈ P , choose one Hxy ∈ H2 such that Hxy has

coboundary {x, y}.
Let G1 = G[X ∪ V (H1) ∪ V (H2,2)]. Note that G1 is a

subgraph of G. Let G′1 be obtained from G1 by for each

{x, y} ∈ P , deleting Hxy and adding the edge xy to G. Note

that G′1 is a minor of G1 and hence is a minor of G. Thus G′1
has Euler genus at most g(Σ).

Let H = G[X] +
⋃
{x,y}∈P xy. Now G′1 is the vertex/edge

amalgamations of H and |H1|+|H2,2|−|P | non-planar graphs.

Since G′1 has Euler genus at most g(Σ) and non-planar graphs

have Euler genus at least one, it follows from Theorem IV.6

that

|H1|+ |H2,2| − |P | ≤ g(Σ).

Note that 2|P | ≤ |H2,2| and hence 2|H1|+ |H2,2| ≤ 2g(Σ).
Let H1 ∈ H1. Note that H1 has a coboundary of size one.

Yet H1 is not k-deep. Hence |H1| ≤ k. Thus v(H1) ≤ k|H1|.
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Similarly, we find that v(H2,2) ≤ 2k|H2,2| and the claim

follows.

Claim IV.9.

v(H2,1) ≤ 6k(|X|+ g(Σ)).

Proof. Let P ′ be the set of unordered pairs x �= y ∈ V (G)
such that there exists H ∈ H2,1 with coboundary {x, y}. Let

G2 = X +
⋃
{x,y}∈P ′ xy. Note that G2 is a minor of G

and hence has Euler genus at most g(Σ). By Euler’s formula,

e(G2) ≤ 3(|X|+ g(Σ)). Hence,

|H2,1| = e(G2) ≤ 3(|X|+ g(Σ)).

Since every element of H2,1 has a coboundary of size two

and is not k-deep, we have that v(H2,1) ≤ 2k|H2,1| and the

claim follows.

Claim IV.10.

v(H3) ≤ 6k(|X|+ g(Σ)).

Proof. Let G3 be obtained from G[X∪V (H3)] by contracting

each H ∈ H3 to a new vertex vH and deleting loops and

parallel edges. Now G3 is a minor of G and hence has Euler

genus at most g(Σ). Note that G3 is bipartite. By Euler’s

formula, e(G3) ≤ 2(v(G3) + g(Σ)). Yet every vertex in

V (G3) \X has degree at least three. Hence e(G3) ≥ 3|H3|.
Since v(G3) = |X|+ |H3|, we find that

|H3| ≤ 2(|X|+ g(Σ)),

and hence

e(G3) ≤ 6(|X|+ g(Σ)).

Let H ∈ H3. Note that vH has degree in G3 equal to the size

of the coboundary of H in G. Moreover, since H is not k-deep,

it follows that v(H) ≤ k · degG3
(vH). Since G3 is bipartite,

it follows that e(G3) =
∑

H∈H3
degG3

(vH) and hence

v(H3) ≤ k · e(G3) ≤ 6k(|X|+ g(Σ)),

as claimed.

Combining Claims IV.8, IV.9 and IV.10, we find that

v(H0) ≤ 12k|X|+ 16kg(Σ),

as desired.

We are now ready to prove Theorem II.4 of which Theo-

rem II.3 is a special case.

Proof of Theorem II.4. Let F be the family of graphs em-

beddable in Σ. Recall that F is a minor-closed family. Let

C0 be as C in Corollary IV.3 for F with ε = 1
58k . Since

k ≥ 1, it follows that ε < 1 and hence C0 ≥ 1. Let

C = 58kC0. Since v(G) ≥ Cg(Σ) by assumption, we have

that g(Σ) ≤ 1
58kC0

v(G) which is at most 1
58kv(G) since

C0 ≥ 1.

By Corollary IV.3, there exists X ⊆ V (G) with |X| ≤
εv(G) such that every component of G −X is a C0-pocket.

Let H1 = {H : H is a component of G−X , H is neither a

purse nor k-deep}. By Lemma IV.7, we have that

v(H1) ≤ 12k|X|+ 16kg(Σ).

Let H = {H is a component of G−X : H /∈ H1}. Now

v(H) ≥ v(G)−|X|−v(H1) ≥ v(G)−(12k+1)|X|−16kg(Σ).
Since k ≥ 1, we have that 12k + 1 ≤ 13k. Since |X| ≤
εv(G) = 1

58kv(G) and g(Σ) ≤ 1
58kv(G), we find that

v(H) ≥ v(G)− (13k + 16k) · v(G)
58k

≥ 1

2
v(G).

Since every H ∈ H2 has at most C vertices, it follows that

|H| ≥ 1

2C
v(G),

and hence H is a k-deep C-wallet as desired.

V. LINEAR SIZE FOR NO DELETABLE SUBGRAPHS

We prove Theorem II.7 via Theorem II.4. Namely Theo-

rem II.4 guarantees us a k-deep C-wallet, that is a set of

linearly many pairwise non-touching subgraphs, each of which

is either a C-purse or a k-deep C-pocket. Thus to prove

Theorem II.7, it suffices to prove the following two lemmas.

Lemma V.1. Let g ∈ {3, 4, 5}. If D is a purse of a graph G
having girth at least g, then D is (8− g)-deletable in G.

Lemma V.2. For each surface Σ, there exists k > 0 such that
the following holds: Let g ∈ {3, 4, 5} and let G be a graph
embeddable in Σ having girth at least g. If D is an induced
k-deep subgraph of G, then there exists X ⊆ V (D) such that
G[X] is (8− g)-deletable in G.

In Section 5.1, we establish Lemma V.1 using the standard

results of Thomassen on list-coloring planar graphs.

On the other hand, the proof of Lemma V.2 will require

the use of the theory of hyperbolic families as well as the

deep results of the author and Thomas [23] on the strong

hyperbolicity of graphs that are critical for 5-list-coloring, and

of the author [19] on the strong hyperbolicity of graphs of

girth five that critical for 3-list-coloring. We use these and

other results to show that embedded graphs having girth at

least g without (8 − g)-deletable subgraphs form a strongly
hyperbolic family (see Definition V.7 below). The Strongly

Hyperbolic Structure Theorem (Theorem 7.2 in [23]) will then

imply that for every surface there exists a k such that every

k-deep subgraph of a graph embedded in that surface contains

an (8 − g)-deletable subgraph, thereby completing the proof

of Theorem II.7.

We are now ready to prove Theorem II.7 assuming Lem-

mas V.1 and V.2.
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Proof of Theorem II.7. Fix a surface Σ. Let k be as in

Lemma V.2 for Σ. Let C be as in Theorem II.4 for Σ and

k. Thus by Theorem II.4, there exists a k-deep C-wallet H of

G. Recall that a C-wallet is a set of at least 1
2C v(G) pairwise

non-touching C-pockets. Recall that a C-wallet is k-deep if

for every D ∈ H, either D is a purse or k-deep.

For each D ∈ H such that D is a purse, we have by

Lemma V.1 that D is (8−g)-deletable in G. For each D ∈ H
such that D is k-deep, we have by Lemma V.2 that there exists

XD ⊆ V (D) such that G[XD] is (8− g)-deleletable.

Let H′ = {D ∈ H : D is a purse} ∪ {XD : D ∈ H is

k-deep}. Thus H′ is a set of at least 1
2C v(G) pairwise non-

touching subgraphs of G, each of which is (8− g)-deletable,

as desired.

Outline of Section. In Section V-A, we prove Lemma V.1. In

Section V-B, we recall the many definitions and theorems of

hyperbolic families that we need for the proof of Lemma V.2.

In Section V-C, we define the crucial object of study: a certain

family of embedded graphs with no deletable subgraphs and

then provide a proof of Lemma V.2 assuming that family

is strongly hyperbolic. In Section V-D, we collect the other

previous results about hyperbolic families that we need for

the proof. In Section V-E, we prove that our crucial family

is hyperbolic (see Definition V.6; this is a weaker notion than

strongly hyperbolic). Finally in Section V-F, we then use the

result of Section V-E to prove that the crucial family is in fact

strongly hyperbolic.

A. Deletability for Purses

In order to prove Theorem II.7 via Theorem II.4, we will

need to prove that every C-purse contains an (8−g)-deletable

subgraph. In fact, we will prove the stronger theorem that

every C-purse is itself (8− g)-deletable. This mostly follows

from theorems of Thomassen as we will show. First we prove

for planar graphs that every L-coloring of a short precolored

path extends to an L-coloring of the whole graph using results

of Thomassen as follows.

Theorem V.3. Let G be a planar graph having girth at least
g ∈ {3, 4, 5} and let L be a type 345 list-assignment for G. If
P is a path in G such that v(P ) ≤ g−1, then every L-coloring
of P extends to an L-coloring of G.

Proof. For g = 3, this follows from Thomassen’s stronger

inductive theorem about 5-list-coloring planar graphs (specifi-

cally the main Theorem in [25]). For g = 5, this follows from

Thomassen’s stronger inductive theorem about 3-list-coloring

planar graphs of girth at least five (specifically Theorem 2.1

in [29], the main result of that paper).

For g = 4, this is rather straightforward as follows. We

proceed by induction on v(G). We may assume v(G) ≥ 3
and that V (P ) �= V (G) as otherwise the result is trivial. We

may assume by induction that G is connected.

We claim there exists a vertex v ∈ V (G) \ V (P ) of degree

at most 3. Suppose not. By Euler’s formula since v(G) ≥ 3
and G is triangle-free, we have that e(G) ≤ 2v(G) − 4.

Thus,
∑

v∈V (G) d(v) ≤ 4v(G) − 8. Yet
∑

v∈V (P ) d(v) ≥
4(v(G)−v(P )). Combining the previous inequalities, we find

that
∑

v∈V (P ) dG(v) ≤ 4v(P ) − 8. But
∑

v∈V (P ) dG(v) ≥∑
v∈V (P ) dP (v) = 2v(P ) − 2 since P is a path. It follows

that v(P ) = 3 and P is a component of G, contradicting that

G is connected. This proves the claim.

By induction, φ extends to an L-coloring of G−v and hence

to an L-coloring of G as desired.

We now use Theorem V.3 to prove Lemma V.1 as follows.

Proof of Lemma V.1. Suppose not. That is, there exists a list-

assignment L0 such that |L0(v)| ≥ 8− g − (dG(v)− dD(v))
for each v ∈ V (D) and D is not L0-colorable.

Let S be the coboundary of D in G. First suppose S = ∅.
Then L0 is an (8− g)-list-assignment of D. By Theorem V.3

with P = ∅, there exists an L0-coloring of D, a contradiction.

Next suppose |S| = 1. Let S = {x}. Let G′ = G[V (D) ∪
{x}]. Let c be a new color (that is c /∈ ⋃

v∈V (D) L0(v)). Define

a new list assignment L of G′ as follows. Let L(x) = {c}∪R
where R is a set of 7−g arbitrary colors. For each v ∈ V (D),
let L(v) = L0(v) ∪ {c}.

Now L is an (8− g)-list-assignment of G′. It follows from

Theorem V.3 with P = x that there exists an L-coloring φ of

G′ such that φ(x) = c. But then φ induces an L0-coloring of

D, a contradiction.

Finally suppose |S| = 2. Let S = {x, y}. Let G′ =
G[V (D) ∪ {x, y}]. Let G′′ be obtained from G′ as fol-

lows: delete the edge xy if it exists and add a path P =
xv1 . . . vg−3y with new vertices v1, . . . vg−3. Now G′′ has

girth at least g. Since D is a purse, it follows that G′′ is

planar.

Let φ be a coloring of P with entirely new colors

(i.e. φ(u) /∈ ⋃
v∈V (H) L0(v) for every u ∈ V (P )) such

that φ(x) �= φ(y). Define a new list assignment L of G′ as

follows. For each u ∈ V (P ), let L(u) = {φ(u)} ∪ R where

R is a set of 7 − g arbitrary colors. For each v ∈ V (D), let

L(v) = L0(v) ∪ {φ(u) : u ∈ N(v) ∩ V (P )}. Now L is an

(8 − g)-list-assignment of G′′. It follows from Theorem V.3

that φ extends to an L-coloring of G′′. But then this induces

an L0-coloring of D, a contradiction.

B. Theory of Hyperbolic Families

We will need to recall a number of definitions from [23].

First we recall the definition of a graph with rings and how

they embed in a surface.

Definition V.4 (Graph with Rings - Definition 3.1 in [23]). A

ring is a cycle or a complete graph on one or two vertices. A

graph with rings is a pair (G,R), where G is a graph and R
is a set of vertex-disjoint rings in G.

Definition V.5 (Embedding Graphs with Rings - Definition 3.2

in [23]). We say that a graph G with rings R is embedded in a
surface Σ if the underlying graph G is embedded in Σ in such

a way that for every ring R ∈ R there exists a component Γ
of the boundary of Σ such that R is embedded in Γ, no other
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vertex or edge of G is embedded in Γ, and every component

of the boundary of Σ includes some ring of G.

Now let us state the formal definition of a hyperbolic family.

Informally the definition says that for every graph in the family

the number of vertices inside a disk is at most linear in the

number of vertices on the boundary of that disk.

Definition V.6 (Hyperbolic Family - Definition 5.1 in [23]).
Let F be a family of non-null embedded graphs with rings.

We say that F is hyperbolic if there exists a constant c > 0
such that if G ∈ F is a graph with rings that is embedded

in a surface Σ, then for every closed curve γ : S1 → Σ that

bounds an open disk Δ and intersects G only in vertices, if

Δ includes a vertex of G, then the number of vertices of G in

Δ is at most c(|{x ∈ S1 : γ(x) ∈ V (G)}| − 1). We say that

c is a Cheeger constant of F .

Finally let us also state the definition of a strongly hyper-

bolic family. Informally the definition extends the linearity

property of hyperbolic families from disks to also include

annuli (a.k.a. cylinders).

Definition V.7 (Strongly Hyperbolic Family - Definition 7.1

in [23]). Let F be a hyperbolic family of embedded graphs

with rings, let c be a Cheeger constant for F , and let d :=
�3(2c+1) log2(8c+4). We say that F is strongly hyperbolic if

there exists a constant c2 such that for every G ∈ F embedded

in a surface Σ with rings and for every two disjoint cycles

C1, C2 of length at most 2d in G, if there exists a cylinder

Λ ⊆ Σ with boundary components C1 and C2, then Λ includes

at most c2 vertices of G. We say that c2 is a strong hyperbolic
constant for F .

A key result we need from [23] is that the number of vertices

in a graph in a strongly hyperbolic family is linear in the

sum of its genus and ring vertices as follows. Before stating

that result, we need one more technical but rather innocuous

definition.

Definition V.8 (Closed under curve cutting - appears after

Theorem 1.1 in in [23]). A family F of embedded graphs is

closed under curve cutting if for every embedded graph G ∈ F
embedded in a surface Σ and every simple closed curve ξ in

Σ whose image is disjoint from G, if Σ′ denotes the surface

obtained from Σ by cutting open along ξ and attaching disk(s)

to the resulting curve(s), then the embedded graph G in Σ′

belongs to F .

Theorem V.9 (A Simplified Form of Theorem 7.2 in [23]). Let
F be a strongly hyperbolic family of embedded graphs with
rings such that F is closed under curve-cutting. Then there
exists a constant cF such the the following holds: if G ∈ F
is embedded in a surface Σ of Euler genus g with a total of
R ring vertices, then v(G) ≤ cF (g +R).

C. A Family with No Deletable Subgraphs

Next we define our crucial family of embedded graphs with

rings that we need to prove Lemma V.2.

Definition V.10. For each g ∈ {3, 4, 5}, let Fg be the family of

embedded graphs with rings (G,R) such that G−⋃
R∈RE(R)

has girth at least g and there does not exist an (8−g)-deletable

subgraph of G whose vertices all lie in G−⋃
R∈R V (R). Let

F345 = F3 ∪ F4 ∪ F5.

We note that F345 is clearly closed under curve cutting.

Using results by the author and Thomas, we will prove in

Section V-F the following theorem.

Theorem V.11. F345 is strongly hyperbolic.

The following is an immediate corollary of Theorem V.11

and Theorem V.9.

Corollary V.12. There exists k > 0 such that the following
holds: Let G be embedded in a surface Σ of genus g(Σ) having
girth at least g ∈ {3, 4, 5}. If H is a subgraph of G such that
there does not exist an induced subgraph of G − V (H) that
is (8− g)-deletable in G, then v(G) ≤ k(v(H) + g(Σ)).

Proof. By Theorem V.11, we have that F345 is strongly

hyperbolic. We let k = cF345
be as in Theorem V.9.

Now let G′ = G − E(H). We view G′ as a graph with

rings where each vertex of H is a ring. Now G′ also has girth

at least g and is embedded in Σ. Since there does not exist

a subgraph of G − V (H) that is (8 − g)-deletable in G, it

follows that G′ ∈ F345. Hence by Theorem V.9, we have that

v(G) ≤ k(v(H) + g(Σ)) as desired.

We now prove Lemma V.2 assuming Theorem V.11.

Proof of Lemma V.2. Let k0 be as in Corollary V.12. We let

k = k0(g(Σ) + 1) + 1. Suppose for a contradiction that there

does not exist X ⊆ V (D) such that G[X] is (8− g)-deletable

in G.

Let H be the coboundary of D in G. Let G′ = G[V (H) ∪
V (D)]. Note then that there does not exist an induced subgraph

of G′ − V (H) that is deletable in G′ (as otherwise it would

be (8− g)-deletable in G). Now by Corollary V.12, we have

that v(G′) ≤ k0(v(H) + g(Σ)).
Since D is k-deep, v(H) is non-empty by definition and

hence v(H) ≥ 1. Thus k0(v(H) + g(Σ)) < kv(H) and so

v(G′) < kv(H). Rewriting, we have that v(H) > 1
kv(G

′) >
1
kv(D). Yet since D is k-deep, we have by definition that

v(H) ≤ 1
kv(D), a contradiction.

D. Previous Results on Hyperbolic Families

In order to prove Theorem V.11, we will first prove that

F345 is hyperbolic and then use that in the proof that F345

is strongly hyperbolic. However, we will need a number of

previous results for both those proofs which we now collect.

First we recall the definition for being critical with respect

to a subgraph for list-coloring.

Definition V.13. Let G be a graph and let H be a subgraph

of G. If L is a list assignment of G, then we say G is H-
critical with respect to L if the following holds: for every

proper subgraph G′ of G containing H , there exists an L-

coloring of H that extends to G′ but not to G. We say G is
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H-critical for k-list-coloring if there exists a k-list-assignment

such that G is H-critical with respect to L.

Definition V.14. For each g ∈ {3, 4, 5}, let Gg be the family

of embedded graphs with rings (G,R) such that every cycle

in G of length at most (g − 1) is not null-homotopic and

G is
⋃

R∈RR-critical for (8 − g)-list-coloring. Let G345 =
G3 ∪ G4 ∪ G5.

It was proved by the author and Thomas in [21] that G3
is hyperbolic and by Dvořák and Kawarabayashi in [8] that

G5 is hyperbolic (the proof that G4 is hyperbolic is easy by

comparison and can be found in [23]). The author and Thomas

proved that G345 is strongly hyperbolic as follows.

Theorem V.15. G345 is strongly hyperbolic.

Proof. G3 is strongly hyperbolic by Lemma 7.5 in [23]. G4
is strongly hyperbolic by Lemma 7.6 in [23]. G5 is strongly

hyperbolic by Lemma 7.8 in [23]. Hence G345 is also strongly

hyperbolic.

We remark that the proof of Lemmas 7.8 in [23] relies on

the work of the author in [19] for 3-list-coloring girth five

graphs. Similarly the proof of Lemma 7.5 relies on the work

by the author and Thomas in the series of papers [20], [21],

[22] (see [18] for a full proof). On the other hand, the proof

of Lemma 7.6 for 4-list-coloring triangle-free graphs is once

again quite easy by comparison (and can be found in Lemmas

5.10 and 7.6 in [23]).

Combining Theorem V.15 with Theorem V.9, we obtain the

following corollary.

Corollary V.16. There exists k′ > 0 such that the following
holds: Let G be embedded in a surface Σ of genus g(Σ) having
girth at least g ∈ {3, 4, 5}. If H is a subgraph of G such
that G is H-critical for (8 − g)-list-coloring, then v(G) ≤
k′(v(H) + g(Σ)).

Proof. By Theorem V.15, we have that G345 is strongly

hyperbolic. We let k′ = cG345 be as in Theorem V.9.

Now let G′ = G − E(H). We view G′ as a graph with

rings where each vertex of H is a ring. Now G′ also has girth

at least g and is embedded in Σ. Since G is H-critical for

(8 − g)-list-coloring, it follows that G′ is also H-critical for

(8−g)-list-coloring. Thus G′ ∈ G345. Hence by Theorem V.9,

we have that v(G) ≤ k′(v(H) + g(Σ)) as desired.

To prove Theorem V.11, we will actually need a stronger

result, namely instead of the hyperbolicity of G345, we will

need a stronger density result (Theorem V.20 below). Theo-

rem V.20 will be the key to proving that F345 is hyperbolic.

Finally to prove that F345 is strongly hyperbolic, we will also

use Theorem V.20 along with the strong hyperbolicity of G345
.

To state the density result, we first define a crucial notion

of the density of a graph over a subgraph.

Definition V.17. Let g ∈ {3, 4, 5} and ε > 0. If G is a graph

and H is a subgraph of G, define

dg,ε(G|H) = (g− 2)(e(G)− e(H))− (g+ ε)(v(G)− v(H)).
We will also need the following easy proposition about dg,ε.

Proposition V.18. Let g ∈ {3, 4, 5} and ε > 0. If H ⊆ G′ ⊆
G, then

dg,ε(G|H) = dg,ε(G|G′) + dg,ε(G
′|H).

Proof. This follows from the definition of dg,ε since e(G) −
e(H) = (e(G)−e(G′))+(e(G′)−e(H)) and v(G)−v(H) =
(v(G)− v(G′)) + (v(G′)− v(H)).

For a planar graph G of girth at least g, satisfying

dg,ε(G|H) ≥ 0 implies an upper bound on v(G) that is

linear in v(H) as our next lemma shows (a useful fact for

proving the linear bounds required for hyperbolicity and strong

hyperbolicity and hence the reason for the introduction of

dg,ε).

Lemma V.19. Let g ∈ {3, 4, 5} and ε > 0. If G is a planar
graph having girth at least g and H is a subgraph of G such
that dg,ε(G|H) ≥ 0, then

v(G) ≤ g + ε

ε
v(H).

Proof. We have that dg,ε(G|H) = (g − 2)(e(G) − e(H)) −
(g + ε)(v(G)− v(H)) ≥ 0. Rearranging, we have that

εv(G) ≤ (g+ε)v(H)−(g−2)e(H)+((g−2)e(G)−gv(G)).
Since G is a planar graph having girth at least g, we have

by Euler’s formula that e(H) ≤ g
g−2v(G). Combining this

observation with the fact that e(H) ≥ 0, we find that

v(G) ≤ (g + ε)

ε
v(H),

as desired.

We may now state the density result which combines earlier

theorems of the author [19] and the author and Thomas [23].

Theorem V.20. There exists ε > 0 such that following holds:
If G is a plane graph having girth at least g ∈ {3, 4, 5} and
H is a connected subgraph of G such that G is H-critical for
(8− g)-list-coloring, then

dg,ε(G|H) ≥ 0.

Proof. For g = 3, this is equivalent to Theorem 4.6 of the

author and Thomas in [21], which constitutes the main result

of that paper. For g = 4, the proof is straightforward and is

implicit in Lemma 5.10 of the author and Thomas in [23].

For g = 5, this is a special case of Theorem 3.9 of the author

in [19], which again constitutes the main result of that paper.

We note that combined with Lemma V.19, Theorem V.20

implies that the family G345 is hyperbolic. This is because

essentially hyperbolicity would be equivalent to showing that
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v(G) is linear in v(H) for connected subgraphs H , while

instead Theorem V.20 proves a stronger relation between

the edges and vertices of G and H . Indeed these stronger

statements were necessary for the inductive proofs of the

hyperbolicity of G3 and G5.

We note that the assumption that H is connected is related

to hybercolity (being inside a disc) while the case of H having

two connected components is related to strong hyperbolocity

(being inside an annulus).

E. Hyperbolicity for No Deletable Subgraphs

We will use Theorem V.20, a statement stronger than

the hyperbolicity of G345, to prove that the family F345 is

hyperbolic. First, we need the following easy proposition.

Proposition V.21. Let G be a graph and H a proper subgraph
of G such that V (H) �= V (G). If G−V (H) is not r-deletable
in G, then there exists a subgraph G′ of G containing H such
that G′ is H-critical for r-list-coloring.

Proof. Since G − V (H) is not r-deletable in G, there exists

a list-assignment L0 such that |L0(v)| ≥ r − dH(v) for each

v ∈ V (G) \ V (H) and G− V (H) is not L0-colorable.

Let S =
⋃

u∈V (G)\V (H)) L0(v). Let S′ = {cv : v ∈ V (H)}
be a set of pairwise distinct new colors (that is cv /∈ S for

each v ∈ V (H)). Let R be an arbitrary set of r − 1 colors

disjoint from S′.
Define a new list assignment L of G as follows. For each

v ∈ V (H), let L(v) = {cv}∪R. For each u ∈ V (G) \V (H),
let L(u) = L0(u) ∪ {cv : v ∈ N(u) ∩ V (H)}. Now L is an

r-list-assignment of G. Let φ be the coloring of H given by

φ(v) = cv for every v ∈ V (H).
Since G−V (H) is not L0-colorable, it follows that φ does

not extend to an L-coloring of G. Let G′ be an inclusion-

wise minimal subgraph of G containing H such that φ does

not extend to an L-coloring of G′. By the minimality of G′,
φ extends to an L-coloring of every proper subgraph of G′

containing H . Thus G′ is H-critical with respect to L. Hence

by definition, G′ is H-critical for r-list-coloring, as desired.

Using Theorem V.20, we are now ready to prove the

hyperbolicity of F345 as follows. First we prove a density

result as follows.

Lemma V.22. Let ε be as in Theorem V.20. If G is a plane
graph having girth at least g ∈ {3, 4, 5} and H is a connected
subgraph of G such that there does not exist X ⊆ V (G) \
V (H) such that G[X] is (8− g)-deletable in G, then

dg,ε(G|H) ≥ 0.

Proof. We proceed by induction on v(G) − v(H) + e(G) −
e(H).

If V (H) = V (G), then dg,ε(G|H) ≥ 0 as desired. So we

may assume that V (H) �= V (G). By assumption, G− V (H)
is not (8− g)-deletable in G. By Proposition V.21, it follows

that there exists a subgraph G′ of G containing H such that G
is H-critical for (8− g)-list-coloring. Note that H is a proper

subgraph of G′ by definition of H-critical. By Theorem V.20,

we have that dg,ε(G
′|H) ≥ 0. By Lemma V.1, it follows that

G′ is connected. Note that v(G) − v(G′) + e(G) − e(G′) <
v(G)−v(H)+e(G)−e(H). Hence by induction, dg,ε(G|G′) ≥
0. By Proposition V.18, we have that

dg,ε(G|H) = dg,ε(G|G′) + dg,ε(G
′|H) ≥ 0 + 0 = 0,

as desired.

Theorem V.23. The family F345 is hyperbolic.

Proof. Let c = 6(5+ε)
ε where ε is as in Theorem V.20. We

prove that c is a Cheeger constant for F345 as follows.

Let G be a graph with rings R embedded in a surface Σ
of Euler genus g(Σ) such that G ∈ F345, let R be the total

number of ring vertices, and let ξ : S1 → Σ be a closed curve

that bounds an open disk Δ and intersects G only in vertices.

To avoid notational complications we will assume that ξ is a

simple curve; otherwise we split vertices that ξ visits more than

once to reduce to this case. We may assume that Δ includes at

least one vertex of G, for otherwise there is nothing to show.

Let X be the set of vertices of G intersected by ξ.

Let G0 be the subgraph of G consisting of all vertices and

edges drawn in the closure of Δ. We now regard G0 as a

graph embedded in the closure of Δ inside the plane. We

define a planar graph G1 obtained from G0 as follows: we

add a vertex v in the complement of the closure of Δ; for

each vertex x ∈ X , we add the edge vx; we then subdivide

each edge incident with v exactly once.

Note that G1 is planar and has girth at least g. Let H =
G1[{x} ∪ NG1

(x) ∪ X]. Note that G0 − X is not (8 − g)-
deletable and hence G1 − V (H) is not (8 − g)-deletable. It

follows from Lemma V.1 that G1−V (H) is not a purse. Since

G1 is planar, it thus follows that v(H) ≥ 2.

Since v(H) ≥ 2, we have v(H) ≤ 3|X| ≤ 6(|X|−1). Note

that H is connected. Hence by Lemma V.22, dg,ε(G1|H) ≥ 0.

Thus by Lemma V.19, v(G1) ≤ g+ε
ε v(H). But then

v(G0) ≤ v(G1) ≤ g + ε

ε
v(H)

≤ 6(5 + ε)

ε
(v(H)− 1) = c(v(H)− 1),

as desired.

F. Strong Hyperbolicity for No Deletable Subgraphs

We now prepare to prove the strong hyperbolicity of F345.

First we prove the following lemma.

Lemma V.24. There exists k > 0 such that the following
holds: If G is a connected planar graph having girth at
least g ∈ {3, 4, 5} and H1, H2 are non-empty vertex-disjoint
connected subgraphs of G such that there does not exist
X ⊆ V (G) \ (V (H1) ∪ V (H2)) such that G[X] is (8 − g)-
deletable in G, then the distance between H1 and H2 in G is
at most k(v(H1) + v(H2)).
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Proof. We prove that k = k′ 5+ε
ε suffices where k′ is as in

Corollary V.16.

Suppose not. Let H = H1 ∪H2. Let G′ be a subgraph of

G containing H such that every component of G′ contains a

vertex of H and dg,ε(G
′|H) ≥ 0 and subject to that, e(G′) +

v(G′) is maximum.

Since G is planar, we have that G′ is planar. Since

dg,ε(G
′|H) ≥ 0 and G′ is planar, we have by Lemma V.19 that

v(G′) ≤ g+ε
ε v(H). Note that it also follows from Lemma V.19

that every component of G′ contains a vertex in H and hence

G′ has at most two components.

First suppose that V (G′) = V (G). Then v(G) = v(G′) ≤
g+ε
ε v(H). Since G is connected, it follows that the distance

between H1 and H2 in G is at most v(G) ≤ 5+ε
ε v(H) ≤

k′(v(H1) + v(H2)), a contradiction.

So we may assume that V (G′) �= V (G). Since G− V (G′)
is not (8 − g)-deletable in G′, we have by Proposition V.21

that there exists a subgraph G′′ of G containing G′ such that

G′′ is G′-critical for (8− g)-list-coloring.

Now suppose that G′ is connected. By Lemma V.20,

dg,ε(G
′′|G′) ≥ 0. By Proposition V.18,

dg,ε(G
′′|H) = dg,ε(G

′′|G′) + dg,ε(G
′|H) ≥ 0 + 0 ≥ 0,

contradicting the maximality of G′.
So we may assume that G′ is not connected. As noted above,

we have that G′ has exactly two components G1 and G2. We

may assume without loss of generality that H1 ⊆ G1 and

H2 ⊆ G2.

Next suppose that G′′ is not connected. Since G′′ is planar

and G′′ is G′-critical for (8− g)-list-coloring, it follows from

Lemma V.1 that every component of G′′ contains a vertex

of G′. Hence G′′ has two components G′1 and G′2. We may

assume without loss of generality that G1 ⊆ G′1 and G2 ⊆ G′2.

Since G′ is a proper subgraph G′′, we may assume without loss

of generality that G1 is a proper subgraph of G′1. But then G′1
is G1-critical for (8−g)-list-coloring. Hence by Theorem V.20,

dg,ε(G
′
1|G1) ≥ 0. Let G3 = G′1 ∪ G2. Now dg,ε(G3|G′) =

dg,ε(G
′
1|G1) ≥ 0. By Proposition V.18, we have that

dg,ε(G3|H) = dg,ε(G3|G′) + dg,ε(G
′|H) ≥ 0 + 0 ≥ 0,

contradicting the maximality of G′.
So we may assume that G′′ is connected. By Corollary V.16,

we have that v(G′′) ≤ k′v(G′) ≤ k′ g+ε
ε v(H) where k′ is as

in Corollary V.16. Since H1∪H2 = H ⊆ G′ ⊆ G′′ and G′′ is

connected, it follows that the distance between H1 and H2 is

at most v(G′′) ≤ k′ 5+ε
ε (v(H1)+v(H2)) = k(v(G1)+v(G2)),

as desired.

We are now ready to prove the strong hyperbolicity of F345

as follows.

Proof of Theorem V.11. Since F345 is hyperbolic by Theo-

rem V.23, it suffices to prove the existence of a strong

hyperbolic constant for F345. In fact, we prove the following

stronger statement:

Claim V.25. There exists c′ > 0 such that the following holds:
Let G ∈ F345 be a graph embedded in a surface Σ with rings
R. Let D1, D2 be two cycles of G such that there exists a
cylinder Λ ⊆ Σ with boundary components D1 and D2. If
G′ is the subgraph of G consisting of all vertices and edges
drawn in Λ, then

v(G′) ≤ c′(v(D1) + v(D2)).

Proof. Specifically, we prove that c′ = 5+ε
ε (k + 1) suffices

where ε is as in Theorem V.20 and k is as in Lemma V.24.

Now we regard G′ as a planar graph. Let H = D1 ∪ D2.

Note that v(H) ≤ v(D1) + v(D2).

First suppose H is connected. Then by Lemma V.22,

dg,ε(G
′|H) ≥ 0. Thus by Lemma V.19, v(G′) ≤ g+ε

ε v(H).
But then

v(G′) ≤ g + ε

ε
v(H)

≤ (5 + ε)

ε
(v(D1) + v(D2)) ≤ c′(v(D1) + v(D2)),

as desired.

So we may assume that H is not connected. First suppose

that G′ is not connected. It follows from Theorem V.1 that

every component of G′ contains a vertex in H ′. Hence G′ has

exactly two components G1 and G2. We may assume without

loss of generality that G1 contains D1 and G2 contains D2. By

Lemma V.22, dg,ε(G1|D1) ≥ 0 and similarly dg,ε(G2|D2) ≥
0. Thus by Theorem V.19, v(G1) ≤ g+ε

ε v(D1) and v(G2) ≤
g+ε
ε v(D2). But then

v(G′) ≤ v(G1) + v(G2)

≤ 5 + ε

ε
(v(D1) + v(D2)) ≤ c′(v(D1) + v(D2)),

as desired.

So we may assume that G′ is connected. Then by

Lemma V.24, the distance between D1 and D2 is at most

k(v(D1) + v(D2)) ≤ k(v(D1) + v(D2)). Let P be a shortest

path from D1 to D2. Let H ′ = H ∪ P . Now v(H ′) ≤
(k + 1)(v(D1) + v(D2)). Moreover, H ′ is connected. Thus

by Lemma V.22, dg,ε(G
′|H ′) ≥ 0. Hence by Lemma V.19,

v(G′) ≤ g+ε
ε v(H ′). But then

v(G′) ≤ g + ε

ε
v(H ′) ≤ 5 + ε

ε
(k + 1)(v(D1) + v(D2))

= c′(v(D1) + v(D2)),

as desired.
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for fruitful discussions about algorithms for coloring graphs

on surfaces. The author would like to thank Sergey Norin

for insightful discussions about separators. Finally the author

would like to thank Robin Thomas for discussions about

algorithms for coloring planar graphs and graphs on surfaces.

The author would also like to thank the anonymous referees

for their helpful comments.

This research was partially supported by NSERC under Dis-

covery Grant No. 2019-04304, the Ontario Early Researcher

Awards program and the Canada Research Chairs program.

REFERENCES

[1] K. Appel and W. Haken, “Every planar map is four colorable. I.
Discharging,” Illinois Journal of Mathematics, vol. 21, no. 3, pp. 429–
490, 1977.

[2] K. Appel, W. Haken, and J.Koch, “Every planar map is four colorable.
II. Reducibility,” Illinois Journal of Mathematics vol. 21, no. 3, pp.
491–567, 1977.

[3] K. Appel and W. Haken, “Every Planar Map is Four-Colorable,”
Contemporary Mathematics, vol. 98, With the collaboration of J. Koch.,
Providence, RI: American Mathematical Society, 1989.

[4] P. Aboulker, M. Bonamy, N. Bousquet, and L. Esperet, “Distributed
Coloring in Sparse Graphs with Fewer Colors,” in Proceedings of the
2018 ACM Symposium on Principles of Distrcuted Computing (PODC),
2018.

[5] L. Barenboim and M. Elkin, “Sublogarithmic distributed MIS algorithm
for sparse graphs using Nash-Williams decomposition,” Distributed
Computing, vol. 22, no. 5-6, pp. 363–379, 2010.

[6] L. Barenboim and M. Elkin, “Distributed graph coloring: Fundamentals
and recent developments,” Synthesis Lectures on Distributed Computing
Theory, vol. 4, no. 1, pp. 1–171, 2013.

[7] S. Chechik and D. Mukhtar, “Optimal Distributed Coloring Algorithms
for Planar Graphs in the LOCAL model,” in Proceedings of the 30th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 787–804,
2019.
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