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Abstract—We show that planar graphs have bounded queue-
number, thus proving a conjecture of Heath, Leighton and
Rosenberg from 1992. The key to the proof is a new structural
tool called layered partitions, and the result that every planar
graph has a vertex-partition and a layering, such that each
part has a bounded number of vertices in each layer, and the
quotient graph has bounded treewidth. This result generalises
for graphs of bounded Euler genus. Moreover, we prove that
every graph in a minor-closed class has such a layered partition
if and only if the class excludes some apex graph. Building
on this work and using the graph minor structure theorem,
we prove that every proper minor-closed class of graphs has
bounded queue-number. Layered partitions can be interpreted
in terms of strong products. We show that every planar graph
is a subgraph of the strong product of a path with some graph
of bounded treewidth. Similar statements hold for all proper
minor-closed classes.
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I. INTRODUCTION

Stacks and queues are fundamental data structures in

computer science. But what is more powerful, a stack or

a queue? In 1992, Heath, Leighton and Rosenberg [1]

developed a graph-theoretic formulation of this question,

where they defined the graph parameters stack-number and

queue-number which respectively measure the power of

stacks and queues to represent a given graph. Intuitively

speaking, if some class of graphs has bounded stack-number

and unbounded queue-number, then we would consider

stacks to be more powerful than queues for that class (and

vice versa). It is known that the stack-number of a graph

may be much larger than the queue-number. For example,

Heath, Leighton and Rosenberg [1] proved that the n-vertex

ternary Hamming graph has queue-number at most O(log n)
and stack-number at least Ω(n1/9−ε). Nevertheless, it is
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open whether every graph has stack-number bounded by a

function of its queue-number, or whether every graph has

queue-number bounded by a function of its stack-number

[1,2].
Planar graphs are the simplest class of graphs where it is

unknown whether both stack and queue-number are bounded.

In particular, Buss and Shor [3] first proved that planar

graphs have bounded stack-number; the best known upper

bound is 4 due to Yannakakis [4]. However, for the last

27 years of research on this topic, the most important open

question in this field has been whether planar graphs have

bounded queue-number. This question was first proposed

by Heath, Leighton and Rosenberg [1] who conjectured

that planar graphs have bounded queue-number. This paper

proves this conjecture. Moreover, we generalise this result

for graphs of bounded Euler genus, and for every proper

minor-closed class of graphs.1

First we define the stack-number and queue-number of a

graph G. Let V (G) and E(G) respectively denote the vertex

and edge set of G. Consider disjoint edges vw, xy ∈ E(G)
in a linear ordering � of V (G). Without loss of generality,

v ≺ w and x ≺ y and v ≺ x. Then vw and xy are

said to cross if v ≺ x ≺ w ≺ y and are said to nest
if v ≺ x ≺ y ≺ w. A stack (with respect to �) is

a set of pairwise non-crossing edges, and a queue (with

respect to �) is a set of pairwise non-nested edges. Stacks

resemble the stack data structure in the following sense.

In a stack, traverse the vertex ordering left-to-right. When

visiting vertex v, because of the non-crossing property, if

x1, . . . , xd are the neighbours of v to the left of v in left-to-

right order, then the edges xdv, xd−1v, . . . , x1v will be on

1The Euler genus of the orientable surface with h handles is 2h. The
Euler genus of the non-orientable surface with c cross-caps is c. The Euler
genus of a graph G is the minimum integer k such that G embeds in a
surface of Euler genus k. Of course, a graph is planar if and only if it
has Euler genus 0; see [5] for more about graph embeddings in surfaces.
A graph H is a minor of a graph G if a graph isomorphic to H can be
obtained from a subgraph of G by contracting edges. A class G of graphs
is minor-closed if for every graph G ∈ G, every minor of G is in G. A
minor-closed class is proper if it is not the class of all graphs. For example,
for fixed g � 0, the class of graphs with Euler genus at most g is a proper
minor-closed class.
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top of the stack in this order. Pop these edges off the stack.

Then if y1, . . . , yd′ are the neighbours of v to the right of

v in left-to-right order, then push vyd′ , vyd′−1, . . . , vy1 onto

the stack in this order. In this way, a stack of edges with

respect to a linear ordering resembles a stack data structure.

Analogously, the non-nesting condition in the definition of a

queue implies that a queue of edges with respect to a linear

ordering resembles a queue data structure.

For an integer k � 0, a k-stack layout of a graph G
consists of a linear ordering � of V (G) and a partition

E1, E2, . . . , Ek of E(G) into stacks with respect to �.

Similarly, a k-queue layout of G consists of a linear ordering

� of V (G) and a partition E1, E2, . . . , Ek of E(G) into

queues with respect to �. The stack-number of G, denoted

by sn(G), is the minimum integer k such that G has a

k-stack layout. The queue-number of a graph G, denoted

by qn(G), is the minimum integer k such that G has a k-

queue layout. Note that k-stack layouts are equivalent to

k-page book embeddings, and stack-number is also called

page-number, book thickness, or fixed outer-thickness.

As mentioned above, Heath, Leighton and Rosenberg [1]

conjectured that planar graphs have bounded queue-number.

This conjecture has remained open despite much research on

queue layouts [1,2,6–16]. We now review progress on this

conjecture.

Pemmaraju [8] studied queue layouts and wrote that he

“suspects” that a particular planar graph with n vertices

has queue-number Θ(log n). The example he proposed had

treewidth 3; see Section II-B for the definition of treewidth.

Dujmović, Morin and Wood [10] proved that graphs of

bounded treewidth have bounded queue-number. So Pem-

maraju’s example in fact has bounded queue-number.

The first o(n) bound on the queue-number of planar

graphs with n vertices was proved by Heath, Leighton, and

Rosenberg [1], who observed that every graph with m edges

has a O(
√
m)-queue layout using a random vertex ordering.

Thus every planar graph with n vertices has queue-number

O(
√
n), which can also be proved using the Lipton-Tarjan

separator theorem. Di Battista, Frati and Pach [16] proved

the first breakthrough on this topic, by showing that every

planar graph with n vertices has queue-number O(log2 n).
Dujmović [17] improved this bound to O(log n) with a

simpler proof. Building on this work, Dujmović, Morin and

Wood [13] established (poly-)logarithmic bounds for more

general classes of graphs. For example, they proved that

every graph with n vertices and Euler genus g has queue-

number O(g + log n), and that every graph with n vertices

excluding a fixed minor has queue-number logO(1) n.

Recently, Bekos, Förster, Gronemann, Mchedlidze, Mon-

tecchiani, Raftopoulou and Ueckerdt [15] proved a second

breakthrough result, by showing that planar graphs with

bounded maximum degree have bounded queue-number. In

particular, every planar graph with maximum degree Δ
has queue-number at most O(Δ6). Subsequently, Dujmović,

Morin and Wood [18] proved that the algorithm of Bekos

et al. [15] in fact produces a O(Δ2)-queue layout. This was

the state of the art prior to the current work.2

A. Main Results

The fundamental contribution of this paper is to prove the

conjecture of Heath, Leighton and Rosenberg [1] that planar

graphs have bounded queue-number.

Theorem 1. The queue-number of planar graphs is
bounded.

The best upper bound that we obtain for the queue-number

of planar graphs is 49.

We extend Theorem 1 by showing that graphs with

bounded Euler genus have bounded queue-number.

Theorem 2. Every graph with Euler genus g has queue-
number at most O(g).

We generalise further to show the following:

Theorem 3. Every proper minor-closed class of graphs has
bounded queue-number.

These results are obtained through the introduction of

a new tool, layered partitions, that have applications well

beyond queue layouts. Loosely speaking, a layered partition

of a graph G consists of a partition P of V (G) along with

a layering of G, such that each part in P has a bounded

number of vertices in each layer (called the layered width),

and the quotient graph G/P has certain desirable properties,

typically bounded treewidth. Layered partitions are the key

tool for proving the above theorems. Subsequent to the initial

release of this paper, layered partitions and the results in

this paper have been used to solve other problems [20–23].

For example, our results for layered partitions were used by

Dujmović, Esperet, Joret, Walczak and Wood [23] to prove

that planar graphs have bounded nonrepetitive chromatic

number, thus solving a well-known open problem. As above,

this result generalises for any proper minor-closed class.

II. TOOLS

In this abbreviated version of the paper, we focus on the

proof for planar graphs. Omitted proofs can be found in

the full version [24]. Undefined terms and notation can be

found in Diestel’s text [25]. Throughout the paper, we use

the notation
−→
X to refer to a particular linear ordering of a

set X .

A. Layerings

The following well-known definitions are key concepts

in our proofs, and that of several other papers on queue

layouts [10,11,13,15,18]. A layering of a graph G is an

2Wang [19] claimed to prove that planar graphs have bounded queue-
number, but despite several attempts, we have not been able to understand
the claimed proof.
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ordered partition (V0, V1, . . . ) of V (G) such that for every

edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| � 1.

If i = j then vw is an intra-level edge. If |i − j| = 1 then

vw is an inter-level edge. If r is a vertex in a connected

graph G and Vi := {v ∈ V (G) : distG(r, v) = i} for

all i � 0, then (V0, V1, . . . ) is called a BFS layering of

G. Associated with a BFS layering is a BFS spanning
tree T obtained by choosing, for each vertex v ∈ Vi with

i � 1, a neighbour w in Vi−1, and adding the edge vw
to T . Thus distT (r, v) = distG(r, v) for each vertex v of

G. We consider T to be rooted at r. These notions extend

to disconnected graphs. If G1, . . . , Gc are the components

of G, and rj is a vertex in Gj for j ∈ {1, . . . , c}, and

Vi :=
⋃c

j=1{v ∈ V (Gj) : distGj
(rj , v) = i} for all i � 0,

then (V0, V1, . . . ) is called a BFS layering of G.

B. Treewidth and Layered Treewidth

First we introduce the notion of H-decomposition

and tree-decomposition. For graphs H and G, an H-
decomposition of G consists of a collection (Bx ⊆ V (G) :
x ∈ V (H)) of subsets of V (G), called bags, indexed by the

vertices of H , and with the following properties:

• for every vertex v of G, the set {x ∈ V (H) : v ∈ Bx}
induces a non-empty connected subgraph of H , and

• for every edge vw of G, there is a vertex x ∈ V (H)
for which v, w ∈ Bx.

The width of such an H-decomposition is max{|Bx| : x ∈
V (H)}− 1. The elements of V (H) are called nodes, while

the elements of V (G) are called vertices.

A tree-decomposition is a T -decomposition for some tree

T . The treewidth of a graph G is the minimum width of a

tree-decomposition of G. Treewidth measures how similar

a given graph is to a tree. It is particularly important in

structural and algorithmic graph theory; see [26,27].

As mentioned in Section I, Dujmović et al. [10] first

proved that graphs of bounded treewidth have bounded

queue-number. Their bound on the queue-number was dou-

bly exponential in the treewidth. Wiechert [6] improved this

bound to singly exponential.

Lemma 4 ([6]). Every graph with treewidth k has queue-
number at most 2k − 1.

Graphs with bounded treewidth provide important exam-

ples of minor-closed classes. However, planar graphs have

unbounded treewidth. For example, the n × n planar grid

graph has treewidth n. So the above results do not resolve

the question of whether planar graphs have bounded queue-

number.

Dujmović et al. [13] and Shahrokhi [28] independently

introduced the following concept. The layered treewidth of

a graph G is the minimum integer k such that G has a tree-

decomposition (Bx : x ∈ V (T )) and a layering (V0, V1, . . . )
such that |Bx ∩ Vi| � k for every bag Bx and layer Vi.

Applications of layered treewidth include graph colouring

[13,30], graph drawing [13,31], book embeddings [32], and

intersection graph theory [28]. The related notion of layered

pathwidth has also been studied [29,31]. Most relevant to

this paper, Dujmović et al. [13] proved that every graph

with n vertices and layered treewidth k has queue-number

at most O(k log n). They then proved that planar graphs

have layered treewidth at most 3, that graphs of Euler genus

g have layered treewidth at most 2g+3, and more generally

that a minor-closed class has bounded layered treewidth

if and only if it excludes some apex graph.3 This implies

O(log n) bounds on the queue-number for all these graphs,

and was the basis for the logO(1) n bound for proper minor-

closed classes mentioned in Section I.

C. Partitions and Layered Partitions

The following definitions are central notions in this paper.

A vertex-partition, or simply partition, of a graph G is a set

P of non-empty sets of vertices in G such that each vertex

of G is in exactly one element of P . Each element of P is

called a part. The quotient (sometimes called the touching
pattern) of P is the graph, denoted by G/P , with vertex set

P where distinct parts A,B ∈ P are adjacent in G/P if and

only if some vertex in A is adjacent in G to some vertex in

B.

A partition of G is connected if the subgraph induced

by each part is connected. In this case, the quotient is the

minor of G obtained by contracting each part into a single

vertex. Our results for queue layouts do not depend on

the connectivity of partitions. But we consider it to be of

independent interest that many of the partitions constructed

in this paper are connected. Then the quotient is a minor of

the original graph.

A partition P of a graph G is called an H-partition if H
is a graph that contains a spanning subgraph isomorphic to

the quotient G/P . Alternatively, an H-partition of a graph

G is a partition (Ax : x ∈ V (H)) of V (G) indexed by the

vertices of H , such that for every edge vw ∈ E(G), if v ∈
Ax and w ∈ Ay then x = y (and vw is called an intra-bag
edge) or xy ∈ E(H) (and vw is called an inter-bag edge).

The width of such an H-partition is max{|Ax| : x ∈ V (H)}.
Note that a layering is equivalent to a path-partition.

A tree-partition is a T -partition for some tree T . Tree-

partitions are well studied with several applications. For

example, every graph with treewidth k and maximum degree

Δ has a tree-partition of width O(kΔ); see [33,34]. This

easily leads to a O(kΔ) upper bound on the queue-number

[10]. However, dependence on Δ seems unavoidable when

studying tree-partitions [33], so we instead consider H-

partitions where H has bounded treewidth greater than 1.

A key innovation of this paper is to consider a layered

variant of partitions (analogous to layered treewidth being a

layered variant of treewidth). The layered width of a partition

3A graph G is apex if G− v is planar for some vertex v.
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P of a graph G is the minimum integer � such that for some

layering (V0, V1, . . . ) of G, each part in P has at most �
vertices in each layer Vi.

Throughout this paper we consider partitions with

bounded layered width such that the quotient has bounded

treewidth. We therefore introduce the following definition. A

class G of graphs is said to admit bounded layered partitions
if there exist k, � ∈ N such that every graph G ∈ G has a

partition P with layered width at most � such that G/P
has treewidth at most k. We first show that this property

immediately implies bounded layered treewidth.

Lemma 5. If a graph G has an H-partition with layered
width at most � such that H has treewidth at most k, then
G has layered treewidth at most (k + 1)�.

Proof: Let (Bx : x ∈ V (T )) be a tree-decomposition

of H with bags of size at most k+1. Replace each instance

of a vertex v of H in a bag Bx by the part corresponding

to v in the H-partition. Keep the same layering of G. Since

|Bx| � k + 1, we obtain a tree-decomposition of G with

layered width at most (k + 1)�.
Lemma 5 means that any property that holds for graph

classes with bounded layered treewidth also holds for graph

classes that admit bounded layered partitions. For exam-

ple, Norin proved that every n-vertex graph with layered

treewidth at most k has treewidth less than 2
√
kn (see [13]).

With Lemma 5, this implies that if an n-vertex graph G
has a partition with layered width � such that the quotient

graph has treewidth at most k, then G has treewidth at

most 2
√

(k + 1)�n. This in turn leads to O(
√
n) balanced

separator theorems for such graphs.

Lemma 5 suggests that having a partition of bounded

layered width, whose quotient has bounded treewidth, seems

to be a more stringent requirement than having bounded

layered treewidth. Indeed the former structure leads to O(1)
bounds on the queue-number, instead of O(log n) bounds

obtained via layered treewidth. That said, it is open whether

graphs of bounded layered treewidth have bounded queue-

number. It is even possible that graphs of bounded layered

treewidth admit bounded layered partitions.

Before continuing, we show that if one does not care

about the exact treewidth bound, then it suffices to consider

partitions with layered width 1.

Lemma 6. If a graph G has an H-partition of layered width
� with respect to a layering (V0, V1, . . . ), for some graph H
of treewidth at most k, then G has an H ′-partition of layered
width 1 with respect to the same layering, for some graph
H ′ of treewidth at most (k + 1)�− 1.

Proof: Let (Av : v ∈ V (H)) be an H-partition of G
of layered width � with respect to (V0, V1, . . . ), for some

graph H of treewidth at most k. Let (Bx : x ∈ V (T )) be a

tree-decomposition of H with width at most k. Let H ′ be

the graph obtained from H by replacing each vertex v of

H by an �-clique Xv and replacing each edge vw of H by

a complete bipartite graph K�,� between Xv and Xw. For

each x ∈ V (T ), let B′x := ∪{Xv : v ∈ Bx}. Observe that

(B′x : x ∈ V (T )) is a tree-decomposition of H ′ of width at

most (k + 1)� − 1. For each vertex v of H , and layer Vi,

there are at most � vertices in Av ∩ Vi. Assign each vertex

in Av ∩ Vi to a distinct element of Xv . We obtain an H ′-
partition of G with layered width 1, and the treewidth of H
is at most (k + 1)�− 1.

D. Queue Layouts via Layered Partitions

The next lemma is at the heart of all our results about

queue layouts.

Lemma 7. For all graphs H and G, if H has a k-queue
layout and G has an H-partition of layered width �, then G
has a (3�k +

⌊
3
2�

⌋
)-queue layout. In particular,

qn(G) � 3� qn(H) +
⌊
3
2�

⌋
.

We postpone the proof of Lemma 7 until Section VI.

Lemmas 4 and 7 imply that a graph class that admits

bounded layered partitions has bounded queue-number. In

particular:

Corollary 8. If a graph G has a partition P of layered
width � such that G/P has treewidth at most k, then G has
queue-number at most 3�(2k − 1) +

⌊
3
2�

⌋
.

III. PLANAR GRAPHS

Our proof that planar graphs have bounded queue-number

employs Corollary 8. Thus our goal is to show that planar

graphs admit bounded layered partitions, which is achieved

in the following key contribution of the paper.

Theorem 9. Every planar graph G has a connected parti-
tion P with layered width 1 such that G/P has treewidth
at most 8. Moreover, there is such a partition for every BFS
layering of G.

This theorem and Corollary 8 imply that planar graphs

have bounded queue-number (Theorem 1) with an upper

bound of 3(28 − 1) +
⌊
3
23

⌋
= 766.

We now set out to prove Theorem 9. The proof is inspired

by the following elegant result of Pilipczuk and Siebertz [35]:

Every planar graph G has a partition P into geodesics such

that G/P has treewidth at most 8. Here, a geodesic is a path

of minimum length between its endpoints. We consider the

following particular type of geodesic. If T is a tree rooted

at a vertex r, then a non-empty path (x0, . . . , xp) in T is

vertical if for some d � 0 for all i ∈ {0, . . . , p} we have

distT (xi, r) = d + i. The vertex x1 is called the upper
endpoint of the path and xp is its lower endpoint. Note that

every vertical path in a BFS spanning tree is a geodesic.

Thus the next theorem strengthens the result of Pilipczuk

and Siebertz [35].

865



Theorem 10. Let T be a rooted spanning tree in a connected
planar graph G. Then G has a partition P into vertical paths
in T such that G/P has treewidth at most 8.

Proof of Theorem 9 assuming Theorem 10: We may

assume that G is connected (since if each component of G
has the desired partition, then so does G). Let T be a BFS

spanning tree of G. By Theorem 10, G has a partition P
into vertical paths in T such that G/P has treewidth at most

8. Each path in P is connected and has at most one vertex in

each BFS layer corresponding to T . Hence P is connected

and has layered width 1.

The proof of Theorem 10 is an inductive proof of a

stronger statement given in Lemma 11 below. A plane graph
is a graph embedded in the plane with no crossings. A near-
triangulation is a plane graph, where the outer-face is a

simple cycle, and every internal face is a triangle. For a cycle

C, we write C = [P1, . . . , Pk] if P1, . . . , Pk are pairwise

disjoint non-empty paths in C, and the endpoints of each

path Pi can be labelled xi and yi so that yixi+1 ∈ E(C)
for i ∈ {1, . . . , k}, where xk+1 means x1. This implies that

V (C) =
⋃k

i=1 V (Pi).

Lemma 11. Let G+ be a plane triangulation, let T
be a spanning tree of G+ rooted at some vertex r on
the outer-face of G+, and let P1, . . . , Pk for some k ∈
{1, 2, . . . , 6}, be pairwise disjoint vertical paths in T such
that F = [P1, . . . , Pk] is a cycle in G+. Let G be the near-
triangulation consisting of all the edges and vertices of G+

contained in F and the interior of F .
Then G has a connected partition P into paths in G that

are vertical in T , such that P1, . . . , Pk ∈ P and the quotient
H := G/P has a tree-decomposition in which every bag has
size at most 9 and some bag contains all the vertices of H
corresponding to P1, . . . , Pk.

Proof of Theorem 10 assuming Lemma 11: The result

is trivial if |V (G)| < 3. Now assume |V (G)| � 3. Let r be

the root of T . Let G+ be a plane triangulation containing G
as a spanning subgraph with r on the outer-face of G. The

three vertices on the outer-face of G are vertical (singleton)

paths in T . Thus G+ satisfies the assumptions of Lemma 11,

which implies that G+ has a partition P into vertical paths

in T such that G+/P has treewidth at most 8. Note that

G/P is a subgraph of G+/P . Hence G/P has treewidth at

most 8.

Our proof of Lemma 11 employs the following well-

known variation of Sperner’s Lemma (see [36]):

Lemma 12 (Sperner’s Lemma). Let G be a near-
triangulation whose vertices are (possibly improperly)
coloured 1, 2, 3, with the outer-face F = [P1, P2, P3] where
each vertex in Pi is coloured i. Then G contains an internal
face whose vertices are coloured 1, 2, 3.

Proof of Lemma 11: The proof is by induction on

n = |V (G)|. If n = 3, then G is a 3-cycle and k � 3. The

partition into vertical paths is P = {P1, . . . , Pk}. The tree-

decomposition of H consists of a single bag that contains

the k � 3 vertices corresponding to P1, . . . , Pk.

For n > 3 we wish to make use of Sperner’s Lemma

on some 3-colouring of the vertices of G. We begin by

colouring the vertices of F , as illustrated in Figure 1. There

are three cases to consider:

1) If k = 1 then, since F is a cycle, P1 has at least three

vertices, so P1 = [v, P ′1, w] for two distinct vertices v
and w. We set R1 := v, R2 := P ′1 and R3 := w.

2) If k = 2 then we may assume without loss of generality

that P1 has at least two vertices so P1 = [v, P ′1]. We

set R1 := v, R2 := P ′1 and R3 := P2.

3) If k ∈ {3, 4, 5, 6} then we group consecutive

paths by taking R1 := [P1, . . . , P�k/3�], R2 :=
[P�k/3�+1, . . . , P�2k/3�] and R3 := [P�2k/3�+1, . . . , Pk].
Note that in this case each Ri consists of one or two

of P1, . . . , Pk.

For i ∈ {1, 2, 3}, colour each vertex in Ri by i. Now, for

each remaining vertex v in G, consider the path Pv from

v to the root of T . Since r is on the outer-face of G+, Pv

contains a vertex of F . If the first vertex of Pv that belongs

to F is in Ri then assign the colour i to v. In this way

we obtain a 3-colouring of the vertices of G that satisfies

the conditions of Sperner’s Lemma. Therefore there exists a

triangular face τ = v1v2v3 of G whose vertices are coloured

1, 2, 3 respectively.

For each i ∈ {1, 2, 3}, let Qi be the path in T from vi
to the first ancestor v′i of vi in T that is contained in F .

Observe that Q1, Q2, and Q3 are disjoint since Qi consists

only of vertices coloured i. Note that Qi may consist of the

single vertex vi = v′i. Let Q′i be Qi minus its final vertex v′i.
Imagine for a moment that the cycle F is oriented clockwise,

which defines an orientation of R1, R2 and R3. Let R−i
be the subpath of Ri that contains v′i and all vertices that

precede it, and let R+
i be the subpath of Ri that contains v′i

and all vertices that succeed it.

Consider the subgraph of G that consists of the edges

and vertices of F , the edges and vertices of τ , and the

edges and vertices of Q1 ∪ Q2 ∪ Q3. This graph has an

outer-face, an inner face τ , and up to three more inner faces

F1, F2, F3 where Fi = [Q′i, R
+
i , R

−
i+1, Q

′
i+1], where we use

the convention that Q4 = Q1 and R4 = R1. Note that Fi

may be degenerate in the sense that [Q′i, R
+
i , R

−
i+1, Q

′
i+1]

may consist only of a single edge vivi+1.

Consider any non-degenerate Fi = [Q′i, R
+
i , R

−
i+1, Q

′
i+1].

Note that these four paths are pairwise disjoint, and thus

Fi is a cycle. If Q′i and Q′i+1 are non-empty, then each is

a vertical path in T . Furthermore, each of R−i and R+
i+1

consists of at most two vertical paths in T . Thus, Fi is the

concatenation of at most six vertical paths in T . Let Gi be

the near-triangulation consisting of all the edges and vertices

of G+ contained in Fi and the interior of Fi. Observe that Gi
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Figure 1. The inductive proof of Lemma 11: (a) the spanning tree T and the paths P1, . . . , P4; (b) the paths R1, R2, R3, and the Sperner triangle τ ;
(c) the paths Q′

1, Q′
2 and Q′

3; (d) the near-triangulations G1, G2, and G3, with the vertical paths of T on F1, F2, and F3.

contains vi and vi+1 but not the third vertex of τ . Therefore

Fi satisfies the conditions of the lemma and has fewer than

n vertices. So we may apply induction on Fi to obtain a

partition Pi of Gi into vertical paths in T , such that Hi :=
Gi/Pi has a tree-decomposition (Bi

x : x ∈ V (Ji)) in which

every bag has size at most 9, and some bag Bi
ui

contains

the vertices of Hi corresponding to the at most six vertical

paths that form Fi. We do this for each non-degenerate Fi.

We now construct the desired partition P of G. Initialise

P := {P1, . . . , Pk}. Then add each non-empty Q′i to P .

Now for each non-degenerate Fi, each path in Pi is either an

external path (that is, fully contained in Fi) or is an internal
path with none of its vertices in Fi. Add all the internal paths

of Pi to P . By construction, P partitions V (G) into vertical

paths in T and P contains P1, . . . , Pk.

Let H := G/P . Next we exhibit the desired tree-

decomposition (Bx : x ∈ V (J)) of H . Let J be the

tree obtained from the disjoint union of Ji, taken over the

i ∈ {1, 2, 3} such that Fi is non-degenarate, by adding one

new node u adjacent to each ui. (Recall that ui is the
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node of Ji for which the bag Bi
ui

contains the vertices

of Hi corresponding to the paths that form Fi.) Let the

bag Bu contain all the vertices of H corresponding to

P1, . . . , Pk, Q
′
1, Q

′
2, Q

′
3. For each non-degenerate Fi, and

for each node x ∈ V (Ji), initialise Bx := Bi
x. Recall that

vertices of Hi correspond to contracted paths in Pi. Each

internal path in Pi also lies in P . Each external path P in Pi

is a subpath of Pj for some j ∈ {1, . . . , k} or is one of the

paths among Q′1, Q
′
2, Q

′
3. For each such path P , for every

x ∈ V (J), in bag Bx, replace each instance of the vertex

of Hi corresponding to P by the vertex of H corresponding

to the path among P1, . . . , Pk, Q
′
1, . . . , Q

′
3 that contains P .

This completes the description of (Bx : x ∈ V (J)). By

construction, |Bx| � 9 for every x ∈ V (J).
First we show that for each vertex a in H , the set

X := {x ∈ V (J) : a ∈ Bx} forms a subtree of J . If a
corresponds to a path distinct from P1, . . . , Pk, Q

′
1, Q

′
2, Q

′
3

then X is fully contained in Ji for some i ∈ {1, 2, 3}. Thus,

by induction X is non-empty and connected in Ji, so it

is in J . If a corresponds to P which is one of the paths

among P1, . . . , Pk, Q
′
1, Q

′
2, Q

′
3 then u ∈ X and whenever

X contains a vertex of Ji it is because some external path

of Pi was replaced by P . In particular, we would have

ui ∈ X in that case. Again by induction each X ∩ Ji
is connected and since uui ∈ E(T ), we conclude that X
induces a (connected) subtree of J .

Finally we show that, for every edge ab of H , there is a

bag Bx that contains a and b. If a and b are both obtained by

contracting any of P1, . . . , Pk, Q
′
1, Q

′
2, Q

′
3, then a and b both

appear in Bu. If a and b are both in Hi for some i ∈ {1, 2, 3},
then some bag Bi

x contains both a and b. Finally, when a
is obtained by contracting a path Pa in Gi−V (Fi) and b is

obtained by contracting a path Pb not in Gi, then the cycle

Fi separates Pa from Pb so the edge ab is not present in

H . This concludes the proof that (Bx : x ∈ V (J)) is the

desired tree-decomposition of H .

A. Reducing the Bound

We now set out to reduce the constant in Theorem 1 from

766 to 49. This is achieved by proving the following variant

of Theorem 9.

Theorem 13. Every planar graph G has a partition P with
layered width 3 such that G/P is planar with treewidth at
most 3. Moreover, there is such a partition for every BFS
layering of G.

Theorem 13 and Lemma 7, and a result of Alam, Bekos,

Gronemann, Kaufmann and Pupyrev [14], who proved that

every planar graph with treewidth at most 3 has queue-

number at most 5, imply that planar graphs have bounded

queue-number (Theorem 1) with an upper bound of 3 · 3 ·
5 +

⌊
3
2 · 3

⌋
= 49.

Note that Theorem 13 is stronger than Theorem 9 in

that the treewidth bound is smaller, whereas Theorem 9 is

stronger than Theorem 13 in that the partition is connected

and the layered width is smaller. Also note that Theorem 13

is tight in terms of the treewidth of H: For every �, there

exists a planar graph G such that, if G has a partition P of

layered width �, then G/P has treewidth at least 3, see the

full version of the paper [24].

While Theorem 10 partitions the vertices of a planar graph

into vertical paths, to prove Theorem 13 we instead partition

the vertices of a triangulation G+ into parts each of which is

a union of up to three vertical paths. Formally, in a spanning

tree T of a graph G, a tripod consists of up to three pairwise

disjoint vertical paths in T whose lower endpoints form a

clique in G. Theorem 13 quickly follows from the next result

which we prove in the full version of the paper [24].

Theorem 14. Let T be a rooted spanning tree in a plane
triangulation G. Then G has a partition P into tripods in
T such that G/P has treewidth at most 3.

IV. BOUNDED-GENUS GRAPHS

As was the case for planar graphs, our proof that bounded

genus graphs have bounded queue-number employs Corol-

lary 8. Thus the goal of this section is to show that our

construction of bounded layered partitions for planar graphs

can be generalised for graphs of bounded Euler genus.

Theorem 15. Every graph G of Euler genus g has a con-
nected partition P with layered width at most max{2g, 1}
such that G/P has treewidth at most 9. Moreover, there is
such a partition for every BFS layering of G.

This theorem and Corollary 8 imply that graphs of Euler

genus g have bounded queue-number (Theorem 2) with an

upper bound of 3 · 2g · (29 − 1) +
⌊
3
2 2g

⌋
= O(g).

Note that Theorem 15 is best possible in the following

sense. Suppose that every graph G of Euler genus g has a

partition P with layered width at most � such that G/P has

treewidth at most k. By Lemma 5, G has layered treewidth

O(k�). Dujmović et al. [13] showed that the maximum

layered treewidth of graphs with Euler genus g is Θ(g). Thus

k� � Ω(g).
The next lemma is the key to the proof of Theorem 15.

Many similar results are known in the literature (for example,

[37, Lemma 8] or [5, Section 4.2.4]), but none prove exactly

what we need.

Lemma 16. Let G be a connected graph with Euler genus g.
For every BFS spanning tree T of G with corresponding BFS
layering (V0, V1, . . . ), there is a subgraph Z ⊆ G with at
most 2g vertices in each layer Vi, such that Z is connected
and G − V (Z) is planar. Moreover, there is a connected
planar graph G+ containing G−V (Z) as a subgraph, and
there is a BFS spanning tree T+ of G+ with corresponding
BFS layering (W0,W1, . . . ) of G+, such that Wi∩ (V (G)\
V (Z)) = Vi \ V (Z) for all i � 0, and P ∩ (V (G) \ V (Z))
is a vertical path in T for every vertical path P in T+.
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Proof of Theorem 15 assuming Lemma 16: We may

assume that G is connected (since if each component of

G has the desired partition, then so does G). Let T be a

BFS spanning tree of G with corresponding BFS layering

(V0, V1, . . . ). By Lemma 16, there is a subgraph Z ⊆ G
with at most 2g vertices in each layer Vi, a connected planar

graph G+ containing G− V (Z) as a subgraph, and a BFS

spanning tree T+ of G+ with corresponding BFS layering

(W0,W1, . . . ), such that Wi ∩ V (G) \ V (Z) = Vi \ V (Z)
for all i � 0, and P ∩ V (G) \ V (Z) is a vertical path in T
for every vertical path P in T+.

By Theorem 10, G+ has a partition P+ into vertical paths

in T+ such that G+/P+ has treewidth at most 8. Let P :=
{P ∩ V (G) \ V (Z) : P ∈ P+} ∪ {V (Z)}. Thus P is a

partition of G. Since P ∩ V (G) \ V (Z) is a vertical path in

T and Z is a connected subgraph of G, P is a connected

partition. Note that the quotient G/P is obtained from a

subgraph of G+/P+ by adding one vertex corresponding to

Z. Thus G/P has treewidth at most 9. Since P ∩ V (G) \
V (Z) is a vertical path in T , it has at most one vertex in

each layer Vi. Thus each part of P has at most max{2g, 1}
vertices in each layer Vi. Hence P has layered width at most

max{2g, 1}.
The same proof in conjunction with Theorem 14 instead

of Theorem 10 shows the following.

Theorem 17. Every graph of Euler genus g has a partition
P with layered width at most max{2g, 3} such that G/P
has treewidth at most 4.

Note that Theorem 17 is stronger than Theorem 15 in

that the treewidth bound is smaller, whereas Theorem 15 is

stronger than Theorem 17 in that the partition is connected

(and the layered width is smaller for g ∈ {0, 1}). Both

Theorems 15 and 17 (with Lemma 7) imply that graphs with

Euler genus g have O(g) queue-number, but better constants

are obtained by a more direct argument that uses Lemma 16

and Theorem 1 to circumvent the use of Theorem 15 and

prove that the queue-number of graphs with Euler genus g
is at most 4g + 49.

V. EXCLUDED MINORS

This section first introduces the graph minor structure

theorem of Robertson and Seymour, which shows that every

graph in a proper minor-closed class can be constructed

using four ingredients: graphs on surfaces, vortices, apex

vertices, and clique-sums. We then use this theorem to prove

that every proper minor-closed class has bounded queue-

number (Theorem 3).

Let G0 be a graph embedded in a surface Σ. Let F be

a facial cycle of G0 (thought of as a subgraph of G0). An

F -vortex is an F -decomposition (Bx ⊆ V (H) : x ∈ V (F ))
of a graph H such that V (G0∩H) = V (F ) and x ∈ Bx for

each x ∈ V (F ). For g, p, a, k � 0, a graph G is (g, p, k, a)-
almost-embeddable if for some set A ⊆ V (G) with |A| � a,

there are graphs G0, G1, . . . , Gs for some s ∈ {0, . . . , p}
such that:

• G−A = G0 ∪G1 ∪ · · · ∪Gs,

• G1, . . . , Gs are pairwise vertex-disjoint;

• G0 is embedded in a surface of Euler genus at most g,

• there are s pairwise vertex-disjoint facial cycles

F1, . . . , Fs of G0, and

• for i ∈ {1, . . . , s}, there is an Fi-vortex (Bx ⊆ V (Gi) :
x ∈ V (Fi)) of Gi of width at most k.

The vertices in A are called apex vertices. They can be

adjacent to any vertex in G.

A graph is k-almost-embeddable if it is (k, k, k, k)-almost-

embeddable.

Let C1 = {v1, . . . , vk} be a k-clique in a graph G1. Let

C2 = {w1, . . . , wk} be a k-clique in a graph G2. Let G be

the graph obtained from the disjoint union of G1 and G2

by identifying vi and wi for i ∈ {1, . . . , k}, and possibly

deleting some edges in C1 (= C2). Then G is a clique-sum
of G1 and G2.

The following graph minor structure theorem by Robert-

son and Seymour [38] is at the heart of graph minor theory.

Theorem 18 ([38]). For every proper minor-closed class G,
there is a constant k such that every graph in G is obtained
by clique-sums of k-almost-embeddable graphs.

We now show that graphs that satisfy the ingredients of the

graph minor structure theorem have bounded queue-number.

Building on Theorem 15, we prove the following result in

the case of no apex vertices.

Lemma 19. Every (g, p, k, 0)-almost embeddable graph G
has a connected partition P with layered width at most
max{2g + 4p− 4, 1} such that G/P has treewidth at most
11k + 10.

Lemmas 7 and 19 imply the following result, where the

edges incident to each apex vertex are put in their own

queue:

Lemma 20. Every k-almost embeddable graph has queue-
number less than 9k · 211(k+1).

Theorem 3, which says that every proper minor-closed

class has bounded queue-number, follows from Lemma 20

and some general-purpose machinery of Dujmović et al. [13]

for performing clique-sums.

A. Characterisation

Bounded layered partitions are the key structure in this pa-

per. So it is natural to ask which minor-closed classes admit

bounded layered partitions. The following definition leads to

the answer to this question. A graph G is strongly (g, p, k, a)-
almost-embeddable if it is (g, p, k, a)-almost-embeddable

and (using the notation in the definition of (g, p, k, a)-almost-

embeddable) there is no edge between an apex vertex and a

vertex in G0 − (G1 ∪ · · · ∪ Gs). That is, each apex vertex
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is only adjacent to other apex vertices or vertices in the

vortices. A graph is strongly k-almost-embeddable if it is

strongly (k, k, k, k)-almost-embeddable.

The following is the main result of this section. See

[13,39,40] for the definition of (linear) local treewidth.

Theorem 21. The following are equivalent for a minor-
closed class of graphs G:
(1) there exists k, � ∈ N such that every graph G ∈ G has

a partition P with layered width at most �, such that
G/P has treewidth at most k.

(2) there exists k ∈ N such that every graph G ∈ G has
a partition P with layered width at most 1, such that
G/P has treewidth at most k.

(3) there exists k ∈ N such that every graph in G has layered
treewidth at most k,

(4) G has linear local treewidth,
(5) G has bounded local treewidth,
(6) there exists an apex graph not in G,
(7) there exists k ∈ N such that every graph in G

is obtained from clique-sums of strongly k-almost-
embeddable graphs.

Proof: Lemma 6 says that (1) implies (2). Lemma 5

says that (2) implies (3). Dujmović et al. [13] proved that

(3) implies (4), which implies (5) by definition. Eppstein [39]

proved that (5) and (6) are equivalent; see [41] for an

alternative proof. Dvořák and Thomas [42] proved that

(6) implies (7). Building on Lemma 19, we prove that

every graph obtained from clique-sums of strongly k-almost

embeddable graphs has a partition of layered width 12k such

that the quotient has treewidth at most 20k + 10. This says

that (7) implies (1).

Note that Demaine and Hajiaghayi [40] previously proved

that (3) and (4) are equivalent. Also note that the assumption

of a minor-closed class in Theorem 21 is essential: Duj-

mović, Eppstein and Wood [43] proved that the n × n × n
grid Gn has bounded local treewidth but has unbounded,

indeed Ω(n), layered treewidth. By Lemma 5, if Gn has

a partition with layered width � such that the quotient has

treewidth at most k, then k� � Ω(n). That said, it is open

whether (1), (2) and (3) are equivalent in a subgraph-closed

class.

VI. STRONG PRODUCTS

This section provides an alternative and helpful perspec-

tive on layered partitions. The strong product of graphs

A and B, denoted by A � B, is the graph with vertex

set V (A) × V (B), where distinct vertices (v, x), (w, y) ∈
V (A)× V (B) are adjacent if:

• v = w and xy ∈ E(B), or

• x = y and vw ∈ E(A), or

• vw ∈ E(A) and xy ∈ E(B).
The next observation follows immediately from the defini-

tions.

Observation 22. For every graph H , a graph G has an
H-partition of layered width at most � if and only if G is a
subgraph of H � P �K� for some path P .

Note that a general result about the queue-number of

strong products by Wood [44] implies that qn(H � P ) �
3 qn(H)+1. It is easily shown that qn(Q�K�) � �·qn(Q)+
	 �2
. Together these results say that qn(H � P � K�) �
�(3 qn(H) + 1) + 	 �2
, which proves Lemma 7.

The results in this section show that every graph in

certain minor-closed classes is a subgraph of a particular

graph product, such as a subgraph of H � P for some

bounded treewidth graph H and path P . First note that

Observation 22 and Theorems 9 and 13 imply the following

result conjectured by Wood [45].4

Theorem 23. Every planar graph is a subgraph of:
(a) H �P for some graph H with treewidth at most 8 and

some path P .
(b) H � P �K3 for some graph H with treewidth at most

3 and some path P .

Observation 22 and Theorems 15 and 17 imply the fol-

lowing generalisation of Theorem 23 for graphs of bounded

Euler genus.

Theorem 24. Every graph of Euler genus g is a subgraph
of:
(a) H � P �Kmax{2g,1} for some graph H with treewidth

at most 9 and for some path P .
(b) H � P �Kmax{2g,3} for some graph H with treewidth

at most 4 and for some path P .

Lemma 19 and Observation 22 imply the following further

generalisation, where A+B is the complete join of graphs

A and B.

Theorem 25. Every (g, p, k, a)-almost embeddable graph
is a subgraph of (H � P �Kmax{2g+4p,1})+Ka for some
graph H with treewidth at most 11k+10 and some path P .

Theorems 18 and 25 imply the following result for any

proper minor-closed class.

Theorem 26. For every proper minor-closed class G there
are integers k and a such that every graph G ∈ G can be
obtained by clique-sums of graphs G1, . . . , Gn such that for
i ∈ {1, . . . , n}, for some graph Hi with treewidth at most k
and some path Pi, we have Gi ⊆ (Hi � Pi)+Ka.

Note that it is easily seen that in all of the above results,

the graph H and the path P have at most |V (G)| vertices.

4To be precise, Wood [45] conjectured that for every planar graph G there
are graphs X and Y , such that both X and Y have bounded treewidth, Y
has bounded maximum degree, and G is a minor of X � Y , such that the
preimage of each vertex of G has bounded radius in X�Y . Theorem 23(a)
is stronger than this conjecture since it has a subgraph rather than a shallow
minor, and Y is a path.
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We can interpret these results as saying that strong prod-

ucts and complete joins form universal graphs for the above

classes. For all n and k there is a graph Hn,k with treewidth

k that contains every graph with n vertices and treewidth k
as a subgraph (take the disjoint union of all such graphs).

The proof of Theorem 23 then shows that Hn,8�Pn contains

every planar graph with n vertices. There is a substantial

literature on universal graphs for planar graphs and other

classes. For example, Babai, Chung, Erdős, Graham and

Spencer [46] constructed a graph on O(n3/2) edges that

contains every planar graph on n vertices as a subgraph.

While Hn,8 � Pn contains much more than O(n3/2) edges,

it has the advantage of being highly structured and with

bounded average degree. Taking this argument one step

further, there is an infinite graph Tk with treewidth k that

contains every (finite) graph with treewidth k as a subgraph.

Similarly, the infinite path Q contains every (finite) path as

a subgraph. Thus our results imply that T8 � Q contains

every planar graph. Analogous statements can be made for

the other classes above.

VII. NON-MINOR-CLOSED CLASSES

This section gives three examples of non-minor-closed

classes of graphs that have bounded queue-number. The

following elementary lemma will be helpful.

Lemma 27. Let G0 be a graph with a k-queue layout. Fix
integers c � 1 and Δ � 2. Let G be the graph with V (G) :=
V (G0) where vw ∈ E(G) whenever there is a vw-path P
in G0 of length at most c, such that every internal vertex on
P has degree at most Δ. Then

qn(G) < 2(2k(Δ + 1))c+1.

Our result for graphs of bounded Euler genus generalises

to allow for a bounded number of crossings per edge. A

graph is (g, k)-planar if it has a drawing in a surface of

Euler genus g with at most k crossings per edge and with

no three edges crossing at the same point. A (0, k)-planar

graph is called k-planar; see [47] for a survey about 1-planar

graphs. Even in the simplest case, there are 1-planar graphs

that contain arbitrarily large complete graph minors [43].

Nevertheless, such graphs have bounded queue-number. An

easy application of Lemma 27 shows the following lemma,

which can also be concluded from a result of Dujmović and

Wood [2] in conjunction with Theorem 2.

Proposition 28. Every (g, k)-planar graph G has queue-
number at most 2(40g + 490)k+2.

Map graphs are defined as follows. Start with a graph

G0 embedded in a surface of Euler genus g, with each

face labelled a ‘nation’ or a ‘lake’, where each vertex of

G0 is incident with at most d nations. Let G be the graph

whose vertices are the nations of G0, where two vertices

are adjacent in G if the corresponding faces in G0 share a

vertex. Then G is called a (g, d)-map graph. A (0, d)-map

graph is called a (plane) d-map graph; such graphs have

been extensively studied [48,49]. The (g, 3)-map graphs are

precisely the graphs of Euler genus at most g (see [43]). So

(g, d)-map graphs provide a natural generalisation of graphs

embedded in a surface. An easy application of Lemma 27

shows the following:

Proposition 29. Every (g, d)-map graph G has queue-
number at most 2

(
8g + 98)(d+ 1)

)3
.

A string graph is the intersection graph of a set of curves

in the plane with no three curves meeting at a single point

[50–54]. For an integer k � 2, if each curve is in at most k
intersections with other curves, then the corresponding string

graph is called a k-string graph. A (g, k)-string graph is

defined analogously for curves on a surface of Euler genus

at most g. An easy application of Lemma 27 shows the

following:

Proposition 30. Every (g, k)-string graph has queue-
number at most 2(40g + 490)2k+1.

VIII. APPLICATIONS AND CONNECTIONS

In this section, we discuss implications of our results

such as resolving open problems about 3-dimensional graph

drawings.

A. Track Layouts

Track layout are a type of graph layout closely related

to queue layouts. A vertex k-colouring of a graph G is a

partition {V1, . . . , Vk} of V (G) into independent sets; that

is, for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then

i �= j. A track in G is an independent set equipped with

a linear ordering. A partition {−→V1, . . . ,
−→
Vk} of V (G) into k

tracks is a k-track layout if for distinct i, j ∈ {1, . . . , k} no

two edges of G cross between
−→
Vi and

−→
Vj . That is, for all

distinct edges vw, xy ∈ E(G) with v, x ∈ Vi and w, y ∈ Vj ,

if v ≺ x in
−→
Vi then w � y in

−→
Vj . The minimum k such

that G has a k-track layout is called the track-number of G,

denoted by tn(G). The following lemmas show that queue-

number and track-number are tied.

Lemma 31 ([10]). For every graph G, qn(G) � tn(G)−1.

Lemma 32 ([12]). There is a function f such that tn(G) �
f(qn(G)) for every graph G. In particular, every graph with
queue-number at most k has track-number at most

4k · 4k(2k−1)(4k−1).

The following lemma often gives better bounds on the

track-number than Lemma 32. A proper graph colouring is

acyclic if every cycle gets at least three colours. The acyclic
chromatic number of a graph G is the minimum integer c
such that G has an acyclic c-colouring.
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Lemma 33 ([10]). Every graph G with acyclic chromatic
number at most c and queue-number at most k has track-
number at most c(2k)c−1.

Borodin [55] proved that planar graphs have acyclic

chromatic number at most 5, which with Lemma 33 and The-

orem 1 implies:

Theorem 34. Every planar graph has track-number at most
5(2 · 49)4 = 461, 184, 080.

Note that the best lower bound on the track-number of

planar graphs is 7, due to Dujmović et al. [12].

Heawood [56] and Alon, Mohar and Sanders [57] re-

spectively proved that every graph with Euler genus g has

chromatic number O(g1/2) and acyclic chromatic number

O(g4/7). Lemma 33 and Theorem 2 then imply:

Theorem 35. Every graph with Euler genus g has track-
number at most gO(g4/7).

For proper minor-closed classes, Lemma 32 and Theo-

rem 3 imply:

Theorem 36. Every proper minor-closed class has bounded
track-number.

It follows from Lemma 33 and the work of Van den

Heuvel and Wood [30] connecting layered treewidth and

r-strong colouring number, along with bounds on layered

treewidth for (g, k)-planar graphs, (g, d)-map graphs and

(g, k)-string graphs [43] that such graphs have bounded

track-number.

B. Three-Dimensional Graph Drawing

Further motivation for studying queue and track layouts

is their connection with 3-dimensional graph drawing. A 3-
dimensional grid drawing of a graph G represents the ver-

tices of G by distinct grid points in Z
3 and represents each

edge of G by the open segment between its endpoints so that

no two edges intersect. The volume of a 3-dimensional grid

drawing is the number of grid points in the smallest axis-

aligned grid-box that encloses the drawing. For example,

Cohen, Eades, Lin and Ruskey [58] proved that the complete

graph Kn has a 3-dimensional grid drawing with volume

O(n3) and this bound is optimal. Pach, Thiele and Tóth [59]

proved that every graph with bounded chromatic number has

a 3-dimensional grid drawing with volume O(n2), and this

bound is optimal for Kn/2,n/2.

Track layouts and 3-dimensional graph drawings are con-

nected by the following lemma.

Lemma 37 ([10,60]). If a c-colourable n-vertex graph
G has a t-track layout, then G has 3-dimensional grid
drawings with O(t2n) volume and with O(c7tn) volume.
Conversely, if a graph G has a 3-dimensional grid drawing
with A×B×C bounding box, then G has track-number at
most 2AB.

Lemma 37 is the foundation for all of the following

results. Dujmović and Wood [60] proved that every graph

with bounded maximum degree has a 3-dimensional grid

drawing with volume O(n3/2), and the same bound holds

for graphs from a proper minor-closed class. In fact, every

graph with bounded degeneracy has a 3-dimensional grid

drawing with O(n3/2) volume [61]. Dujmovi’c et al. [10]

proved that every graph with bounded treewidth has a 3-

dimensional grid drawing with volume O(n).
Prior to this work, whether planar graphs have 3-

dimensional grid drawings with O(n) volume was a major

open problem, due to Felsner, Liotta, and Wismath [62]. The

previous best known bound on the volume of 3-dimensional

grid drawings of planar graphs was O(n log n) by Duj-

mović [17]. Lemma 37 and Theorem 34 together resolve

the open problem of Felsner et al. [62].

Theorem 38. Every planar graph with n vertices has a 3-
dimensional grid drawing with O(n) volume.

Lemma 37 and Theorems 35 and 36 imply the following

strengthenings of Theorem 38.

Theorem 39. Every graph with Euler genus g and n vertices
has a 3-dimensional grid drawing with gO(g4/7)n volume.

Theorem 40. For every proper minor-closed class G, every
graph in G with n vertices has a 3-dimensional grid drawing
with O(n) volume.

As shown in Section VIII-A, (g, k)-planar graphs, (g, d)-
map graphs and (g, k)-string graphs have bounded track-

number (for fixed g, k, d). By Lemma 37, such graphs have

3-dimensional grid drawings with O(n) volume.

IX. OPEN PROBLEMS

1) What is the maximum queue-number of planar graphs?

We can tweak our proof of Theorem 1 to show that

every planar graph has queue-number at most 48, but

it seems new ideas are required to obtain a significant

improvement. The best lower bound on the maximum

queue-number of planar graphs is 4, due to Alam

et al. [14].

More generally, does every graph with Euler genus g
have o(g) queue-number? Complete graphs provide a

Θ(
√
g) lower bound. Note that every graph with Euler

genus g has O(
√
g) stack-number [63].

2) Is there a polynomial function f such that every graph

with treewidth k has queue-number at most f(k)? The

best lower and upper bounds on f(k) are k + 1 and

2k − 1, both due to Wiechert [6].

3) As discussed in Section I it is open whether there is a

function f such that sn(G) � f(qn(G)) for every graph

G. Heath, Leighton and Rosenberg [1] proved that every

1-queue graph has stack-number at most 2. Dujmović

and Wood [2] showed that there is such a function f
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if and only if every 2-queue graph has bounded stack-

number.

Similarly, it is open whether there is a function f
such that qn(G) � f(sn(G)) for every graph G.

Heath, Leighton and Rosenberg [1] proved that every 1-

stack graph has queue-number at most 2. Since 2-stack

graphs are planar, this paper solves the first open case

of this question. Dujmović and Wood [2] showed that

there is such a function f if and only if every 3-stack

graph has bounded queue-number.

4) Is there a proof of Theorem 3 that does not use the

graph minor structure theorem and with more reason-

able bounds?

5) Queue layouts naturally extend to posets. The cover
graph GP of a poset P is the undirected graph with

vertex set P , where vw ∈ E(G) if v <P w and

v <P x <P w for no x ∈ P (or w <P v and

w <P x <P v for no x ∈ P ). Thus the cover

graph encodes relations in P that are not implied by

transitivity. A k-queue layout of a poset P consists of a

linear extension � of P and a partition E1, E2, . . . , Ek

of E(GP ) into queues with respect to �. The queue-
number of a poset P is the minimum integer k such

that P has a k-queue layout. Heath and Pemmaraju [65]

conjecture that the queue-number of a planar poset is

at most its height (the maximum number of pairwise

comparable elements). This was disproved by Knauer,

Micek and Ueckerdt [66] who presented a poset of

height 2 and queue-number 4. Theorem 1 and results of

Knauer, Micek and Ueckerdt imply that planar posets

of height h have queue-number O(h); see Theorem 6

in [66]. Heath and Pemmaraju [65] also conjecture

that every poset of width w (the maximum number of

pairwise incomparable elements) has queue-number at

most w. The best known upper bounds are O(w2) for

general posets and 3w − 2 for planar posets [66].

6) It is natural to ask for the largest class of graphs

with bounded queue-number. First note that Theorem 3

cannot be extended to the setting of an excluded

topological minor, since graphs with bounded degree

have arbitrarily high queue-number [1,64]. However, it

is possible that every class of graphs with strongly sub-

linear separators has bounded queue-number. Here a

class G of graphs has strongly sub-linear separators if

G is closed under taking subgraphs, and there exists

constants c, β > 0, such that every n-vertex graph in G
has a balanced separator of order cn1−β . Already the

β = 1
2 case looks challenging, since this would imply

Theorem 3.

7) Do the results in the present paper have algorithmic

applications? Consider the method of Baker [67] for

designing polynomial-time approximation schemes for

problems on planar graphs. This method partitions the

graph into BFS layers, such that the problem can

be solved optimally on each layer (since the induced

subgraph has bounded treewidth), and then combines

the solutions from each layer. Our results (Theorem 9)

give a more precise description of the layered structure

of planar graphs (and other more general classes). It

is conceivable that this extra structural information is

useful when designing algorithms.

Note that all our proofs lead to polynomial-time algo-

rithms for computing the desired decomposition and

queue layout. Pilipczuk and Siebertz [35] claim O(n2)
time complexity for their decomposition. The same is

true for Lemma 11: Given the colours of the vertices on

F , we can walk down the BFS tree T in linear time and

colour every vertex. Another linear-time enumeration of

the faces contained in F finds the trichromatic triangle.

It is easily seen that Lemma 16 has polynomial time

complexity (given the embedding). Polynomial-time al-

gorithms for our other results follow based on the linear-

time algorithm of Mohar [68] to test if a given graph

has Euler genus at most any fixed number g, and the

polynomial-time algorithm of Demaine, Hajiaghayi and

Kawarabayashi [69] for computing the decomposition

in the graph minor structure theorem (Theorem 18).
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