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Abstract—A basic computational primitive in the analysis
of massive datasets is summing simple functions over a large
number of objects. Modern applications pose an additional
challenge in that such functions often depend on a parameter
vector y (query) that is unknown a priori. Given a set
of points X and a pairwise function w(x,y), we study the
problem of designing a data-structure that enables sublinear-
time approximation of the summation of w(x,y) for all x in
X for any query point y. By combining ideas from Harmonic
Analysis (partitions of unity and approximation theory) with
Hashing-Based-Estimators [Charikar, Siminelakis FOCS’17],
we provide a general framework for designing such data
structures through hashing that reaches far beyond what
previous techniques allowed.

A key design principle is constructing a collection of hash
families, each inducing a different collision probability between
points in the dataset, such that the pointwise supremum of
the collision probabilities scales as the square root of the
function w(x,y). This leads to a data-structure that approx-
imates pairwise summations using a sub-linear number of
samples from each hash family. Using this new framework
along with Distance Sensitive Hashing [Aumuller, Christiani,
Pagh, Silvestri PODS’18], we show that such a collection can be
constructed and evaluated efficiently for log-convex functions
of the inner product between two vectors.

Our method leads to data structures with sub-linear query
time that significantly improve upon random sampling and can
be used for Kernel Density, Partition Function Estimation and
sampling.

Keywords-Hashing; Kernel Density; Partition Function; Im-
portance Sampling;Sub-linear algorithms.

I. INTRODUCTION

The analysis of massive datasets very often involves

summing simple functions over a very large number of

objects [1], [2], [3]. While in all cases one can compute

the sum of interest exactly in time and space polynomial

or even linear in the number of objects, practical consider-

ations, such as space usage and update/query time, require

developing significantly more efficient algorithms that can

provably approximate the quantity in question arbitrarily

well. For α ≥ 1, we say that μ̂ is an α-approximation to

μ if α−1μ ≤ μ̂ ≤ αμ and an (1 ± ε)-approximation if

(1− ε)μ ≤ μ̂ ≤ (1 + ε)μ.

Modern applications in Machine Learning pose an addi-

tional challenge in that such functions depend on a parameter

vector y ∈ R
d that is unknown a priori or changes with

time. Such examples include outlier detection [4], text gen-

eration [5], [6], and empirical risk minimization (ERM) [7],

[8]. Motivated by such applications, we seek sub-linear

time algorithms for summing pairwise functions in high

dimensions.

Given a set of points X = {x1, . . . , xn} ⊂ R
d, a non-

negative function w : Rd × R
d → [0, 1], and a parameter

ε > 0, we study the problem of designing a data structure

that for any query y ∈ R
d provides in sub-linear time a

(1± ε)-approximation to the sum:

Zw(y) =
1

n

n∑
i=1

w(xi, y) (1)

and show how it relates to the problem of sampling from

the distribution that assigns probability to points in X
proportional to w(x, y). The actual (normalized) value of

the sum Zw(y) ∈ [0, 1] for a given query y, will be denoted

by μ and, as we see next, we can use a lower bound τ ≤ μ to

bound the complexity of the problem. Let wmax be a number

such that maxx∈X{w(x, y)} ≤ wmax. The assumption that

Zw(y) ∈ [0, 1] is justified as we can equivalently estimate

Zw(y)/wmax.

A prominent method to approximate such sums is con-

structing unbiased estimators of low variance. The simplest

and extremely general approach to get such estimators is

through uniform random sampling. Letting χ ∈ (0, 1) be

an upper bound on the failure probability, a second moment

argument shows that storing and querying a uniform random

sample of size O
(

1
ε2

1
τ log(1/χ)

)
is sufficient and necessary

in general [9], [10], to approximate the sum μ = Zw(y) for

any μ ≥ τ . The dependence on ε, χ is standard and easily

shown to be necessary, so the question is for which class of
functions can we improve the dependence on τ?

In this paper, we focus on the class of log-convex func-

tions of the inner product between two vectors. For the unit

sphere such functions can be written as w(x, y) = eφ(〈x,y〉)

for some convex function φ : [−1, 1] → R of the inner

product between x, y ∈ Sd−1. Approximate summation

of such functions has several fundamental applications in

Machine Learning, including:

• Partition Function Estimation [11], [12]: a basic
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Table I
EXAMPLES OF LOG-CONVEX FUNCTIONS OF THE INNER PRODUCT

ρ = 〈 x
‖x‖ ,

y
‖y‖ 〉 FOR x, y ∈ rSd−1 . L(φ) DENOTES THE LIPSCHITZ

CONSTANT OF φ : [−1, 1]→ R.

w(x, y) φ(ρ) L(φ)

e〈x,y〉 r2ρ r2

e−‖x−y‖22 2r2(ρ− 1) 2r2

(‖x− y‖22 + 1)−1 − log(1 + (1− ρ)2r2) 2r2

(1 + exp(−〈x, y〉))−1 − log(1 + e−r2ρ) r2

(〈x, y〉+ cr2)−k −k log(r2(ρ+ c)) k
c−1

workhorse in statistics are exponential families where,

given a parameter vector y ∈ R
d, for all x ∈ X ⊆ R

d

a probability distribution is defined by setting py(x) ∝
e〈x,y〉. Exponential families find many applications in

Natural Language Processing (NLP) such as word

embeddings and text generation [13], [5], [14], [6]. The

normalizing constant Z(y) =
∑

x∈X e〈x,y〉 is called the

partition function. Approximating this quantity is im-

portant for sampling, hypothesis testing and inference.

• Kernel Density Estimation: a non-parametric way [15]

to estimate the “density of a set X at y” is through

Z(y) = 1
nσd

∑n
i=1 exp(−

‖xi−y‖2
σ2 ). Such an estimate

is used in algorithms for outlier detection [16], [17],

topological data analysis [18] and clustering [19].

• Logistic activation and Multi-label Classification:
setting φ(ρ) = − log(1 + e−ρ), we get the logistic

function eφ(ρ) = 1
1+e−ρ . A basic building block in

classification with n labels, is for each label i to

train a separate linear classifier (vector xi) and then

assign a query point y to a label J ∈ {1, . . . , n} by

setting J = j with probability ∝ 1

1+e−〈xj,y〉 . When the

number of labels is large, going through all the labels is

impractical and faster algorithms are sought [20], [21].

Approximating the sum of the activations is, as we will

see, intimately related to sampling.

More examples of log-convex functions are presented

in Table I. Obtaining fast algorithms for approximating

summations gives speedups to all of the above settings. For

such functions we denote Zw(y) as Zφ(y) and normalize

by eφmax whenever φmax 	= 0. Let L(φ) be the lipschitz

constant of the function φ. For points on the unit sphere, we

have that μ :=
Zφ(y)
eφmax

≥ e−(φmax−φmin) ≥ e−2L(φ) := τ and

hence random sampling requires O( 1
ε2 e

2L(φ)) samples. For

L(φ) ≥ 1
2 log n, random sampling offers no improvement

over the trivial algorithm. In this work we design the first

sub-linear algorithms for the problem of summing general

log-convex functions of the inner product.

A. Our results

At a high level, we significantly generalize the recent

approach of Hashing-Based-Estimators [10] to handle more

general functions. This is done by combining classical ideas

from Harmonic analysis (partitions of unity and approxima-

tion theory) with recent results for similarity search. We give

a general technique for approximating pairwise summations

that gives the following result for log-convex functions:

Theorem 1 (Main Result). Given a convex function φ :
[−1, 1]→ R with lipschitz constant L(φ) < (1−δ) log n for
δ > 0, there exists a data structure that for ε > 0 and any set
of n vectors X ⊂ Sd−1 can provide a (1±ε)-approximation
to Zφ(y) for any query y ∈ Sd−1 with constant probability
and query time n1−δ+o(1)/ε2 using space/pre-processing
time n2−δ+o(1)/ε2.

The exact dependence on the lipschitz constant is

e(1+o(1))L(φ). To put our result into context, compared to

random sampling that in worst case requires O( 1
ε2 e

2L(φ))
samples, we offer a square root improvement for a large

family of functions.

Although this theorem is phrased for points on the unit

sphere, our results are more general. In particular, for

rX , rY > 0 assume that X ⊂ rXSd−1, y ∈ rY Sd−1 and

that we wish to sum the function eφ̃(〈x,y〉). We may map

this setting to the unit sphere by setting x̂ = x
‖x‖ for all

x 	= 0 and defining φ(〈x̂, ŷ〉) := φ̃(rXrY 〈x̂, ŷ〉) = φ̃(〈x, y〉)
with the lipschitz constant L(φ) = rXrY · L(φ̃) increased

by a factor of rXrY . For example, in the natural case of

binary vectors X ⊂ {±1}d with d = c log n we have that

rX =
√
c log n. Hence, if L(φ̃) = 1 (e.g. w(x, y) = e〈x,y〉)

our theorem applies when rY ≤ 1−δ√
c

√
log n. Moreover,

we can handle the general case (Section VI), where points

do not lie exactly on a sphere, by partitioning the space

in “thin” annuli (1 + γ)ir0 ≤ ‖x‖ < (1 + γ)i+1r0 with

γ = O(1/rXrY L(φ̃)) and applying Theorem 1 for each

possible pair of annuli (points and query).

We show that under popular conjectures a restriction on

L(φ) is necessary in order to obtain sublinear algorithms

for the problem even on average over n queries. In fact, it

turns out that L(φ) needs to be O(log n) even if one allows

for polynomially large approximation factors. Our hardness

result is based on either of the following two conjectures

that have been the base of a flurry of quadratic hardness

results in the past years.

Conjecture 1 (Strong Exponential Time Hypothesis

(SETH)[22]). For any ε > 0, there exists k = k(ε) such that
k-SAT on n variables cannot be solved in time O(2(1−ε)n).

Conjecture 2 (Orthogonal Vectors Conjecture (OVC) [23],

[24]). For every δ > 0 there exists c = c(δ) such that given
two sets A,B ⊂ {0, 1}m of cardinality N , where m =
c logN , deciding if there is a pair (a, b) ∈ A×B such that
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Figure 1. Angular partitions for two different query points (black and red)
for a fixed dataset.

a�b = 0 cannot be solved in time O(N2−δ).

Using a recent result of Rubinstein [25], we show the

following.

Theorem 2. Unless SETH and OVC fail, for every δ > 0
and α ≥ 1 there exists a constant C(δ, α) > 0 such that for
two sets X,Y ⊂ Sd−1 of size n with d = Oδ(log n) and
L > C(δ, α) · log n, there exists no n2−O(δ) algorithm that

produces an α-approximation to 1
n

∑
y∈Y

(
1
n

∑
x∈X

eL·〈x,y〉
)

.

The precise dependence is C(δ, α) = O(ee
δ

c(δ)
)(1 +

logα/2 logn) where c(δ) is a constant. Even if we allow

for approximation factor α = ns with s > 0, we see

that C(δ, ns) is still a constant. The intuition behind this

result is that when L = Ω(log n) the function eL〈x,y〉 varies

fast enough so that the presence or absence of a single

pair of “relatively close” points can dominate the sum. In

applications, though, the Lipschitz constant encountered is

often small (e.g. [14, Section 2]).

B. Motivation: Partitions of Unity

Next, we offer some motivating remarks on how might

one go about designing algorithms for pairwise summation

problems.

Given a natural number T , let [T ] := {1, . . . , T}. A

general way to estimate sums over X is to define a query-

dependent partition P(y) = {P1(y), . . . , PT (y)} of X in T
parts and express the sum as

∑
t∈[T ]

(∑
x∈Pt

w(x, y)
)
. If for

the specific partition there exist M ≥ 1 such that ∀t ∈ [T ]
and ∀x1, x2 ∈ Pt(y):

1

M
· w(x2, y) ≤ w(x1, y) ≤M · w(x2, y). (2)

taking O(M/ε2) random samples would give us an accurate

estimate of each term
∑

x∈Pt
w(x, y) and using at most

O(MT/ε2) samples we would obtain a good estimate of the

sum. The problem is that generating and sampling from such

a partition efficiently for any query y can be computationally

challenging. For example if w(x, y) = e−‖x−y‖2 and points

X ⊂ rSd−1 lie on a sphere of radius r > 0, then L(φ) = 2r2

and such partitions are equivalent to being able to sample

from a certain angular (inner product) range around the

Figure 2. Partitions of unity as a tool of rewriting integrals in terms of
of localized functions

query y ∈ rSd−1 (Figure 1), as

w(x1, y)

w2(x2, y)
= e2r

2(〈 x1
r , yr 〉−〈

x2
r , yr 〉) ≤M

⇒
∣∣∣〈x1

r
,
y

r

〉
−
〈x2

r
,
y

r

〉∣∣∣ ≤ logM

L(φ)

Setting M = e(c
2−1)L, the resulting angular range of length

c2 − 1 corresponds to distances differing by a factor of 1 ≤
c ≤

√
3. Sampling from such partitions in high dimensions

can be costly [26], [27].

Partitions of unity: Instead of a partition P , consider a

collection of functions w̃t(x, y) such that
∑

t∈[T ] w̃t(x, y) =
1, ∀x ∈ X . Each such function concentrates its mass on a

small portion of the space – this can be thought of as a soft

partition. Such a collection of functions is called a partition
of unity (Figure 2) and is widely used in Harmonic analysis.

We will use partitions of unity to define estimators for

which we can control their first and second moments through

linearity of expectation and provide a generic recipe to use

them within the framework of Hashing-based-Estimators,

e.g. hashing-based important sampling, to bound the overall

variance. The intuition is that we can use carefully designed

hash functions to sample points according to a soft partition.

C. Our techniques

The main conceptual contribution of this work is a new

framework for approximating pairwise summations. Our

framework is based on a class of estimators that we in-

troduce, called Multi-resolution Hashing-Based-Estimators,

that significantly generalizes previous work [10]. The main

idea is that, instead of a single hashing scheme, we have a

collection of hash families Ht for t ∈ [T ], where each Ht

is responsible for a different portion of the angular range

around the query; Ht has relatively high collision probability

within the range assigned to it and relatively low outside. We

divide up the task of estimating the summation of interest

amongst these various hash families by assigning data points

x ∈ X to t ∈ [T ] via a soft partition (i.e. a partition of unity).

Our end goal is to produce an unbiased estimator and bound

its variance by selecting the hashing scheme and partition

of unity appropriately. While this overall scheme sounds

complicated, we show that a particular choice of weights

for the soft partition (as a function of collision probabilities)

makes the analysis modular and tractable: for the purpose of
analysis, the collection of hash families behaves like a single
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hash family whose collision probability is the supremum of
the collision probabilities for Ht, t ∈ [T ]. We now flesh out

this informal description.
Multi-resolution HBE (MR-HBE): Given a collection

H1, . . . ,HT of hashing schemes with collision probabilities

p1, . . . , pT : Rd×R
d → [0, 1] and functions w̃t : R

d×R
d →

R+ for t ∈ [T ], such that
∑

t∈T w̃t(x, y) = 1 (partition
of unity) and wt(x, y) := w̃t(x, y)w(x, y), we form an

unbiased estimator by:

• Preprocessing: for all t ∈ [T ], sample a hash function

ht ∼ Ht and evaluate it on X creating hash table Ht .

Let Ht(z) ⊆ X denote the subset of points in X that

are mapped to the same hash bucket as z ∈ R
d under

ht.

• Querying: given a query y ∈ R
d, for all t ∈

[T ] let Xt ∼ Ht(y) be a random element from

Ht(y) or ⊥ if Ht(y) = ∅. Return ZT (y) =
1
|X|

∑
t∈[T ]

wt(Xt,y)
pt(Xt,y)

|Ht(y)|, where it is understood that

if Xt = ⊥ the corresponding term is 0.

The conditions on {w̃t} and {pt} ensure that the estimator

is unbiased. The motivation behind these estimators is to use

the extra freedom in selecting {w̃t} and {pt} so that we can

obtain better bounds on the overall variance. This is quite

challenging as the variance of each of the T terms in the

sum depends on the whole data set through |Ht(y)|. This

raises the question whether there exist design principles for

{w̃t} and {pt} that lead to low variance? We introduce two

key design principles:

• Variance bounds and p2-Weighting: For a fixed

collection of weight functions {w̃t} and collision prob-

abilities {pt}, by utilizing a lemma from [10], we

get an explicit bound on the variance of the esti-

mator for a query y ∈ R
d only as a function of

{wt(·, y)}, {pt(·, y)} and μ := Zφ(y). We then min-

imize a separable relaxation of our upper bound to

obtain the p2-weighting scheme where

w̃t(x, y) =
p2t (x, y)∑T

t′=1 p
2
t′(x, y)

for all x, y ∈ R
d. (3)

• Approximation by a supremum of functions: Using

the p2-weighting scheme and after some algebraic

manipulations, we are able to get an upper bound on the

variance that depends only on w(x, y), μ = Zw(y) and

on the pointwise supremum of the collision probabilities

p∗(x, y) := supt∈[T ]{pt(x, y)}. An interesting fact

that comes out from the analysis is that the resulting

bound is closely related to the variance of a single

HBE, i.e. T = 1, with collision probability equal to

p∗(x, y). Exploiting this connection and by providing

a simplified proof for a theorem of [10] that bounds

the variance of scale-free HBE, we identify the second

design principle, namely designing {pt} such that:

p∗(x, y) = sup
t∈T

{pt(x, y)} = Θ(
√
w(x, y)). (4)

Figure 3. Approximation of the squared inner product φ2(ρ) = ρ2 − 1
function by elements of (5).

Observe that so far our discussion has been about the

variance, or on how many independent realizations of

Multi-resolution HBE we need to efficiently estimate

Zφ(y), and we have not mentioned the time needed

to compute each one. The natural question is then: for

which family of functions w(x, y), does there exist a

family of hashing schemes {(Ht, pt)} satisfying (4) that

can be efficiently constructed and evaluated?

Approximating Log-convex Functions via Distance Sen-
sitive Hashing: We show that constructing a family of

hash functions satisfying (4) is indeed possible for log-

convex functions of the inner product by utilizing a family

of hashing schemes introduced recently by Aumuller et

al. [27], referred to as Distance Sensitive Hashing (DSH).

This family is defined through two parameters γ ≥ 0
and s > 0, with collision probability pγ,s(ρ) having the

following dependence on the inner product ρ = 〈x, y〉
between two vectors x, y ∈ Sd−1

log (1/pγ,s(ρ)) = Θ

((
1− ρ

1 + ρ
+ γ2 1 + ρ

1− ρ

)
s2

2

)
. (5)

Exploiting the fact that w(x, y) = eφ(〈x,y〉)
eφmax

is only a

function of the inner product 〈x, y〉, (4) becomes equivalent

to constructing hash families with collision probabilities

p1, . . . , pT such that:∣∣log sup
t∈[T ]

{pt(ρ)} −
1

2
(φ(ρ)− φmax)

∣∣ = O(1). (6)

The approximation is achieved by: (a) producing a sequence

of explicit “interpolation points” ρ1, . . . , ρT ∈ [−1, 1], (b)

using a single DSH scheme with parameters γt, st ≥ 0 and

log-collision probabilities log pt to approximate the function
1
2 (φ(ρ)−φmax) locally around each ρt (value and derivative)

(multi-resolution), (c) and then using convexity of φ and

“concavity” of pγt,st to bound the error in (6) (Section
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IV). An interesting fact is that in order to achieve the

above approximation guarantee using DSH, convexity of the
function φ is instrumental (Lemma 3 and Proposition 3). We

give an example of the resulting approximation in Figure 3.
The number of hash families T as well as the approxi-

mation error in (6) are sub-linear in the Lipschitz constant

L(φ) of the function. This sub-linear dependence is the result

of achieving a trade-off between evaluation time of the hash

functions and fidelity of approximation in (6). The evaluation

time of the hash functions roughly scales like eO(maxt∈[T ] s
2
t )

whereas an error Δ in (6) increases the variance by a

factor of eO(Δ) (Section V). To trade-off the two terms

we design the hash families in order to approximate the

scaled-down version 1
2k (φ−φmax) to error Δ/k (decreases

maxt∈[T ]{s2t}) and then use concatenation of k i.i.d hash

functions to get the collision probabilities to be of the correct

order (has the effect of increasing the approximation error

by a factor of k) and overall error Δ.

D. Applications
To illustrate the above techniques, we give concrete ex-

amples for which our data structures have n0.5+o(1) query

time, i.e. L(φ) ≤ log(n)/2.

Corollary 1. Let Φr,k,c be the set of functions in Table I
with parameters r ≤ 1

2

√
log n and 0 ≤ k ≤ c−1

2 log n.
Then for any φ ∈ Φr,k,c and X ⊂ rSd−1, there exists a
data structure using space n1.5+o(1)/ε2 that for any y ∈
rSd−1 can produce a (1 ± ε)-approximation to Zφ(y) in
time n0.5+o(1)/ε2.

This corollary highlights the main point of our paper:

we provide a general technique that enables the design of

data structures that solve a variety of pairwise integration

problems. For the special case of the Gaussian kernel

for points on a sphere, our data structure has the same

dependence in ε, r (up to poly-logarithmic factors in n) as

the currently best known algorithm [10]. At the same time

we are able to handle the important case of the logistic

function 1
1+e−〈x,y〉 and non-monotone functions such as

e|〈x,y〉| or e〈x,y〉
2

= e
∑d

�,�′=1
y�y�′x�x�′ for which no previous

algorithms were known.
Sampling: The problem of approximating pairwise

sums sometimes referred to as partition function approxi-

mation is closely related to the problem of sampling from
discrete distributions. Given a non-negative function w(x, y)
and a set {x1, . . . , xn} ⊂ R

d we would like to produce a

random variable I ∈ [n] := {1, . . . , n} such that P[I = i] =
w(xi,y)∑n
i=1 w(xi,y)

for all i ∈ [n]. This can always be done by

spending linear time, the question that we ask here is how
fast can one produce a random variable Ĩ whose distribution
is close in total variation distance to the distribution of I?

We show in a generic way that not only our methods

can be used to approximate the partition function but also

to sample from a distribution that has small total variation

distance to the desired distribution. In fact this is true for any

method that produces a sample with the following properties.

Definition 1. Given non-negative weights w1, . . . , wn and
parameters ε, ζ, χ ∈ [0, 1) a sequence of m pairs of random
variables (ŵt, It) ∈ R+× [n] for t ∈ [m] is called (ζ, ε, χ)-
sample iff:
• for all i ∈ [n], E[

∑m
t=1 ŵtI[It = i]] ≤ (1 + ζ)wi,

• P[|∑m
t=1 ŵt −

∑n
i=1 wi| ≥ ε

∑n
i=1 wi] ≤ χ.

For two random variables I, J ∈ [n] let TV(I, J) :=
maxA⊂[n] |

∑
i∈A P[I = i]−∑

j∈A P[J = j]|.
Lemma 1. Given a (ζ, ε, χ)-sample for w1, . . . , wn of size
m, one can construct a random variable Ĩ ∈ [n] in time
O(m) such that TV(Ĩ , I) ≤ ζ+ε

1−ε + χ where P[I = i] =
wi∑n

j=1 wj
.

Proof: Define Ĩ to be the random variable such that

P[Ĩ = j|{(ŵt, It)}t≤m] =
∑m

t=1 ŵtI[It=j]∑m
t′=1

ŵt′
, i.e. after we get

the sample {(ŵt, It)}t∈[m] we return It with probability

proportional to ŵt. Let nμ =
∑n

i=1 wi > 0 and F be

the event that |∑m
t=1 ŵt − nμ| ≥ εnμ, by our assumption

P[F ] ≤ χ.

P[Ĩ = j] = E[P[Ĩ = j|{(ŵt, It)}t≤m]I[F ]]

+ E[P[Ĩ = j|{(wt, It)}t≤m]I[F c]]

Consider the set A = {j : P[Ĩ = j] ≥ wj

nμ}. Then, the total

variation distance can be bounded as

TV(Ĩ , I) =
∑
j∈A

{
P[Ĩ = j]− wj

nμ

}

=
∑
j∈A

{
E[P[Ĩ = j|{(ŵt, It)}t≤m]I[F c]]

+E[P[Ĩ = j|{(ŵt, It)}t≤m]I[F ]]− wj

nμ

}

=
∑
j∈A

{
E[P[Ĩ = j|{(ŵt, It)}t≤m]I[F c]]− wj

nμ

}

+ E

⎡
⎣∑
j∈A

P[Ĩ = j|{(ŵt, It)}t≤m]I[F ]

⎤
⎦

≤
∑
j∈A

{
E[

∑
t ŵtI[It = j]∑

t′ ŵt′
I[F c]]− wj

nμ

}
+ P[F ]

≤
∑
j∈A

{
E[
∑

t ŵtI[It = j]I[F c]]

(1− ε)nμ
− wj

nμ

}
+ P[F ]

≤
∑
j∈A

{
1 + ζ

1− ε
− 1

}
wj

nμ
+ P[F ]

≤ ζ + ε

1− ε

∑
j∈A

wj

nμ
+ P[F ]

≤ ζ + ε

1− ε
+ χ.
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To the best of our knowledge this lemma establishes a

novel connection between sampling from discrete distribu-

tions and partition function approximation (“counting”), not

captured by the self-reducible setting of Jerrum, Valiant,

Vazirani [28] and Jerrum, Sinclair [29]. As such it might be

of independent interest. For the special case of log-convex

functions on the unit sphere we have the following result.

Corollary 2. Given a convex function φ : [−1, 1] → R

with lipschitz constant L(φ), there exists a data structure
that for ε > 0 and a set of n vectors X ⊂ Sd−1 produces
for any query y ∈ Sd−1 an (0, ε, ε)-sample for the weights
defined by w(x, y) = eφ(〈x,y〉) of size O(e(1+o(1))L(φ)/ε3)
in time O(e(1+o(1))L(φ)/ε3) using space/pre-processing time
O(n · e(1+o(1))L(φ)/ε3).

Summary: Our work provides a general technique that

reduces the computational task of summing a pairwise

function over a large dataset to the task of constructing a

family of hash functions whose square root of the point-

wise supremum of collision probabilities approximates the

function in question.

E. Related work

Recent approaches on obtaining sub-linear algorithms

for pairwise summation are based on two different ideas:

Hashing-based Importance Sampling and Well-conditioned
Partitions .

1) Hashing-based Importance Sampling: Importance

Sampling aims to reduce the variance of uniform random

sampling by sampling points according to some biased

distribution that assigns greater probability to points with

higher value w(x, y). The challenge in our setting is that

such a distribution needs to be adaptive to the query y ∈ R
d

and to admit an efficient sampling algorithm at query

time. The approach of using hashing to perform impor-

tance sampling was introduced independently by Charikar-

Siminelakis [10] and Spring-Shrivastava [30]. Since then

these ideas have found many applications in machine learn-

ing and data analysis [31], [32], [33].

Hashing-Based-Estimators (HBE): In a previous work

of the authors [10], the general approach of using hashing

to create importance sampling schemes with provable low-

variance was introduced under the name of Hashing-Based-

Estimators. Given a single hashing scheme H with collision

probability p(x, y) = Ph∼H[h(x) = h(y)] an unbiased
estimator for Zw(y) is constructed through a two-step sam-

pling process that corresponds to the T = 1 case of Multi-

Resolution HBE.

Limitations of HBE: The approach of HBE hinges upon

constructing a single hashing scheme that has the property

p(x, y) = Θ(
√

w(x, y)). This can be quite difficult to

achieve with hash functions that can be efficiently stored

and evaluated. In fact, the authors were able to carry out

this approach for exactly three functions: the Gaussian

e−‖x−y‖22 , Exponential e−‖x−y‖2 , and Generalized t-Student

1/(1 + ‖x− y‖p2) kernels using Locality Sensitive Hashing
schemes of Andoni-Indyk [34] and Datar et al. [35]. This is

due the fact that these LSH schemes exhibited collision prob-

abilities that matched the aforementioned functions. Hence,

there are severe restrictions on the classes of functions for

which sub-linear algorithms can be obtained through HBE.
Comparison: In this work, we essentially remove the

main bottleneck of the Hashing-based approach and make

it more broadly applicable. This is done by using the

idea of Partitions of Unity via Multi-Resolution HBE, and

identifying key design principles (3) and (4) that provably

lead to an overall low-variance estimator. In doing so we

also provide a more general theorem for the variance of

scale-free estimators (Theorem 6).
2) Partition-based approaches and Smoothness: The idea

of partition-based approaches, is to efficiently partition

points in a small number of parts such that some simple

primitive (Random Sampling or Polynomial approximation)

can be used to accurately estimate the contribution of each

part. This approach in low dimensions, is known under the

names of Fast-Multipole Methods [36] or Well Separated

Pair Decomposition [37] and the complexity scales typically

as log(1/ε)O(d) [38] for additive error ε.
Due to the explosion in Machine learning applications the

problem was revisited in the high-dimensional case through

works on “Dual-tree Algorithms” [39], [40], [41] that aimed

to exploit an underlying low dimensional structure [42]

(when it exists). However, no theoretical results were known

for the general case.
“Non-smooth” functions: The lower bound presented

here, inspired by [43], shows that this is for good reason.

In high dimensions d = Ω(log n), even for simple functions

(e.g. Gaussian kernel), and under no restrictions on the rate

that the function changes we do not expect to be able to get

sub-linear algorithms barring major progress in complexity

theory (e.g. refuting SETH).
”Smooth” functions: In a recent work [44], it was

established that indeed in high dimensions quick variation

of the pairwise function is the only obstacle in obtaining

efficient algorithms. In particular, the authors of [44] in-

troduced the following notion of (C,L)-smoothness that

captures functions that vary polynomially fast with distance:

max

{
w(x, y)

w(x′, y)
,
w(x′, y)

w(x, y)

}
≤ C

{ ‖x− y‖
‖x′ − y‖ ,

‖x′ − y‖
‖x− y‖

}L

and showed that one can get poly(2L, log n, 1
ε )-time al-

gorithms giving exponential improvement over the linear

time algorithm for small values of L = o(log n). This was

achieved by showing that one can efficiently construct query-

dependent partitions (in time roughly 2O(L)) that are “good
on average” when random sampling is used to approximate

the contribution of each part. Interestingly, ideas related to
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hashing were instrumental to both constructing and analyz-

ing the partitions. The authors also provided an intimate

connection to the problem of Approximate Near Neighbor

Search (ANNS) by showing that for “radial” and smooth

functions one can solve the problem given oracle access to

an c-ANNS data structure using poly(cL, log n, 1
ε ) calls.

Comparison: The class of log-convex functions studied

in this paper does not satisfy (in general) this definition

of smoothness (exponential vs polynomial). Still, in order

to compare the two methods for x, y ∈ rSd−1, we may

use the function 1
(〈x,y〉+2r2)k

= 1
(3r2− 1

2‖x−y‖2)k that is both

(O(1), 2k)-smooth and log-convex with Lipschitz constant

k. For k = 1
2 log n our algorithms run in time n0.5+o(1)

(Corollary 1) whereas the approach in [44] offers no im-

provement over the linear algorithm.

3) Partition Function Estimation: For the special case

of log-linear models, there is a different approach that

relies on LSH to approximate the partition function [45],

[46]. In the heart of this approach are two reductions.

For α ≥ 1, the first one is reducing the problem of

obtaining a α-approximation to the inverse of the Parition

Function to obtaining an log(α)-additive approximation for

the problem of Maximum Inner Product Search (Gumbel

trick). The second one, is reducing the problem of MIPS

to the problem of (1 + γ(α))-approximate nearest neighbor

search (ANNS). Using the best known data-structure for

ANNS [47], this method requires worst case time/space

Ω(n1−O(γ(ε))), which is tight [48]. For vectors in rSd−1,

the dependence is γ(α) = O( logα
r2 ). Hence, at least for

adversarial data-sets this approach cannot bring forth signifi-

cant improvements unless r = O(
√
logα). Nevertheless, the

authors [46] have shown experimentally that their method is

still competitive compared to uniform sampling.

F. Outline of the paper

In the next section, we describe the basis of our approach

and introduce the main tools we need. In Section III, we

derive the key design principles for Multi-resolution HBE

and show how they yield provable bounds on the variance.

In Section IV, we use an idealized version of the collision

probabilities provided by Distance Sensitive Hashing to

approximate log-convex functions. In Section V, we finish

the construction of our estimators for the unit sphere and

prove our main result. In Sections VI and VIII, we show

respectively how to extend this construction to Euclidean

space and to estimate vector functions, whereas in Section

VII we give the proof of the lower bound. Finally, in Section

IX, we provide the proofs for some intermediate lemmas and

conclude with some future directions in Section X.

II. PRELIMINARIES

We introduce some parameters that capture the complexity

of a function for our purposes.

Definition 2. Let S ⊂ R, a function φ : S → R is called
Lipschitz with constant 0 ≤ L < ∞ if for all ρ1, ρ2 ∈ S,
|φ(ρ1) − φ(ρ2)| ≤ L|ρ1 − ρ2|. For given φ, we denote by
L(φ) the minimum such constant.

For a function φ : S → R, let also R(φ) := φmax − φmin

denote the range of φ.

Proposition 1. Given a, b ∈ R, we have L(aφ + b) =
|a|L(f), R(aφ + b) = |a|R(φ), and R(φ) ≤ L(φ) ·
supρ1,ρ2∈S |ρ1 − ρ2|.

Proof: If a > 0, R(aφ+b) = aφmax+b−(aφmin+b) =
aR(φ). If a < 0, R(aφ+ b) = aφmin + b− (aφmax + b) =
−aR(φ) = |a|R(φ). Finally, |aφ(x) + b − (aφ(y) + b)| ≤
|a||φ(x)− φ(y)| ≤ |a|L|x− y|. The last inequality follows

directly by Definition 2.

Throughout the paper for a query y ∈ R
d we use μ :=

μ(y) = Zw(y)/wmax and make the simplifying assumption

that floating point operations and evaluation of functions

take constant time. For log-convex functions, we assume

that L(φ) is greater than some small constant. Otherwise

O(1/ε2 log(1/χ)) uniform random samples are sufficient to

estimate any μ ∈ [e−R(φ), 1].

A. Basis of the approach

The starting point of our work is the method of unbiased
estimators. Assume that we would like to estimate a quantity

μ = μ(y) using access to samples from a distribution D,

such that for Ẑ ∼ D, E[Ẑ] = μ and Var[Ẑ] ≤ μ2VD(μ).
The quantity VD(μ) (depending possibly on μ) bounds

the relative variance RelVar[Ẑ] := Var[Ẑ]

(E[Ẑ])2
. For ε > 0,

we get through Chebyshev’s inequality that the average

of O(ε−2VD(μ)) samples are sufficient to get (1 ± ε)-
multiplicative approximation to μ with constant probability.

Moreover, using the median-of-means technique [49], we

can make the failure probability to be less than χ > 0 by

only increasing the number of samples by a O(log(1/χ))
factor.

V-bounded Estimators: The above discussion seems

to suggest that as long as one has an unbiased estimator

Ẑ ∼ D for μ and a bound VD(μ) on the relative variance,

one can accurately estimate μ. The caveat of course is that

in cases where VD is indeed a function of μ, setting the

requisite number of samples requires knowledge of μ. An

unbiased estimator for which μ2VD(μ) is increasing and

VD(μ) is decreasing is called V -bounded [10]. An estimator

has complexity C, if using space O(Cn) we can evaluate

it, i.e. sample from D, in O(C) time. A general way to

construct data-structures to solve estimation problems using

V -bounded estimators was recently proposed.

Theorem 3 ([10]). Given a V -bounded estimator of com-
plexity C and parameters ε, τ, χ ∈ (0, 1), there exists a data
structure that using space O( 1

ε2VD(τ)C log(1/χ) · n) can
provide a (1 ± ε) approximation to any μ ≥ τ in time
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O( 1
ε2 CVD(μ) log(1/χ)) with probability at least 1−χ. The

data-structure can also detect when μ < τ .

Our goal is to construct such estimators through hashing

and bound their complexity. The above theorem turns our

construction into an efficient data-structure for estimating
pairwise summations.

B. Analytical Tools

For a positive vector w ∈ R
n
++ of coefficients we define

the weighted �1 norm as ‖f‖w,1 :=
∑n

i=1 wi|fi|. The

following variational inequality was first proved in [10]

and bounds the maximum of a quadratic form over the

intersection of two weighted �1-balls. This is going to be the

key lemma that will allow us to obtain worst-case bounds

on the variance of our estimators.

Lemma 2 ([10]). Given positive vector w ∈ R
n, number

μ > 0, define f∗i := min{1, μ
wi
}. For any matrix A ∈ R

n×n

:

sup
‖f‖w,1≤μ,‖f‖1≤1

{f�Af} ≤ 4 sup
ij∈[n]

{
f∗i |Aij |f∗j

}
.

The following crucial lemma, that upper bounds the value

of a convex function away from the natural boundary, lies

in the core of our ability to use the family of functions (5)

to approximate convex functions of the inner product.

Lemma 3. Let φ : [−1, 1] → R be a non-constant, non-
positive, convex, differentiable function, then

2φ(ρ0) < −(1− ρ20)|φ
′
(ρ0)|, ∀ρ0 ∈ (−1, 1). (7)

Proof: Let g(ρ) = φ
′
(ρ0)(ρ−ρ0)+φ(ρ0) be the linear

approximation of φ around ρ0 ∈ (−1, 1), by convexity we

have that g(ρ) ≤ φ(ρ) ≤ 0. First let’s assume that g is

increasing, then:

g(1) ≤ 0⇒ φ′(ρ0) ≤ − φ(ρ0)

1− ρ0
(8)

⇒ 2φ(ρ0) + (1− ρ20)|φ
′
(ρ0)| ≤ 2φ(ρ0)(1−

1 + ρ0
2

) (9)

that is always negative. The last inequality follows from the

fact that a non-constant convex function attains its maximum

only at the boundary of a convex domain. Similarly, if g is

decreasing:

g(−1) ≤ 0⇒ φ
′
(ρ0) ≥

φ(ρ0)

1 + ρ0
(10)

⇒ 2φ(ρ0)− (1− ρ20)φ
′
(ρ0) ≤ 2φ(ρ0)

[
1− 1− ρ0

2

]
.

(11)

We also utilize a structural result for convex functions.

Theorem 4 ([50]). Given ε > 0, there exists an algorithm
that given a univariate convex function f on an interval [a, b]
constructs a piecewise linear convex function � such that

0 ≤ f(x) − �(x) ≤ ε for all x ∈ [a, b] using O(
√

(b−a)Δ
ε )

linear segments where Δ = f ′(b−)− f
′
(a+).

C. Hashing
Definition 3 (Asymmetric Hashing). Given a set of functions
H ⊂ {h : X → U} and a probability distribution ν on
H×H, we write (h, g) ∼ Hν to denote a random element
sampled from ν, and call Hν a hashing scheme on X .

Definition 4 (Hash Bucket). Given a finite set X ⊂ X and
an element (h, g) ∈ H×H, we define for all y ∈ X the hash
bucket of X with respect to y as HX(y) := {x ∈ X|h(x) =
g(y)}. For such a hash bucket we write X0 ∼ HX(y) to
denote the random variable X0 that is uniformly distributed
in HX(y) when the set is not empty and equal to ⊥ when
it is.

The collision probability of a hashing scheme Hν on X
is defined by pHν

(x, y) := P(h,g)∼Hν
[h(x) = g(y)] for

all x, y ∈ X . Whenever it is clear from the context we

will omit ν from Hν and X from HX(y). We also define

H⊗k to denote the hashing scheme resulting from stacking

k independent hash functions from H. For such hashing

schemes we have pH⊗k(x, y) = [pH(x, y)]k for x, y ∈ X .

D. Multi-resolution Hashing Based Estimators
We define next the class of estimators that we employ.

Definition 5. Given hashing schemes H1, . . . ,HT , with
collision probabilities p1, . . . , pT : X × X → [0, 1], and
weight functions w1, . . . , wT : X ×X → R+, we define for
a given set X ⊆ X , the Multi-Resolution Hashing-Based-
Estimator for all y ∈ X as:

ZT (y) :=
1

|X|

T∑
t=1

wt(Xt, y)

pt(Xt, y)
|Ht(y)|, (12)

where Xt ∼ Ht(y) = (Ht)X(y) and by setting wt(⊥, ·) =
pt(⊥, ·) = 1 for t ∈ [T ]. We denote such an estimator by
ZT ∼ HBEX({Ht, pt, wt}t∈[T ]).

Again we drop the dependence on X when it is clear from

the context. Manipulating conditional expectations gives us

the following basic properties for such estimators.

Lemma 4 (Moments). For any y ∈ X and x ∈ X let
T (x, y) =: {t ∈ [T ]|pt(x, y) > 0} and assume that
∀x ∈ X,

∑
t∈T (x,y) wt(x, y) = w(x, y) for a non-negative

function w : X × X → R+. Then,

E[ZT (y)] = μ :=
1

|X|
∑
x∈X

w(x, y), (13)

E[Z2
T (y)] ≤

1

|X|2
∑
x∈X

⎛
⎝ ∑

t∈T (x,y)

w2
t (x, y)

pt(x, y)

∑
z∈X

min{pt(z, y), pt(x, y)}
pt(x, y)

)
+ μ2. (14)
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The upper bound on the variance comes from

E
[
|Ht(y)|

∣∣x ∈ Ht(y)
]
≤∑

z∈X
min{pt(z,y),pt(x,y)}

pt(x,y)
.

E. Distance Sensitive Hashing on the unit Sphere

In this subsection, we describe the hashing scheme of

Aumuller et al. [27] (see also [51], [47]) and give slightly

different bounds on the collision probability that are more

appropriate for our purposes.

LSH for unit sphere: We define the hash family D+ =
D+(t, ζ) that takes as parameters real numbers t > 0, ζ ∈
(0, 1) and defines a pair of hash functions h+ : Sd−1 →
[m] ∪ {m+ 1} and g+ : Sd−1 → [m] ∪ {m+ 2}, where m
is given by

m(t, ζ) =

⌈√
2π(t+ 1) log(

2

ζ
)e

t2

2

⌉
. (15)

To define the functions h+, g+, we sample m normal random

vectors g1, . . . , gm
i.i.d.∼ N (0, Id) and use them to create

m+ 2 hash buckets through the mappings

h+(x) := min
(
{i
∣∣〈x, gi〉 ≥ t} ∪ {m+ 1}

)
, (16)

g+(x) := min
(
{i
∣∣〈x, gi〉 ≥ t} ∪ {m+ 2}

)
. (17)

The time and memory required for evaluating the function

are both bounded by O(dm) = O(dt log( 1ζ )e
t2

2 ). We also

define the hash family D−(t, ζ) that is identical to D+ except

from the fact that instead of using g+ we use:

g−(x) := min
(
{i
∣∣〈x, gi〉 ≥ −t} ∪ {m+ 2}

)
(18)

The need to use a pair of hash functions arises from the

fact that we treat the points in the dataset X and the queries

differently. We will write (h, g) ∼ Ds for s ∈ {+,−} to

indicate such pairs of hash functions. Due to isotropy of the

normal distribution the collision probability only depends on

〈x, y〉,
P(h,g)∼D± [h(y) = g(x)] = p±(〈x, y〉), (19)

and satisfies p+(ρ) = p−(−ρ) for all ρ ∈ [−1, 1]. Utilizing

results for Gaussian integrals [52], [53], we obtain the

following explicit bounds.

Lemma 5 (Pointwise bounds). The collision probability
p+(ρ) is decreasing and for δ > 0 satisfies:
• ∀|ρ| ≤ 1− δ,

√
2(1− ζ)δ2

148
√
π

e−
1−ρ
1+ρ

t2

2 ≤ p+(ρ) ≤
2

√
π
√
δ
e−

1−ρ
1+ρ

t2

2 ,

(20)

• ∀1− δ < ρ ≤ 1,

1− ζ

2
√
2π(1 +

√
2)

e−
δ

2−δ
t2

2 ≤ p+(ρ) ≤ 1, (21)

• ∀ − 1 ≤ ρ ≤ −1 + δ,

0 ≤ p+(ρ) ≤
2

√
π
√
δ
e−

2−δ
δ

t2

2 . (22)

The family D+ tends to map correlated points to the same

bucket, whereas D− tends to map anti-correlated points

together. Combining the two hash families, Aumuller et

al. [27] created a Distance Sensitive Hashing scheme.

DSH for unit sphere: Given real numbers t, γ > 0
and ζ ∈ (0, 1/2), we define the following hash fam-

ily Dγ(t, ζ) by sampling a (h+, g+) ∼ D+(t, ζ) and

(h−, g−) ∼ D−(γt, ζ). We create the hash functions by

hγ(x) := (h+(x), h−(x)) and gγ(x) := (g+(x), g−(x)) and

write (hγ , gγ) ∼ Dγ(t, ζ). Define the collision probability

pγ,t(ρ) := P(hγ ,gγ)∼Dγ(t,ζ)[hγ(x) = gγ(y)].

Corollary 3. Given constants γ, t > 0 and ζ ∈
(0, 1

2 ) define tγ = tmax{γ, 1} a pair of hash functions
(hγ , gγ) ∼ Dγ(t, ζ) can be evaluated using space and time
O(dtγ log(

1
ζ )e

t2γ/2). Furthermore, for δ > 0 let C1(δ) :=(
148
√
π√

2(1−ζ)δ2

)2

depending only on ζ, δ such that:

• ∀ |ρ| ≤ 1− δ,

1

C1
≤ pγ,t(ρ)

e−(
1−ρ
1+ρ+γ2 1+ρ

1−ρ )
t2

2

≤ C1, (23)

• ∀|ρ| > 1− δ

pγ,t(ρ) ≤
√
C1e

− 2−δ
δ

t2γ
2 . (24)

Proof: As we sample hash functions from the families

D+(t, ζ) and D−(γt, ζ) independently, the collision prob-

ability pγ,t(ρ) = p+(ρ)p−(ρ) is the product of the two

collision probabilities. Using Lemma 5 we get the required

statement with C1(δ) := max{(
√
2(1−ζ)δ2

148
√
π

)−2, ( 2√
π
√
δ
)2}.

III. VARIANCE OF MULTI-RESOLUTION HBE

In this section, we analyze the variance of Multi-

resolution HBE and identify two key design principles: the

p2-weighting scheme, and the scale-free property of HBE,

for which we give strong theoretical bounds on the variance.

Our first step is to obtain a more tractable bound on (14).

Lemma 6. Given an n point set X and an unbiased
ZT ∼ HBEX({Ht, pt, wt}t∈[T ]), there exists explicit A ∈
R

n×n and vector v ∈ R
n
++ such that: E[Z2

T (y)] ≤
sup‖f‖1≤1,‖f‖v,1≤μ{f�Af}+ μ2.

Proof: Fix x1, . . . , xn potential positions for the n
points in the dataset and let f1, . . . , fn ∈ [0, 1] be the

fraction of points that are assigned to each of this positions.

Moreover for any two positions xi, xj let Lij be the set of

hash functions such that pt(xi, y) < pt(xj , y) and Gij be

the complement. We get:∑
j∈[n]

min{pt(xj , y), pt(xi, y)}
pt(xi, y)

≤
∑
j∈[n]

nfj(I[t ∈ Lij ] + I[t ∈ Gij ]
pt(xj , y)

pt(xi, y)
). (25)
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Using (14), and (25), the lemma follows by setting νi =
w(xi, y) and

Aij =
∑
t∈Lij

w2
t (xi, y)

pt(xi, y)
+

∑
t∈Gij

w2
t (xi, y)

p2t (xi, y)
pt(xj , y). (26)

The main question that the above lemma leaves open, is

to how select the functions {wt} so that, the estimator is

still unbiased, but the variance is minimized.

A. The p2-weighting scheme for HBE

Our goal is to find a set of weights that are only a function

of the query y and any point x. To select such a weights we

first obtain the following upper bound on (26)

∑
t∈Lij

w2
t (xi, y)

pt(xi, y)
+
∑
t∈Gij

w2
t (xi, y)

p2t (xi, y)
pt(xj , y) ≤

∑
t∈[T ]

w2
t (xi, y)

p2t (xi, y)
.

(27)

The set of weights that minimize (27) and for which the HBE

is still unbiased are given by: w∗t (x, y) =
p2
t (x,y)

W (x,y)w(x, y),

where W (x, y) :=
∑

t∈T (x,y) p
2
t (x, y). In what follows we

denote any unbiased HBEX({Ht, wt, pt}t∈[T ]) with wt ∝
p2tw as HBE2

X({Ht, pt}t∈[T ]). We aim to quantify precisely

how well these estimators can perform by choosing {pt}
judiciously. To that end, using Lemmas 6 and 2, we obtain

the following upper bound on the variance.

Theorem 5. Given a set X ⊆ S ⊂ X , and ZT ∼
HBE2

X({Ht, pt}t∈[T ]) let p∗(x, y) := supt∈[T ]{pt(x, y)},
then for all y ∈ Y such that Z(y) = μ > 0 and
fi = f(xi) := min{1, μ

w(xi,y)
}, we get:

E[Z2
T (y)] ≤ μ2 + 4 sup

x1,x2∈S
{f2

1

w2(x1, y)

p∗(x1, y)
+ f2

2

w2(x2, y)

p∗(x2, y)

+f1f2(
w2(x1, y)

p2∗(x1, y)
+

w2(x2, y)

p2∗(x2, y)
)DT (x1, x2)},

(28)

where DT (x1, x2) := maxt∈[T ] min{pt(x1, y), pt(x2, y)} ≤
min{p∗(x1, y), p∗(x2, y)}.

Proof: Using Lemma 2 we get for all f ≥ 0 such thatt

‖f‖w,1 and ‖f‖1 ≤ 1:

f�Af ≤ 4 sup
ij

{
min{1, μ

w(xi, y)
}|Aij |min{1, μ

w(xj , y)
}
}
,

with Aij =
(∑

t∈Lij

w2
t (xi,y)

pt(xi,y)
+
∑

t∈Gij

w2
t (xi,y)

p2
t (xi,y)

pt(xj , y)
)

.

Setting fi = min{1, μ
w(xi,y)

} and Ãij = fi|Aij |fj ,

we get by the above sup‖f‖w,1≤μ,‖f‖1≤1{f�Af} ≤
4 supij

{
Ãii + Ãjj + Ãij + Ãji

}
. Let Vij be the expres-

sion in brackets. For the p2-weighting scheme wt(x, y) =

p2
t (x,y)

W (x,y)w(x, y) we get

Vij = f2
i

∑
t∈Lij

w2(xi, y)

W 2(xi, y)
p3t (xi, y) + f2

j

∑
t∈Gij

w2(xj , y)

W 2(xj , y)
p3t (xj , y)

+ fifj

⎛
⎝∑

t∈Lij

w2(xi, y)

W 2(xi, y)
p3t (xi, y)

+
∑
t∈Gij

w2(xi, y)

W 2(xi, y)
p2t (xi, y)pt(xj , y)

⎞
⎠

+ fjfi

⎛
⎝∑

t∈Lji

w2(xj , y)

W 2(xj , x)
p3t (xj , y)

+
∑
t∈Gji

w2(xj , y)

W 2(xj , y)
p2t (xj , y)pt(xi, y)

⎞
⎠ .

Using W (x, y) =
∑

t∈[T ] p
2
t (x, y) ≥ p2∗(x, y) and pt ≤

p∗(x, y) we

Vij ≤ f2
i

w2(xi, y)

p∗(xi, y)
+ f2

j

w2(xj , y)

p∗(xj , y)
+ fifj

(
w2(xi, y)

p2∗(xi, y)
+

w2(xj , y)

p2∗(xj , y)

)

·max

{
max
t∈Lij

pt(xi, y), max
t∈Gij

pt(xj , y)

}
.

Since Gji ⊆ Lij and vice versa, setting DT (xi, xj) :=
max

{
maxt∈Lij

pt(xi, y),maxt∈Lji
pt(xj , y)

}
we arrive at

the following bound on:

Vij ≤ f2
i

w2(xi, y)

p∗(xi, y)
+ f2

j

w2(xj , y)

p∗(xj , y)

+ fifj

(
w2(xi, y)

p2∗(xi, y)
+

w2(xj , y)

p2∗(xj , y)

)
DT (xi, xj).

To complete the proof we show the following:

DT (x1, x2) = max

{
max
t∈L12

pt(x1, y), max
t∈L21

pt(x2, y)

}
= max

t
min{pt(x1, y), pt(x2, y)}.

Noticing that maxt min{pt(x1, y), pt(x2, y)} ≤ p∗(x1, y)
and maxt min{pt(x1, y), pt(x2, y)} ≤ p∗(x2, y), we get the

statement.

B. Scale-free Multi-Resolution Hashing

The development above has revealed that the crucial

parameter for consideration of HBE2 is the pointwise max-
imum hashing probability p∗(x, y). Here, we analyze a

specific family of estimators where p∗(x, y) has polynomial

dependence with w(x, y).

Definition 6. Given M ≥ 1, β ∈ [0, 1] and function w,
an estimator ZT ∼ HBE2

X({Ht, pt}t∈[T ]) is called (β,M)-
scale free, if M−1 ·wβ(x, y) ≤ p∗(x, y) ≤M ·wβ(x, y) for
all x ∈ X and y ∈ X .
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Exploiting the scale-free property we get explicit bounds

on the variance.

Theorem 6 (Scale-free). Let ZT ∼ HBE2
X({Ht, pt}t∈[T ])

be a (β,M)-scale free estimator, then:

E[Z2
T (y)] ≤ Vβ,M (μ) := 8M3μ2

[
1

μβ
+

1

μ1−β

]
+ μ2.

Our theorem shows that the optimal worst-case variance is

achieved for β∗ = 1/2 and improves over uniform random

sampling by a factor of O( 1√
μ ). A theorem of similar nature

but with a more involved proof was given in [10] for β ∈
[ 12 , 1].

Proof: For i ∈ [1, 2] let wi := w(xi, y) and fi as in

Theorem 5. Using the scale-free property, Theorem 5 and

DT (x1, x2) ≤ min{p∗(x1, y), p∗(x2, y)} we arrive at:

E[Z2
T ] ≤ μ2 + 4M3 sup

x1,x2∈S

{
f2
1w

2−β
1 + f2

2w
2−β
2

+f1f2

(
w2−2β

1 + w2−2β
2

)
min{w1, w2}β

}
Due to the definition of fi the last expression is only a

function of w1, w2 and solving the optimization problem

boils down to a case analysis. We focus on the case w1 ≥ μ,

w2 ≤ μ, for which the expression in the parenthesis

becomes:

μ2w−β
1 + w1−2β

1 w2β
2 μ+ w2−β

2 wβ
1μ+ w2−β

2 (29)

The weights that maximize the expression are w∗1 = 1 and

w∗2 = μ. μ2+μ1+2β+μ1+β+μ2−β ≤ 2μ2[μ−β+μβ−1]. The

other cases w1, w2 ≤ μ and w1, w2 ≥ μ follow similarly.

IV. APPROXIMATION OF CONVEX FUNCTIONS

In this section, we show how to use the logarithm hγ,t(ρ),
given below, of the idealized hashing probability of the

Distance Sensitive Hashing scheme to construct a set of

functions whose supremum approximates any non-positive

convex Lipschitz function φ(ρ).

hγ,t(ρ) := −
(
1− ρ

1 + ρ
+ γ2 1 + ρ

1− ρ

)
t2

2
(30)

Some basic properties of this family of functions are given

below.

Proposition 2 (Concavity). For γ ≥ 0, the function hγ,t

attains its maximum at ρ∗(γ) = 1−γ
1+γ and

(a) If 0 ≤ γ ≤ 1, the function is concave for all ρ ∈
[ρ∗(γ

2
3 ), 1] and ρ∗(γ) ≥ ρ∗(γ

2
3 ) holds.

(b) If γ ≥ 1, the function is concave for all ρ ∈
[−1, ρ∗(γ 2

3 )] and ρ∗(γ) ≤ ρ∗(γ
2
3 ) holds.

The above properties will be used to show that, by

picking parameters γ0, t0 appropriately, if we approximate

the convex function φ locally at some point ρ0 ∈ [−1, 1] up

to first order (value and derivative), then hγ0,t0(ρ) ≤ φ(ρ)
for all ρ ∈ [−1, 1]. Thus even a single hash function is

sufficient to provide a lower bound. Most of the work is

devoted to show that we can get a good upper bound on φ
using a small number of functions to approximate φ locally

at a set of interpolation points ρ1, . . . , ρT . We define the

following parametrization. Given δ > 0 for |ρ0| ≤ 1− δ, let

γ2
0 :=

(
1− ρ0
1 + ρ0

)2
2φ(ρ0) + (1− ρ20)φ

′
(ρ0)

2φ(ρ0)− (1− ρ20)φ
′(ρ0)

(31)

t20 := −1

2

1 + ρ0
1− ρ0

[
2φ(ρ0)− (1− ρ20)φ

′
(ρ0)

]
(32)

and for fixed φ and ρ0 ∈ [−1 + δ, 1 − δ] define

hρ0
(ρ) := hγ0,t0(ρ) . This parametrization is well de-

fined due to Lemma 3. For ρ0 ∈ {−1,+1} (boundary)

we define h±1(ρ) := − 1∓ρ
1±ρ

t2±1

2 + φ(±1), where t2±1 =

4max{±φ′(±1), 0}. Under our assumptions φ ≤ 0, hence

the constant term above can be implemented by sub-

sampling the data set with probability eφ(±1). The following

bounds on the parameters γ0, t0 will be useful.

Corollary 4 (Complexity). Under the conditions of Lemma
3, we have the following bounds: t20 ≤ −2 1+ρ0

1−ρ0
φ(ρ0),

t20γ
2
0 ≤ −2 1−ρ0

1+ρ0
φ(ρ0), and t20 max{γ2

0 , 1} ≥ − 1+ρ2
0

1−ρ2
0
φ(ρ0).

Using this family of functions we show we can approxi-

mate a convex function arbitrarily well.

Theorem 7 (Approximation). Given ε > 0, for every
convex function φ there exists a set Tε(φ) ⊂ [−1, 1]
of size O

(√
L(φ)
ε log(L(φ)

ε )

)
such that 0 ≤ φ(ρ) −

supρ0∈Tε{hρ0
(ρ)} ≤ 2ε for all ρ ∈ [−1, 1].

A. Proof of Approximation Theorem

To prove the above theorem it is sufficient, due to The-

orem 4, to only show how to approximate linear functions.

For ρ away from {−1, 1}, this is done in Lemma 7, where

the interpolation points are given explicitly. Lemma 8 treats

the case near the boundary. By symmetry of the family of

hash functions we only need to show our result for [−1, 0].
Lemma 7. Let � be a linear function on [ρ−, ρ+] ⊆
[−1 + δ, 0]. Given ε > 0, let T = �

log(
1−|ρ+|
1−|ρ−| )

log(1+
√

ε
8|�min| )

� and

define ρi := ρ− + (1 − |ρ−|)
[(

1 +
√

ε
8R(�)

)i

− 1

]
for

i = 0, . . . , T . Then, for all ρ ∈ [ρ−, ρ+] there exists
i(ρ) ∈ [T ] ∪ {0} such that 0 ≤ �(ρ)− hρi(ρ)

(ρ) ≤ ε.

Lemma 8. Given ε > 0, let δ(ε) := min{1,
√

ε
4L(φ) ,

ε
L(φ)}.

Then 0 ≤ φ(ρ) − h−1(ρ) ≤ ε for all ρ in the interval
[−1,−1 + δ(ε)].

Proof: If φ
′
(−1) ≥ 0, then 0 ≤ φ(ρ)− h(ρ) = φ(ρ)−

φ(−1) ≤ L(ρ+ 1) ≤ Lδ. If φ
′
(−1) < 0 then by the Taylor
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remainder theorem and 0 ≤ δ ≤ 1 we get

0 ≤ φ(ρ)− h−1(ρ) ≤
1

2

2

(2− δ)3
4|φ′(−1)|δ2 ≤ 4Lδ2

Using the definition of δ(ε) we get the statement.
The previous lemmas provide only local approximation to

the function. Proposition 3 below is used to show that the

functions we construct are a lower bound to the piecewise

linear approximation on the whole interval ρ ∈ [−1, 1],
which in turn implies a lower bound for the function φ(ρ).

Proposition 3. Let φ : [−1, 1] → R be an non-decreasing
(resp non-increasing) convex function and g : [−1, 1] → R

a function that attains a global maximum at ρ∗, is concave
in [−1, ρ∗] (resp [ρ∗, 1]), and ∃ρ0 ∈ [−1, ρ∗] (resp. [ρ∗, 1])
such that φ′(ρ0) = g

′
(ρ0), then infρ∈[−1,1]{φ(ρ)− g(ρ)} =

φ(ρ0)− g(ρ0).

Proof of Theorem 7: Given ε > 0, let δ(ε) as in Lemma

8. We start by applying Theorem 4 separately on the function

φ restricted on the interval [−1 + δ, 0] and φ restricted on

[0, 1− δ] to get piecewise linear convex approximation � to

φ such that 0 ≤ φ(ρ) − �(ρ) ≤ ε for all |ρ| ≤ 1 − δ. Let

I− = {[ρ−j−1, ρ
−
j ]}j∈[J−] and I+ = {[ρ+j−1, ρ

+
j ]}j∈[J+] with

J± = O(
√

L(φ)
ε ) be the corresponding decompositions of

[−1 + δ, 0] and [0, 1 − δ] in contiguous subintervals where

the function � is linear. For each j ∈ [J±], let T ±j be the

set of points resulting by applying Lemma 7 to [ρ±j−1, ρ
±
j ]

and set T±j = |T ±j |. We define the following set of points

Tε(φ) :=
(
∪J+

j=1T +
j

)
∪
(
∪J−
j=1T −j

)
∪ {1,−1}. We have

| ∪J±
j=1 T ±j | ≤

J±∑
j=1

(1 + T±j ) ≤ J± +
log( 1δ )

log(1 +
√

ε
8R(φ) )

Using log(1 + x) ≥ 2
3x for x ∈ [0, 1] and R(φ) ≤ 2L(φ),

we get that |Tε(φ)| = O

(√
L(φ)
ε log(L(φ)

ε )

)
.

Let φ̂(ρ) := supρ0∈Tε(φ){hρ0
(ρ)}. Due to Propositions 2

and 3, we get φ(ρ) ≥ �(ρ) ≥ hρ0
(ρ) for all ρ and ρ0 ∈ Tε(φ)

and consequently φ(ρ) − φ̂(ρ) ≥ 0. Let T = |Tε(φ)| and

ρ1, . . . , ρT an increasing ordering of points in Tε(φ). We

have

sup
ρ∈[−1,1]

{φ(ρ)− φ̂(ρ)} = max
i∈[T−1]

sup
ρ∈[ρi,ρi+1]

{φ(ρ)− φ̂(ρ)}

≤ max
i∈[T−1]

sup
ρ∈[ρi,ρi+1]

{
φ(ρ)−max{hρi

(ρ), hρi+1
(ρ)}

}
which is bounded by 2ε due to Theorem 4 and Lemmas 8,

7.

V. SCALE-FREE MULTI-RESOLUTION HASHING FOR

LOG-CONVEX FUNCTIONS

In the previous section, we have shown that using the

idealized hashing probabilities one can approximate a log-

convex function up to arbitrary multiplicative accuracy. In

this section, we use this fact to construct explicit scale-free

Multi-resolution HBE, that constitutes the main ingredient

needed to prove our main result.

Theorem 8. Given a convex function φ, X ⊂ Sd−1 and
β ∈ [0, 1], there exist an explicit constant Mφ and (β,Mφ)-
scale free estimator ZT ∼ HBE2

X({Ht, pt}t∈[T ]) for Zφ(y)
with complexity O(d{L(φ)}5/6Mφ).

Proof: The main challenge in proving the result is to

trade-off complexity of evaluating the hashing scheme versus

the fidelity of the approximation of β[φ(〈x, y〉)− φmax] by

log p∗(x, y) that affects the variance. In order to do that, set

δ∗ = 1
2βL(φ) and for C∗ = C1(δ

∗) as in Corollary 3, define

k∗ =

⌈{
2β2

logC∗
L(φ)R(φ)

}1/3
⌉

(33)

We further define a “smoothed” version of φ as φ̃(ρ) :=
β(φ(ρ)−φmax)

k∗ . If L(φ̃) = β
k∗L(φ) < 2 then the variation in

the function R(φ̃) < 4 is too small and a constant number

of random samples suffice to answer any query. So, we

only deal with the interesting case when and L(φ̃) ≥ 2 and

R(φ̃) ≥ 4.

1) Approximation: let T1/2 = T1/2(φ̃) be the set of

interpolation points resulting from invoking Theorem

7 for φ̃ and ε = 1
2 . For this set of points we have∣∣∣supρ0∈T1/2{hρ0

(ρ)} − φ̃(ρ)
∣∣∣ ≤ 1.

2) Hashing scheme: let ρ1 < . . . < ρT be an increasing

enumeration of points in T1/2. For each t ∈ [T ], let

H̃t be the DSH family with collision probability p̃t
and parameters given by (31) and (32) (for φ̃ and ρt).
We raise each hashing scheme to the k∗-th power to

get Ht := H̃⊗k∗
t with collision probability pt := p̃k

∗
t .

Using Lemma 5 and Corollary 3 we show:

Lemma 9. For all ρ ∈ [−1, 1].∣∣∣ sup
t∈[T ]

{log pt(ρ)} − k∗ sup
t∈[T ]

{hρt
(ρ)}

∣∣∣ ≤ k∗ logC1

3) Scale-free property: by the previous two steps and

noting that logwβ(x, y) = k∗φ̃(〈x, y〉)∣∣∣ sup
t∈[T ]

{log pt(ρ)} − logw(x, y)β
∣∣∣ ≤ k∗ + k∗ logC1

≤ 2k∗ logC1 (34)

This shows that ZT ∼ HBE2
X({Ht, pt}t∈[T ]) is

(β,Mφ)-scale free with Mφ := e2k
∗ logC1 .

4) Complexity: To bound the complexity of the estimator

ZT ∼ HBE2
X({Ht, pt}t∈[T ]), we need by (15), (31),

(32) to bound t2γ0
= t20 max{γ2

0 , 1} for ρ0 ∈ T1/2(φ̃).
Using Corollary 4 we get

Lemma 10. If L(φ̃) ≥ 2 and R(φ̃) ≥ 1
2 , then ∀ρ0 ∈

T1/2(φ̃), t2γ0
≤ 8

(
β
k

)2

L(φ)R(φ).
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Hence, the complexity of evaluating the estimator

is O
(
|T 1

2 (φ̃)
|k∗d log( 1ζ )e

4( β
k∗ )

2
L(φ)R(φ)

)
, by Theo-

rem 7 and our choice (33), this is bounded by

O(dL(φ)5/6Mφ).

A. Main Result

Theorem 9. Given ε, τ ∈ (0, 1), for every convex function φ
with Lispchitz constant L(φ), there exists an explicit constant
Mφ and a data structure using space O(dL(φ)5/6M3

φ
1
ε2

1√
τ
·

n) and query time O(dL(φ)5/6M4
φ

1
ε2

1√
μ ) that for any y ∈

Sd−1 with constant probability can either produce an (1+ε)
approximation to μ = Zφ(y) ≥ τ or assert that μ < τ .

Proof: Follows by invoking Theorems 8, 6 and 3 for

β∗ = 1/2.

The explicit constant Mφ := e{2 log(C∗)
√

L(φ)R(φ)}2/3

(where R(φ) ≤ 2L(φ) is the range of φ and log(C∗) =
O(logL(φ))) is sub-exponential in L(φ) and is of similar

nature to the evaluation time of the Andoni-Indyk LSH [34]

and Spherical LSH [47]. It corresponds to the number of

randomly placed spherical caps of certain size that are

required to cover most of the unit sphere.

Proof of Theorem 1: The simplified version of our main

result follows by setting L ≤ (1 − δ) log n. We have that

μ ≥ e−2L(φ) ≥ n2(1−δ) ⇒ 1√
μ ≤ n1−δ and L(φ)5/6M4

φ =

eO(log2/3(n) log logn) = no(1).

Proof of Corollary 2: The corollary follows by in-

voking Theorem 1 with ε′ = ε3/2 to define a data struc-

ture that can be used to return a (0, ε, ε)-sample of size

O(e(1+o(1))L(φ)/ε′2). To see this observe that if for a random

variable Z with mean μ and relative variance bounded by

V , we average m = 6V/ε′2 independent samples then by

Chebyshev’s P[| 1m
∑m

i=1 Zi − μ| > εμ] ≤ V
ε2m ≤ ε

6 .

VI. REDUCTION FROM EUCLIDEAN SPACE TO UNIT

SPHERE

In order to extend our method from unit sphere to bounded

subsets of Euclidean space the main observation is that given

γ ∈ (0, 1], if for two sets Sx, Sy ⊂ R
d we have that

∀x1, x2 ∈ Sx, ‖x1‖/‖x2‖ ≤ (1 + γ) and ∀y2, y1 ∈ Sy ,

‖y1‖/‖y2‖ ≤ (1 + γ), then ∀x1, x2 ∈ Sx, ∀y1, y2 ∈ Sy

〈x1, y1〉 ≈ ‖x2‖‖y2‖
〈

x1

‖x1‖
,

y1
‖y1‖

〉
. (35)

This fact suggests the following strategy:

1) Partition the data set X = X1 � . . .�XK and the set

of possible queries Y = Y1 � . . . � YK in spherical
annuli {Xi}i∈[K] and {Yj}j∈[K].

2) For each pair (Xi, Yj) use the approximation (35) and

assume that for some ri and rj all points in Xi and Yj

approximately lie on riSd−1 and rjSd−1 respectively.

3) For each such pair construct a Multi-resolution HBE

to obtain a low-variance unbiased estimator of the

contribution of points in Xi for any possible value

of j ∈ [K] (annulus the query might belong to).

4) Sum up the contribution for all i ∈ [K] to obtain the

final estimator and bound its variance.

Our approach applies to the following general class of

functions:

w(x, y) = p0(‖x‖)eφ(〈x,y〉)+A(y), (36)

where φ is convex and Lipschitz, A(y) arbitrary1 and p0 :
R++ → R++ satisfies a notion of smoothness that is related

to Lipschitz continuity under the Hilbert metric dH(x, y) :=
| log(xy )| for x, y ∈ R+.

Definition 7. For H, δ ≥ 0 and γ ∈ (0, 1], a function
p0 : R++ → R++ is called (H, δ, γ)-log-Lipschitz, if for
all r1 ≥ r2 > 0 such that r1 ≤ (1 + γ)r2 we have
|log (p0(r1)/p0(r2))| ≤ H · γ + δ.

This notion of smoothness implies that the function

changes multiplicatively within each annulus.

Proposition 4. For γ ∈ (0, 1] and all r ∈ (0, R] the function
rqef(r) is (|q|, L(f)Rγ, γ)-log-Lipschitz.

Proof: Let r1, r2 ∈ (0, R] such that r2 ≤ r1 ≤ (1 +
γ)r2, then∣∣∣log (rq1ef(r1)/(rq2ef(r2)))∣∣∣ ≤ |q|| log(r1

r2
)|+ |f(r1)− f(r2)|

≤ |q|γ + L(f)Rγ.

Functions that are of the form (36) include the Gaus-

sian kernel e−‖x−y‖2 or the norm of the derivative of

the logistic log-likelihood ‖∇y log(1 + exp(〈x, y〉))‖ =
‖x‖(1+e−〈x,y〉)−1. For concreteness we are going to assume

that the function p0 is (q,HRγ, γ)-log-Lipshcitz for some

q,H > 0, as in Proposition 4, instead of using general δ
as in Definition 7. However, our result applies also to the

more general case. In the rest of this section, we carry out

the strategy outlined above.

A. Partitioning in Spherical Annuli

Given 0 < γ ≤ 1, a dataset X and a set of possible

queries Y , define

r0 := r0(X,Y ) = inf{‖z‖ : z ∈ X ∪ Y, z 	= 0} (37)

R := R(X,Y ) = sup {‖z‖ : z ∈ X ∪ Y } (38)

K := K(R/r0, γ) = �log(R/r0)/ log(1 + γ)� (39)

Further for i ∈ Z define ri := (1 + γ)i−1r0 and Si :=
Si(γ) = [ri, ri+1) and the corresponding sets:

Xi := {x ∈ X
∣∣‖x‖ ∈ Si}, i ∈ [K] (40)

1For any given query y, eA(y) is a constant factor that can be factored
out.
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For any point x ∈ R
d define i(x) := argmini∈Z{‖x‖ ∈ Si},

and its norm-truncated version:

x̃ := x̃γ =
x

‖x‖ri(x). (41)

For any point x 	= 0 let x̂ := x
‖x‖ . Note that x̂ = x̃

ri(x)
is also

the normalized version of x̃. The motivation for partitioning

the space in such annuli and projecting points on the inner

boundary of each spherical annulus is that in doing so the

ratio between the function w(x, y) and w(x̃, ỹ) does not

change too much.

Lemma 11. For points x, y ∈ R
d such that ‖x‖, ‖y‖ ∈

[r0, R] and γ ∈ (0, 1], let w(x, y) = p0(‖x‖)eφ(〈x,y〉) with
p0 being (q,HRγ, γ)-log-Lipshcitz and φ being L Lipschitz.
Then for M = exp

(
q +HR+ 3Lri(x)ri(y)

)
we have:

1

M
≤ w(x̃γ , ỹγ)

w(x, y)
≤M (42)

This suggests that if we pick γ appropriately we can

use the framework of Multi-resolution HBE to perform

importance sampling for each annulus separately and bound

the variance of the overall estimator.

Theorem 10. For a set X ⊂ R
d and a set of possible

queries Y define r0, R by (37), (38) respectively. For every
convex function φ : [−R2, R2] → R and a (q,HRγ, γ)-
log-Lipschitz function p0, let w(x, y) = p0(‖x‖)eφ(〈x,y〉).
There exists constants γ∗ ∈ (0, 1], K∗ and a distribution
D∗ such that for every y ∈ Y , the estimator Z(y) ∼ D∗
is unbiased E[Z(y)] = Zw(y) = μ, V -bounded with
V (μ) = 2e5/2(8M3

φK∗K∗ + 1)μ−1/2 and has complex-
ity O

(
d(K∗)2(L(φ)R2)5/6MφK∗K∗

)
where MφK∗K∗ =

exp(O
({

log(L(φ)(K∗)2)L(φ)(K∗)2
}2/3)

).

Invoking Theorem 3 with the estimators given by Theo-

rem 10 results in a data structure to approximate Zw(y) for

all y ∈ Y .

B. Proof of Theorem 10

Step 1: Our first concern is to pick a constant γ ∈ (0, 1]
so that the partitioning scheme in subsection VI-A is fully

defined. The constant on one hand affects the space/time

(complexity) it takes to evaluate our estimator and on the

other hand the variance through the approximation 〈x, y〉 ≈
〈x̃γ , ỹγ〉. To simplify things we pick γ so that the value of

w(x, y) changes at most by a factor of e when projecting

points on the inner boundary of the spherical annulus.

γ∗ = 1/max
{
1, q +HR+ 3LR2

}
(43)

For this choice by (39) and log(1+x) ≥ 2x
2+x we get K∗ =

� 32 log(R/r0)max{1, q +HR+ 3LR2}�.

Step 2: For all pairs i, j ∈ [K∗] we are going to

construct an unbiased estimator for:

Z(ij)
w (y) =

I{‖y‖ ∈ Sj}
nwmax

∑
x∈Xi

p0(‖x‖)eφ(〈x,y〉) (44)

It is easy to see that if ‖y‖ ∈ Sj then Zw(y) =∑
i∈[K∗] Z

(ij)
w (y). For a given pair i, j ∈ [K∗], we define

a modified version of φ. Let φij : [−1, 1] → R be the

function given by φij(ρ) = φ(rirjρ) for all ρ ∈ [−1, 1]
and set φ∗ij = sup

{
φij(ρ)

∣∣|ρ| ≤ 1
}

. We are going to use

these functions to perform “importance sampling” in each

spherical annulus Xi. To that end, we define for every pair

i, j ∈ [K∗]:

μij :=
1

|Xi|eφ
∗
ij

∑
x∈Xi

eφij(〈x̂,ŷ〉) ≤ 1 (45)

Aij :=
p0(ri)|Xi|eφ

∗
ij

nwmax
≤ 1 (46)

Using these two quantities we can upper and lower bound

the density Zw(y).

Lemma 12. For any y ∈ R
d such that ‖y‖ ∈ Sj we have

for μ = Zw(y) that

e−1 ·
∑

i∈[K∗]
Aijμij ≤ μ ≤ e ·

∑
i∈[K∗]

Aijμij (47)

Proof: We only show the lower bound. Using Lemma

11 and the definition of γ∗ we get:

μ =
1

nwmax

∑
i∈[K∗]

∑
x∈Xi

w(x, y)

≥ e−1 1

nwmax

∑
i∈[K∗]

∑
x∈Xi

w(x̃, ỹ)

= e−1
∑

i∈[K∗]

(
|Xi|p0(ri)eφ

∗
ij

nwmax

)
1

|Xi|eφ
∗
ij

∑
x∈Xi

eφij(〈x̂,ŷ〉)

The upper bound follows similarly.

Before constructing the estimators for Z
(ij)
w (y), we relate

the Lipschitz constants of φ and φij .

Proposition 5 (Rescaling). Given α > 0, and a convex
function φ : [−a, a] → R with constant L, the function
φ(αρ) is convex and αL-Lipschitz.

Proof: Convexity is trivial, and |φ(αρ1) − φ(αρ2)| ≤
L|αρ1 − αρ2| ≤ Lα|ρ1 − ρ2|.

Thus, under our assumption L(φij) ≤ Lrirj .

Step 3: For each i, j ∈ [K∗], define X̂i := {x̂ : x ∈
Xi}. Let {Hij

t , pijt }t∈Tij
be the hashing scheme resulting

from invoking Theorem 8 for φij , X̂i and β = 1/2.

• Preprocessing: for all t ∈ [Tij ], sample a hash function

hij
t ∼ Hij

t and evaluate it on X̂i creating hash table

Hij
t . Let Hij

t (z) ⊆ X̂i denote the hash bucket where

z ∈ Sd−1 maps to under hij
t .
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• Querying: given a query y (‖y‖ ∈ Sj), for all

t ∈ [Tij ] let X̂ij
t ∼ Hij

t (ŷ) be a random element

from Hij
t (ŷ) or ⊥ if Hij

t (ŷ) = ∅. Return Zij(y) =

1
nwmax

∑
t∈[Tij ]

{
pij
t (X̂

ij
t ,ŷ)

W ij(X̂ij
t ,ŷ)

|Hij
t (ŷ)|w(Xt, y)

}
.

where W ij(x, y) =
∑

t∈[Tij ]
(pijt (x, y))

2. For

‖y‖ ∈ Sj , we denote this estimator as Zij ∼ Dij(y).
The estimator is unbiased and has complexity

Cij bounded by O(dL(φij)
5/6Mφij

) where

Mφij
= exp(O

(
{log(L(φij))L(φij)}2/3

)
) and given

explicitly below (34) in the proof of Theorem 8. We next

bound its variance. Towards that end, we define a different

estimator:

Z̃ij =
1

nwmax

∑
t∈[Tij ]

⎧⎨
⎩

pijt

(
X̂ij

t , ŷ
)

W ij
(
X̂ij

t , ŷ
) |Hij

t (ŷ)|w(X̃t, ỹ)

⎫⎬
⎭

=

(
p0(ri)|Xi|eφ

∗
ij

nwmax

)
1

|Xi|eφ
∗
ij

·
∑

t∈[Tij ]

⎧⎨
⎩

pijt

(
X̂ij

t , ŷ
)

W ij
(
X̂ij

t , ŷ
) |Hij

t (ŷ)|eφij(〈x̂,ŷ〉)

⎫⎬
⎭ .

For this estimator we get by (45) and (46) that

E[Z̃ij ] = Aijμij . Furthermore, by our construction of

{Hij
t , pijt }t∈[Tij ] and Theorem 6 for β = 1/2 it follows

that:

E[Z̃2
ij ] ≤ A2

ij ·
(
16M3

φij
+ 1

)
μ
3/2
ij (48)

Finally, due to Lemma 11 we have that Zij ≤ eZ̃ij .
Step 4: We are now in position to define the final es-

timator and bound its variance. For ‖y‖ ∈ Sj and i ∈ [K∗],
let Zij ∼ Dij as before, and define:

Zj(y) =
∑

i∈[K∗]
Zij(y) (49)

The estimator is unbiased E[Zj(y)] = Zw(y) and the

variance is bounded by

E[Z2
j ] ≤ (E[Zj(y)])

2 +
∑

i∈[K∗]
E[Z2

ij ]

≤ μ2 + e2
∑

i∈[K∗]
(16M3

φij
+ 1)A2

ijμ
3/2
ij

≤ μ2 + e2
∑

i∈[K∗]
(16M3

φij
+ 1)A

1/2
ij e3/2(e−1Aijμij)

3/2

≤ μ2 + e5/2 max
i∈[K∗]

{16M3
φij

+ 1}(e−1
∑

i∈[K∗]
Aijμij)

3/2

≤ μ2 + e5/2(16M3
φK∗K∗ + 1)μ3/2

where in the penultimate inequality we used Aij ≤ 1,

Hölder’s inequality and super-additivity of g(x) := x3/2.

The final steps follows from Lemma 12 and monotonic-

ity of g(x). This shows that our estimator is V -bounded

with V (μ) = 2e5/2(8M3
φK∗K∗ + 1)μ−1/2 and com-

plexity O
(
d(K∗)2(LR2)5/6M4

φK∗K∗

)
with MφK∗K∗ =

exp(O
({

log(L(K∗)2)L(K∗)2
}2/3)

).

C. Proof of Lemma 11

We first show that for all x1, x2 ∈ Si(γ), y1, y2 ∈ Sj(γ),
and γ ≤ 1 we have:∣∣‖x1‖ − ‖x2‖

∣∣ ≤ riγ, (50)∣∣‖x1‖‖y1‖ − ‖x2‖‖y2‖
∣∣ ≤ 3rirjγ. (51)

To see the first part, assume without loss of generality that

‖x1‖ ≥ ‖x2‖ and ‖y1‖ ≥ ‖y2‖. We have for z ∈ {x, y}:

‖z1‖ − ‖z2‖ ≤ (1 + γ)i(z1)r0 − (1 + γ)i(z2)−1r0 ≤ (1 +
γ)i(z1)−1r0γ. For the second part, we used that γ ≤ 1.

‖y1‖‖x1‖ − ‖y2‖‖x2‖ ≤ (1 + γ)i(y1)+i(x1)r20

− (1 + γ)i(y2)+i(x2)−2r20

≤ (1 + γ)i(y1)+i(x1)−2r20

·
(
(1 + γ)2 − 1

)
≤ 3rirjγ.

Using (50), (51) and the fact that 〈x, y〉 = ‖x‖‖y‖〈x̂, ŷ〉 we

get:

φ(〈x̃, ỹ〉) ≥ φ(〈x, y〉)− L(φ)(‖x‖‖y‖ − ‖x̃‖‖ỹ‖)|〈x̂, ŷ〉|
≥ φ(〈x, y〉)− 3L(φ)ri(x)ri(y)γ,

and

φ(〈x̃, ỹ〉) ≤ φ(〈x, y〉) + L(φ)(‖x‖‖y‖ − ‖x̃‖‖ỹ‖)|〈x̂, ŷ〉|
≤ φ(〈x, y〉) + 3L(φ)ri(x)ri(y)γ.

Putting these two together and by the fact that p0 is

(q,HRγ, γ)-log-Lipschitz the statement follows.

VII. LOWER BOUND UNDER SETH OR OVC

Conjecture 3 (Strong Exponential Time Hypothesis

(SETH)[22]). For any ε > 0, there exists k = k(ε) such that
k-SAT on n variables cannot be solved in time O(2(1−ε)n).

A conjecture that is implied by SETH [23], [24], concerns

the complexity of finding a pair of orthogonal vectors

amongst two set of binary vectors.

Conjecture 4 (Orthogonal Vectors Conjecture (OVC)). For
every δ > 0 there exists c = c(δ) such that given two sets
A,B ⊂ {0, 1}m of cardinality N , where m = c logN ,
deciding if there is a pair (a, b) ∈ A×B such that a�b = 0
cannot be solved in time O(N2−δ).

These popular conjectures have been the base of a flurry

of quadratic hardness results in the past years. The basis of

our hardness result is the following recent theorem by Aviad

Rubinstein [25]. Let d2(A,B) := min
a∈A

min
b∈B

{‖a−b‖22} be the

minimum squared distance between A,B ⊂ R
d.
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Theorem 11 (Theorem 4.1[25]). Unless SETH and OVC are
false, the following holds: for every δ > 0 and ε ∈ (0, e−1)

there exist constants c(δ) > 0, T (ε) = O(
log 1

ε

log log 1
ε

) and T ′ =

2O(T log T ) = O( 1ε ) such that given two sets A,B ⊂ {0, 1}d
of N vectors with
• Dimension: d ≥ 2mT ′, with m = c(δ) logN
• Sparisty: for all x ∈ A ∪B, ‖x‖22 = mT ′

there is no algorithm that decides whether

d2(A,B)

⎧⎨
⎩
= m(T ′ − 1)

or
≥ mT ′

in time N
2−O

(
δ+c(δ)

log2 log 1
ε

log 1
ε

)
.

Our proof will proceed by translating hardness for the

problem of Approximate Bi-chromatic Closest pair to our

setting. This connection was first established in [43] to

obtain quadratic hardness results for Kernel Methods and

Neural Networks.

A. Proof of Theorem 2

Proof: The proof proceeds by showing how to reduce an

instance (A,B) of the approximate Bi-chromatic closest pair

in Theorem 11 to an instance (X,Y ) ⊂ Sd−1×Sd−1 of pro-

ducing a α approximation to: 1
N2

∑
x∈X

∑
y∈Y eL·(〈x,y〉−1).

Setting ε = e−eδ/c(δ) ∈ (0, e−1) in Theorem 11: We

start by finding a constant ε ∈ (0, e−1) such that:

c(δ)
log2 log 1

ε

log 1
ε

≤ δ (52)

⇔ log2 log
1

ε
≤
(

δ

c(δ)

)
log

1

ε
(53)

⇔ ζ2 ≤
(

δ

c(δ)

)
eζ (54)

where ζ = log log 1
ε > 0. Setting ζ = δ

c(δ) > 0 we get

eζ ≥ 1 + ζ ≥ ζ > 0. For this choice we have:

ε = e−eζ < e−1 ⇔ eζ > 1 (55)

Hence, we may pick ε = e−e
δ

c(δ)
for which T̃ (δ) =

O( e
δ/c(δ)

δ/c(δ) ) and T̃ ′(δ) = O(ee
δ/c(δ)

). Theorem 11 then shows

that there is no N2−O(δ) algorithm to decide between:

d2(A,B)

⎧⎨
⎩
= m(T̃ ′(δ)− 1)

or

≥ mT̃ ′(δ)
.

Translating distance bounds to Density bounds for
Gaussian Kernel: We next show that distinguishing between

the two cases for d2(A,B) distinguishes between two values

for the average of the Gaussian kernel between points in the

two datasets. In the case where d2(A,B) ≥ mT̃
′
(δ), we

have that:

1

N2

∑
a∈A

∑
b∈B

e−β‖a−b‖2 ≤ e−βmT̃
′
(δ) (56)

In the other case, where d2(A,B) = m(T̃ ′(δ)− 1) we get:

1

N2

∑
a∈A

∑
b∈B

e−β‖a−b‖2 ≥ 1

N2
e−βd2(A,B)

= e−βmT̃
′
(δ) · e−2 logN+βm

So as long as e−2 logN+βm > α ⇔ β > 2 logN+logα
m

any algorithm that can produce a α-approximation to
1

N2

∑
a∈A

∑
a∈B e−β‖a−b‖2 distinguishes between the two

cases as such it cannot run in time N2−O(δ).

Gaussian Kernel to Log-convex (linear) and Bound on
Lipschitz Constant: To complete the proof we observe that:

β‖a− b‖2 = −β2mT̃ ′(〈 a√
mT̃ ′

,
b√
mT̃ ′

− 1〉)

= L(〈 a√
mT̃ ′

,
b√
mT̃ ′

〉 − 1)

with L := 2βmT̃ ′. Setting Y := {a/
√
mT̃ ′ : a ∈ A} and

X := {b/
√
mT̃ ′ : b ∈ B} we have that:

e−β‖a−b‖2 = eL(〈y,x〉−1)

and X,Y ⊂ Sd−1. Hence, substituting the lower bound on

β we get that for:

L > 2T̃ ′(δ)(2 logN+logα) =

{
C(δ)

(
1 +

logα

2 logN

)}
·logN

where C(δ) = O

(
ee

δ
c(δ)

)
there is no algorithm that

approximates the sum in time less than N2−O(δ).

VIII. IMPORTANCE SAMPLING FOR VECTOR FUNCTIONS

In this section, we show that for a class of unbiased

estimators, that result from jointly sampling a random weight

function U : X ∪ {⊥} → R+ and a random point Y ∈ X ∪
{⊥} according to some balanced distribution, the variance

of an unbiased estimator for the sum of vectors is bounded

by that of the same distribution applied for the vector norms

(Corollary 5). The class of such estimators include trivially

classical importance sampling as well as Hashing-Based-

Estimators (Lemma 14). Using this connection we will show

how to estimate sum of gradients when the gradient norms

are log-convex functions of the inner product.

A. Randomly weighted estimators via Balanced distributions

We start by defining a class of estimators that work by

sampling a point Y from X ∪ {⊥} and a, possibly random

and correlated with Y , function U : X ∪ {⊥} → R+ with

support possibly on a subset S of X .

Definition 8 (Balanced distribution). Given a finite set S ⊂
X , let D be a distribution of a pair of random variables
(U, Y ) ∼ D where Y ∈ X ∪ {⊥} and U : X ∪ {⊥} → R+.
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A distribution is called S-balanced if U(Sc ∪ {⊥}) = {0},
and E[U(x)|Y = x] = 1

P[Y=x] ∈ (0,∞) for all x ∈ S.

Classical importance sampling schemes correspond to the

case where U(x) = 1
P[Y=x] is a deterministic function of x.

We show next that any such distribution, even with random

U , can be used to create unbiased estimators for the sum of

a function on S.

Lemma 13 (Moments). Let S ⊆ X , f : X ∪ {⊥} → R

a bounded function, and D an S-balanced distribution. For
(U, Y ) ∼ D it holds that
• E[U(Y )f(Y )] =

∑
x∈S f(x), and

• E[{U(Y )f(Y )}2] = ∑
x∈S

E[U2(x)|Y=x]
E[U(x)|Y=x] f

2(x).

Proof: Using the law of total probability we have:

E[U(Y )f(Y )] =
∑
x∈S

E[U(Y )f(Y )|Y = x]P[Y = x]

=
∑
x∈S

f(x)E[U(x)|Y = x]P[Y = x]

=
∑
x∈S

f(x).

We proceed similarly:

E[{U(Y )f(Y )}2] =
∑
x∈S

E[{U(Y )f(Y )}2|Y = x]P[Y = x]

=
∑
x∈S

E[U2(x)|Y = x]P[Y = x]f2(x)

=
∑
x∈S

E[U2(x)|Y = x]

E[U(x)|Y = x]
f2(x).

Finally, we show that for vector functions the variance

is controlled by the variance of the corresponding estimator

for the sum of the gradient norms.

Corollary 5 (Vectors to Norms). Let g : X ∪ {⊥} → R
d a

bounded function, and S ⊆ X . For any S-balanced distri-
bution (U, Y ) ∼ D, we have E[U(Y )g(Y )] =

∑
x∈S g(x)

and

E[‖U(Y )g(Y )‖2] =
∑
x∈S

E[U2(x)|Y = x]

E[U(x)|Y = x]
‖g(x)‖2. (57)

Proof: The first equation follows by applying Lemma

13 for i ∈ [d], gi : X → R and linearity of expectation,

while the second part by applying the lemma for f(x) =
‖g(x)‖.

B. Hashing-Based-Estimators

We next show that Hashing-Based-Estimators induce in-

deed balanced distributions for the support of the collision

probability on X for a given query y.

Lemma 14 (HBE). Given a set X ⊂ X , and a hashing
scheme H with collision probabilities p : X ∪ {⊥} × X →

[0, 1], let (h, g) ∼ H. For any given y ∈ X , let Y ∼ HX(y)
and S(y) := {x ∈ X|p(x, y) > 0}, the distribution of(
|H(y)|
p(Y,y) , Y

)
is S(y)-balanced.

Proof: For all x ∈ S(y),

E

[ |H(y)|
p(Y, y)

∣∣∣∣Y = x

]
=

E

[
|H(y)|
p(x,y) I[Y = x]

]
P[Y = x]

=
E
[
|H(y)|I[Y = x]I[x ∈ H(y)]

]
p(x, y)P[Y = x]

=
E
[
|H(y)|I[Y = x]

∣∣x ∈ H(y)
]
p(x, y)

p(x, y)P[Y = x]

=
1

P[Y = x]
∈ (0,∞).

C. Multi-resolution HBE

To cover Multi-resolution HBE, or their Multi-scale exten-

sion described in Section VI, we show that adding together

randomly weighted estimators, resulting from balanced dis-

tributions that are pairwise independent, produces the results

we expect.

Corollary 6. Given X ⊂ X , y ∈ X , let (Ut, Yt) ∼ Dt(y)
for t ∈ [T ] being pairwise independent and Dt(y) t being
St(y)-balanced. Let T (x, y) = {t ∈ [T ]|x ∈ St(y)}. For a
collection of bounded functions {ft : X ∪{⊥} → R

d}t∈[T ],
we have:

E[
∑
t∈[T ]

Ut(Yt)ft(Yt)] =
∑
x∈X

∑
t∈T (x,y)

ft(x) (58)

and

E[‖
∑
t∈[T ]

Ut(Yt)ft(Yt)‖2] ≤
∑
t∈[T ]

E[{Ut(Yt)‖ft(Yt)‖}2]

+ E[
∑
t∈[T ]

Ut(Yt)‖ft(Yt)‖]2.

(59)

Proof: The first part follows easily due to linearity

and Lemma 13, while the second one follows from triangle

inequality.

This shows that if Multi-resolution HBE has small vari-

ance in estimating the sum of the vector norms, it can

be used to estimate the sum of the vectors with the same

variance up to constants.

Corollary 7. Let g : Sd−1 × Sd−1 → R
m be a

vector function such that ‖g(x, y)‖2 = eφ(〈x,y〉) for
some convex function φ. Given ε, τ ∈ (0, 1), there
exists an explicit constant Mφ and a data structure
using space O

(
dL(φ)5/6M3

φ
1
ε2

1√
τ
· n
)

and query time
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O(dL(φ)5/6M4
φ

1
ε2

1√
μ ) that for any y ∈ Sd−1 with constant

probability can either produce a a vector G such that∥∥∥∥∥G− 1

neφmax

∑
x∈X

g(x, y)

∥∥∥∥∥
2

≤ εμ (60)

if μ := 1
neφmax

∑
x∈X ‖g(x, y)‖2 ≥ τ or assert that μ < τ .

Proof: We first call Theorem 9 to construct an Multi-

resolution HBE for the problem of approximating Zφ(y),
where φ = log(‖g‖2). By Corollary 6, this shows that we

can turn our MR-HBE estimator to an unbiased estimator

for
∑

x∈X g(x, y) and that the variance is bounded by that

of estimating Zφ(y).

IX. REMAINING PROOFS

This section contains proofs of lemmas and theorems

stated in the main paper as well as various auxiliary results.

A. Proof of Corollary 1

Under the condition r ≤ 1
2

√
log n we have that the

Lipschitz constants of the first four functions in Table I are

bounded by L(φ) ≤ 2r2 ≤ 1
2 log n. This is also true for the

last function under the condition 0 ≤ k ≤ c−1
2 log n. The

result follows from μ ∈ [e−2L(φ), 1] ⊆ [ 1n , 1].

B. Moments of Multi-resolution HBE

Proof of Lemma 4: We start by computing the first

moment:

E[ZT (y)] =
1

|X|
∑
t∈[T ]

E

[
wt(Xt, y)

pt(Xt, y)
|Ht(y)|

]
(61)

=
1

|X|
∑
x∈X

∑
t∈T (x,y)

wt(x, y) (62)

=
1

|X|
∑
x∈X

w(x, y) (63)

The second moment is given by

E[Z2
T ] =

∑
t∈[T ]

∑
t′∈[T ]

E[
wt(Xt, y)|Ht(y)|
pt(Xt, x)|X|

wt′ (Xt′ , x)|Ht′ (y)|
pt′ (Xt′ , x)|X|

]

≤ 1

|X|2
∑
t∈[T ]

E

[
w2

t (Xt, y)

p2t (Xt, y)
|Ht(y)|2

]
+ μ2

The proof is concluded by E

[
w2

t (Xt,y)

p2
t (Xt,y)

|Ht(y)|2
]

=∑
x∈X

w2
t (x,y)

pt(x,y)
E [|Ht(y)||x ∈ Ht(y)] ≤∑

x∈X
w2

t (x,y)
pt(x,y)

∑
z∈X

min{pt(z,y),pt(x,y)}
pt(x,y)

.

C. Distance Sensitive Hashing on the unit sphere

To analyze the collision probability of the DSH scheme

we closely follow the proof of Aumuller et al. [27] with

the difference that we use Proposition 7 to bound bi-variate

Gaussian integrals.

Proposition 6 (Proposition 3 [52]). Let X1 ∼ N (0, 1) and
t > 0,

1√
2π

1

t+ 1
e−

t2

2 ≤ P[X1 ≥ t] ≤ 1√
2π

1

t
e−

t2

2 (64)

Proposition 7 (Propositions 3.1 & 3.2 [53]). Let

(X1, X2) ∼ N (0,

[
1 ρ
ρ 1

]
) be two ρ-correlated standard

normal random variables. For all ρ < 1 and t > 0:

P[X1 > t ∧X2 > t] ≥ 4

(1 +
√
1 + 4 (1+ρ)2

min(1−ρ,1+ρ) )
2

·min(1− ρ, 1 + ρ)

(1 + ρ)2
1 + |ρ|

2π
√
1− ρ2

e−
2

1+ρ
t2

2 , (65)

and

P[X1 > t ∧X2 > t] ≤ (1 + ρ)
3
2

2π
√
1− ρ

e−
2

1+ρ
t2

2 . (66)

We first simplify the sub-exponential terms appearing

on the above inequalities using our assumption that |ρ| <
1− δ. Since the function

(1+ρ)
3
2

2π
√
1−ρ

is increasing in ρ we get

(1+ρ)
3
2

2π
√
1−ρ

≤
√
2

π
√
δ

. Additionally, we have that
min(1−ρ,1+ρ)

(1+ρ)2 ≥
δ
4 and (a + b)2 ≤ 2(a2 + b2) for all a, b ∈ R. Using the

above bounds we get:

4

(1 +
√
1 + 4 (1+ρ)2

min(1−ρ,1+ρ) )
2

min(1− ρ, 1 + ρ)

(1 + ρ)2
1 + |ρ|

2π
√
1− ρ2

≥ 2

2 + 16
δ

δ

4

1

2π
≥ δ2

8 + δ

1

8π
.

We are now in a position ot bound the collision probability.

Proof of Lemma 5: The collision probability can be

written as:

P[h(x) = g(y)] = P[h(x) ≤ m ∧ g(y) ≤ m]Pt(x, y) (67)

where Pt(x, y) := P[〈x,g〉≥t∧〈y,g〉≥t]
P[〈x,g〉≥t∨〈y,g〉≥t] . We are going to

obtain upper and lower bounds for both terms. We start

first with the second term. An easy calculation shows that

the vector (X1, X2) := (〈x, g〉, 〈y, g〉) ∼ N (0,

[
1 ρ
ρ 1

]
)

follows a bivariate normal distribution with unit variances

and correlation ρ = 〈x, y〉. Hence, P[〈x, g ≥ t〉] = P[〈y, g ≥
t〉] = P[X1 ≥ t] and P[〈x, g〉 ≥ t ∧ 〈y, g〉 ≥ t] = P[X1 ≥
t ∧ X2 ≥ t]. Using monotonicity and union bound we get

that:

1

2

P[X1 ≥ t ∧X2 ≥ t]

P[X1 ≥ t]
≤ Pt(x, y) ≤

P[X1 ≥ t ∧X2 ≥ t]

P[X1 ≥ t]
.

(68)
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Using (68) and the estimates from Propositions 6, 7
√
2δ2

148
√
π
e−

1−ρ
1+ρ

t2

2 ≤ Pt(x, y) ≤
2

√
π
√
δ
e−

1−ρ
1+ρ

t2

2 (69)

Next, we bound the remaining term as

P[h(x) ≤ m ∧ g(y) ≤ m] ≥ 1− P[h(x) > m ∧ g(y) > m]

≥ 1− 2(1− P[X1 ≥ t])m

≥ 1− 2e−P[X1≥t]m

≥ 1− ζ. (70)

where in the last step we used the definition of m(t, ζ) and

the lower bound from (64). Using the last inequality along

with (69) and (67), we arrive at:
√
2(1− ζ)δ2

148
√
π

e−
1−ρ
1+ρ

t2

2 ≤ p+(ρ) ≤
2

√
π
√
δ
e−

1−ρ
1+ρ

t2

2 . (71)

Next, we treat the case where 1− δ < ρ ≤ 1, let Z1, Z2 be

standard normal random variables then:

P[Z1 ≥ t ∧ ρZ1 +
√
1− ρ2Z2 ≥ t]

P[Z1 ≥ t ∨ ρZ1 +
√
1− ρ2Z2 ≥ t]

≥ 1

2
P[Z2 ≥

√
1− ρ

1 + ρ
t],

and

P[Z2 ≥
√

1− ρ

1 + ρ
t] ≥ 1√

2π

√
1 + ρ√

1− ρ+
√
1 + ρ

e−
1−ρ
1+ρ

t2

2

≥ 1√
2π

1

1 +
√
2
e−

δ
2−δ

t2

2 .

Lastly, we show an upper bound on p+(ρ) for −1 ≤ ρ ≤
−1 + δ, we have that:

p+(ρ) ≤
P[Z1 ≥ t ∧ ρZ1 +

√
1− ρ2Z2 ≥ t]

P[Z1 ≥ t ∨ ρZ1 +
√
1− ρ2Z2 ≥ t]

≤ 1

P[Z1 ≥ t]

∫ ∞

t

P[Z2 ≥
t− ρu√
1− ρ2

]
1√
2π

e−
u2

2 du

≤ 1

P[Z1 ≥ t]

∫ ∞

t

P[Z2 ≥
t− (−1 + δ)u√

1(−1 + δ)2
]
e−

u2

2

√
2π

du

≤ 2
√
π
√
δ
e−

2
δ

t2

2 .

This concludes the proof.

D. Idealized Hashing

We consider the idealized hashing probability hγ,t(ρ) =

−
(

1−ρ
1+ρ + γ2 1+ρ

1−ρ

)
t2

2 . Its first and second derivatives are

given by:

h
′
γ,t(ρ) =

(
1

(1 + ρ)2
− γ2 1

(1− ρ)2

)
t2, (72)

h
′′
γ,t(ρ) = −2

(
1

(1 + ρ)3
− γ2 1

(1− ρ)3

)
t2. (73)

Proof of Proposition 2: Using (72), we see that the

derivative becomes zero only at ρ∗(γ) = 1−γ
1+γ and that

the second derivative becomes zero at ρ∗∗(γ) = 1−γ
2
3

1+γ
2
3

.

Let g(x) = 1−x
1+x , the function hγ,t is concave for all

ρ ≥ ρ∗∗(γ) = g(γ
2
3 ). Since g is decreasing for all ρ ≥ −1,

we have:

γ ≤ 1⇒ γ ≤ γ
2
3 ⇒ g(γ) ≥ g(γ

2
3 )⇔ ρ∗(γ) ≥ ρ∗∗(γ),

γ ≥ 1⇒ γ ≥ γ
2
3 ⇒ g(γ) ≤ g(γ

2
3 )⇔ ρ∗(γ) ≤ ρ∗∗(γ).

Proof of Proposition 3: We only show the case where φ
is non-decreasing the other case follows similarly. We have

that g(ρ) ≤ g(ρ∗) for all ρ ∈ [−1, 1]. By concavity, we

know that:

g(ρ) ≤ g(ρ0) + g
′
(ρ0)(ρ− ρ0), ∀ρ ∈ [−1, ρ∗]

Therefore, we have that for all ρ ∈ [1, ρ∗]

φ(ρ)− g(ρ) ≥ φ(ρ)− g(ρ0)− g
′
(ρ0)(ρ− ρ0)

≥ φ
′
(ρ0)− g(ρ0) + [φ

′
(ρ0)− g

′
(ρ0)](ρ− ρ0)

= φ(ρ0)− g(ρ0)

Finally, for ρ ∈ [ρ∗, 1] we have by monotonicity φ(ρ) −
g(ρ) ≥ φ(ρ∗)− g(ρ∗) ≥ φ(ρ0)− g(ρ0).

Proof of Corollary 4: Using the fact that a + b ≤
2max{a, b} and estimates from Lemma 3, we get that

t20 = −1

2

1 + ρ0
1− ρ0

(2φ(ρ0)− (1− ρ20)φ
′
(ρ0))

≤ −21 + ρ0
1− ρ0

φ(ρ0),

and

γ2
0t

2
0 = −1

2

1− ρ0
1 + ρ0

(2φ(ρ0) + (1− ρ20)φ
′
(ρ0))

≤ −21− ρ0
1 + ρ0

φ(ρ0).

When φ
′
(ρ0) ≥ 0, we get by (9) that:

t20 ≥ −1 + ρ0
1− ρ0

φ(ρ0)

γ2
0t

2
0 ≥ −1

2

1− ρ0
1 + ρ0

2φ(ρ0)
1− ρ0

2
≥ − (1− ρ0)

2

2(1 + ρ0)
φ(ρ0)

Similarly, when φ
′
(ρ0) ≤ 0, we get by (11):

t20 ≥ −1

2

1 + ρ0
1− ρ0

2φ(ρ0)
1 + ρ0

2
≥ − (1 + ρ0)

2

2(1− ρ0)
φ(ρ0)

(74)

γ2
0t

2
0 ≥ −1− ρ0

1 + ρ0
φ(ρ0) (75)

Using again max{a, b} ≥ a+b
2 , we get in both cases that

max{γ2
0t

2
0, t

2
0} ≥ − 1+ρ2

0

1−ρ2
0
φ(ρ0).
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E. Approximation

Proof of Lemma 7: The idea is to select a set of points

ρ1, . . . , ρT and break [ρ−, ρ+] in intervals ρi ≤ ρ ≤ ρi +
Δ(ρi) of length Δ(ρi) such that within each interval �(ρ) is

well approximated by hρi(ρ). For ρ ≥ ρ0 using the Taylor

Remainder theorem and the fact that �(ρ0) = h(ρ0) as well

as �
′
(ρ0) = h

′
(ρ0), there exists ξ = ξ(ρ, ρ0) ∈ [ρ0, ρ] such

that

�(ρ)− hρ0
(ρ) = −1

2
h
′′
ρ0
(ξ(ρ, ρ0))(ρ− ρ0)

2 ≥ 0 (76)

Where the inequality follows by concavity of h. To obtain

an upper bound, we need an absolute bound on the second

derivative. Using (73), we get that

|h′′γ0,t0 | ≤ 2max

{
1

(1 + ρ)3
t20, γ

2
0t

2
0

1

(1− ρ)3

}
Substituting the upper bounds from Corollary 4 in turn gives

|h′′γ0,t0 | ≤ 8max

{
1 + ρ0
1− ρ0

1

(1 + ρ)3
,
1− ρ0
1 + ρ0

1

(1− ρ)3

}
R(�)

For ρ0 ≤ ρ ≤ ρ0 + Δ(ρ0) ≤ 0 we have |h′′ρ0
| ≤

16
(1−|ρ0|)2R(�). Setting Δ(ρ0) =

√
ε

8R(�) (1− |ρ0|), gives

�(ρ)−hρ0
(ρ) ≤ 1

2
|h′′ρ0

|Δ2(ρ0) ≤
8

(1− |ρ0|)2
|�min|Δ2(ρ0) ≤ ε

Hence, we have the following inductive definition of points

ρi:

1 + ρi = 1 + ρi−1 +Δ(ρi−1) (77)

= (1 + ρi−1) +

√
ε

8R(�)
(1 + ρi−1) (78)

= (1 +

√
ε

8R(�)
)(1 + ρi−1) (79)

multiplying both sides with
√

ε
8R(�) gives us the updates

for Δ(ρi). We are now in a position to write an explicit

expression for ρi:

ρi = ρ− +
i∑

j=1

Δ(ρj−1)

= ρ− +
i∑

j=1

(
1 +

√
ε

8R(�)

)j−1√
ε

8R(�)
(1− |ρ−|)

= ρ− +

[(
1 +

√
ε

8R(�)

)i

− 1

]
(1− |ρ−|)

for i = 0, . . . , T with T = �
log(

1−|ρ+|
1−|ρ−| )

log(1+
√

ε
8R(�)

)
�. The floor

function is justified by the fact that if ρT < ρ+ then

ρT + ΔT > ρ+ and as such φ is well approximated

between [ρT , ρ+] by hρT
. The lemma follows by setting

i(ρ) := min{j ∈ {0, . . . , T}|ρi ≤ ρ}.

F. Scale-free Multi-resolution HBE

Proof of Lemma 9: We bound the difference

Eε(φ) := sup
ρ∈[−1,1]

| sup
ρ0∈Tε(φ)

{hρ0(ρ)}− sup
ρ0∈Tε(φ)

{log(pγ0,t0(ρ))}|

We break the analysis into three parts depending where ρ
belongs to. The first case ρ ∈ [−1 + δ, 1 − δ] is the easier

one, as due to Lemma 5 and Corollary 3 we have for all

ρ0 ∈ Tε(φ),
− log(C1) ≤ log(pγ0,t0(ρ))− hρ0(ρ) ≤ logC1. (80)

Hence, for all ρ ∈ [−1 + δ, 1− δ]:

| sup
ρ0∈Tε(φ)

{hρ0
(ρ)} − sup

ρ0∈Tε(φ)
{log(pγ0,t0(ρ))}| ≤ logC1.

We next treat the case ρ ∈ [−1,−1 + δ]. Recall

that h±1(ρ) := − 1∓ρ
1±ρ

t2±1

2 + φ(±1), where t2±1 =

4max{±φ′(±1), 0}. Assuming that φ is increasing at −1,

by construction t2−1 = 0 and hence for all ρ ∈ Tε(φ),
log(pγ0,t0(ρ)), hρ0

(ρ) ≥ h−1(ρ) ≥ φ(−1). (81)

Assuming that φ is decreasing at −1, we have t2− =

4|φ′(−1)| and for all ρ ∈ Tε(φ),

hρ0
(ρ) ≥ h−1(ρ) = φ(−1)− 2

1 + ρ

1− ρ
|φ′(−1)| ≥ φ(−1)

(82)

Moreover, by (21) in Lemma 5 applied to p+(−ρ), we get

for all ρ0 ∈ T 1
2
(φ̃)

log(pγ0,t0(ρ)) ≥ −1

2
logC1 −

2

2− δ
δφ′(−1) + φ(−1)

≥ −1

2
logC1 + φ(−1). (83)

By Proposition 3 and the fact that φ can be writ-

ten as the supremum of linear functions we get that

supρ0∈Tε(φ){hρ0
(ρ)} ≤ φ(ρ). Using Corollary 3 and Corol-

lary 4, we obtain at for all ρ0 ∈ Tε(φ) \ {−1,+1},

pγ0,t0(ρ) ≤ −2− δ

δ
t2γ0

+
1

2
logC1

≤ −2− δ

δ
(−1 + ρ20

1− ρ20
φ(ρ0)) +

1

2
logC1

To bound the above quantity further, distinguish two

cases: φ(−1) = 0 or φ(1) = 0. By convexity, in the former

case we have φ(ρ0) ≤ 1+ρ0

2 φ(1) and φ(ρ0) ≤ 1−ρ0

2 φ(−1)
in the latter. Substituting these bounds and solving the

optimization problem we find that the minimizer in the first

case is ρ0 = −
√
2 + 1 and in the latter case ρ0 =

√
2− 1.

In both cases we may obtain:

sup
ρ0∈T 1

2
(φ̃)\{−1,+1}

{pγ0,t0(ρ)}

≤ −2− δ

δ
(
√
2− 1)max{|φ̃(1)|, |φ̃(−1)|}+ 1

2
logC1.
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Next, we obtain bounds for ρ0 ∈ {−1,+1}:

log(p−1(ρ)) ≤ φ(−1),

log(p+1(ρ)) ≤
1

2
logC1 − 2

2− δ

δ
max{φ′(1), 0}

Using the above inequalities we may conclude that:

sup
ρ∈[−1,−1+δ]

sup
ρ0∈Tε(φ)

{log pγ0,t0(ρ)} ≤ max{φ(−1), 1
2
logC1}

≤ φ(−1) + 1

2
logC1

(84)

We have for ρ ∈ [−1,−1 + δ] by (81) and (83)

sup
ρ0∈Tε(φ)

{hρ0
(ρ)} − sup

ρ0∈Tε(φ)
{log(pγ0,t0(ρ))}

≤ φ(ρ)− φ(−1) + 1

2
logC1 ≤ L(φ)δ +

1

2
logC1

where in the last step we used the fact that φ is Lipischitz.

In the same vein by (81) and (84)

sup
ρ0∈Tε(φ)

{hρ0
(ρ)} − sup

ρ0∈Tε(φ)
{log(pγ0,t0(ρ))}

≥ φ(−1)− φ(−1)− 1

2
logC1 = −1

2
logC1

Using δ ≤ ε
L(φ) ⇒ L(φ)δ ≤ ε ≤ ε logC1. By symmetry the

case ρ ∈ [1 − δ, 1] follows. Overall, for ε = 1/2 we obtain

the bound E1/2(φ) ≤ logC1.

Proof of Lemma 10: Let δ1/2 := k∗
2βL(φ) be the

constant from Lemma 8 applied for φ̃, then for all ρ0 ∈
T 1

2
(φ̃) \ {−1,+1} we have |ρ0| ≤ 1− δ1/2. Using φ̃(ρ0) ≤

R(φ̃) = β
kR(φ) and |ρ0| ≤ 1 − δ1/2 = 1 − k

2βL(φ) for

ρ0 	= ±1, we get by Corollary 4 that supρ0∈T 1
2
(φ̃) t

2
γ0

≤

8L(φ̃)R(φ̃) ≤ 8
(

β
k

)2

L(φ)R(φ). For ρ0 ∈ {−1, 1} we

have t2 ≤ 4|φ′(ρ)| ≤ 4L(φ̃) ≤ 8L(φ̃)R(φ̃) for R(φ̃) ≥ 1/2.

X. FUTURE DIRECTIONS

Data-dependent LSH: Both the HBE and Multi-

Resolution HBE approaches exhibit 1/
√
μ complexity de-

pending on μ = Zw(y). For HBE [10], the instance that

realizes the worst-case variance of the estimator is when

there are O(nμ) points very close to the query such that

w(x1, y) = Θ(1) and O(n) points “away” from the query

such that w(x2, y) = Θ(μ). On the other hand for MR-HBE,

if one uses the full power of Theorem 5 (see Section III)

by analyzing DT (x1, x2) rather than its simplified version

Theorem 6, the worst case instance for the variance appears

to have O(n
√
μ) points with w(x1, y) = Θ(

√
μ) and O(n)

points with w(x2, y) = Θ(μ). For the Gaussian kernel this

essentially means that it involves solving a c-ANN problem

with c =
√
2. Utilizing this connection to the ANN prob-

lem and subsequently adapting the Data-Dependent LSH

approach [48] for this setting is an intriguing direction for

future work.

Locality Sensitive Hashing: One disadvantage of many

LSH based approaches is that hash functions can often be

slow to evaluate at least in the form suggested by the theory.

In recent years there has been an effort to design practical

hash functions that come close to the performance of the op-

timal ones. For example the papers [55], [56] study practical

functions for the unit sphere, while [57] study functions for

the binary hypercube. Combining these novel LSH methods

with the method of Hashing Based Estimators introduced in

[10] and extended here, is a promising direction to getting

practical algorithms for estimation problems.

Variance Reduction: The topic of Variance Reduction

for Stochastic Gradient [58], [59], [60] is an important field

of current research. There are roughly three almost orthogo-

nal approaches to this problem: re-weighting schemes [61],

[62], [63], importance sampling schemes [64], [65] and

partition-based schemes [66], [67]. For almost all these

approaches, the distribution that gradients are sampled is

independent of the current iterate (e.g. uniform or based

on Lipschitz constants of gradients), or changes with the

current iterate and requires linear time to update the new

distributions. The latter approaches are referred to as Adap-

tive Variance Reduction methods [68], [69], [70]. Our ap-

proach sidesteps the issue of recomputing such distributions

through the use of Locality Sensitive Hashing. An intriguing

direction is to utilize our techniques within an optimization

algorithm to obtain faster optimization methods.
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accelerated coordinate descent using non-uniform sampling,”
in International Conference on Machine Learning, 2016, pp.
1110–1119.

[66] P. Zhao and T. Zhang, “Accelerating minibatch stochastic
gradient descent using stratified sampling,” arXiv preprint
arXiv:1405.3080, 2014.

[67] Z. Allen-Zhu, Y. Yuan, and K. Sridharan, “Exploiting the
structure: Stochastic gradient methods using raw clusters,” in
Advances in Neural Information Processing Systems, 2016,
pp. 1642–1650.

[68] D. Csiba, Z. Qu, and P. Richtárik, “Stochastic dual coordinate
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