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Abstract—We show that if a k-CNF requires width w to
refute in resolution, then it requires space

√
w to refute in

polynomial calculus, where the space of a polynomial calculus
refutation is the number of monomials that must be kept in
memory when working through the proof. This is the first
analogue, in polynomial calculus, of Atserias and Dalmau’s
result lower-bounding clause space in resolution by resolution
width.

As a by-product of our new approach to space lower bounds
we give a simple proof of Bonacina’s recent result that total
space in resolution (the total number of variable occurrences
that must be kept in memory) is lower-bounded by the width
squared. As corollaries of the main result we obtain some
new lower bounds on the PCR space needed to refute specific
formulas, as well as partial answers to some open problems
about relations between space, size, and degree for polynomial
calculus.

Keywords-Proof Complexity, Polynomial Calculus, Resolu-
tion, Width, Space.

I. INTRODUCTION

Propositional proof complexity studies the complexity

of finding efficiently verifiable proofs, that is, polynomial-

time checkable certificates that propositional formulas are

unsatisfiable. Research in this area started with the work

of Cook and Reckhow [14] and was originally viewed as a

gradual advance towards showing that NP�=co-NP. The main

focus was on proving upper and lower bounds on proof size.

The most well-studied proof system in proof complexity

is resolution, for which numerous exponential size lower

bounds have been shown. By a result of Ben-Sasson and

Wigderson [6], to show that a CNF requires large size in

resolution it is usually enough to show that it requires large

width, where the width of a proof is the size of its largest

clause.

Naturally other complexity measures for proofs have also

been investigated, often revealing interesting connections.

A recent line of research has looked at the space measure,

motivated by an analogy between proofs and boolean circuits
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or Turing machines, and more recently by applied SAT

solving, where efficient memory access and management

is a major concern. The study of space in resolution was

initiated by Esteban and Torán [15], who defined the space

of a resolution proof as the maximal number of clauses to

be kept simultaneously in memory during verification of the

proof. This definition was later generalized to other proof

systems by Alekhnovich et al. [1]. As proved in [15], a

CNF formula over n variables can be refuted in space n+1,

even in resolution. Tight lower bounds for resolution proof

space were proved in a series of works [15], [5], [1], and

Atserias and Dalmau [3] established the general result that

for resolution, width is a lower bound on space.

Together with resolution, the main focus of this paper is

polynomial calculus resolution (PCR), an algebraic proof

system extending resolution by the capacity to reason about

polynomial equations. Polynomial calculus (PC) was in-

troduced by Clegg et al. [13] and was later extended by

Alekhnovich et al. [1] to the more general system PCR. On

the surface, PC and PCR are systems for proving member-

ship in ideals of multivariate polynomials. However, they

can also be viewed as refutational proof systems for CNF

formulas: clauses can be efficiently translated to multilinear

monomials over some (fixed) field F, and a CNF formula F
is shown to be unsatisfiable by proving that the constant 1 is

in the ideal generated by polynomials representing clauses

of F together with polynomials enforcing that variables

take only boolean values. In PC and PCR the main proof

complexity measure studied is degree, the maximal degree

of a polynomial used in the proof. A connection between

degree and the size of a proof (that is, the number of

monomials used), was proved for PC in [13], [21], which

inspired the similar connection between width and size for

resolution of [6]. This result made it possible to lift most of

the known degree lower bounds for PCR to size bounds [27],

[21], [2], [20], [19], [24].

We define the space of a PCR proof to be the maximum

number of distinct monomials that must be simultaneously in

memory during a verification of the proof. It is also common

in the literature to define space by counting the total number

of monomials in memory, including repetitions; clearly any

lower bound on our notion of PCR space will also hold for
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this measure. The study of PCR space started in [1], and

grew in importance due to the fact that PCR underlies SAT-

solvers based on Gröbner algorithms. In [1] it was shown

that PCR is strictly more powerful than resolution in terms

of space, though the separation proved there is relatively

modest and witnessed by rather artificial formulas (and it is

open whether there is a separation if we count PCR space

with repetitions). Eventually, research on limitations of proof

space in PCR led to several lower bounds [1], [9], [18], [7],

[16] and to a framework to prove them [9].

An important open problem raised several times (see [25],

[9], [18], [7], [16], [17]) is to determine whether the elegant

relation between width and space for resolution given in [3]

has an analogy in a relation between PCR degree and space,

or even between resolution width and PCR space. This is

relevant to the more fundamental issue: how far-reaching is

the analogy between proof complexity for resolution and for

PCR, two systems that have several common features but are

of different computational nature?

A. Contributions

We give the less-expected answer to this open problem,

by showing a connection between PCR space and resolution

width for CNF formulas. The optimal result consistent with

present knowledge would be that PCR space s implies

resolution width linear in s. We are not able to prove this,

but we show a weaker, quadratic bound. Our main result is

the following theorem.

Theorem 22. Let F be a k-CNF. If F has a PCR refutation
in space s over some field F, then F has a resolution
refutation of width s2 − s+ k.

Since width w resolution can easily be simulated by

degree w + 1 PCR, this also shows that PCR refutations

in space s can be transformed into PCR refutations of

degree O(s2).
Theorem 22 can be understood as a general lower bound

on PCR space: as long as k is small, if a k-CNF requires

width w to refute in resolution, then it requires space
√
w

to refute in PCR. The proof is quite different from previous

PCR space lower bounds, which adapt a combinatorial

argument from [1], and we outline our new approach in

Section I-B. Using this we also get a very simple proof of

Bonacina’s recent result [8] that, in resolution, total space

is lower bounded by width squared. Our proof of that result

(Theorem 6) does not use any technical notion such as that

of asymmetric width required in [8].

As is typical for PCR space lower bounds, our main

theorem depends very little on the particular rules of PCR.

It only uses that the rules are sound, and that at each step

we either add terms to the memory or delete them (but not

both at once). To study term space in a general setting we

describe a class of configurational proof systems, in which

we are only guaranteed soundness, and show that there we

get the weaker bound of 2s(s+ 1) + k on resolution width

(Theorem 21). This class is similar in spirit to, and includes,

the semantic functional calculus system of [1].

As a consequence of Theorem 22, we partially answer

some other open questions about the relation between space,

size, and degree in PCR. A brief discussion of these follows.

New space lower bounds for PCR. The framework devel-

oped in [9] can be used to derive all space lower bounds

for PCR known until now. However, as observed in [16],

there are CNF formulas for which PCR space lower bounds

appear likely to hold, but this framework seems not to work.

These include the linear ordering principle and functional
pigeonhole principle formulas, as well of versions of them

with constant initial width. Using well-known width lower

bounds for these formulas [11], [20], [29], [31], [24] and

Theorem 22 we are now able to prove PCR space lower

bounds.

Simplification and generalization of a previous lower
bound. When G is a bounded-degree connected graph with

n nodes and expansion Ω(n), the well-known Tseitin for-
mula Ts(G) requires width Ω(n) to refute in resolution [32],

[6] and hence, by [3], also Ω(n) space in resolution. In PCR,

Ω(
√
n) space lower bounds for Ts(G) for random graphs

were obtained in [16] using the framework of [9]. As a

consequence of Theorem 22 and the width lower bound we

also obtain a Ω(
√
n) lower bound for space in PCR, but

using no assumptions on G other than the expansion.

Separations independent of characteristic. It is left open

in [16] whether there are formulas separating PCR size and

degree from space for all fields at once, independently of the

characteristic. We obtain some such examples, though due

to the quadratic term in Theorem 22 the separations are not

as strong as the characteristic-dependent ones from [16].

Our space lower bounds for linear ordering principles give

a characteristic-independent example separating PCR size

from space. A further example is provided by a variant of

the bijective (both functional and onto) pigeonhole principle.

Riis ([30], [28]) proved that bijective pigeonhole principle

formulas for n + 1 pigeons and n holes have small PCR

refutations in constant degree, over any field. Riis’ result

concerned a version of the principle where translations of

wide clauses are replaced by certain sums, but we check

that it also holds for the usual formulation of bijective PHP

restricted to bounded-degree graphs. On the other hand, it

is known that bijective PHP restricted to certain bounded-

degree expanders requires Ω(n) width to refute in resolution.

Hence, Theorem 22 gives us a separation of PCR size and

degree from space independent of characteristic.

B. Outline of technique

Consider a refutation of a CNF F presented as a sequence

of memory configurations. At each step we either upload a

clause from F to memory, or do some logical manipulation
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of formulas already in memory, possibly deleting some. The

refutation ends when we are able to write a contradiction,

such as 1 = 0.

Proof space lower bounds typically have the form: under

the assumption that a refutation uses small memory, we

work forward through the refutation, at each step building

a small partial assignment which semantically implies every

formula in memory; but this is impossible, because the last

step of the refutation contains an unsatisfiable formula. A

dual argument also appears in proof complexity, in proofs

of resolution width lower bounds: work backwards through

the refutation from the end, maintaining a small assignment

which falsifies one of the clauses in memory (a related

construction was used in [17] for an alternate proof of the

Atserias-Dalmau result [3] that space is lower bounded by

width).

Our new idea for proving space lower bounds is to

combine the previous arguments and pass backwards and

forwards through the refutation possibly several times, sat-

isfying part of the memory as we go down, and dually

falsifying part as we go up. Our method is inspired by

a propositional version of an argument of S. Buss in

bounded arithmetic, showing that mathematical induction

for NP properties is enough to prove induction for boolean

combinations of NP properties [12, Corollary 4]. Buss’ proof

uses the Hausdorff difference hierarchy, which we do not use

explicitly but which, in our setting, tells us that at each step

the contents of the memory can potentially be written in an

alternating fashion, with positive and negative subformulas

appearing in a controllable way.

We first apply this idea to give a simplified proof of

Bonacina’s lower bound on total space in resolution in terms

of resolution width [8], [10], where total space counts the

total number of symbols written on the blackboard. Given

a formula F , we first consider an Atserias-Dalmau family

– a family H of partial assignments “locally” satisfying F ,

which is guaranteed to exist if F requires large resolution

width [3]. Given a refutation of F in small total space, we

find the first step j at which some assignment α ∈ H falsifies

some narrow clause in memory; then we find the last step

i < j at which some β ⊇ α in H satisfies all wide clauses

in memory; then we reach a contradiction by considering

the steps in the interval [i, j] under β.

A key point in the argument for resolution is to satisfy

high-width clauses in memory using a restricted-size assign-

ment from the class H. To apply a similar argument for PCR

space we then have to understand how to determine the value

of a high-degree monomial using a small assignment α ∈ H.

We use a very simple version of the forcing method known

e.g. from set theory, which has already appeared in various

guises in proof complexity. The idea is that no extension

of α will ever give the monomial a different value, as long

as we only consider extensions within H. However, in the

case of PCR, the simple one-interval construction used in

our proof of Bonacina’s result is not enough to obtain a

contradiction. Instead, we have to iterate the construction,

refining the interval and extending the assignment α some

number of times bounded by the space s used in the PCR

refutation. Each time, α grows by at most O(s) literals, and

after at most s iterations the restricted refutation becomes

trivial. We reach a contradiction as long as the resolution

width required to prove F is larger than O(s2); this gives

our bound.

C. Organization

Section II contains some preliminary definitions. In Sec-

tion III we discuss width and space in resolution, introduce

the Atserias-Dalmau characterization of width and prove

our simple lower bound on total space in resolution. In

Section IV we define our forcing relation and prove some

properties of it. In Section V we prove a simple version of

our main theorem, with a 2s(s + 1) + k bound on width

(Theorem 20). In Section VI we extend this argument to

give our main results, a 2s(s + 1) + k bound for any

configurational system (Theorem 21) and a s2 − s + k
bound for PCR (Theorem 22). Section VII describes some

consequences of our results for the relations between space,

size and degree. In Section VIII we mention some open

problems.

II. PRELIMINARY DEFINITIONS

A literal is either a boolean variable x or its negation x̄.

Boolean variables will take 0/1 values, identified with ⊥/�.

A term is a set of literals, treated as a conjunction. A clause
is a set of literals, treated as a disjunction. The width of a

clause is the number of literals in it. A clause of width at

most k is called a k-clause. A CNF formula is a conjunction

of clauses. A k-CNF formula is a CNF formula consisting

of k-clauses.

A partial assignment is a partial function from the set of

boolean variables to {0, 1}. For us assignment will always

mean partial assignment unless we specify otherwise. When

convenient, we will identify an assignment with the set

of literals which it makes true. We write dom(α) for the

domain of an assignment α and write |α| for |dom(α)|.
Resolution is a refutational propositional system for CNF

formulas based on the resolution rule, which allows us to

derive the clause C ∨D from the clauses C ∨ x and D ∨ x̄.

A resolution refutation of a CNF F is a sequence of clauses

C0 . . . , Cm ending with the empty clause and such that

each Ci is either a clause in F or is obtained from earlier

clauses by resolution. The size of a resolution refutation

is the number of clauses in it. The width of a resolution

refutation is the maximum width of a clause in it.

Polynomial calculus (PC) is an algebraic proof system

defined in [13], which can be used to witness that a set

of polynomials has no solution. A PC proof works over

a fixed field F and proof lines in it are polynomials in
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F[x1, . . . , xn]. We will not work with PC but instead with a

refinement of it, polynomial calculus with resolution (PCR),

introduced in [1]. In PCR, proof lines are polynomials in

F[x1, . . . , xn, x̄1, . . . , x̄n], with a formal algebraic variable

for every boolean literal, not just for every boolean variable.

This has the advantage that a term, even with negative

literals, can be written as a single monomial rather than

as a sum of possibly exponentially many monomials, as

would happen if we had to write 1 − x to express x̄. We

will always have the axiom x̄ = 1 − x available and will

treat x̄ semantically as the negation of x. That is, in any

assignment α, if either α(x) or α(x̄) is defined then both

are and α(x̄) = 1− α(x).
A monomial m over F is a product of literals together

with a coefficient from F. The term represented by m is the

conjunction of the literals appearing in m. The degree of a

literal in m will never matter in this paper, so it is safe to

think of a monomial as a term with a coefficient in front of

it. A polynomial is a formal sum of monomials.

A PCR refutation of a set of polynomials P is a sequence

p0, . . . , pt of polynomials, ending with the constant poly-

nomial 1, where we interpret a proof-line pi as asserting

that pi = 0. Each pi either comes from P or is obtained by

a rule of PCR applied to earlier lines. The rules are

boolean axioms: x2 − x

complementarity axioms: x+ x̄− 1

linear combination:
p q

ap+ bq

multiplication:
p

xp

where p, q are any polynomials, x is any literal, and

a, b ∈ F. The size of a PCR refutation is the total number

of monomials appearing in it, and the degree of a refutation

is the maximum degree of any monomial in it.

We can translate a clause
∨

i yi in literals yi into the se-

mantically equivalent polynomial equation
∏

i ȳi = 0. Thus

an unsatisfiable CNF translates into a set of polynomials

with no solutions over {0, 1}, and it makes sense to view

PCR as a refutational system for CNFs. There is then a

simple, direct simulation of resolution by PCR, and we see

that degree in PCR is an analogous measure to width in

resolution.

A. Space measures

As is usual when studying space in a refutational system,

we require a refutation of a CNF F to be written in a special

form, as a sequence of configurations M0, . . . ,Mt.

In resolution, a configuration is a set of clauses and a

refutation M0, . . . ,Mt is such that the first configuration

is empty, the last one contains the empty clause, and for

each i < t, Mi+1 is obtained from Mi by one of the rules

(1) axiom download: a clause of F is downloaded into Mi+1,

(2) deletion: Mi+1 is obtained from Mi deleting one or

more clauses, or (3) inference: Mi+1 is obtained from Mi

by adding the conclusion of the resolution rule applied to

two clauses in Mi.

Definition 1. The clause space, or simply space, of such

a resolution refutation is the maximum number of clauses

appearing in any Mi. The total space of a configuration Mi

is the total number of variable instances appearing in M ,

or equivalently the sum of the width of the clauses in Mi.

The total space of a refutation is the maximum total space

of any Mi.

In PCR a configuration is a set of polynomials, and a

configurational PCR refutation of a CNF F is a sequence

M0, . . . ,Mt where M0 is empty, Mt contains the polyno-

mial 1, and for each i < t, Mi+1 is obtained from Mi by the

rules (1)-(3) above, adapted to PCR. So in (1) the axioms

we can download are polynomials translating the clauses

of F and instances of the boolean and complementarity

axioms, and in (3) we can infer new polynomials by linear

combination or multiplication. There are several possible

definitions of the “mononial space” of a PCR configuration.

We could count monomials or just count terms (that is,

ignore coefficients), and we could count them with or

without repetitions. We choose to work with what we call

term space, as defined below. In particular this is always less

than or equal to the other measures, so our lower bounds will

carry across.

Definition 2. The term space of a PCR configuration Mi is

the number of distinct terms represented by the monomials

in Mi. The term space, or simply space, of a PCR refutation

is the maximum term space of any configuration Mi in the

refutation.

It is natural to think of a configuration as a formula,

namely a CNF in the case of resolution or a conjunction

of polynomial equations in the case of PCR, and to think of

rules (1)-(3) as rules for deriving a new formula. To state

our most general results, let us use this idea and define a

configurational proof system to be specified by a class Γ of

formulas and a set of rules. Each rule is sound (over 0/1
assignments) and takes as premises either a single formula

from Γ, or a formula from Γ together with a clause; its

conclusion is a formula from Γ. A refutation of a CNF

F in the system is a sequence M0, . . . ,Mt of formulas

from Γ, called configurations. M0 is the constant �, Mt

is the constant ⊥, and each Mi+1 is obtained from applying

a rule to the previous configuration Mi, possibly together

with some initial clause C of F . The limitation that we

cannot use any configuration appearing earlier than Mi to

derive Mi+1 is a strengthening of the standard “treelike”

restriction on proof structure. Configurational resolution and

PCR, as described above, are examples of such systems, if

we understand � as the empty conjunction and ⊥ as the

empty clause or the equation 1 = 0.
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We can study the complexity of such a system by studying

the complexity of its configurations. Suppose that each con-

figuration is labelled with a set of terms and is semantically

equivalent, over 0/1 assignments, to a boolean function

of those terms. Then we can define the term space of a

configuration to be the number of terms labelling it, and the

term space of a refutation to be the maximum term space of

its configurations. This measure (which could just as well be

called “clause space”) lower-bounds both clause space for

resolution and monomial space for PCR, if we understand

them as configurational systems and label configurations

with the clauses or terms that appear in them. Our argument

gives a lower bound for term space in any configurational

system, even the “semantic” one in which configurations

can be any formula and all sound rules are allowed – this

is essentially the same as the functional calculus system

defined in [1]. We prove a better bound, by a factor of two,

in the specific case of PCR.

III. WIDTH, SPACE, AND TOTAL SPACE IN RESOLUTION

We will make heavy use of a characterization of resolution

width given by Atserias and Dalmau [3]. There, the family

H defined below is referred to as a winning strategy for the

Duplicator in a certain kind of pebble game.

Definition 3 ([3]). Let F be a k-CNF. A width-w Atserias-
Dalmau family for F is a nonempty family H of partial

assignments to the variables of F such that for each α ∈ H,

(i) |α| ≤ w
(ii) if β ⊆ α then β ∈ H

(iii) if |α| < w and x is a variable of F , then there is

β ⊇ α in H with x ∈ dom(β)
(iv) α does not falsify any clause of F .

Lemma 4 ([3]). If F is a k-CNF with no resolution
refutation of width w, then there exists a width-(w + 1)
Atserias-Dalmau family for F .

One way to prove Lemma 4 is by considering the Prover-
Adversary game on F . This is played between an Adversary,

who claims she knows a total assignment satisfying F , and a

Prover, who maintains a partial assignment α (his memory)

and can in each round ask the Adversary the value of a

variable, with the goal of extending α to falsify some clause

of F , or can forget variables from α to save memory. By

replacing each clause with the partial assignment negating

it, and flipping the direction of the edges in the graph of the

refutation, we can identify small-width resolution refutations

of F with winning strategies for the Prover which use limited

memory. If there is no such strategy, we can construct H
from the positions α which are winning for the Adversary.

Theorem 5 ([3]). Let F be a k-CNF. If F has a resolution
refutation in space s, then it has a resolution refutation in
width s+ k.

Proof: Let M0, . . . ,Mt be the sequence of configura-

tions forming the space-s refutation. Suppose there is no

refutation of F in width s+k. Let H be a width-(s+k+1)
Atserias-Dalmau family for F . We will inductively show

that for each i there is α ∈ H which satisfies every clause

in Mi. This is trivial for M0 and a contradiction for Mt.

Suppose it is true for Mi. Since it takes only one literal

to satisfy a clause, we may assume |α| ≤ s. The only

interesting case is axiom download, where Mi+1 is Mi ∧C
for some initial clause C from F . By part (iii) of Definition 3

we can extend α in k steps to some β ∈ H which sets all

variables in C. By part (iv), β must satisfy C, so we are

done.

Notice that the Prover strategy corresponding to a small-

width refutation in Lemma 4 starts at the bottom of the proof

and works up, trying to falsify clauses. An alternative proof

of Theorem 5 would be to construct a small-width refutation

directly as a Prover strategy, where this time the Prover

starts at the top of the configurational proof and works down,

trying to satisfy clauses. In the next theorem we combine

both kinds of strategy, first going up and then down. We can

think of the theorem as a lower bound on a space measure

in which narrow clauses do not count towards the space of

a configuration.

Theorem 6. Let F be a k-CNF. Let m, s ∈ N with m ≥ k.
Suppose that F has a configurational resolution refutation
in which each configuration contains at most s clauses of
width greater than m. Then F has a resolution refutation of
width 2m+ s.

Proof: Let M0, . . . ,Mt be the configurational resolu-

tion refutation. Each Mi contains some number q of narrow
clauses C1, . . . , Cq of width at most m, and r ≤ s many

wide clauses D1, . . . , Dr of width greater than m. Suppose

for a contradiction that F has no resolution refutation of

width 2m+ s. Let H be a Atserias-Dalmau family for F of

width 2m+ s+ 1.

The configuration Mt contains the empty clause, which

is narrow and falsified by any assignment. Let j be least

such that some narrow clause C in Mj is falsified by some

assignment α ∈ H. Fix such a C and α. Without loss of

generality, |α| ≤ m. Since C is falsified by α, it cannot

have been introduced by axiom download. So we must have

C = E∨G for clauses E∨x and G∨x̄ in Mj−1. Extend α to

α′ ∈ H which gives a value to x, with |α′| ≤ m+1. Without

loss of generality α′(x) = 1. Hence α′ falsifies G ∨ x̄, and

by minimality of j, we know that G ∨ x̄ is a wide clause.

Now let i < j be greatest such that there is some β ⊇ α′

in H which satisfies every wide clause in Mi. Fix such a β.

Without loss of generality, |β| ≤ |α′|+s ≤ m+s+1. Since

α′ falsifies F ∨ x̄, we cannot have i = j − 1. Therefore

maximality of i implies that Mi+1 extends Mi by adding a

wide clause D which is not satisfied by any γ ⊇ β in H.
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Axioms are narrow, so D cannot be an axiom. Thus we have

D = A∨B for two clauses A∨y and B∨ ȳ in Mi. Extend β
to β′ ∈ H which gives a value to y, with |β′| ≤ m+ s+ 2.

Without loss of generality β′(y) = 1, and we look at the

clause B∨ ȳ. If this clause is wide, then β satisfies it, which

means that β satisfies B and hence D, which is impossible.

If it is narrow, then we can extend β′ to γ ∈ H such that

|γ| ≤ |β′| +m − 1 ≤ 2m + s + 1 and γ sets all variables

in B∨ ȳ. The minimality of j implies that γ satisfies B∨ ȳ.

We know that γ(y) = 1, so γ satisfies B and thus D, which

is impossible.

Theorem 6 has the following consequence, which is

essentially the main result of [8] with an improved constant.

Corollary 7. Let F be a k-CNF and w ≥ k. Suppose F has
no resolution refutation in width w. Then it has no resolution
refutation in total space w2/8.

Proof: Suppose that there is a refutation Π in total

space w2/8. Then, if we set m = w/4 and s = w/2, no

configuration in Π can contain more than s many clauses of

width more than m. Hence we can apply the lemma to find

a resolution refutation of width 2m+ s = w.

IV. FORCING WITH AN ATSERIAS-DALMAU FAMILY

In this section, we explain how to use the structure of an

Atserias-Dalmau family H to define the relation “α forces

the term t to a certain value”. This is in fact a very simple

version of a forcing relation as used in set theory and other

areas of logic. Definitions in a similar spirit are common

in proof complexity, where we often want to “evaluate”

complex formulas over families of partial assignments; see

for example the evaluation of formulas as decision trees

in lower-bound proofs for constant-depth Frege [4], and

for a recent application of essentially Definition 8 below

see [26], [23]. The idea is that no extension of α will

ever give t a different value, as long as we only consider

extensions within H. We will use this in the next section

to prove our main result. We present the constructions and

proofs for PCR, but will explain in Section VI how they can

be generalized to an arbitrary configurational proof system.

Fix a k-CNF F and a width-w Atserias-Dalmau family

H for F , for some k,w ∈ N.

Definition 8. For an assignment α ∈ H and a term t, we

define

(i) α forces t = 0 if α sets some literal in t to 0
(ii) α forces t = 1 if no β ∈ H with β ⊇ α sets any literal

in t to 0.

If either holds, we say that α fixes t.

We write these as α � t = 0 and α � t = 1. We now

extend the definition to polynomials and configurations. We

will treat polynomials as linear combinations of terms over

our field F.

Definition 9. For an assignment α ∈ H and a polynomial

p =
∑

i aiti, we say that α decides p if it fixes every term

ti in p. We say that α decides a configuration M if it fixes

every term in M or, equivalently, decides every polynomial

in M .

If α decides p then, for each term ti in p, there is a

0/1 value bi such that α � ti = bi; implicitly, α assigns

value bi to ti. We say that α forces p = 0 if p, considered

as a linear combination of terms, evaluates to 0 under this

assignment. More formally, α forces p = 0 if α decides p
and

∑
i aibi = 0. We say that α forces p �= 0 if α decides

p and
∑

i aibi �= 0.

For a configuration M , we say that α forces M if α
decides M and forces p = 0 for every polynomial p in

M . We say that α forces ¬M if α decides M and forces

p �= 0 for some p in M .

We write these relations as α � p = 0, α � p �= 0 etc.

Note that they are all preserved under extending α within

the family H.

The intuitive meaning of α � p = 0 is that, if we consider

only assignments in H, then the equation p = 0 “holds”

in every extension of α, and this is extended to negations

and configurations in the natural way. Notice that whether

a term is forced to some value depends on the structure of

H in a potentially nontrivial way, but for polynomials and

configurations, nothing new happens. This is because our

application is to prove lower bounds on term space. In this

context terms can be very big, and the concept of forcing

allows us to set their value without setting many variables.

On the other hand, polynomials and configurations contain

few terms, so they can be decided simply by fixing those

few terms.

In the following lemmas we show that the � relation

usually behaves in an intuitive way, after first giving an

example of how this can break down when α is very large.

Example. Assume that α ∈ H, |α| = w and x /∈ dom(α).
Then, since α has no proper extensions in H, we have both

α � x = 1 and α � x̄ = 1.

Lemma 10. Let α ∈ H and M be a configuration. We
cannot have both α � M and α � ¬M .

Proof: This is immediate from the definitions.

Lemma 11. Let α ∈ H and let t1, . . . , ts be terms.
Then there is β ⊇ α in H such that β fixes t1, . . . , ts
and |β| ≤ |α|+ s.

Proof: It is enough to show this for s = 1. If there

is some γ ⊇ α in H which sets a literal x in t1 to 0,

we put β = α ∪ {x := 0} so that β � t1 = 0. We

have β ∈ H, since β ⊆ γ. If there is no such γ then by

definition α � t1 = 1 and we put β = α.
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Lemma 12. Let α ∈ H with |α| < w. Let t1, . . . , tr be terms
and b1, . . . , br be boolean values such that α � ti = bi for
each i. Then α can be extended to a total assignment A
such that A(ti) = bi for each i.

Proof: To construct A, start with α and then, for each ti
forced to 1 by α, set all literals in ti to 1. Set all remaining

variables arbitrarily. The only way this construction can fail

is if some variable x appears positively in a term ti and

negatively in a term tj , where α forces both ti and tj to 1.

But this cannot happen, since |α| < w implies that α has an

extension in H setting either x or x̄ to 0.

Corollary 13. Assume k ≥ 2 and let α ∈ H with
α ≤ w − k. Let M and M ′ be successive configurations in a
PCR refutation of F . Then it cannot be the case that α � M
and α � ¬M ′.

Proof: The configuration M ′ is semantically implied by

M or by M ∧C for some clause C of F . We may assume

that we are in the latter case. Let α � M and α � ¬M ′.
We first extend α in k steps to β ∈ H which sets all

variables in C. By part (iii) of Definition 3, β satisfies a

literal in C. We let α′ ∈ H be α plus this literal. Notice

that |α′| < w. List all terms in M and M ′ as t1, . . . , tr.

Since α′ fixes all these terms, there exist boolean values

b1, . . . , br such that α′ � tj = bj for each j. We use

Lemma 12 to obtain a total assignment A extending α′

which sets each tj to bj . Then A satisfies M since α′ � M
and falsifies M ′ since α′ � ¬M ′. Also A satisfies C by

construction of α′. This contradicts that M ∧C semantically

implies M ′.

Corollary 14. Assume k ≥ 2 and let M and M ′ be
successive configurations in a PCR refutation of F with term
space s. Let α ∈ H with |α| ≤ w − k − s. If α � M , then
there is β ⊇ α in H with |β| ≤ |α|+ s such that β � M ′.

Proof: This follows immediately from Lemma 11 and

Corollary 13.

This suggests a possible approach to proving PCR space

lower bounds. Given a refutation M0, . . . ,Mt with space s,

use Corollary 14 to inductively find α0, . . . , αt in H such

that αi � Mi, reaching a contradiction at Mt. However this

does not work, since αi may grow in size by s at each step,

quickly reaching our limit w − k.

What is missing is a lemma saying that if αi � Mi, then

we can find β ⊆ αi such that β � Mi and |β| is bounded

by a function of the space of Mi. This is called a locality
lemma in the literature on space [1], [5], [9]. We do not

expect a general lemma of this form to hold here, because,

for example, it is easy to envisage a large assignment α and

a term t such that α � t = 1 but this is not preserved in

any smaller β ⊆ α. Lemma 18 below is a kind of locality

lemma, but has the limitation that it only controls the size of

extensions of some fixed assignment α (α itself does not get

smaller). We only apply it O(s) times, and use it to control

how fast our assignment grows.

V. PROOF OF MAIN RESULT

This section is devoted to a proof of an initial, somewhat

simpler, version of our main result. We will adapt this

proof to improve the bound on width from 2s(s + 1) + k
to s(s− 1) + k in the next section. We assume that F
is a k-CNF (without loss of generality, k ≥ 2) with a

PCR refutation in space s over some fixed field F. Let

M0, . . . ,Mr be the sequence of configurations forming the

refutation of F . For 0 ≤ i ≤ j ≤ r, the proof interval [i, j]
is the sequence of configurations Mi, . . . ,Mj .

We let H be a width-w Atserias-Dalmau family for F ,

with the value of w to be fixed later, and use the notion

of forcing over H from the previous section. We will be

interested in how many terms in a given configuration M
are forced to 0 by an assignment from H, or more precisely,

in how many terms are not forced to 0. Given M and α, we

write Z(M,α) for the set of terms in M which are forced

to 0 by α, and we write NZ(M,α) for the remaining terms.

Definition 15. Let m ≥ 0. An assignment α ∈ H guaran-
tees m non-zeroes in M if for all β ⊇ α in H, we have

|NZ(M,β)| ≥ m. We say that α guarantees m non-zeroes
in the proof interval [i, j] if for each � ∈ [i, j], α guarantees

m non-zeroes in M�.

Clearly the property of guaranteeing m non-zeroes is

preserved under extending assignments within the family H.

The next lemma is a useful interaction of this property with

forcing.

Lemma 16. Suppose that |NZ(M,α)| = m and that α
guarantees m non-zeroes in M . Then α decides M .

Proof: List NZ(M,α) as t1, . . . , tm. The remaining

terms in M are forced to 0 by α, meaning that they each

contain a literal set to 0 by α. Therefore, since α guarantees

m non-zeroes in M , no β ⊇ α in H can force any ti to 0,

and so by definition α forces each ti to 1. It follows that α
fixes each term in M and thus decides M .

We now prove two simple lemmas, allowing us to grow

and shrink assignments, and then use these in the main

lemma from which the space lower bound will follow.

Lemma 17. Let M contain at most s terms and let α ∈ H
guarantee m non-zeroes in M . Then there is β ⊇ α in H
such that β decides M and |β| ≤ |α|+ s−m.

Proof: This is a simple extension of the proof of

Lemma 11.

Lemma 18. Let M contain at most s terms and let α ∈ H.
Suppose there is γ ⊇ α in H with |NZ(M,γ)| = m. Then
there is β with α ⊆ β ⊆ γ such that |NZ(M,β)| = m
and |β| ≤ |α|+ s−m.
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Suppose furthermore that α guarantees m non-zeroes
in M . Then γ � M implies β � M and also γ � ¬M
implies β � ¬M .

Proof: List the terms in M as t1, . . . , tr with r ≤ s.

Suppose that NZ(M,γ) is t1, . . . , tm and Z(M,γ) is

tm+1, . . . , tr. We define β by starting with α and adding, for

each term ti among tm+1, . . . , tr, one literal from γ which

sets ti to 0. Then |NZ(M,β)| = |NZ(M,γ)| = m and

|β| ≤ |α|+ s−m. In the “furthermore” part, β decides M
by Lemma 16. The implications follow since β ⊆ γ.

Lemma 19 (Main Lemma). Suppose w ≥ 2s(s + 1) + k.
Then for each m ≤ s there is α ∈ H and a proof interval
[i, j] such that

(i) α � Mi and α � ¬Mj

(ii) α guarantees m non-zeroes in [i, j]

(iii) |α| ≤ 4
m−1∑
r=0

(s− r).

Proof: We will use induction on m. The base case

for m = 0 is immediate, taking α = ∅ and [i, j] to be

the whole refutation [0, t]. As M0 has no terms and the

last configuration Mt only contains the polynomial 1, the

empty assignment ∅ forces M0 and ¬Mt and the other two

conditions are trivial.

Now suppose that α and [i, j] are such that conditions

(i)–(iii) hold for m, where m < s. We will find a proof

interval [i′, j′] ⊆ [i, j] and an assignment α′′ satisfying

(i)–(iii) for m+ 1. Note that (iii) implies |α|+ 4(s−m) ≤
4[s+ (s− 1) + · · ·+ 1] = 2s(s+ 1) ≤ w − k.

We work separately on the two ends of the proof interval.

We first deal with the left end, distinguishing two cases:

(a) there is � ∈ [i, j] such that for some β ⊇ α in H it

holds that |NZ(M�, β)| = m and β � M�

(b) no such � exists.

In case (a) we consider the largest such � and a cor-

responding β; necessarily � < j. By condition (ii) and

Lemma 18, we may assume without loss of generality that

|β| ≤ |α| + s − m. By condition (ii) and Lemma 17, we

may extend β to α′ ∈ H with |α′| ≤ |α| + 2(s −m) such

that α′ decides M�+1. Since β � M�, by Corollary 13, the

soundness of PCR and the bound on |α′|, it follows that

α′ � M�+1. We set i′ := �+ 1. In case (b) we set α′ := α
and i′ := i. In both cases, we have |α′| ≤ |α| + 2(s −m)
and α′ � Mi′ .

We now move to the right end of the interval and again

distinguish two cases:

(c) there is � ∈ [i′, j] such that for some β ⊇ α′ in H it

holds that |NZ(M�, β)| = m
(d) no such � exists.

In case (c) we consider the smallest such � and a correspond-

ing β. By Lemma 18 we may assume |β| ≤ |α′| + s −m.

By condition (ii) and Lemma 16, β decides M�. Therefore

β � ¬M�, since if β � M� then � and β satisfy the

conditions of case (a), which is impossible by the choice

of i′. It follows that � > i′. Using Lemma 17, we extend

β to α′′ ∈ H with |α′′| ≤ |α′| + 2(s −m) ≤ w − k such

that α′′ decides M�−1. We cannot have α′′ � M�−1, by

Corollary 13. Therefore α′′ � ¬M�−1 and we set j′ := �−1.

In case (d) we set α′′ := α′ and j′ := j. In both cases,

|α′′| ≤ |α|+ 4(s−m) and α′′ � ¬Mj′ .
This completes the construction. We have shown con-

dition (i), and condition (iii) holds inductively. Finally,

by condition (ii) for m we know that α′′ guarantees m
non-zeroes in [i′, j′], since α′′ ⊇ α. Furthermore, by the

choice of j′ we know that if γ ⊇ α′′ and i′ ≤ � ≤ j′,
then |NZ(M�, γ)| �= m. Thus α′′ in fact guarantees m + 1
non-zeroes in [i′, j′].

Theorem 20. Let F be a k-CNF. If F has a PCR refutation
in monomial space s over some field F, then F has a
resolution refutation of width 2s(s+ 1) + k.

Proof: Suppose there is no such resolution refuta-

tion. Then we can choose our family H to have width

w = 2s(s+ 1) + k, and it is enough to show that Lemma 19

leads to a contradiction for m = s. The lemma gives us a

proof interval [i, j] and α ∈ H with |α| ≤ w − k such that

α � Mi, α � ¬Mj and α guarantees s non-zeroes in [i, j].
For each � ∈ [i, j] a (trivial) application of Lemma 17

shows that α decides M�. Using the fact that α � Mi and

applying Corollary 13 to Mi+1, . . . ,Mj in turn, we conclude

that α � Mj . But this is impossible.

VI. IMPROVED BOUNDS

In this section, we present two refined versions of our

main result. First, we show that the bound from Theorem 20

works with respect to term space in any configurational proof

system, not just PCR. Then, we improve the bound for PCR

by roughly a factor of two.

A. A bound for general configurational systems
Recall from Section II-A that in general a configuration

M with term space s is a formula ϕ labelled with a sequence

of terms t1, . . . , ts, such that ϕ is semantically equivalent to

g(t1, . . . , ts) where g is a boolean function. Given α ∈ H,

we say that α decides M if it fixes all terms, say to

values b1, . . . , bs We say that α forces M or forces ¬M
if g(b1, . . . , bs) is respectively 1 or 0.

Using these definitions, all the arguments about PCR

in Sections IV and V go through for any configurational

system, as we did not use any properties of PCR except for

soundness of the rules. Therefore we have:

Theorem 21. Let F be a k-CNF. If F has a refutation in
term space s in any configurational proof system, then F
has a resolution refutation of width 2s(s+ 1) + k.

We remark that, by counting terms more carefully, this

can be improved to width 2s2 + k.

1332



B. A stronger bound for PCR

We now show how to improve this bound in the case of

PCR. The only specific property of PCR we use is that if M�

and M�+1 are successive configurations in a PCR refutation,

then the terms in M�+1 are either a subset or a superset of

the terms in M�.

Theorem 22. Let F be a k-CNF. If F has a PCR refutation
in monomial space s over some field F, then F has a
resolution refutation of width s2 − s+ k.

We use the following strengthening of Lemma 19.

Lemma 23. Suppose w ≥ s(s − 1) + k. Then for each
m ≤ s− 1 there is α ∈ H and a proof interval [i, j] in the
PCR refutation such that

(i) α � Mi and α � ¬Mj

(ii) α guarantees m non-zeroes in [i, j]

(iii) |α| ≤ 2
m−1∑
r=0

(s− 1− r).

Proof: We use the same structure as the proof of

Lemma 19, but with induction only up to m = s − 1. In

the induction, suppose we are in case (a) with m < s − 1.

We have � ∈ [i, j] such that for some β ⊇ α in H it holds

that |NZ(M�, β)| = m and β � M�, and we have chosen �
maximal, so that there is no such β for M�+1. Furthermore

α guarantees m non-zeroes at M� and M�+1 and we have

the bound |α| + 2(s − m − 1) ≤ 2
∑m

r=0(s − 1 − r) ≤
s(s− 1) ≤ w− k. In Lemma 19, we used β to find α′ ⊇ α
in H with α′ � M�+1 and |α′| ≤ |α|+ 2(s−m). We now

want to improve this bound to |α′| ≤ |α|+ s−m− 1.

By the properties of PCR, we may list the terms in M� as

t1, . . . , tp and the terms in M�+1 as t1, . . . , tq with p, q ≤ s.

By Lemma 18 we may assume |β| ≤ |α| + p − m. If

q ≤ p, then already β decides M�+1, so β � M�+1 by

Corollary 13; and also |NZ(M�+1, β)| ≤ |NZ(M�, β)| = m.

This contradicts the maximality of �. So we must have q > p.

We apply the proof of Lemma 11 carefully to extend β
to α′ ∈ H which fixes the remaining terms tp+1, . . . , tq
in M�+1. That is, for each of these terms ti we add, if we

can, a literal which sets ti to 0, and otherwise do nothing.

The resulting α′ has size at most |α|+p−m+(q−p) ≤ w−k,

and thus α′ � M�+1 by Corollary 13. Hence α′ cannot set

all of these terms to 0, or we would have |NZ(M�+1, α
′)| =

|NZ(M�, β)| = m, contradicting the maximality of �.
Therefore for at least one ti we did not add a literal, giving

|α′| ≤ |α|+ p−m+ (q − p− 1) ≤ |α|+ s−m− 1.

Now suppose we are in case (c) at the right end of the

interval. We have � ∈ [i′, j] such that for some β ⊇ α′

in H it holds that |NZ(M�, β)| = m and we have chosen

� minimal, so that there is no such β for M�−1. Again α′

guarantees m non-zeroes at M� and M�−1 and now we have

the bound |α′| + s − m − 1 ≤ w − k. As in the proof of

Lemma 19, we must have that β � ¬M� and � > i′. We

list the terms in M�−1 as t1, . . . , tp and the terms in M� as

t1, . . . , tq , and by Lemma 18 without loss of generality may

assume |β| ≤ |α′|+ q −m.

Similarly to before, we must have p > q as p ≤ q
implies |NZ(M�−1, β)| ≤ |NZ(M�, β)|, contradicting the

minimality of �. By adding at most one literal for each term

tq+1, . . . , tp we extend β to α′′ which fixes all these terms;

again this cannot set all of them to 0 or it would contradict

the minimality of �, so we have |α′′| ≤ |β| + p − q − 1
≤ |α′|+ p−m− 1 ≤ w − k. It follows that α′′ � ¬M�−1
by Corollary 13, since β � ¬M�, and also |α′′| ≤ |α| +
2(s−m− 1).

Proof of Theorem 22: If there is no such resolution

refutation, then F has an Asterias-Dalmau familyH of width

w = s2 − s+ k+1, by Lemma 4. We apply Lemma 23 for

m = s− 1. This gives us a proof interval [i, j] and α ∈ H
with |α| ≤ s(s−1) ≤ w−k−1 such that α � Mi, α � ¬Mj

and α guarantees s − 1 non-zeroes in [i, j]. We will show

inductively that for each � in this interval there is β ⊇ α
in H with |β| ≤ |α| + 1 such that β � M�. This gives a

contradiction for � = j.

Suppose this holds for �. Necessarily every configuration

in [i, j] has either s− 1 or s terms. If M� has s terms, then

the terms in M�+1 are a subset of the terms in M� and thus

β � M�+1 by Corollary 13. If M� has s− 1 terms, then by

Lemma 16, already α � M�. We can extend α to α′ which

decides M�+1 by adding at most one literal, and then again

apply Corollary 13.

VII. CONSEQUENCES OF THE MAIN RESULT

In this section, we describe the consequences of our result

outlined in Section I-A.

A. New space lower bounds for PCR

As mentioned in the introduction, there are some CNF

formulas for which it has seemed reasonable to expect PCR

space lower bounds but, by [16], the general framework

for proving such bounds developed in [9] either provably

does not work or seems not to. Examples include the linear

ordering principle and the functional pigeonhole principle.

1) Linear ordering principle: The linear ordering prin-
ciple encodes the property that a finite linearly ordered set

of n elements must have a maximal element.An unsatis-

fiable CNF formula expressing this principle, LOPn, uses

variables xij , for i �= j ∈ [n], and consists of the clauses:⎧⎪⎪⎨
⎪⎪⎩

xij ∨ xji i, j ∈ [n] i �= j
x̄ij ∨ x̄ji i, j ∈ [n] i �= j
x̄ij ∨ x̄jk ∨ xik i, j, k ∈ [n] i �= j �= k �= i∨

j∈[n],i �=j xij i ∈ [n].
The idea is that the variables describe an ordering of [n]
and that xij holds when i is below j in the ordering. Thus,

the first three groups of clauses correspond to linearity,
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antisymmetry, and transitivity, respectively. The wide clauses

from the final group state that there is no maximal element.

First we consider the graph version of this principle,

GOP(G), introduced in [31], in the encoding used to prove

a degree lower bound for PCR in [20]. Let G = (V,E) be

a simple undirected graph over n nodes, that is, V = [n].
Let Γ(i) be the set of neighbours of i in G. The variables

of GOP(G) are xij for i < j ∈ [n], with the role of xji

played by x̄ij . GOP(G) is defined as the conjunction of the

following clauses:⎧⎪⎪⎨
⎪⎪⎩

xij ∨ xjk ∨ x̄ik i, j, k ∈ [n], i < j < k
x̄ij ∨ x̄jk ∨ xik i, j, k ∈ [n], i < j < k∨
j∈Γ(i),i<j

xij ∨
∨

j∈Γ(i),i>j

x̄ij i ∈ [n].

Note that because of the slightly different choice of vari-

ables, the linearity and antisymmetry axioms disappear,

while the transitivity axioms take two forms.

Definition 24. ([20]) The graph G is an (r, c)-vertex ex-
pander if for any set U ⊆ V with |U | ≤ r it holds that

|Γ(U)| ≥ c|U |.
Theorem 25. Let G be a simple undirected constant-degree
graph which is an (r, c)-vertex expander. Then, over any
field, refuting GOP(G) in PCR requires space Ω(

√
cr).

Proof: It was proved in [20] that the polynomial trans-

lation of GOP(G) requires degree Ω(cr) to refute in PCR.

Hence, GOP(G) requires width Ω(cr) in resolution. The

result follows using our main Theorem 22.

Since there are constant-degree graphs G with c = Ω(n)
(see [20] for the precise G to use), we have the following.

Corollary 26. There are simple undirected graphs G over n
nodes such that refuting GOP(G) requires space Ω(

√
n)

in PCR.

We can also lift the lower bound to LOPn.

Corollary 27. Over any field, refuting LOPn requires PCR
space Ω(

√
n).

Proof: (sketch) Let G = ([n], E) be as in Corollary 26.

Consider the substitution ρG to the variables of LOPn

defined by ρ(xij) = x̄ji for i < j ∈ [n] and ρ(x̄ij) = xji

for j < i ∈ [n]. It is not difficult to see that after

applying ρG, the linearity and antisymmetry axioms of

LOPn become tautologies of the form xij x̄ij = 0, the

transitivity axioms of LOPn become transitivity axioms of

GOP(G), and the monomials translating the wide clauses

of LOPn become derivable from the corresponding axioms

of GOP(G) by a series of multiplications that effectively

weaken the disjunction “some neighbour of i in G is above i
in the ordering” to “some element of G is above i”.

Assume that LOPn has a PCR refutation in space s. We

obtain a PCR refutation of GOP(G) in space s + O(1) as

follows. First apply ρG to the whole refutation. To turn this

into a valid refutation of GOP(G), whenever the original

refutation downloaded a linearity or antisymmetry axiom of

LOPn, we now derive the monomial xij x̄ij at the cost of a

constant increase in space. Whenever the original refutation

downloaded an LOPn axiom of the form
∨

j∈[n],i �=j xij , we

download the corresponding axiom of GOP(G) and obtain

the axiom of LOPn by a series of steps in which we multiply

a monomial by a single variable and immediately delete

the old monomial, keeping only the result of multiplication;

this increases space by 1. With transitivity axioms, there is

nothing to do. It is not difficult to see that what remains is a

valid proof of GOP(G) of space s+O(1). By Corollary 26,

this completes the argument.

2) Functional pigeonhole principle: The functional pi-
geonhole principle FPHPm

n , for m > n, asserts that there

cannot exist a total injective function mapping m pigeons

into n holes. Its encoding as an unsatisfiable CNF, built using

variables xij for i ∈ [m] and j ∈ [n], is the following:

⎧⎨
⎩

∨
j∈[n] xij i ∈ [m]

x̄ij ∨ x̄i′j i �= i′ ∈ [m], j ∈ [n]
x̄ij ∨ x̄ij′ i ∈ [m], j �= j′ ∈ [n].

The variable xij is supposed to stand for “pigeon i goes

to hole j”, so the first group of clauses states that the map

taking pigeons to holes is defined on all inputs, while the

two latter groups correspond to injectivity and uniqueness

of value, respectively.

PCR space lower bounds for FPHPm
n were so far un-

known, and, as proved in [16], the framework for obtaining

lower bounds developed in [9] could not be used in this case.

We consider two constant-width versions of the functional

pigeonhole principle. The extended version of FPHPm
n ,

eFPHPm
n , is obtained by replacing each large initial clause∨

j∈[n] xij for i ∈ [m] with the CNF

(yi1 ∨ xi1) ∧
∧

1≤j≤n−1
(ȳij ∨ xij ∨ yi(j+1)) ∧ (ȳin ∨ xin)

which uses mn new variables yij for i ∈ [m], j ∈ [n]. Width

lower bounds of Ω(n) for eFPHPm
n in resolution can be

easily obtained by modifying a routine Prover-Adversary

argument proving a width lower bound for FPHPm
n [3].

Hence Theorem 22 implies lower bounds of Ω(
√
n) on the

space needed to refute eFPHPm
n in PCR. The functional

pigeonhole principle is an example of formula which is

weight-constrained in the terminology of [18] (see Defini-

tion 7.1 in [18]). As such it was shown in [18, Theorem 1.5]

that the PCR space needed to refute FPHPm
n and eFPHPm

n

can differ by at most a constant factor. Hence Theorem 22

implies PCR space lower bounds for FPHPm
n as well.

Corollary 28. Over any field, refuting FPHPm
n in PCR

requires space Ω(
√
n).
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A different constant-width version of the functional pi-

geonhole principle is the functional pigeonhole principle

over bipartite graphs G, as defined in [24]. Using known

width and degree lower bounds, we get a similar PCR space

lower bound for this family of formulas when G is a suitable

graph. Let G = (U, V,E) be a bipartite graph. FPHP(G)
is defined using variables xuv , for u ∈ U , v ∈ Γ(u), as⎧⎨

⎩
∨

v∈Γ(u) xuv u ∈ U

x̄uv ∨ x̄u′v v ∈ V, u �= u′ ∈ Γ(v)
x̄uv ∨ x̄uv′ u ∈ U, v �= v′ ∈ Γ(u).

Definition 29. ([24, Definition 5.1]) A bipartite graph G =
(U, V,E) is an (r, c)-boundary expander if for each U ′ ⊆ U
with |U ′| ≤ r, it holds that |∂(U ′)| ≥ c|U ′|, where the

boundary ∂(U) of U is {v ∈ V : |Γ(v) ∩ U ′| = 1}.
Theorem 30. ([24, Theorem 5.9]) Let G = (U, V,E) be
a bipartite graph which is an (r, c)-boundary expander
with left-degree bounded by d. Refuting FPHP(G) in PCR
requires degree strictly greater than cr/2d.

Hence FPHP(G) also requires width cr/2d in resolution.

From Theorem 22 we conclude:

Theorem 31. Let G = (U, V,E) be a bipartite graph which
is an (r, c)-boundary expander with left-degree bounded
by d. Refuting FPHP(G) in PCR requires space Ω(

√
cr/d).

Since, as mentioned in [24], there exist bipartite graphs

with |U | = n+1, |V | = n and with left-degree 3 which are

(γn, c)-boundary expanders for γ, c > 0, we can conclude:

Corollary 32. There exist bipartite graphs G with
|U | = n+ 1 and |V | = n such that refuting FPHP(G) in
PCR requires space Ω(

√
n).

B. Separations independent of characteristic

In [16], a separation of size and degree from space was

proved for PCR: for each characteristic p > 0, there is a

family of constant-width CNFs that have small low-degree

refutations in PCR over characteristic p but require large

PCR space over any field. However, it was left as an open

problem whether there are formulas witnessing this sort of

separation regardless of the characteristic of the field.

Theorem 22, together with some earlier results, makes

it possible to prove characteristic-independent separations

of PCR space from other measures of proof complexity.

However, it has to be noted that, due to the quadratic term in

the statement of Theorem 22, the lower bounds on space we

obtain can be no better than Ω(
√
n), where n is the size of

the formula; thus, they are not as strong as the Ω(n) lower

bounds obtained in the separations of size and degree from

space from [16].

1) Separation of size from space: Theorem 22, the degree

lower bound of [20] (which holds for any field), and the

polynomial size resolution proofs for GOP(G) (see [20])

immediately give a separation of PCR size and space inde-

pendent of characteristic, involving GOP(G).

Theorem 33. Over any field, there are PCR refutations
of size O(n3) of GOP(G) for any G. If G is the
constant-degree vertex-expander graph with expansion Ω(n)
of [20], then, over any field, refuting GOP(G) requires
space Ω(

√
n) in PCR.

2) Separation of size and degree from space: To separate

both size and degree from space in a way that works over

any characteristic, we turn to a version of the bijective
(functional onto) pigeonhole principle, which asserts that

there cannot exist a bijection between m pigeons and n holes

(assuming m �= n). The formula bij-PHPm
n itself is obtained

from the functional pigeonhole principle FPHPm
n by adding

clauses saying that each hole is occupied by a pigeon. Thus,

bij-PHPm
n consists of the clauses:

⎧⎪⎪⎨
⎪⎪⎩

∨
j∈[n] xij i ∈ [m]∨
i∈[m] xij i ∈ [n]

x̄ij ∨ x̄i′j i �= i′ ∈ [m], j ∈ [n]
x̄ij ∨ x̄ij′ i ∈ [m], j �= j′ ∈ [n].

For a bipartite graph G = (U, V,E), the formula bij-
PHP(G) (sometimes also denoted by PMP(G)) is, as in

previous examples, obtained by restricting bij-PHPm
n for

the appropriate m,n to variables xuv for u ∈ U, v ∈ Γ(u).
In other words, bij-PHP(G) contains the clauses:

⎧⎪⎪⎨
⎪⎪⎩

∨
v∈Γ(u) xuv u ∈ U∨
u∈Γ(v) xuv v ∈ V

x̄uv ∨ x̄u′v v ∈ V, u �= u′ ∈ Γ(v)
x̄uv ∨ x̄uv′ u ∈ U, v �= v′ ∈ Γ(u).

Theorem 34. For every n, there exists a bipartite graph
G with |U | = n + 1, |V | = n such that the formula bij-
PHP(G) has size O(n) and has a poly(n)-size, O(1)-degree
PCR refutation over any field, but requires space Ω(

√
n) to

refute in PCR.

Proof: Using suitable boundary expanders, it is shown

in [22, Section 4] that for every n, there exists a bounded-

degree bipartite graph G = (U, V,E) with |U | = n + 1,

|V | = n such that refuting bij-PHP(G) in resolution

requires width Ω(n). Fix such a graph G. Due to the

fixed bound on the degree, bij-PHP(G) is an O(1)-CNF

of size O(n). It follows from Theorem 22 and the width

lower bound that refuting bij-PHP(G) in PCR requires

space Ω(
√
n).

To prove the existence of the polynomial-size, constant-

degree refutations of bij-PHP(G), consider the version of

the bijective pigeonhole principle in which the variables are

xuv for all u ∈ U, v ∈ V , but the statements that each

pigeon goes to some hole and that each hole is occupied are
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expressed by means of sums rather than wide clauses:{
1−∑

u∈V xuv u ∈ U
1−∑

v∈U xuv v ∈ V.

It is well-known that over any field this sum version of the

bijective pigeonhole principle has a poly(n)-size, constant-

degree PC refutation [30]. The idea is that adding up the

axioms pigeon-by-pigeon gives
∑

uv xuv = n + 1, and

adding them hole-by-hole gives
∑

uv xuv = n; this implies

1 = 0 over any field. Of course, this refutation still works if

we substitute 0 for each xuv with (u, v) /∈ E, which gives

us a polynomial-size, constant-degree refutation of the “sum

version” of bij-PHP(G).
It remains to argue that there is a polynomial-size,

constant-degree PCR derivation of the “sum version” of bij-
PHP(G) from bij-PHP(G) itself. In fact, 1−∑

v∈Γ(u) xuv

for each fixed u (and analogously, 1 − ∑
u∈Γ(v) xuv

for fixed v) can be derived from bij-PHP(G) in con-

stant size. First, use the axiom
∏

v∈Γ(u) x̄uv to derive∏
v∈Γ(u)(1− xuv). Then, kill off each term of degree ≥ 2 in

the latter product using the axioms xuvxuv′ and, if necessary,

multiplications. This leaves 1−∑
v∈Γ(u) xuv .

C. Simplification of previous lower bounds

Let G = (V,E) be an undirected graph. Let χ : V →
{0, 1} be a function, which we call an odd-charging of G
if

∑
v∈V χ(v) is an odd number. Consider variables xe

for e ∈ E and define Par(v, χ) to be the CNF expansion

of the formula encoding that the parity of edges incident

with v is exactly χ(v), i.e.
⊕

v∈e xe = χ(v). The Tseitin

formula Ts(G,χ) over G and an odd-charging χ of G is

defined as

Ts(G,χ) :=
∧
v∈V

Par(v, χ).

Notice that if the maximal degree of a vertex in G is d then

the size of Ts(G,χ) is ≤ |V |2d−1.

Definition 35. (Connectivity expansion [16]) The connec-
tivity expansion c(G) of a graph G = (V,E) is the largest c
such that for every E′ ⊆ E, with |E′| ≤ c, the graph

G′ = (V,E \E′) has a connected component of size strictly

greater than |V |/2.

A lower bound on the space to refute Ts(G,χ) in PCR

is given by the following Theorem.

Theorem 36. ([16]) Let G = (V,E) be a connected graph
of bounded degree d such that E can be partitioned into
cycles of length at most b. Then, over any field, refuting
Ts(G,χ) in PCR requires space at least c(G)/4b− d/8.

In [16], obtaining a PCR space lower bound for Ts(G)
over a random graph involves showing that, for a suitable

model of random constant-degree graphs, with high proba-

bility a random graph has both strong enough connectivity

expansion and the property that the set of edges can be

partitioned into small cycles. The authors of [16] raise the

issue whether PCR space lower bounds for Tseitin formulas

can be proved using expansion alone.

We can obtain asymptotically the same space lower bound

using only expansion. We consider the expansion e(G) of a

graph G as defined in [6] and we use their resolution width

lower bound of Ω(e(G)) for resolution proofs of Ts(G,χ).
Hence using our Theorem 22 we can improve the result

of [16] to:

Theorem 37. Let G = (V,E) be a connected graph of
constant-degree d. Then it holds over any field that refuting
Ts(G,χ) in PCR requires space Ω(

√
e(G)).

Since there are graphs G over n nodes with e(G) = Ω(n)
(see [6]), our result is asymptotically as good as that of [16].

VIII. OPEN PROBLEMS

A natural question is whether older PCR space lower

bounds, such as those in [9], can be reproved (or extended)

in our framework. For example: use the methods of this

paper to show that if F has an m-winning strategy in

the sense of [9] then F requires PCR space linear in m.

These bounds are typically linear in resolution width, so

this could potentially be a route to strengthening our result

to a general linear lower bound on PCR space in resolution

width, matching the bound on resolution space in [3]. This

would be consistent with what is known.

In the other direction, it is possible that the results here

are tight up to a constant factor. Showing this means finding

a formula F which requires width w in resolution but which

has a PCR refutation in space O(
√
w). Plausible candidates

for F are the Tseitin tautologies on random bounded degree

graphs considered in [16].

The intriguing possibility that our bounds are essentially

tight for general configurational systems but not for PC or

PCR has also not been ruled out.
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