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Abstract—Reed-Muller (RM) codes were introduced in 1954
and have long been conjectured to achieve Shannon’s capacity on
symmetric channels. The activity on this conjecture has recently
been revived with the emergence of polar codes. RM codes and
polar codes are generated by the same matrix Gm =

[
1 0
1 1

]⊗m

but using different subset of rows. RM codes select simply rows
having largest weights. Polar codes select instead rows having the
largest conditional mutual information proceeding top to down
in Gm; while this is a more elaborate and channel-dependent
rule, the top-to-down ordering allows Arıkan to show that the
conditional mutual information polarizes, and this gives directly
a capacity-achieving code on any symmetric channel. RM codes
are yet to be proved to have such a property, despite the recent
success for the erasure channel.

In this paper, we connect RM codes to polarization theory.
We show that proceeding in the RM code ordering, i.e., not
top-to-down but from the lightest to the heaviest rows in Gm,
the conditional mutual information again polarizes. We further
demonstrate that it does so faster than for polar codes. This
implies that Gm contains another code, different than the polar
code and called here the twin-RM code, that is provably capacity-
achieving on any symmetric channel. This gives in particular
a necessary condition for RM codes to achieve capacity on
symmetric channels. It further gives a sufficient condition if the
rows with largest conditional mutual information correspond to
the heaviest rows, i.e., if the twin-RM code is the RM code. We
demonstrate here that the two codes are at least similar and give
further evidence that they are indeed the same.

Index Terms—Reed-Muller codes; polar codes; Shannon the-
ory; capacity-achieving codes

I. INTRODUCTION

Reed-Muller codes were introduced in 1954 by Muller [1]

and studied shortly after by Reed [2]. They are among the first

and simplest codes to construct (evaluations of multivariate

polynomials of bounded degree) and have a wide range of

applications in theoretical computer science, such as in [3]–

[6]. Moreover, Reed-Muller codes have long been conjectured

to achieve Shannon’s capacity on symmetric channels.1 This

was recently settled in [7], [8] for the special case of the binary

erasure channel (BEC), and in [9], [10] for special cases of

extremal rates on both the BEC and the binary symmetric

channel (BSC). The general conjecture of achieving capacity

on the BSC and more generally any binary memoryless

symmetric (BMS) channel2 at constant rate remains widely

open to date.

1See [7] for accounts on this conjecture.
2Recall that a BMS channel is a channel W : {0, 1} → Y such that there

is a permutation π on the output alphabet Y satisfying i) π−1 = π and ii)
W (y|1) = W (π(y)|0) for all y ∈ Y .

The research activity on RM codes has resurged in part

due to the development of polar codes [11], [12]. Both RM

codes and polar codes are generated by selecting subset of

rows from the same base matrix Gm =
[
1 0
1 1

]⊗m
. Polar codes

select the rows by tracking the conditional mutual information

of each row given the past rows when proceeding top to

down in Gm (see Section II-B for precise definitions). In this

specific ordering, Arıkan was able to show a polarization result

[11], i.e., that most of the rows have a conditional mutual

information that tend to either 0 or 1. This in turn implies

fairly directly that the code resulting from keeping the high

conditional mutual information rows is capacity-achieving on

any BMS channel.

A first drawback of polar codes is that the code construction,

i.e., identifying the rows having high conditional mutual

information, is non-trivial. In particular, there is to date no

known explicit characterization of the row selection except for

the BEC. This is however not an algorithmic limitation as there

are known efficient algorithms that approximate arbitrarily

closely the values of the conditional mutual information for

each row [13]. Two more important drawbacks are first that

polar codes are not universal [14], as their row selection is

channel dependent, and then that their scaling law is sub-

optimal compared to that of random codes [15] and likely of

RM codes [16], making their error probability at short block

length not as competitive as could be [17]. On the flip side,

polar codes benefit from a powerful analytical framework, the

polarization framework [11], recently strengthened in [18],

[19], which allows to give performance guarantees, as well as

an efficient successive decoding algorithm. Their performance

at short block length has also been improved with the addition

of outer codes and list decoding algorithms [20]. With these

attributes, polar codes are to enter soon the 5G standards [21].

On the other side, RM codes benefit from a simple and

universal code construction: selecting the heaviest rows is

trivial and depends only on the capacity of the channel and

not the actual channel. Further, it is already known that RM

codes would have an optimal scaling law if they were proved

to be capacity-achieving [16]. Performance improvements over

polar codes at short block length were also demonstrated in

[17]. On the flip side, the main challenges of RM codes are

(i) their analytical framework, with the difficulty of obtaining

performance guarantees, (ii) the absence of an efficient decod-

ing algorithm that succeeds up to capacity for the constant rate

regime.
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A. Recent progress

As mentioned earlier, progress has recently been made

on both points (i) and (ii). We mention briefly here a few

references for decoding algorithms [2], [22]–[24], as this is

not the focus of this paper, and also refer to our parallel paper

with a decoding algorithm [25] for a more detailed discussion

of those.

We now discuss performance guarantees. In [7], the case

of the BEC is settled by exploiting results on the threshold

of monotone Boolean functions, benefiting from the fact that

the events of decoding failures for erasures correspond to

monotone properties of Boolean functions. With this link,

general results from Boolean function analysis [26]–[28] come

to rescue and allow to close the conjecture for the BEC.

While this gives an elegant proof, it has the downside of

relying on a “Hammer” result for monotone functions [26],

[29] that does not seem to generalize easily beyond erasures

due to the loss of the monotonicity property. The approach

of [9] relies instead on the polynomial characterization of RM

codes (whose codewords are the evaluation vectors of bounded

degree multivariate Boolean polynomials) and on the weight

enumerator of RM codes. A downside of that approach is that

it is currently not reaching the constant rate regime; although

some recent progress towards that goal was made in [10].

Moreover, none of the above seem to shed light on the

connection between polar and RM codes, which despite being

relatives are analyzed very differently. Attempts to connect

RM codes to polar code was made in [30], using the double

conditional rank measure in relation to the algebraic approach

to polarization [31], with conjectures based on this approach

left in [30]. Another work investigating the relationship be-

tween RM and polar codes used the polynomial formalism

and studied the generating monomials of polar codes [32].

B. This paper

Considering the developments so far, it may appear that

the simplicity of the RM code construction fires back in

the complexity of their analysis, in contrast to polar codes,

where a more elaborate construction allows to benefit from

the powerful polarization framework.

The first goal of this paper is to show that this is not

a necessary limitation, and that RM codes benefit too from

a polarization phenomenon, slightly different but potentially

more effective than that of polar codes. We view RM codes

as the evaluation of multivariate polynomials and make use

of the classical recursive Plotkin construction3 (u, u+ v) [33],

which is similar in nature to the recursive construction of polar

codes. Together with the establishment of an ordering on the

conditional mutual information of RM codes, we derive a new

polarization result for the RM code ordering.

This in turn gives rise to a new code, called here the twin-

RM code, obtained by selecting rows with high conditional

mutual information in the RM code ordering. We can prove

3Any d-degree polynomial can be decomposed with two (d − 1)-degree
polynomials as f(xd) = xdf1(x

d−1) + f0(xd−1).

that this twin-RM code is capacity-achieving on any BMS

channel, as conjectured for RM codes. We further show that

the twin-RM code is indeed closely related to the RM code

in the following sense.

First the polarization of conditional mutual information

under RM ordering is a necessary condition for RM codes

to achieve capacity over any BMS channel.4 Moreover, the

capacity results for the twin-RM code also give a sufficient

condition for capacity results on the RM code if the rows

with largest conditional mutual information correspond mostly

to the heaviest rows, i.e., if the twin-RM code is equivalent

to the RM code. We give here a relaxed version of the latter,

showing that the twin-RM code has similarity with the RM

code, and verify that it is indeed exactly the RM code up to

dimension 16 (for the BSC). Note that in the contrary case, i.e.,

if the twin-RM code were not equivalent to the RM code, then

this would imply that the RM code does not achieve capacity

on all BMS channels.

II. BACKGROUND

A. RM codes

Consider the polynomial ring F2[Z1, Z2, . . . , Zm] of m
variables over F2. Since Z2 = Z in F2, the following set

of 2m monomials forms a basis of F2[Z1, Z2, . . . , Zm]:

{
∏
i∈A

Zi : A ⊆ [m]}, where
∏
i∈∅

Zi := 1.

Next associate to every subset A ⊆ [m] a row vector vm(A) of

length 2m, whose components vm(A, z) are indexed by binary

vectors z = (z1, z2, . . . , zm) ∈ {0, 1}m,

vm(A, z) =
∏
i∈A

zi, (1)

i.e., vm(A, z) is the evaluation of the monomial
∏

i∈A Zi at z.

For 0 ≤ r ≤ m, the set of vectors

{vm(A) : A ⊆ [m], |A| ≤ r}

forms a basis of the r-th order Reed-Muller code R(m, r) of

length n := 2m and dimension
∑r

i=0

(
m
i

)
.

Definition 1. The r-th order Reed-Muller code R(m, r) code
is defined as the following set of binary vectors

R(m, r) :=
{ ∑

A⊆[m],|A|≤r

u(A)vm(A) : u(A) ∈ {0, 1}

for all A ⊆ [m], |A| ≤ r
}
.

In this paper, we prove a polarization result in the Reed-

Muller code ordering. To that end, we define a total order on

all the subsets of [m] as follows:

Definition 2 (Total order). For A = {a1, a2, . . . , a|A|}, B =
{b1, b2, . . . , b|B|} ⊆ [m], where a1 > a2 > · · · > a|A| and

4If RM codes achieves capacity, then the conditional entropies in the RM
ordering must tend to 0 for the heavy-weight rows and 1 for the light-weight
rows, so polarization must happen (besides in the critical window).
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Example 1. We write out a basis of R(3, 3) as follows:

(z1, z2, z3) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)
A = {3, 2, 1} 1 0 0 0 0 0 0 0
A = {2, 1} 1 1 0 0 0 0 0 0
A = {3, 1} 1 0 1 0 0 0 0 0
A = {3, 2} 1 0 0 0 1 0 0 0
A = {1} 1 1 1 1 0 0 0 0
A = {2} 1 1 0 0 1 1 0 0
A = {3} 1 0 1 0 1 0 1 0
A = ∅ 1 1 1 1 1 1 1 1

,

where the first row lists the index z of each component, and the second to the last rows are v3(A), A ⊆ [3].

b1 > b2 > · · · > b|B|, we write A < B if either of the
following two conditions is satisfied:

1) |A| > |B|;
2) |A| = |B|, and there is an integer i ∈ {1, 2, . . . , |A|}

such that aj = bj∀j < i and ai < bi.

It is easy to check that for any two sets A,B ⊆ [m], one

of the following three relations must hold: A < B,A = B
or A > B. Therefore, this is indeed a total order on all the

subsets of [m]. Note that condition 1) ensures that picking

the ‘largest’ sets ‘layer by layer’ (i.e., with all sets of the

same cardinality together) gives the RM code. Condition

2) says how to order the rows within a layer (e.g., if the

code dimension requires breaking a layer), but any ordering

resulting from a permutation of the elements in [m] would be

equivalent. We pick this convention as we will see the m-th

element as the ‘new element’ when running the forthcoming

inductions.

For m = 3, the rows in Example 1 are listed in the

increasing order of the set A. Let (U
(m)
A : A ⊆ [m])

be 2m i.i.d. Bernoulli-1/2 random variables. We use the

shorthand notation U
(m)
<A := (U

(m)
A′ : A′ ⊆ [m], A′ < A)

and U (m) := (U
(m)
A : A ⊆ [m]). Next we define another n

i.i.d. Bernoulli-1/2 random variables X
(m)
z , z ∈ {0, 1}m by

(X(m)
z , z ∈ {0, 1}m) :=

∑
A⊆[m]

U
(m)
A vm(A).

We transmit X
(m)
z , z ∈ {0, 1}m, through n independent copies

of a BMS channel W : {0, 1} → Y , and we denote the

corresponding channel outputs as Y
(m,W )

z , z ∈ {0, 1}m. Let

X(m) := (X
(m)
z : z ∈ {0, 1}m) and Y (m,W ) := (Y

(m,W )
z :

z ∈ {0, 1}m). For instance, if W is simply the binary sym-

metric channel (BSC), then Y
(m,W )

z = X
(m)
z with probability

(1− p) and Y
(m,W )

z = X
(m)
z ⊕ 1 with probability p.

In general, since W is symmetric and (X
(m)
z , z ∈ {0, 1}m)

are also i.i.d. Bernoulli-1/2 random variables, we have

for all z ∈ {0, 1}m, H(X
(m)
z |Y (m,W )

z ) = 1 − I(W ),
and therefore H(U (m)|Y (m,W )) = H(X(m)|Y (m,W )) =

nH(X
(m)
z |Y (m,W )

z ) = n(1 − I(W )), where

H(·|·) is the conditional entropy defined as

H(X|Y ) = −∑
x∈X ,y∈Y pX|Y (x|y)pY (y) log pX|Y (x|y)

and I(·) is the channel capacity (or the symmetric

capacity for non-BMS channels) defined as

I(W ) = (1/2)
∑

x∈F2,y∈YW (y|x) log W (y|x)∑
u∈F2

W (y|u) . Thus, if

X is Bernoulli-1/2 and Y is drawn from W (·|X), we have

I(W ) = 1−H(X|Y ), and further,∑
A⊆[m]

H(U
(m)
A |Y (m,W ), U

(m)
<A ) = H(U (m)|Y (m,W ))

= H(X(m)|Y (m,W )) = n(1− I(W )),

which means that the sum of all the conditional entropies on

the left gives exactly the total conditional entropy of the orig-

inal channel (i.e., the entropy is preserved). For convenience,

we use the notation

H
(m,W )
A := H(U

(m)
A |Y (m,W ), U

(m)
<A ). (2)

From now on, we omit to specify W from the notation

H
(m,W )
A , Y (m,W ) and Y

(m,W )
z when the underlying channel

is not important, i.e., we write them as H
(m)
A , Y (m) and Y

(m)
z .

Therefore, ∑
A⊆[m]

H
(m)
A = n(1− I(W )). (3)

We also define the channel W
(m)
A as the binary-input channel

that takes U
(m)
A as input and Y (m), U

(m)
<A as outputs, i.e., W

(m)
A

is the channel seen by the successive decoder when decoding

U
(m)
A .
In order to state our main results, we also need the definition

of the Bhattacharyya parameter. Let (X,Y ) be a pair of ran-

dom variables such that X has Bernoulli-1/2 distribution and

Y takes values from a finite alphabet Y . The Bhattacharyya

parameter is defined as

Z(X|Y ) :=
∑
y∈Y

√
PY |X(y|0)PY |X(y|1).

Similarly to H
(m)
A , we use the shorthand notation Z

(m)
A =

Z
(m,W )
A := Z(U

(m)
A |Y (m,W ), U

(m)
<A ).

B. Polarization
The polar coding transform is given by the following n×n

matrix

Gm :=

[
1 0
1 1

]⊗m

, (4)
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where ⊗ is the Kronecker product and n = 2m. Let

(U1, U2) be a pair of i.i.d. uniform random variables, and let

(X1, X2) = (U1, U2)G1. Then transmit X1 and X2 through

two copies of W . Under successive decoder, this transforms

two copies of W into a “worse” channel W− : U1 → Y1, Y2

and a “better” channel W+ : U2 → U1, Y1, Y2. This statement

can be quantified with conditional entropies as follows:

H(U1|Y1, Y2) ≥ H(X1|Y1) ≥ H(U2|U1, Y1, Y2), (5)

together with the entropy-preservation equation

H(U1|Y1, Y2) +H(U2|U1, Y1, Y2) = 2H(X1|Y1). (6)

Similar relations among the Bhattacharyya parameters were

also proved in [11, Proposition 5]:

Z(U2|Y1, Y2, U1) = (Z(X1|Y1))
2, (7)

Z(U1|Y1, Y2) ≥ Z(X1|Y1). (8)

Moreover, if H(X1|Y1) is bounded away from 0 and 1,

then the gap between H(U1|Y1, Y2) and H(X1|Y1) is bounded

away from 0, and so does the gap between H(X1|Y1) and

H(U2|U1, Y1, Y2). (By (6), these two gaps are the same.) In

other words, if W is neither noiseless nor completely noisy,

then W− is strictly worse than W , and W+ is strictly better.

The rigorous statement is as follows.

Lemma 1 ([11]). Let (X1, Y1) and (X2, Y2) be an inde-
pendent pair of random variables, where X1 and X2 take
values in {0, 1}. For all ε > 0, there is δ(ε) > 0 such
that H(X1|Y1), H(X2|Y2) ∈ (ε, 1 − ε) implies H(X1 +
X2|Y1, Y2) ≥ max(H(X1|Y1), H(X2|Y2)) + δ(ε).

The polar coding scheme consists of applying the polar

matrix Gm to n i.i.d. uniform random variables and trans-

mitting the results through n copies of W . This amounts

to iteratively applying the “+” and “−” polar transforms to

W , and the power of this is that almost all the resulting

bit-channels seen by the successive decoder become either

noiseless or completely noisy. We next state this formally;

let {H̃(m)
A }A⊆[m] (resp., {Z̃(m)

A }A⊆[m]) be the conditional

entropy (resp., Bhattacharyya parameter) of each row given

all the past rows when decoding top to down in Gm.

Theorem 0 (Polarization of polar codes [11]). For every
BMS channel W , almost all elements in the set {H̃(m)

A }A⊆[m]

are close to either 0 or 1 when m is large. More precisely, for
any 0 < ε < 1/10 and any δ > 0, there is a constant M(ε, δ)
such that for every m > M(ε, δ),∣∣∣{A ⊆ [m] : H̃

(m)
A > 1− ε

}
∪
{
A ⊆ [m] : Z̃

(m)
A < δ

}∣∣∣
2m

≥ 1− o(1).

III. MAIN RESULTS

Our main results are summarized in the following theorems.

Theorem 1 (Polarization of RM codes). For every BMS
channel W , almost all elements in the set {H(m)

A }A⊆[m] are

close to either 0 or 1 when m is large. More precisely, for
any 0 < ε < 1/10 and any δ > 0, there is a constant M(ε, δ)
such that for every m > M(ε, δ),∣∣∣{A ⊆ [m] : H

(m)
A > 1− ε

}
∪
{
A ⊆ [m] : Z

(m)
A < δ

}∣∣∣
2m

≥ 1− o(1).

As mentioned above, the basis vectors of RM codes

{vm(A) : A ⊆ [m]} are exactly the row vectors of the

polar matrix Gm in (4). However, these rows are arranged in

different orders for RM codes and polar codes, which makes

the polarization of RM codes fundamentally different from

that of polar codes.
As an immediate consequence of Theorem 1, or more

precisely its quantitative version in Theorem 7 that allows

us to pick δn = poly(1/n), we can construct a family of

capacity-achieving codes as follows.

Theorem 2 (Twin-RM codes achieve capacity). For a BMS
channel W and δn > 0, let

G(m, δn) :=
{
A ⊆ [m] : Z

(m)
A < δn

}
and define the family of twin-RM codes from the codewords

T (m, δn) :={ ∑
A∈G

u(A)vm(A) : u(A) ∈ {0, 1} for all A ∈ G(m, δn)
}
,

where vm(A) is defined in (1). Then, taking δn = n−1−η ,
η > 0, T (m, δn) achieves the capacity of W under successive
decoding.

This theorem tells us that we can construct capacity achiev-

ing codes using successive decoder under the RM ordering

(i.e., the ordering defined by the weights of the rows in Gm).

Note that none of the above give algorithmic results.
To establish the above, we need the following notion of

ordering between the different conditional entropies in the RM

ordering, which also exhibits some of the similarity between

the RM and twin-RM codes.

Definition 3. For A = {a1, a2, . . . , a|A|}, B =
{b1, b2, . . . , b|B|} ⊆ [m], A �= B, where a1 < a2 < · · · < a|A|
and b1 < b2 < · · · < b|B|, we define

A ≺ B if and only if |A| ≥ |B| and ai ≤ bi, ∀i ≤ |B|.
Note that we set the above to be A ≺ B and not A � B as

this also gives [m] as the ‘first’ set and ∅ as the ‘last’ set, as

for the RM code ordering.

Theorem 3 (Partial order). If A ≺ B, then H
(m)
A ≥ H

(m)
B .

According to Theorem 2 and Theorem 3, the twin-RM code

T (m, δn) tend to select sets A with small cardinality, which is

similar to RM codes (that exactly selects sets with the smallest

cardinality). However, we can not establish here whether this

is exactly the RM code or not. We do give a positive indication

by proving that this is exactly the RM code up to n = 16 for

the BSC in Section VI-F.

276



IV. PROOF OUTLINE

In order to explain the main ideas of the proof, we introduce

the following definition.

Definition 4 (Increasing chain of sets). Let A0 = ∅ and Am =
[m]. We say that A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Am is an increasing
chain of sets if |Ai| = i for all i = 0, 1, 2, . . . ,m.

A main step in our argument consist in proving the follow-

ing two theorems:

Theorem 4 (Monotonicity of RM entropies on chains.). For
every BMS channel W , every m > 0 and every increasing
chain of sets ∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Am = [m], we
have

H
(m)
A0

≤ H
(m)
A1

≤ H
(m)
A2

≤ · · · ≤ H
(m)
Am

.

Theorem 5 (RM polarization on chains.). For every BMS
channel W and every ε > 0, there is a constant D(ε) (which
is independent of m and W ) such that for every m > 0 and
every increasing chain of sets ∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆
Am = [m],∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H

(m)
Ai

< 1− ε
}∣∣∣ ≤ D(ε).

In order to prove these two theorems, we only need to show

two results. We establish first an interlacing property:

Lemma 2 (Interlacing of RM entropies).

H
(m+1)
Ai

≤ H
(m)
Ai

≤ H
(m+1)
Ai+1

∀i ∈ {0, 1, . . . ,m}. (9)

Second, we prove a separation property of non-extremal

entropies:

Lemma 3 (Separation of RM entropies). For any ε > 0,
there is δ(ε) > 0 such that for any increasing chain of sets
and any i ∈ {0, 1, . . . ,m},

H
(m)
Ai

∈ (ε, 1− ε)

implies that

H
(m)
Ai

−H
(m+1)
Ai

> δ(ε) and H
(m+1)
Ai+1

−H
(m)
Ai

> δ(ε). (10)

It is clear that Theorem 4 follows immediately from (9); see

Fig. 1 for an illustration. Now we prove Theorem 5 using (10)

and Theorem 4. By (10) we know that as long as H
(m)
Ai

> ε

and H
(m)
Ai+1

< 1−ε, we have H
(m)
Ai+1

−H(m)
Ai

> 2δ; see Fig. 1 for

an illustration. Let j be the smallest index such that H
(m)
Aj

> ε,

and let j′ be the largest index such that H
(m)
Aj′

< 1− ε. Then∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H
(m)
Ai

< 1− ε
}∣∣∣ = j′ − j + 1.

Since H
(m)
Ai

increases with i, we have

H
(m)
Aj′

−H
(m)
Aj

=

j′−1∑
i=j

(H
(m)
Ai+1

−H
(m)
Ai

) > 2(j′ − j)δ.

Since H
(m)
Aj′

−H
(m)
Aj

is upper bounded by 1, we have j′− j <
1
2δ . Therefore,

∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H
(m)
Ai

< 1− ε
}∣∣∣ < 1

2δ
+ 1.

Thus we have proved Theorem 5 with the choice of D(ε) =
1

2δ(ε) + 1.

Now we are left to explain how to prove (9)–(10). The

proof is divided into two steps. First, we prove (9)–(10) for

the special case of Ai+1 = Ai ∪ {m + 1}. Then we show

that by the symmetry of RM codes, H
(m+1)
Ai∪{j} ≥ H

(m+1)
Ai∪{m+1}

for any j ∈ [m] \ Ai; see Lemma 4. Below we focus on the

explanation of the first part.

To prove (9)–(10) for the special case of Ai+1 = Ai∪{m+
1}, we use the recursive structure of RM code, and connect it

back to that of polar codes. However, (9) is not a polar code

triplet of the kind W− ≤ W ≤ W+ since we are working

with the RM code ordering. The good news is that (9) gives

in fact a larger spread than the one occurring for triplets of

polar codes. The rest of this section is dedicated to explaining

the precise meaning of previous phrase. With this connection

in mind, (9)–(10) will be derived from (5) and Lemma 1.

We now derive (9)–(10). For a given BMS channel W , we

denote the channel mapping from U (m) to Y (m,W ) as W (m).

Let us divide Y (m+1) := (Y
(m+1)

z : z = (z1, z2, . . . , zm+1) ∈
{0, 1}m+1) into two subvectors:

Y
(m+1)
odd :=

(Y (m+1)
z : z = (z1, z2, . . . , zm+1) ∈ {0, 1}m+1, zm+1 = 1),

Y (m+1)
even :=

(Y (m+1)
z : z = (z1, z2, . . . , zm+1) ∈ {0, 1}m+1, zm+1 = 0).

(11)

The main observation is that the conditional distribution of

Y
(m+1)
odd given (U

(m+1)
A + U

(m+1)
A∪{m+1}, A ⊆ [m]) is exactly

W (m), and so is the conditional distribution of Y
(m+1)
even

given (U
(m+1)
A , A ⊆ [m]). To see this, we also divide the

channel input random vector X(m+1) into two subvectors

X
(m+1)
odd and X

(m+1)
even in the same way. Clearly, the output

random vector Y
(m+1)
odd only depends on X

(m+1)
odd , and Y

(m+1)
even

only depends on X
(m+1)
even . By definition, the random vector

X(m+1) is the evaluation vector of the random polynomial∑
A⊆[m+1] U

(m+1)
A ZA, where ZA is the shorthand notation

of the monomial
∏

i∈A Zi. When m + 1 ∈ A, the monomial

ZA is equal to 0 on all coordinates in X
(m+1)
even . Therefore, on

all coordinates in X
(m+1)
even , we have

∑
A⊆[m+1] U

(m+1)
A ZA =∑

A⊆[m] U
(m+1)
A ZA. As a consequence, the mapping from

(U
(m+1)
A , A ⊆ [m]) to X

(m+1)
even is exactly the same as the

mapping from (U
(m)
A , A ⊆ [m]) to X(m), and thus the

conditional distribution of Y
(m+1)
even given (U

(m+1)
A , A ⊆ [m])

is exactly W (m). Next observe that for all A ⊆ [m], we

always have ZA = ZA∪{m+1} on all coordinates in X
(m+1)
odd .
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H
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H
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H
(m)
A2

> δ

H
(m+1)
A3

H
(m+1)
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> δ

H
(m)
Am−2

> δ

H
(m+1)
Am−1

> δ

H
(m)
Am−1

H
(m+1)
Am

H
(m)
Am

H
(m+1)
Am+1

Fig. 1: Illustration of the interlacing property in (9) used in the proofs of Theorem 4 and Theorem 5.

Polar transform

Fast polar transform

for the RM order

H
(m)
B4

H
(m)
B3

H
(m)
B2

H
(m)
B1

H
(m+1)
B2

H
(m+1)
B2∪{m+1}

H̃
(m+1)
B2

H̃
(m+1)
B2∪{m+1}

“+” “−”

Fig. 2: The fast polar transform with block size 4. The dots on the second line are the results of the standard polar transform,

and the dots on the third line are the results of fast polar transform. In the fast polar transform, the worse (“−”) bit-channel

in the standard polar transform gets even worse, and the better (“+”) bit-channel in the standard polar transform gets even

better. Therefore, the gap between H
(m+1)
Bi∪{m+1} and H

(m+1)
Bi

is always larger than the gap between H̃
(m+1)
Bi∪{m+1} and H̃

(m+1)
Bi

.

Intuitively, this explains why RM codes polarize and do so even faster than polar codes.

Therefore, on all coordinates in X
(m+1)
odd , we have∑

A⊆[m+1]

U
(m+1)
A ZA

=
∑

A⊆[m]

U
(m+1)
A ZA +

∑
A⊆[m]

U
(m+1)
A∪{m+1}ZA∪{m+1}

=
∑

A⊆[m]

U
(m+1)
A ZA +

∑
A⊆[m]

U
(m+1)
A∪{m+1}ZA

=
∑

A⊆[m]

(U
(m+1)
A + U

(m+1)
A∪{m+1})ZA.

As a consequence, the mapping from (U
(m+1)
A +

U
(m+1)
A∪{m+1}, A ⊆ [m]) to X

(m+1)
odd is exactly the same

as the mapping from (U
(m)
A , A ⊆ [m]) to X(m),

and thus the conditional distribution of Y
(m+1)
odd given

(U
(m+1)
A + U

(m+1)
A∪{m+1}, A ⊆ [m]) is exactly W (m).

The recursive structure between the bit-channels {W (m)
A :

A ⊆ [m]} in the m-th level and the bit-channels {W (m+1)
A :

A ⊆ [m + 1]} in the (m + 1)-th level can in fact be

described as a polarization procedure. More specifically, The

bit-channels {W (m)
A : A ⊆ [m]} are divided into m+1 layers

according to the cardinality of the set A: The i-th layer is

{W (m)
A : A ⊆ [m], |A| = i}, the sets with cardinality i,

for i = 0, 1, 2, . . . ,m. Then we take two copies of each

layer {W (m)
A : A ⊆ [m], |A| = i} and perform the fast

polar transform, which we will discuss in more detail below.

The outcome of the “−” fast polar transform is the bit-

channels {W (m+1)
A∪{m+1} : A ⊆ [m], |A| = i} in the next

level, and the outcome of the “+” fast polar transform is

the bit-channels {W (m+1)
A : A ⊆ [m], |A| = i}. From the

perspective of the bit-channels {W (m+1)
A : A ⊆ [m + 1]} in

the (m + 1)-th level, except for the 0-th and the (m + 1)-

th layers, each layer {W (m+1)
A : A ⊆ [m + 1], |A| = i}

is divided into two parts: The first part is {W (m+1)
A : A ⊆

[m], |A| = i}, which is the “+” fast polar transform of the

i-th layer {W (m)
A : A ⊆ [m], |A| = i} in the m-th level.

The second part is {W (m+1)
A∪{m+1} : A ⊆ [m], |A| = i − 1},

which is the “−” fast polar transform of the (i − 1)-th layer
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{W (m)
A : A ⊆ [m], |A| = i− 1} in the m-th level. As for the

0-th and the (m+ 1)-th layers, each of them only contains a

single bit-channel W
(m+1)
∅ and W

(m+1)
[m+1] , respectively, where

W
(m+1)
∅ is the “+” polar transform of W

(m)
∅ , and W

(m+1)
[m+1] is

the “−” polar transform of W
(m)
[m] .

Next we explain the fast polar transform. Let us consider the

bit-channels {W (m+1)
A : A ⊆ [m+1]} in the (m+1)-th level.

According to the total order defined in Definition 2, the layers

from top to down are the (m + 1)-th layer, the m-th layer,

. . . , all the way down to the 0-th layer. Within each layer, all

the sets containing the element m + 1 appear after those not

containing this element. Now let B1 < B2 < · · · < Bj be all

the sets in the t-th layer of [m], i.e., they are all the subsets

of [m] with cardinality t. Then by the discussion above we

know that the following sequence of subsets

B1 ∪ {m+ 1} < B2 ∪ {m+ 1} < · · · < Bj ∪ {m+ 1}
< B1 < B2 < · · · < Bj

(12)

are consecutive according to the total order on the subsets

of [m + 1]. By definition, if a successive decoder decodes

according to (12), then the bit-channels seen by this decoder

are equivalent to

W
(m+1)
B1∪{m+1},W

(m+1)
B2∪{m+1}, . . . ,W

(m+1)
Bj∪{m+1},

W
(m+1)
B1

,W
(m+1)
B2

, . . . ,W
(m+1)
Bj

.

In order to connect fast polar transform to the standard polar

transform, we consider the following order of the sets in (12):

B1 ∪ {m+1}, B1, B2 ∪ {m+1}, B2, . . . , Bj ∪ {m+1}, Bj .
(13)

Assuming that we are still given (U
(m+1)
<B1∪{m+1}, Y

(m+1)), but

this time the successive decoder decodes in this order instead

of the order in (12). We denote the bit-channels seen by this

successive decoder as

W̃
(m+1)
B1∪{m+1}, W̃

(m+1)
B1

, W̃
(m+1)
B2∪{m+1}, W̃

(m+1)
B2

,

. . . , W̃
(m+1)
Bj∪{m+1}, W̃

(m+1)
Bj

.

It is easy to check that W̃
(m+1)
Bi∪{m+1} and W̃

(m+1)
Bi

are “−”

and “+” polar transforms of W
(m)
Bi

, respectively. Then by (5)

and Lemma 1, we know that

H̃
(m+1)
Bi∪{m+1} ≥ H

(m)
Bi

≥ H̃
(m+1)
Bi

, (14)

and if H
(m)
Bi

∈ (ε, 1− ε), then

H̃
(m+1)
Bi∪{m+1} −H

(m)
Bi

> δ and H
(m)
Bi

− H̃
(m+1)
Bi

> δ, (15)

where H̃ = 1− I(W̃ ). Comparing the order in (12) and (13),

we can see that every set that appears before Bi ∪ {m + 1}
in (12) also appears before Bi ∪ {m+ 1} in (13). Therefore,

for every i ∈ {1, 2, . . . , j}, we have

H
(m+1)
Bi∪{m+1} ≥ H̃

(m+1)
Bi∪{m+1} and H̃

(m+1)
Bi

≥ H
(m+1)
Bi

.
(16)

In other words, in the standard polar transform, we obtain

a worse bit-channel through the “−” transform and a bet-

ter one through the “+” transform. Then in the fast polar

transform, we make the bit-channel obtained through the

standard “−” polar transform even worse and the bit-channel

obtained through the standard “+” polar transform even better.

Therefore, the gap between H
(m+1)
Bi∪{m+1} and H

(m)
Bi

is even

larger than the gap between H̃
(m+1)
Bi∪{m+1} and H

(m)
Bi

. Similarly,

the gap between H
(m)
Bi

and H
(m+1)
Bi

is even larger than the

gap between H
(m)
Bi

and H̃
(m+1)
Bi

; see Fig. 2 for an illustration.

Combining this with (14)–(15), we have shown that (9)–(10)

hold for any Ai+1 = Ai ∪ {m+ 1}.
By now, we have explained how to prove Theorem 4 and

Theorem 5. The next step is to use these two theorems to prove

Theorem 1. To that end, we need the following strengthened

form of Theorem 5.

Theorem 6 (Strong RM polarization on chains). For every
BMS channel W and every 0 < ε < 0.1, any δn = poly(1/n)
and 0 < γ < 1, there is a constant M(ε, δn, γ) such that
for every m > M(ε, δn, γ) and every increasing chain of sets
∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Am = [m],

∣∣∣{i ∈ {0, 1, . . . ,m} : H(m)
Ai

> 1− ε
}
∪{

i ∈ {0, 1, . . . ,m} : Z(m)
Ai

< δn

}∣∣∣ ≥ m−mγ .
(17)

The proof of this theorem mainly relies on the fact that

the Bhattacharyya parameter is close to 0 if and only if the

conditional entropy is close to 0. More precisely, the proof

relies on the following two well-known inequalities in the

polar coding literature (see Proposition 1 of [11] for a proof):

Z(X|Y ) ≥ H(X|Y ), (18)

(1−H(X|Y ))2 ≤ 1− (Z(X|Y ))2. (19)

We switch from the conditional entropy in Theorem 5 to the

Bhattacharyya parameter in Theorem 6 and Theorem 1 for

two reasons: First, the Bhattacharyya parameter Z(X|Y ) is

an upper bound on the error probability of the MAP decoder

of X given Y , i.e. (see [11]),

Pe(X|Y ) ≤ Z(X|Y ). (20)

This property makes it convenient for us to prove that the twin-

RM codes achieve capacity (Theorem 2). Second, in the “+”

polar transform, the evolution of Bhattacharyya parameters

follows a square law (7). As a result, it is easier to obtain

a better bound on the Bhattacharyya parameters than on the

conditional entropy.

Once we prove Theorem 6, we further use that there are m!
distinct increasing chains of sets for a given m. Let us fix m
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and list all the m! distinct increasing chains of sets as follows:

∅ = A0(1) ⊆ A1(1) ⊆ A2(1) ⊆ · · · ⊆ Am(1) = [m],

∅ = A0(2) ⊆ A1(2) ⊆ A2(2) ⊆ · · · ⊆ Am(2) = [m],

∅ = A0(3) ⊆ A1(3) ⊆ A2(3) ⊆ · · · ⊆ Am(3) = [m],

...
...

...
...

∅ = A0(m!) ⊆ A1(m!) ⊆ A2(m!) ⊆ · · · ⊆ Am(m!) = [m].

In Theorem 6, we have shown that among each increasing

chain of sets, almost all the bit-channels becomes either

completely noisy or noiseless. Let A be the collection of all

the “bad” subsets of [m], and let S be the collection of all

the “bad” sets in the above m! increasing chains (including

multiplicity), where “bad” means that the set does not belong

to the left-hand side of (17). Theorem 6 tells us that the “bad”

sets in each chain is upper bounded by mγ , so |S| ≤ mγm!.
On the other hand, notice that each subset with cardinality

i appears i!(m − i)! times in all the m! increasing chains

listed above, and that i!(m − i)! ≥ �m/2�!(m − �m/2�)!
for all i ∈ [m]. Therefore, |S| ≥ �m/2�!(m − �m/2�)!|A|.
Combining the upper and lower bounds of |S|, we obtain an

upper bound on |A|, and this proves the following more precise

version of Theorem 1:

Theorem 7 (Polarization of RM codes). For every BMS
channel W , almost all elements in the set {H(m)

A }A⊆[m] are
close to either 0 or 1 when m is large. More precisely,
for any 0 < ε < 1/10, any δn = poly(1/n) and any
0 < γ < 1/2, there is a constant M(ε, δn, γ) such that for
every m > M(ε, δn, γ),∣∣∣{A ⊆ [m] : H

(m)
A > 1− ε

}
∪
{
A ⊆ [m] : Z

(m)
A < δn

}∣∣∣
2m

≥ 1−mγ−1/2.

Theorem 2 in turn follows directly from Theorem 7 (using

(20)).

V. OPEN PROBLEMS

Recently, Hassani et al. gave theoretical results showing that

if RM codes achieve capacity, then they have an almost optimal

scaling law over BSC channels under ML decoding [16],

where optimal scaling law means that for a fixed linear code,

the decoding error probability of ML decoder transitions from

0 to 1 as a function of the crossover probability of the BSC

channel in the sharpest manner (i.e., comparable to random

codes). In this paper, we have demonstrated that RM codes

polarize faster than polar codes (see (16) and the discussion

in Fig. 2) even though we stated our bound in Theorem 7

by exploiting the polar code bounds and therefore without the

scaling-law improvement. An interesting direction would thus

be to use directly the fast polarization of RM codes to prove

that RM codes (or twin-RM codes) have a better scaling law

than polar codes and/or an “optimal” scaling law.

Likewise, the scaling of δn that we obtain in Theorem 7 is

stated now as polynomial due to the simplified proof, but we

expect that an exponential scaling of exp(−n0.499) as obtained

in [11], [12], [18] for polar codes should also be achievable.
Related to the above, the polarization framework has re-

cently been generalized and strengthened due to the works of

[18], [19]. It would be interesting to see if these can lead to

further improvements of the bounds.
Also, this paper gives a second ordering of the matrix Gm

that polarizes, i.e., the RM code ordering in addition to the

polar code ordering (and the various other equivalent orderings

that result from both of these). Are there many more5 orderings

that polarize? Is the RM code ordering “optimal” in some

sense (e.g., for scaling-laws)?
Finally, we showed that the successive cancellation decoder

in the RM code ordering achieves capacity on any BMS

channel. While we exploited the recursive structure of RM

codes in many parts of our proofs, we did not provide any

computational bounds on the resulting successive decoding

algorithm that exploits this structure. Can we also turn the

successive decoding algorithm into an efficient one?

VI. PROOFS

A. Two technical lemmas
We first need to establish some symmetry properties of RM

codes and their impact on the conditional mutual information.

Denote by Sm the symmetric group of order m. For π ∈ Sm

and A ⊆ [m], define π(A) := {π(a) : a ∈ A}. Note that Sm

is contained in the automorphism group of RM codes, as any

degree ≤ k polynomial is a degree ≤ k polynomial under a

relabelling of its variables.
Let A ⊆ [m], and let B be a subset of the power set of [m].

For any π ∈ Sm, i.e., any relabelling of the elements of [m],
we have

H(U
(m)
A |Y (m), {U (m)

B : B ∈ B})
=H(U

(m)
π(A)|Y (m), {U (m)

π(B) : B ∈ B}).
(21)

This equality leads to the following lemma.

Lemma 4. Let W be a BMS channel. Let A ⊂ [m] and i1, i2 ∈
[m] satisfy that i1, i2 /∈ A and i1 < i2. Then

H
(m)
A∪{i1} ≥ H

(m)
A∪{i2} and Z

(m)
A∪{i1} ≥ Z

(m)
A∪{i2}.

Proof. Define π ∈ Sm as

π(i) = i for all i �= i1, i2, π(i1) = i2, π(i2) = i1. (23)

By (21), we have (22), where the inequality in (22) follows

from the fact that

{π(B) : B ⊆ [m], B < (A ∪ {i1})}
⊆{B : B ⊆ [m], B < (A ∪ {i2})}.

(24)

Indeed, if B < (A ∪ {i1}) and i1 /∈ B, then π(B) ≤ B <
(A∪{i1}) < (A∪{i2}). If B < (A∪{i1}) and i1 ∈ B, then

(B \ {i1}) < A, so

π(B) = π((B \ {i1}) ∪ {i1})
=π(B \ {i1}) ∪ {i2} ≤ (B \ {i1}) ∪ {i2} < A ∪ {i2}.

5Clearly some ordering do not polarize, such as the down-to-top ordering
in Gm.
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H
(m)
A∪{i1} = H

(
U

(m)
A∪{i1}

∣∣∣Y (m), {U (m)
B : B ⊆ [m], B < (A ∪ {i1})}

)
= H

(
U

(m)
π(A∪{i1})

∣∣∣Y (m), {U (m)
π(B) : B ⊆ [m], B < (A ∪ {i1})}

)
= H

(
U

(m)
A∪{i2}

∣∣∣Y (m), {U (m)
π(B) : B ⊆ [m], B < (A ∪ {i1})}

)
≥ H

(
U

(m)
A∪{i2}

∣∣∣Y (m), {U (m)
B : B ⊆ [m], B < (A ∪ {i2})}

)
= H

(m)
A∪{i2},

(22)

Therefore we have shown that B < (A∪{i1}) implies π(B) <
(A∪{i2}), which is exactly the set containment in (24). This

completes the proof of the lemma. Using Lemma 6 and the

same reasoning as above, one can easily show that Z
(m)
A∪{i1} ≥

Z
(m)
A∪{i2}.

Lemma 5. For every BMS channel W , every positive integer
m, every A ⊆ [m] and every j ∈ [m + 1] \ A, we have the
interlacing property:

H
(m+1)
A∪{j} ≥ H

(m)
A ≥ H

(m+1)
A , (37)

Z
(m+1)
A ≤

(
Z

(m)
A

)2

, Z
(m)
A ≤ Z

(m+1)
A∪{j} . (38)

Moreover, for any ε > 0, there is δ(ε) > 0 such that for any
positive integer m, any A ⊆ [m] and any j ∈ [m+ 1] \A,

H
(m)
A ∈ (ε, 1− ε)

implies that

H
(m)
A −H

(m+1)
A > δ(ε) and H

(m+1)
A∪{j} −H

(m)
A > δ(ε). (39)

Proof. Recall the definition of Y
(m+1)
odd and Y

(m+1)
even in (11).

Let y(m) = (y
(m)
z : z ∈ {0, 1}m) ∈ Yn be a vector of length

n = 2m whose components take values in Y , and this vector

is indexed by z ∈ {0, 1}m, which is similar to the random

vector Y (m). Let u(m) = (u
(m)
A : A ⊆ [m]) ∈ {0, 1}n be a

binary vector of length n = 2m, and this vector is indexed

by A ⊆ [m], which is similar to the random vector U (m). For

y(m) ∈ Yn, define the following three events:

{Y (m) = y(m)} := {Y (m)
z = y(m)

z for all z ∈ {0, 1}m},
{Y (m+1)

odd = y(m)} := {Y (m+1)
(z,1) = y(m)

z for all z ∈ {0, 1}m},
{Y (m+1)

even = y(m)} := {Y (m+1)
(z,0) = y(m)

z for all z ∈ {0, 1}m},

where for z = (z1, z2, . . . , zm) ∈ {0, 1}m, (z, 1) :=
(z1, z2, . . . , zm, 1) and (z, 0) := (z1, z2, . . . , zm, 0). Accord-

ing to the arguments below Equation (11), for any y(m) ∈ Yn

and any u(m) = (u
(m)
A : A ⊆ [m]) ∈ {0, 1}n,

P
(
{Y (m+1)

odd = y(m)}
∣∣∣{U (m+1)

A + U
(m+1)
A∪{m+1} = u

(m)
A

for all A ⊆ [m]}
)

=P
(
{Y (m+1)

even = y(m)}
∣∣∣{U (m+1)

A = u
(m)
A for all A ⊆ [m]}

)
=P

(
{Y (m) = y(m)}

∣∣∣{U (m)
A = u

(m)
A for all A ⊆ [m]}

)
.

(40)

Since the two vectors (U
(m+1)
A + U

(m+1)
A∪{m+1} : A ⊆ [m]) and

(U
(m+1)
A : A ⊆ [m]) are independent, (Y

(m+1)
odd , {U (m+1)

A +

U
(m+1)
A∪{m+1} : A ⊆ [m]}) and (Y

(m+1)
even , {U (m+1)

A : A ⊆ [m]})
are also independent. By (40), we also obtain (25). Therefore,

for any A ⊆ [m], we have (26), where equality (a) in (26)

holds because (Y
(m+1)
odd , {U (m+1)

A + U
(m+1)
A∪{m+1} : A ⊆ [m]})

and (Y
(m+1)
even , {U (m+1)

A : A ⊆ [m]}) are independent. It is

also clear that we have (27), so we obtain (28). According to

the ordering of sets defined in Definition 2, it is easy to verify

(29). Therefore, we have (30). Combining (30) with (28), we

have H
(m+1)
A∪{m+1} ≥ H

(m)
A ≥ H

(m+1)
A . Then by Lemma 4,

for any j ∈ [m + 1] \ A, we have H
(m+1)
A∪{j} ≥ H

(m+1)
A∪{m+1} ≥

H
(m)
A ≥ H

(m+1)
A . This completes the proof of (37).

Next we prove (38). Let

X1 := U
(m+1)
A , X2 := U

(m+1)
A + U

(m+1)
A∪{m+1},

Y1 :=
(
Y (m+1)
even , {U (m+1)

A′ : A′ ⊆ [m], A′ < A}
)
,

Y2 :=
(
Y

(m+1)
odd , {U (m+1)

A′ + U
(m+1)
A′∪{m+1} : A

′ ⊆ [m], A′ < A}
)
,

X := U
(m)
A , Y :=

(
Y (m), {U (m)

A′ : A′ ⊆ [m], A′ < A}
)
.

Then (X1, Y1) and (X2, Y2) are i.i.d., and they have the same

distribution as (X,Y ). By (7) we have (31). According to

(29) and Lemma 6, we obtain (32). By (8), we have (33).

Combining (33) with (29) and Lemma 6, we obtain (34). By

Lemma 4, for any j ∈ [m + 1] \ A, we further have that

Z
(m+1)
A∪{j} ≥ Z

(m+1)
A∪{m+1} ≥ Z

(m)
A . Combining this with (32), we

complete the proof of (38).

Now we prove (39). For every ε > 0, we use the same

δ(ε) > 0 as in Lemma 1. We assume H
(m)
A ∈ (ε, 1 − ε)

and use Lemma 1 to prove (39) under this assumption. Since

(X1, Y1) and (X2, Y2) are i.i.d. with the same distribution as

(X,Y ), we have

H(X1|Y1) = H(X2|Y2) = H(X|Y ) = H
(m)
A ∈ (ε, 1− ε).

According to Lemma 1,

H(X1 +X2|Y1, Y2) ≥ H
(m)
A + δ(ε). (41)

We also have (35). Therefore by (26) and (41), we have (36).

Combining (36) with (30) and Lemma 4, we conclude that for

any j ∈ [m+ 1] \A,

H
(m)
A −H

(m+1)
A > δ(ε),

H
(m+1)
A∪{j} −H

(m)
A ≥ H

(m+1)
A∪{m+1} −H

(m)
A > δ(ε).
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H
(m)
A = H

(
U

(m)
A

∣∣∣Y (m), U
(m)
<A

)
= H

(
U

(m+1)
A

∣∣∣Y (m+1)
even , {U (m+1)

A′ : A′ ⊆ [m], A′ < A}
)

= H
(
U

(m+1)
A + U

(m+1)
A∪{m+1}

∣∣∣Y (m+1)
odd , {U (m+1)

A′ + U
(m+1)
A′∪{m+1} : A

′ ⊆ [m], A′ < A}
)
. (25)

H
(
U

(m+1)
A

∣∣∣U (m+1)
A∪{m+1}, Y

(m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
+H

(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
=H

(
U

(m+1)
A , U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
=H

(
U

(m+1)
A , U

(m+1)
A + U

(m+1)
A∪{m+1}

∣∣∣Y (m+1)
even , {U (m+1)

A′ : A′ ⊆ [m], A′ < A},

Y
(m+1)
odd , {U (m+1)

A′ + U
(m+1)
A′∪{m+1} : A

′ ⊆ [m], A′ < A}
)

(a)
=H

(
U

(m+1)
A

∣∣∣Y (m+1)
even , {U (m+1)

A′ : A′ ⊆ [m], A′ < A}
)

+H
(
U

(m+1)
A + U

(m+1)
A∪{m+1}

∣∣∣Y (m+1)
odd , {U (m+1)

A′ + U
(m+1)
A′∪{m+1} : A

′ ⊆ [m], A′ < A}
)

=2H
(m)
A ,

(26)

H
(
U

(m+1)
A

∣∣∣U (m+1)
A∪{m+1}, Y

(m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
≤H

(
U

(m+1)
A

∣∣∣Y (m+1)
even , {U (m+1)

A′ : A′ ⊆ [m], A′ < A}
)
= H

(m)
A ,

(27)

H
(
U

(m+1)
A

∣∣∣U (m+1)
A∪{m+1}, Y

(m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
≤ H

(m)
A ≤ H

(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
.

(28)

(
{A ∪ {m+ 1}} ∪ {A′ : A′ ⊆ [m], A′ < A} ∪ {A′ ∪ {m+ 1} : A′ ⊆ [m], A′ < A}

)
⊆ {A′ : A′ ⊆ [m+ 1], A′ < A},
{A′ : A′ ⊆ [m+ 1], A′ < (A ∪ {m+ 1})} ⊆ {A′ : A′ ⊆ [m], A′ < A} ∪ {A′ ∪ {m+ 1} : A′ ⊆ [m], A′ < A}.

(29)

H
(m+1)
A ≤ H

(
U

(m+1)
A

∣∣∣U (m+1)
A∪{m+1}, Y

(m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
,

H
(m+1)
A∪{m+1} ≥ H

(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
.

(30)

Z
(
U

(m+1)
A

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}, U (m+1)

A∪{m+1}
)

= Z(X1|Y1, Y2, X1 +X2) = (Z(X|Y ))2 =
(
Z

(m)
A

)2

.
(31)

Z
(m+1)
A = Z(U

(m+1)
A |Y (m+1), U

(m+1)
<A )

≤ Z(U
(m+1)
A |Y (m+1), {U (m+1)

A′ : A′ ⊆ [m], A′ < A}, {U (m+1)
A′∪{m+1} : A

′ ⊆ [m], A′ < A}, U (m+1)
A∪{m+1}) =

(
Z

(m)
A

)2

.
(32)

Z
(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
=Z(X1 +X2|Y1, Y2) ≥ Z(X|Y ) = Z

(m)
A .

(33)
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Z
(m+1)
A∪{m+1} = Z(U

(m+1)
A∪{m+1}|Y (m+1), U

(m+1)
<(A∪{m+1}))

≥ Z
(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
≥ Z

(m)
A .

(34)

H(X1 +X2|Y1, Y2)

=H
(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
.

(35)

H
(
U

(m+1)
A∪{m+1}

∣∣∣Y (m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
−H

(m)
A

=H
(m)
A −H

(
U

(m+1)
A

∣∣∣U (m+1)
A∪{m+1}, Y

(m+1), {U (m+1)
A′ : A′ ⊆ [m], A′ < A}, {U (m+1)

A′∪{m+1} : A
′ ⊆ [m], A′ < A}

)
≥δ(ε).

(36)

This completes the proof of the lemma.

Lemma 6 (Lemma 1.8 in [34]). Let (X,Y, Y ′) be a triple
of discrete random variables, where X has Bernoulli-1/2
distribution. Then

Z(X|Y, Y ′) ≤ Z(X|Y ).

This lemma can be proved by a straightforward application

of the Cauchy-Schwarz inequality.

B. Proof of Theorem 6

Without loss of generality, assume that δn = n−d for some

positive constant d. If A ⊆ B ⊆ [m] and |B| = |A|+ 1, then

by (38),

Z
(m)
A ≤ Z

(m+1)
B ≤

(
Z

(m)
B

)2

. (42)

For an increasing chain of sets ∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆
Am = [m], (42) implies that

Z
(m)
A0

≤ Z
(m)
A1

≤ Z
(m)
A2

· · · ≤ Z
(m)
Am

.

For a given 0 < ε < 0.1, define i1 as the largest integer

between 0 and m such that H
(m)
Ai1

< ε, and define i2 as the

smallest integer between 0 and m such that H
(m)
Ai2

> 1 − ε.

According to Theorem 4, H
(m)
Ai

< ε for all i ≤ i1 and H
(m)
Ai

>
1− ε for all i ≥ i2. By Theorem 5, we know that

i2 − i1 − 1 ≤ D(ε). (43)

Since H
(m)
Ai1

< ε < 0.1, by (19) we obtain that

Z
(m)
Ai1

< 1/2. (44)

According to (42),

log2(Z
(m)
Ai

) ≤ 2 log2(Z
(m)
Ai+1

),

and so

log2(Z
(m)
Ai

) ≤ 2j log2(Z
(m)
Ai+j

).

For a given 0 < γ < 1, define i3 := �i1 − 1
2m

γ�. If i3 ≥ 0,

then

log2(Z
(m)
Ai3

) ≤ 2m
γ/2 log2(Z

(m)
Ai1

) ≤ −2mγ/2 ≤ −dm,

where the second inequality follows from (44) and the last

inequality holds when m is large enough. Therefore, for all

i ≤ i3,

Z
(m)
Ai

≤ Z
(m)
Ai3

≤ 2−dm = n−d = δn.

Thus we have

{0, 1, . . . , i3} ⊆
{
i ∈ {0, 1, . . . ,m} : Z(m)

Ai
< δn

}
,{

i ∈ {0, 1, . . . ,m} : H(m)
Ai

> 1− ε
}
= {i2, i2 + 1, . . . ,m}.

Combining this with (43), we obtain that∣∣∣{i ∈ {0, 1, . . . ,m} : H(m)
Ai

> 1− ε
}
∪{

i ∈ {0, 1, . . . ,m} : Z(m)
Ai

< δn

}∣∣∣
≥ i3 + 1 +m− i2 + 1 ≥ i1 −

1

2
mγ +m− i2 + 1

≥ m− 1

2
mγ −D(ε) ≥ m−mγ ,

where the last inequality holds when m is large enough.

On the other hand, if i3 < 0, then i1 < 1
2m

γ , and by (43),

i2 < 1
2m

γ +D(ε) + 1. Therefore∣∣∣{i ∈ {0, 1, . . . ,m} : H(m)
Ai

> 1− ε
}
∪{

i ∈ {0, 1, . . . ,m} : Z(m)
Ai

< δn

}∣∣∣
≥ m− i2 + 1 ≥ m− 1

2
mγ −D(ε) ≥ m−mγ .

This completes the proof of Theorem 6.

C. Proof of Theorem 7

We first observe that there is a one-to-one mapping between

increasing chains of sets and permutations on [m]. Indeed,

given π ∈ Sm, we can obtain an increasing chain of sets

∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Am = [m] by setting Ai =
{π(1), π(2), . . . , π(i)} for all i ∈ [m]. On the other hand,

given an increasing chain of sets ∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆
Am = [m], we can obtain a permutation π ∈ Sm by setting

π(i) = Ai \ Ai−1 for all i ∈ [m]. Thus there are m! distinct
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increasing chains of sets for a given m. Let us fix m and list

all the m! distinct increasing chains of sets as follows:

∅ = A0(1) ⊆ A1(1) ⊆ A2(1) ⊆ · · · ⊆ Am(1) = [m],

∅ = A0(2) ⊆ A1(2) ⊆ A2(2) ⊆ · · · ⊆ Am(2) = [m],

∅ = A0(3) ⊆ A1(3) ⊆ A2(3) ⊆ · · · ⊆ Am(3) = [m],

...
...

...
...

∅ = A0(m!) ⊆ A1(m!) ⊆ A2(m!) ⊆ · · · ⊆ Am(m!) = [m].

Notice that for every i ∈ {0, 1, 2, . . . ,m}, |Ai(1)| = |Ai(2)| =
|Ai(3)| = · · · = |Ai(m!)| = i. There are m!

i!(m−i)! subsets of

[m] with cardinality i. By symmetry, each of them appears the

same number of times in (Ai(1), Ai(2), Ai(3), . . . , Ai(m!)).
Thus each subset with cardinality i appears i!(m − i)! times

in (Ai(1), Ai(2), Ai(3), . . . , Ai(m!)). In other words, each

subset A ⊆ [m] appears |A|!(m − |A|)! times in (Ai(j) :
i ∈ {0, 1, 2, . . . ,m}, j ∈ [m!]).

For any 0 < ε < 0.1, define

S(ε) :=
{
(i, j) : i ∈ {0, 1, 2, . . . ,m}, j ∈ [m!],

H
(m)
Ai(j)

≤ 1− ε, Z
(m)
Ai(j)

≥ δn

}
.

Then by Theorem 6, we know that for any 0 < γ < 1/2 and

any given j ∈ [m!],∣∣∣{i ∈ {0, 1, . . . ,m} : H(m)
Ai(j)

≤ 1− ε, Z
(m)
Ai(j)

≥ δn

}∣∣∣ ≤ mγ

for all m > M(ε, γ).

Consequently, for all m > M(ε, γ),

|S(ε)| ≤ (m!)mγ . (45)

We further define

A(ε) :=
{
A ⊆ [m] : H

(m)
A ≤ 1− ε, Z

(m)
A ≥ δn

}
.

By the arguments above, we have

|S(ε)| =
∑

A⊆A(ε)

|A|!(m− |A|)!.

It is easy to see that i!(m − i)! ≥ �m/2�!(m − �m/2�)! for

all i ∈ {0, 1, 2, . . . ,m}. Therefore

|S(ε)| ≥ �m/2�!(m− �m/2�)!|A(ε)|.
Combining this with (45), we obtain that

|A(ε)| ≤
(

m

�m/2�

)
mγ .

Consequently,

|A(ε)|
2m

≤ mγ

(
m

	m/2

)

2m
.

By Stirling’s formula,(
m

	m/2

)

2m
=

√
2

πm
(1 + om(1)). (46)

Since
√
2/π < 1, we conclude that for all m > M(ε, γ),

|A(ε)|
2m

≤ mγ−1/2.

This completes the proof of Theorem 7.

D. Proof of Theorem 2

We first show that the code rate of T (m, δn) approaches

the channel capacity I(W ), i.e.,

|G(m, δn)| ≥ 2m(I(W )− o(1)).

By (3), for all 0 < ε < 1, we have

(1− ε)
∣∣∣{A ⊆ [m] : H

(m)
A > 1− ε

}∣∣∣
<

∑
A⊆[m]

H
(m)
A = 2m(1− I(W )).

Therefore,∣∣∣{A ⊆ [m] : H
(m)
A > 1− ε

}∣∣∣ < 1

1− ε
2m(1− I(W )).

According to Theorem 7, for 0 < ε < 0.1, 0 < γ < 1/2 and

m > M(ε, γ),

|G(m, δn)| ≥∣∣∣{A ⊆ [m] : H
(m)
A > 1− ε

}
∪
{
A ⊆ [m] : Z

(m)
A < δn

}∣∣∣
−
∣∣∣{A ⊆ [m] : H

(m)
A > 1− ε

}∣∣∣
≥ 2m(1−mγ−1/2)− 1

1− ε
2m(1− I(W )).

The last line can be made arbitrarily close to 2mI(W ) if we

set ε to be small enough and m to be large enough. Thus the

code rate of T (m, δn) approaches I(W ).
Next we prove that the decoding error of T (m, δn) goes to

0 under the successive decoder that is similar to the one used

for polar codes, i.e., we decode U
(m)
A one by one using the

channel outputs Y (m) and the previously decoded inputs U
(m)
<A .

The decoding order is from small to large sets according to the

order defined in Section I, i.e., we decode UA before decoding

UB if A < B. According to (20), for every A ∈ G(m, δn),

the error probability of decoding U
(m)
A from Y (m) and U

(m)
<A

is at most

Pe(U
(m)
A |Y (m), U

(m)
<A ) ≤ Z(U

(m)
A |Y (m), U

(m)
<A ) = Z

(m)
A < δn.

By the union bound, the error probability of decoding the

whole codeword under successive decoder is at most nδn → 0.

Thus we conclude that the code T (m, δn) achieves the capac-

ity of W .

E. Proof of Theorem 3

Let A ≺ B. Define A′ := {a1, . . . , a|B|} and note that by

assumption, A′ is pointwise smaller than B.

We first apply (37) repeatedly to obtain

H
(m)
A ≥ H

(m)
{a1,...,a|A|−1} ≥ H

(m)
{a1,...,a|A|−2} ≥ · · · ≥ H

(m)
A′ .

We then apply Lemma 4 repeatedly to obtain

H
(m)
A′ = H

(m)
{a1,...,a|B|−1,a|B|} ≥ H

(m)
{a1,...,a|B|−1,b|B|}

≥ H
(m)
{a1,...,b|B|−1,b|B|} ≥ · · · ≥ H

(m)
B .

Therefore H
(m)
A ≥ H

(m)
A′ ≥ H

(m)
B .
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F. Twin-RM code is the same as RM code up to n = 16 for
BSC

We show that the twin-RM code is the same as the RM

code up to n = 16 for BSC. Our claim follows immediately

from the following proposition:

Proposition 1. For BSC channels and m ≤ 4, if two subsets
A,B ⊆ [m] satisfy that |A| > |B|, then H

(m)
A ≥ H

(m)
B .

Proof. The cases of m ≤ 2 are trivial, so we only prove the

cases of m = 3 and m = 4. Let us start with m = 3. We

only need to show that H
(3)
[3] ≥ H

(3)
[2] , H

(3)
{2,3} ≥ H

(3)
{1}, H

(3)
{3} ≥

H
(3)
∅ . In Section IV, we already showed that W

(3)
[3] and W

(3)
[2]

are the “−” and “+” polar transforms of W
(2)
[2] , respectively,

and that W
(3)
{3} and W

(3)
∅ are the “−” and “+” polar transforms

of W
(2)
∅ , respectively. Therefore, H

(3)
[3] ≥ H

(3)
[2] and H

(3)
{3} ≥

H
(3)
∅ follow immediately (and this extends to any dimension,

i.e., the first and last transitions are always ordered due to

polar codes). Now let us prove

H
(3)
{2,3} ≥ H

(3)
{1} (47)

using the equivalence between source and channel coding.

Suppose that X1, X2, . . . , X8 are i.i.d. Bernoulli-p random

variables, where p is the crossover probability of the BSC

channel. Let Y1 =
∑8

i=1 Xi, Y2 = X1 +X2 +X3 +X4, Y3 =
X1 + X2 + X5 + X6, Y4 = X1 + X3 + X5 + X7, Y5 =
X1 + X2. Then (47) is equivalent to H(Y4|Y1, Y2, Y3) ≥
H(Y5|Y1, Y2, Y3, Y4). Notice that both X1 and X2 appear in

Y1, Y2, Y3. Therefore,

H(Y4|Y1, Y2, Y3)

=H(X1 +X3 +X5 +X7|Y1, Y2, Y3)

=H(X2 +X3 +X5 +X7|Y1, Y2, Y3)

=H(Y4 + Y5|Y1, Y2, Y3) ≥ H(Y4 + Y5|Y1, Y2, Y3, Y4)

=H(Y5|Y1, Y2, Y3, Y4).

This completes the proof of (47).

For the case of m = 4, we only need to show that H
(4)
[4] ≥

H
(4)
[3] , H

(4)
{2,3,4} ≥ H

(4)
{1,2}, H

(4)
{3,4} ≥ H

(4)
{1}, H

(4)
{4} ≥ H

(4)
∅ . In

particular, H
(4)
[4] ≥ H

(4)
[3] and H

(4)
{4} ≥ H

(4)
∅ follow immediately

from the discussions in Section IV, so we only need to show

the other two inequalities. We still use the equivalence between

source and channel coding. Suppose that X1, X2, . . . , X16 are

i.i.d. Bernoulli-p random variables, where p is the crossover

probability of the BSC channel. Let

Y1 =
16∑
i=1

Xi,

Y2 = X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8,

Y3 = X1 +X2 +X3 +X4 +X9 +X10 +X11 +X12,

Y4 = X1 +X2 +X5 +X6 +X9 +X10 +X13 +X14,

Y5 = X1 +X3 +X5 +X7 +X9 +X11 +X13 +X15,

Y6 = X1 +X2 +X3 +X4.

Then H
(4)
{3,4} ≥ H

(4)
{1} is equivalent to H(Y5|Y1, Y2, Y3, Y4) ≥

H(Y6|Y1, Y2, Y3, Y4, Y5). Notice that both X1 and X2 appear

in Y1, Y2, Y3, Y4. Therefore,

H(Y5|Y1, Y2, Y3, Y4)

=H(X1 +X3 +X5 +X7 +X9 +X11

+X13 +X15|Y1, Y2, Y3, Y4)

=H(X2 +X3 +X5 +X7 +X9 +X11

+X13 +X15|Y1, Y2, Y3, Y4).

Similarly, both X3 and X4 appear in Y1, Y2, Y3, and neither

of them appears in Y4. Therefore,

H(X2 +X3 +X5 +X7 +X9 +X11

+X13 +X15|Y1, Y2, Y3, Y4)

=H(X2 +X4 +X5 +X7 +X9 +X11

+X13 +X15|Y1, Y2, Y3, Y4).

Thus we conclude that

H(Y5|Y1, Y2, Y3, Y4)

=H(X2 +X4 +X5 +X7 +X9 +X11

+X13 +X15|Y1, Y2, Y3, Y4)

=H(Y5 + Y6|Y1, Y2, Y3, Y4)

≥H(Y5 + Y6|Y1, Y2, Y3, Y4, Y5)

=H(Y6|Y1, Y2, Y3, Y4, Y5).

This completes the proof of H
(4)
{3,4} ≥ H

(4)
{1}. H

(4)
{2,3,4} ≥

H
(4)
{1,2} can be proved in the same way, and we omit its proof

here.
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