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Abstract—Many selection procedures involve ordering candi-
dates according to their qualifications. For example, a university
might order applicants according to a perceived probability
of graduation within four years, and then select the top 1000
applicants. In this work, we address the problem of ranking
members of a population according to their ‘“probability” of
success, based on a training set of historical binary outcome
data (e.g., graduated in four years or not). We show how to
obtain rankings that satisfy a number of desirable accuracy and
fairness criteria, despite the coarseness of the training data. As
the task of ranking is global (the rank of every individual depends
not only on their own qualifications, but also on every other
individuals’ qualifications), ranking is more subtle and vulnerable
to manipulation than standard prediction tasks.

Towards mitigating unfair discrimination caused by inaccura-
cies in rankings, we develop two parallel definitions of evidence-
based rankings. The first definition relies on a semantic notion
of domination-compatibility: if the training data suggest that
members of a set S are more qualified (on average) than the
members of 7', then a ranking that favors 7" over S (where
T dominates S) is blatantly inconsistent with the evidence, and
likely to be discriminatory. The definition asks for domination-
compatibility, not just for a pair of sets, but rather for every
pair of sets from a rich collection C of subpopulations. The
second definition aims at precluding even more general forms
of discrimination; this notion of evidence-consistency requires
that the ranking must be justified on the basis of consistency
with the expectations for every set in the collection C. Somewhat
surprisingly, while evidence-consistency is a strictly stronger
notion than domination-compatibility when the collection C is
predefined, the two notions are equivalent when the collection C
may depend on the ranking in question.

Index Terms—ranking; prediction; algorithmic fairness;

I. INTRODUCTION

Since its inception as a field of study roughly one decade
ago [1]-[4], research in algorithmic fairness has exploded, es-
pecially in the machine learning community [5]-[13]. Much of
this work focuses on so-called “group fairness” notions, which
address the relative treatment of different demographic groups.
More theoretical work has advocated for “individual fairness”
which, speaking intuitively, requires that people who are
similar, with respect to a given classification task, should be
treated similarly by classifiers for that task. Both approaches
face significant challenges: group notions provide notoriously
weak protections to individuals and are provably incompatible
with one another; individual fairness requires task-specific
similarity information for every pair of individuals, which
may be unavailable. The past two years have seen exciting
developments on several fronts in theoretical computer science
that strive to bridge the gap between group and individual
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notions of fairness for the tasks of scoring, classifying, and
auditing [14]-[18].

In this work, we turn our attention to fairness when ranking
individuals based on the perceived probability of an outcome.
Rankings are of interest for several reasons. First, ranking is
at the heart of triage, say, in disaster relief. Second, ranking
is often the underlying impetus for scoring, for example in
university admissions. Third, some approaches to affirmative
action involve stratifying the population according to some
criterion, e.g., high school (as done in California and Texas)
or education level of mother [19]. Students within each stratum
are ranked by grades (in California and Texas), or hours
spent on homework [19], and the top-ranked students from
each stratum are admitted. Fourth, studying ranking informs
our understanding of what we should demand of a scoring
function.

Note that in the above examples, grades and hours spent
on homework are proxies for qualities that are difficult to
articulate and even more difficult to measure. They may
capture intuition about “probability” or ‘“chance” of (say)
graduation within 4 years, but the meaning of an individual
probability has long been debated (see [20]' and the references
therein as well as the discussion in Section I-B).

In this work, we will not assume access to individual
probabilities, even in the training data. Rather, we follow
the approach taken for scoring functions initiated in [14]
and rely for training only on 0/1 outcome data (e.g., did,
or did not, graduate within 4 years). In other words, even
if we posit the existence of a scoring function p* mapping
each individual z to its “true probability” p*(x) of a positive
outcome, these probabilities can be accessed only indirectly,
e.g. by computing outcome statistics based on observational
data. Note that, even ensuring evidence-consistent treatment
for a relatively large and homogeneous set of individuals,
all sharing a known value p*(x) = v, may be impossible
without knowledge about the rest of the population, as their
rank may vary dramatically based on the p* values outside the
set. Despite this challenging setup, we develop definitions and
methods for powerful protection against unfair discrimination.

A. Contributions and Results

Occam’s Razor for Rankings. In general, no two scor-
ing functions p* and p that are statistically close can be
distinguished based on a small sample of outcomes, and it

'Written in response to the use of machine learning to estimate recidivism
risk.
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is easy to think of examples where obtaining an accurate
ranking is beyond reach. For example, if half of the individuals
receive a positive outcome with probability 1, but this set is
computationally indistinguishable from its complement, where
individuals receive a positive outcome with probability 0, then
coming up with an accurate ranking will be computationally
infeasible. Computational considerations aside, if the partition
between 1’s and 0’s were truly random, then learning an
accurate ranking from a bounded training sample would be
information-theoretically impossible. It is, thus, natural to
define an accurate ranking to be one where individuals are
ranked by their values according to a function p that is
statistically close to p*, as this is the best we can hope for.

Our first result is an Occam’s Razor Theorem for (agnos-
tically) learning rankings. We show that, given a class R
of rankings, there is an algorithm that, given a sample of
size growing as log(|R|), returns an approximately optimal
ranking. (The running time depends polynomially on the size
of R.) The proof of this theorem is qualitatively very different
from the standard Occam’s Razor Theorem for PAC learning:
standard proofs of Occam’s Razor-style results evaluate the
“quality” of each hypothesis separately based on the data,
and argue that a hypothesis with maximum quality is an
approximate optimizer. We argue that any such approach,
which considers the quality of each ranking on its own, will
fail in our setting. Consider the example from above, in
which half of the population has p*(z) = 1 and the other
half has p*(x) = 0. In this case, a random ranking could
disguise itself as being accurate: an observer who only sees
the binary outcome data cannot distinguish the situation in
which everyone is either a 0 or 1 from one consistent with
p(x) = 1/2. Under such a p, a random ranking will appear as
accurate as any other ranking, despite its inconsistencies with
p*. Instead, our proof relies on the accurate ranking revealing
the inaccuracy of other rankings. Quantitatively, the theorem
is different from, and a bit weaker than, the analogue for PAC
learning (and we prove that this is unavoidable).

Protecting Groups. Learning rankings that are highly
accurate for most individuals may be computationally or
information-theoretically infeasible, and mis-ranked individ-
uals may experience harmful outcomes. Thus, individual fair-
ness is impossible in the setting considered by this paper,
and we focus on protecting a large collection of intersecting
groups (sets) of individuals. As noted above, even for a large
and homogeneous set, we cannot reason about the fairness
of its members’ rankings in isolation. For example, suppose
all members of a set S have p* value 1/3. Outside S, two
homogeneous sets 77 and Ty have members with p* values of
1 and 0, respectively. A scoring rule p that is perfect on S, but
assigns the value 1/2 to all the members of T; U Tp, would
still induce a ranking that dramatically downplays the fitness
of S. This potential harm to the members of S cannot be
detected or reasoned about without considering the outcomes
of individuals outside the set S.

Despite these considerable challenges, we develop defini-
tions and methods that provide powerful protection against
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unfair discrimination. Our starting point is to focus on the
relative treatment of members of pairs of sets in the collection.
For a simple example, consider a pair .S, T" of disjoint sets, and
suppose that, empirically, a larger fraction of the members of
S have positive outcomes (graduate within 4 years) than than
do the members of T'. Then a ranking that puts all elements of
T (the less successful group) ahead of all those in S would be
considered “unfair.” In the above example, even ranking all the
members of S below all the members of Ty is unfair. Our goal
is much more ambitious than defeating this simple example:
we require our rankings to be simultaneously fair (defined
formally below) for all pairs of groups defined by a rich
collection C of possibly-intersecting subsets of the population.

The choice of sets in C is an important one, as the fairness
conditions will not be guaranteed to apply to sets not in C.
But how can we ensure awareness of which groups should
be included? Even well-intentioned algorithm designers can
be ignorant of some types of discrimination, the number of
potentially relevant categories may be daunting®, and mem-
bers of an historically-oppressed group may have internalized
the negative stereotypes and not see their treatment for the
oppression it is [22]. For these and other reasons, such as lack
of resources and power, it is inappropriate to expect members
of an oppressed group S to insist that S be included in C.
Our approach follows in the footsteps of [14] and follow-up
works in defining sets from a complexity-theoretic perspective.
As the examples above indicate, we may fail to protect sets
that we cannot efficiently identify (e.g. the set of ones that
are randomly mixed with the set of zeros). A natural goal
that we adopt here is to protect every set that we can identify
with some given computational resources (e.g., sets that can
be defined with a small decision tree or by circuits of a
given size) in accordance with two fairness notions. The key
technical requirement is that the sets be fixed in advance and
membership in every set can be computed from an individual’s
data.

Domination-Compatibility. = We construct two paral-
lel notions of increasingly strong fairness requirements.
Domination-Compatibility aims to preclude rankings in which
a qualified group is consistently undervalued in the ranking
when compared to another, less qualified group. We formalize
the situation where a ranking favors one group over another
via the notion of domination. For a given ranking and equal-
size sets S and T, we say that S dominates T if there exists
a matching between S and 7" in which every member of S is
matched to a person in 7" whose rank is worse. In fact, we will
work with a more general notion that allows for approximate
domination between sets of different sizes (Definition 1V.2).

A ranking that does not exhibit this type of unfair behavior
for any pair of sets in a class C is said to be (C, a)-domination-
compatible.

2Social psychologist Claude Steele writes, “There exists no group on
earth that is not negatively stereotyped in some way — the old, the young,
northerners, southerners, WASPs, computer whiz kids, Californians, and so
forth.” [21].



Definition (Domination-Compatibility, informal). We say that
a ranking is (C,«)-domination compatible if for every two
subsets S, T € C:

If S dominates T, then E,.p, [p*(2)] + a > Epop, [p*(2)]

where x ~ D, denotes a random unlabeled sample from the
distribution on universe elements, conditioned on x € S, and
analogously for Dr.

The formal definition also accounts for approximate dom-
ination (see Definition IV.4). An important advantage of this
definition is that it can both be obtained and audited from
labeled data, as it only considers expectations of p* on sets in
C.

Evidence-Consistency. Evidence-Consistency is specified
in terms of a ranking’s consistency with a scoring function that
satisfies increasingly demanding accuracy conditions. Here,
accuracy is specified with respect to expectations of the 0/1
outcomes data in a training set, which we think of as the
“evidence”. Thus, we require that our rankings be consistent
with the evidence.

Definition (Evidence-Consistency, informal). A ranking is
(C, a)-evidence-consistent if there exists a scoring function p
that is consistent with the ranking, and for which the following
holds:

vS e, E

x~Dg

E

x~Dg

[p" ()] [p(2)]| <

Importantly, we show that the global consistency guar-
antee provided by evidence-consistency is a more powerful
guarantee that implies the pairwise protections provided by
domination-compatibility.

Theorem 1 (Evidence-Consistency implies Domination Com-
patibility, informal). If a ranking is (C, o)-evidence-consistent,
then it is also (C,2«a)-domination-compatible.

In fact, evidence-consistency is strictly stronger than
domination-compatibility. In Section IV-D, we demonstrate
that there are choices of C and «, such that there exist
rankings that are (C,0)-domination-compatible but are not
(C, a)-evidence-consistent. Further, we prove that domination-
compatibility is equivalent to a significantly weaker notion
of pairwise-consistency. On an intuitive level, domination-
compatibility can be justified by a separate explanation for
every pair of sets; evidence-consistency, however, requires a
single explanation that simultaneously justifies the rankings of
all sets.

Strengthening the protections through self-reference.
Somewhat surprisingly, we show that even for a rich col-
lection C, evidence-consistency (and thus also domination-
compatibility) can leave the door open to harms that directly
affect sets included in the collection C, including harms that
can be audited from labeled data. As an example, let S be a
set of individuals whose p* values are all 0.8, whereas outside
of S all individuals have p* value 0.5. If we rank according
to p*, then the individuals in S should be ranked highest. We
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argue that for any choice of C (comprised of sufficiently large
sets), there exists a blatantly unfair ranking that is C-evidence-
consistent and that systematically degrades the ranks in S.

To see this, consider a scoring function p constructed by
assigning the correct value of 0.8 to every individual in S, and
for every individual 2 ¢ S sampling an outcome uniformly
at random from {0, 1}. With high probability, p has accurate
expectations for all sets in C. Thus, the ranking rP induced
by p is evidence-consistent; however, this ranking harms the
members of S, who receive median ranks rather than being
ranked at the top. Moreover, this harm is demonstrable from
the data: if we consider the set 7" of individuals ranked above
the members of S, we see that this set dominates S in the
ranking, even though the expectation of its labels is lower!
The issue is that the set 1" is only defined a posteriori, after
we are given the ranking.

Motivated by this example, we strengthen both domination-
compatibility and evidence-consistency by asking that they
hold for a richer family of sets defined by the ranking under
consideration. Intuitively, once a ranking is proposed, the sets
that are implied by these rankings — sets of individuals that
are identically ranked, which we will refer to as quantiles —
become relevant. Furthermore, the quantiles within every set
in C are also relevant.

For a collection C and a ranking r, we consider an aug-
mented collection of subsets C,.; loosely and informally, C,. in-
cludes the quantiles induced by the ranking r, and the intersec-
tions of each of these quantiles with every set in .S € C. Defini-
tion V.4 provides a formal treatment. Returning to the example
above, once the ranking 77 is suggested, sets related to T
will appear in C,. Thus, asking for domination-compatibility
or evidence-consistency with respect to C, (rather than C),
yields stronger notions of reflexive domination-compatibility
and reflexive evidence-consistency (respectively). While the
weaker (non-reflexive) notions were not equivalent to one
another, the reflexive notions are equivalent!

Theorem 2 (Equivalence of Reflexive Notions). If a ranking is
(C, a)-reflexive-evidence-consistent then it is (C, 2a)-reflexive-
domination-compatible. If a ranking is (C,«a)-reflexive-
domination-compatible then it is (C,«)-reflexive-evidence-
consistent.

Learning Evidence-Consistent Rankings.  Generally
speaking, we can learn an evidence-consistent ranking by
directly learning the scoring function required in the definition,
and using the ranking that it induces. For (non-reflexive)
evidence-consistency, this entails learning a function p : X —
[0,1] that (approximately) respects all of the expectations of
subsets S € C. The task of learning such a function has been
recently studied in the context of fair prediction [14], [18],
these works show how to learn such a p from a small number
of binary samples.

Reflexive evidence-consistency, however, requires the exis-
tence of a scoring function that respects all of the expectations
of subsets in C,.. This collection is defined adaptively: the sets
are only defined after a particular ranking r is specified. The



aforementioned algorithm only works for a family of sets that
are fixed in advance, and thus it cannot be directly applied
towards the stronger definition.

Instead, we turn our attention to the stronger notion of multi-
calibration studied by [14]. Loosely, a function p is multi-
calibrated for a collection C if it is calibrated on every set in
C. Calibration, which has been well studied in the statistics
literature, where weather forecasting is often a driving exam-
ple, says that the fraction of positive outcomes among those
elements assigned a score of v € [0, 1] is equal to v, for all v
simultaneously. We show that multi-calibration and reflexive
evidence-consistency are closely related.

Theorem 3 (Connection to multi-calibration, informal).
The ranking induced by a (C,«a)-multi-calibrated function
is (C, a)-reflexive-evidence-consistent. Further, any consisten
scoring function that exhibits the correct expectations defined
by a (C,«a)-reflexive-evidence-consistent ranking is statisti-
cally close to being (C, o)-multi-calibrated.

We develop this result formally in Section V-C. Leverag-
ing the connection to multi-calibration, we can use known
algorithms for learning multi-calibrated functions to obtain re-
flexively evidence-consistent rankings from labeled data. For
arbitrary collections C, the learning algorithms of [14] run in
polynomial time in |C|; however, for structured, agnostically-
learnable, collections C, the running time may be improved,
depending on the efficiency of the agnostic learner. This
theorem gives further motivation for learning multi-calibrated
scoring functions in the context of predictions.

Stronger Notions Yet? The reader may wonder if there
are natural notions in the evidence-consistency and domina-
tion compatibility hierarchies. Stronger notions could always
exist and exploring them is an excellent direction for further
research; nevertheless, we note that we do not expect to
see examples demonstrating weaknesses of reflexive evidence-
consistent rankings of the sort that we demonstrated for plain
evidence-consistent rankings. This is because, for a sufficiently
rich family of sets, reflexive evidence-consistent rankings will
be highly accurate (in the sense discussed in the context of
the Occam’s Razor theorem). In other words, it is natural
to expect that any weakness of reflexive evidence-consistency
would exploit a weakness in the family of sets C, and would
fail for a sufficiently-rich family C.

B. Discussion

The Meaning of Probabilities. As discussed above, the
notion of an individual probability p*(z) is debatable. Still,
assuming some underlying scoring function p* is a useful (and
common) abstraction that aims at capturing some underlying
uncertainty. We therefore follow tradition and specify our
definitions based on an hypothesized p*. We stress that all
but one of our results hold if we replace p* with the function
o that assigns to individual  its outcome o(z).?

An insight exciting to us is the perspective that the notion
of Evidence-Consistency gives into the idea of p*. Consider

3The only exception is the Occam’s Razor result.

outcomes that are completely deterministic — half of the
individuals will see a positive outcome with probability 1 and
the rest will see it with probability 0. If the set of 1’s is
computationally indistinguishable from a uniform set, then, we
argue, it is legitimate to view p* as assigning all individuals the
value 1/2. But what if we have richer information specifying
all of the expectations for a family of sets C? By analogy to the
preceding argument, any multi-calibrated scoring function p is
a legitimate candidate for the role of p*. Thus, any evidence-
consistent ranking may legitimately be considered “accurate.”
So even if individual probabilities are always beyond reach
(when only given a sample of outcomes), we can still assign
putative individual probabilities that respect a rich body of
evidence.

The Choice of C in Light of Evidence-Consistency.
Fairness, as specified in our framework, ultimately hinges on
the expressive power of the sets in C, which relies in turn
on the richness of the individual data and the computational
resources. To see this, consider disjoint sets of students S and
T, where the students in S attend a wealthy high school and
the students in 7' attend an impoverished school. Members
of S may have access to advanced placement (AP) classes,
whereas members of 7" may not. Thus, it may be impossible
for AP-capable students in 7' to demonstrate their ability to
excel in advanced courses. Even multi-calibration does not
necessarily guarantee equal discriminative capability on .S and
T': there is no way for an algorithm to extract information that
is not present in the data.

It is possible that we could define (if not always efficiently
measure) the inadequacy of the expressive power of C, from
the perspective of this work. For example, given a ranking p
we can define, for each S € C, Vg(p) to be the fraction of
members of S whose rank is in the top ten per cent. If the
value of Vg (p) varies greatly on a pair of evidence-consistent
rankings, then the evidence — as interpreted via the sets in C
— is not reliably capturing the qualifications of the members
of S: different rankings consistent with the evidence yield
very different values. The variability of the set of the space of
evidence-consistent rankings is closely tied to the legitimacy
of viewing a multi-calibrated p as a vector of true probabilities.

Ranking versus Predicting. In many settings, a position
within a ranking is as useful as a score. For example, an
experienced clinician can translate a claim that a patient is
in the top 10% among the population at risk for developing a
given ailment into an absolute estimate of this risk. This leads
to an important observation: a ranking together with a training
set of historical outcome data (the clinician’s experience with
previous patients) yields a scoring function. This practical
insight is born out theoretically, yielding an equivalence:
any scoring function immediately induces a ranking; given
a ranking and sufficient training data, we can efficiently
find a calibrated scoring function that induces this ranking
(Section II-C).
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C. Further Related work

The most closely related work, and the technical spring-
board for our contributions, is the definition and construction
of multi-calibrated scoring functions [14]. The approach to
fair affirmative action proposed in [4] makes no explicit use
of rankings but is “morally equivalent” to the approaches of
Roemer and the universities of Texas and California mentioned
above, and kindled our interest in rankings. The work of
[23] follows the approach of Roemer more explicitly and
aims to select individuals from different (known and non-
overlapping) populations in accordance with their population-
specific ranking. Unlike the present work, they assume direct
access to the underlying real-valued outcomes (what we refer
to as p*).

The use of machine learning techniques to rank instances
is called learning to rank (see also the literature on rank ag-
gregation for the Web, including [24] and references therein).
Within this broad literature training samples in the pairwise
approach are ordered pairs (x,2') € X x X, signifying that
2 is of higher rank than z’ under an assumed true ranking,
while a training sample in the pointwise approach consists of
a single instance z € X, annotated with either a numerical
or ordinal score. The special case in which the scores are
constrained to be binary is known as the bipartite ranking
problem and has been in studied in [25], [26]. [27] also study
the connections between prediction and ranking, proving weak
regret transfer bounds (where the mapping for transforming a
model from one problem to another depends on the underlying
distribution) between the problems of binary classification,
bipartite ranking, and class-probability estimation.

Typically, the objective in learning to rank is to minimize
the probability that a randomly chosen pair (z,z’) is mis-
ordered, meaning: in the true ranking x is ranked above z’,
but in the published ranking x’ is ranked above x. Various
popular ranking algorithms operate by minimizing a convex
upper bound on the empirical ranking error over a class of
ranking functions (see e.g. RankSVM [28] and RankBoost
[26]). Recently, [29] proposed cross-AUC, a variant of the
standard AUC metric that corresponds to the probability that
a random positive example from one group is ranked below a
random negative example from the other group. This is similar
yet significantly weaker variant of our notion of domination.
Finally, several recent works have considered fairness in rank-
ings from the perspective of information retrieval, where the
objective is to guarantee fair representation in search results
[30]-[32].

II. RANKINGS AND PREDICTORS

In this section, we give an overview of our formal goals for
learning rankings from binary outcome data. We begin with
some notation and preliminaries. Then, we discuss technical
issues of how we represent rankings and what it means to
recover a “good” ranking from a small sample of outcome
data. Finally, we show various connections between the world
of ranking and that of prediction; along the way, we prove a

number of lemmas and introduce concepts that will be useful
throughout Sections III and IV.

a) Notation and preliminaries.: We use X to denote
a discrete universe over individuals and ¥ = {0,1} to
denote the space of binary outcomes. For any function f :
X — [0,1], we denote the support of f as supp(f) =
{ve0,1]: 3z € X s.t. f(x) =v}.

We assume that there is a fixed, but unknown distribution
Dy over individuals; for any subset S C &', we denote by
x ~ Dg arandom (unlabeled) sample from Dy conditioned on
x € S. Given an individual, we assume there is a distribution
Dy | x over outcomes; specifically, we assume that there is
some function p* : X — [0, 1] such that y ~ D+, | x is sampled
according to Ber(p*(x)); that is Prly = 1 | z] = p*(x).
Together, Dy and Dy |y induce a joint distribution over
X x Y. We denote by (z,y) ~ Dy y arandom labeled sample.

We say a predictor is a function p : X — [0, 1] that aims to
approximate p*. Throughout, unless otherwise specified, we
measure closeness to p* in terms of ¢;-distances, where we
let

lp=»"ll, =, E_llp(@) = p" ().

For a predictor p : X — [0, 1] and a subset S C X, we denote
the (canonical) median of p over S as

med [p(z)] = inf ¢ v’ € argmin E
z~Dg v’ v€E[0,1] x~Dg

[lv p(fv)l]}-

We use |[p — p'||, to denote sup,cy [p(z) — p'(x)|.

A. Rankings, predictors and recovery goal

In this work, we formalize the idea of learning rankings
over Dy from binary outcomes sampled from Dy, | . Before
discussing the learning model, we discuss how we represent
rankings over Dy. In the case where we have a fixed universe
of individuals X = [n], a natural way to represent a ranking
is as a permutation 7, where the “best” individual z € X is
7~1(1) and the “worst” 7~1(n). For our setting where we
wish to learn a ranking over a fixed but arbitrary distribution
Dy, we generalize the idea of a permutation-based ranking.

Definition II.1 (Ranking). A function r : X — [0,1] is a
ranking over Dy if for all T € supp(r)
Pr [r(z) <7]=T.

CENDX
We denote by R C [0,1]% the set of all rankings.

Note that this definition allows rankings to specify groups
of individuals at the same rank; specifically, for any threshold

€ [0, 1], the top 7-fraction of the distribution of individuals
Dy will have r(z) < 7. This definition has the appealing
property that it does not require the ranking to distinguish
between every pair of individuals if there is not enough infor-
mation. In particular, a ranking r € R specifies equivalence
classes of individuals according to their rank r(x). Still, some
applications may call for rankings that do not allow for ties.
Formally, we say that a ranking r» € R is strict if r is injective.
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Note that any ranking satisfying Definition II.1 can be turned
into such a strict ranking by randomly breaking ties.

Given a set of labeled samples (z1,y1),- .-, (Tm,Ym) ~
Dxxy, we hope to recover a ranking that approximates the
ranking according to p*. More generally, given any predictor
p: X — [0,1], we can discuss a natural ranking r* € R
that orders X" in descending order according to their p values,
defined as follows.

Definition I1.2 (Induced ranking). Given a predictorp : X —
[0, 1], the induced ranking rP € R is defined as follows.

Pr [p(z’) > p(v)]

x'~Dx

r’(x)

Thus, if we could learn p* exactly, then we could implement
the induced ranking by comparing individuals according to
predictor p*. (Lemma II.7 below formalizes this intuitive
claim.)

Approximating the true ranking. Still, from a sample
of labeled data, we cannot hope to learn p* : X — [0, 1]
exactly; the best approximation we could hope for is an
{1-approximation. We might hope that the ¢;-approximate
recovery of p* would translate to approximate recovery of the
induced ranking. In particular, suppose ||p — p*||; < &; what
can we say about r? as compared to r? ? We argue that we
cannot make nontrivial guarantees about the closeness of P
and 7P using standard measures of distance, like /o, or /;.
To see this, consider the following example.

Example I1.3. Let £ > 0. For a pair of injective functions
with bounded values, £*,§ : X — [—¢/2,¢/2], let p*,p :
X — [0, 1] be defined as follows.

p(x) =1/2+&(2) p(r) = 1/2 4 &(x)

Note that ||p —p*[|; < e, but the induced rankings could
be arbitrarily different; for instance, we could take &(x) =
—&*(z) for all x € X. In particular, the induced ranking 7P is
determined entirely by the choice of &, which contributes at
most ¢ to ||p — p*||; by construction.

In other words, very small changes in a predictor can make
very large changes in the outputs of the induced ranking, and
thus we cannot hope to recover a ranking r with nontrivial
guarantees on Hr — P H Thus, to learn rankings from binary
labeled data with nontrivial guarantees, we need a different
notion of recovery. Note that in the example above, even
though the numerical value of the induced ranking may change
significantly under small changes in p (e.g. go from 0 to 1),
in a sense, both rankings 7 and r?" seem reasonable because
|p*(x) — p*(2)| is very small for every pair z,2’ € X x X.
Intuitively, if p* and p are statistically-indistinguishable — and
thus, are equally valid in a standard prediction setting — then
our measure of quality of a ranking should not distinguish
between the induced rankings 7 and r?" that arise from these
predictors. This example further highlights the motivation for
allowing for non-strict rankings that allow for indistinguish-
able individuals to receive that same rank.
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Consistent predictors. To formalize this intuition, we need
to take a dual perspective: rather than evaluating the quality of
a ranking r in terms of its closeness to the ranking 77~ induced
by p*, we evaluate closeness by comparing p* to a predictor
that is consistent with r. In particular, a ranking induces a
collection of predictors that respect the ordering of the ranking.
Formally, we define consistency as follows.

Definition II.4 (Consistency with a ranking). For a ranking
r: X —[0,1], a predictor p : X — [0,1] is consistent with r
if for all x,2' € X x X:

o if r(z) < r(a'), then p(x) > p(z), and

o ifr(z) =r(a'), then p(x) = p(z’).
We denote by P(r) C [0,1]% the set of all the predictors that
are consistent with a ranking r.

Our recovery goal focuses on consistency: a ranking 7 is
close to optimal if there exists a predictor p, that is consistent
with 7 and close to p*.

Definition IL.5 (Adjacency). A ranking r is e-adjacent to p*
if there exists a consistent predictor p, € P(r) such that

lpr —p*lly <&

To illustrate the guarantees of adjacency as a way to
evaluate the quality of a rankings, we begin by revisiting the
construction given in Example I1.3. While we argued that the
induced ranking 7? could be almost arbitrarily far from 77"
in terms of Hrp — Tp*| |» hote that rP is e-adjacent to p*.
In fact, because |[p —p*||; < e, p acts as a “certificate” of
the e-adjacency of rP. Thus, as desired, from the perspective
of e-adjacency, 7” and r? are equivalent rankings. In fact,
it is not hard to verify that for this example, every ranking
r € R is e-adjacent to p* because |p*(x) — p*(z’)| < e for
all z,2' € X x X.

Thus, measuring adjacency to p* is a more flexible notion of
closeness of a ranking. To see that this notion of comparison
still provides a meaningful guarantee of recovery, consider the
following example.

Example I1.6. Let € > 0. Suppose X is partitioned into two
equally-sized sets S,T. Let p* : X — [0,1] be defined as

follows.
p*(z) = {

As in Example IL.3, any ranking » € 'R that permutes
individuals within S and within T, but respects the order of
S before T" may accrue significant differences in Hr — P
but will still be 0-adjacent to p* € P(r).

Consider, however, a ranking that does not place all of
S before all of T'. Intuitively, this “interleaving” is clearly
undesirable: there are members z € S, with significantly
higher p*(z) than all of T, being ranked below members
a’ € T. Note that adjacency formalizes this intuition: as more
and more interleaving occurs in some r € R, the optimal
llp — p*||; for p € P(r) increases significantly.

ifrelS
ifxeT
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B. Efficiently approximating the induced ranking of a predic-
tor

Above, we argued that given a predictor p : X — [0, 1], the
induced ranking 7P € R is a well-defined function. Still, if we
want to evaluate the ranking rP(z) exactly on an individual
x € X, then in principle, we might have to evaluate p(z’)
for all other ' € X. Here, we show that given oracle access
to a predictor p and a small number of unlabeled samples
from Dy, we can produce an approximation 7P of the induced
ranking of p. Specifically, we produce a ranking 77 with which
p € P(7P) is consistent (i.e. 77 (x) < 7P(z’) only if p(x) >
p(z')); further, 72 will be a pointwise approximation to the
exact induced ranking 77 (i.e. ||r? — 7P| < f).

Proposition IL7. Let 8, > 0. For a predictor p : X — [0, 1],
let r? € R denote the induced ranking of p. There exists an
efficient algorithm that given oracle access to p and m >
w unlabeled samples x1,...,x, ~ Dx produces a
ranking 7P : X — [0,1] such that

o p € P (7P); specifically, Vax,x' € X X X:
P(x) < 7P (') = rP(x) < rP(a').
o [P =<8
with probability at least 1 — 6.

Proof. For a threshold 7 € [0,1], consider a Bernoulli ran-
dom variable X, distributed according the the indicator of
1[rP(z) < 7] for  ~ Dy. Note that by the definition of a
ranking, the expectation E[X ] = 7. Consider the empirical
estimate over m independent samples z; ~ Dy.

Let T = {8/2,5,...,1—(/2,1} be a set of 2/0 equally
spaced thresholds. We can use Hoeffding’s inequality and
a union bound to bound the probability that the empirical
estimates X, will be more than 3/2 away from the true
expectation.

-m 62
)
Thus, if m > w with probability at least 1 — 6, the
empirical estimates of X, for all 2/3 thresholds 7 € T will
be accurate up to 3/2.

Given the predictor p, we can implement a comparison
oracle that given a pair of inputs z,z’ € X x X, returns the

indicator of 1[p(x) > p(a’)]. Thus, given some = € X" and the
unlabeled sample, we can estimate 7P (x) as follows.

Pr HXT —7" > /2] < exp (

P (z) = %Z 1[p(z;) > p(z)]
:%Zur () < ()]

We can bound this estimate from below and above as follows.
Suppose P (z) € [r—, 7] for consecutive 7— < 7 € T.

m

%Zl[rp(xi) <71_] <7P(z

1m
<—§ [rP(x;) < 1
2 S [rP(x;) < 4] (1)

/E{) [rP(z") < 7_] — B/2 < 7P(x)
< Pr ) <nl 462 @

Pr 7)) < 1) - 5 < (@)
< P ) < @]+ 8 G)

where (1) follows by the assumption that r?(z) € [r_,74];
(2) follows by the accuracy of the empirical estimates in 7;

and (3) follows by the fact that |7 —7_| = (/2 for all
consecutive 7_ < 74 € T. Thus, the empirical estimate 77 (z)
will be within § of the true rP(x). O

In particular, note that given the sample of unlabeled data,
we can build a data structure that given oracle access to p can
efficiently approximate the rank 7% (x) for any x € X. Further,
note that all of the arguments used to prove Proposition 1.7
work equally well if we restrict our attention to some subset
S C X. Thus, if we have access to samples from Dg,
we can similarly evaluate the ranking of individuals within
the subpopulation Dg. Such a procedure may be useful for
identifying individuals in the most qualified individuals across
different subsets.

Corollary IL.8. Suppose (3,6, 7 > 0. Given access to a pre-
dictor p : X — [0,1], a subset S C X, and O (log(1/8)/5%)
unlabeled samples from Dg, there is an efficient procedure
that identifies the top T'-fraction of individuals over Dg for
some ' € [T — B, 7 + B] with probability at least 1 — 0.

C. Transforming a ranking into a predictor through calibra-
tion

Next, we turn our attention to obtaining a predictor given a
ranking. As discussed, given a ranking r» € R, there may be
many consistent predictors that form the collection P(r). Our
goal will be to recover a predictor p : X — [0, 1] that approx-
imates the “best” consistent predictor p,. € P(r). Formally, if
r is e-adjacent to p*, we want to compute a predictor p such
that ||p — p*||; is close to €. Without any further information
about p*, this goal is impossible; however, we show that a
small set of labeled samples (z1,¥1),.. ., (Tm,¥m) ~ Dx,y
provides enough information about p* to pin down a predictor
p that achieves essentially optimal ||p — p*||,.* The structure
of the proof will introduce a number of concepts that will
be useful for identifying the best ranking in a given class (see
Section III), and will motivate our notions of fairness presented
in Section IV.

4A conceptually similar result is shown in [27].
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Our approach to transforming a ranking » € R into a
predictor follows the intuition that the partition of X induced
by a ranking, which we call the quantiles, identify useful
structure in p* when r is e-adjacent to p* (for small € > 0).

Definition II.9 (Quantiles according to a ranking). For a
ranking v € R, the quantiles of r, denoted by Q,, partition
X as

9, ={Q, - : 7 €supp(r)}
where Q. ={x € X :r(z) =T}.

Intuitively, the quantiles of a ranking 7 capture the “knowl-
edge” contained in r and the number of quantiles (i.e. the
support size of r) indicates the “confidence”. For example, at
one extreme, the constant ranking ro € R, where rg(z) = 0
for all x € X, has a single quantile and makes no distinctions
between individuals; at the other extreme, a strict ranking has
quantiles at an individual-level resolution. While the quantiles
are well-defined for any ranking, operationally, we will often
need to work with quantiles that are sufficiently coarse.

Definition II.10 (y-coarse ranking). A ranking r € R is -
coarse if for all T € supp(r'),

Priz € Q, ] > 7v/2.

Note that a 7y-coarse ranking is supported on at most 2/
quantiles (where the factor of 2 is an arbitrary constant factor
chosen for convenience). Importantly, given any ranking r €
‘R, we can turn it into a y-coarse ranking that approximates
r. In general, such a coarse approximation will not be unique;
we establish the existence of a canonical y-coarse ranking that
preserves certain structure of 7.

Lemma II.11 (Canonical v-coarse ranking). For any ranking
r € R and v > 0, there exists a canonical y-coarse ranking,
denoted 7 € R, that satisfies the following consistency
properties:

o 1’ maintains consistency with r: P(r') C P(r);

o for all predictors p, € P(r) consistent with r, there exists
a predictor p}™ € P(r") such that ||p, — py™d||, <
.

Intuitively, we form the canonical ~y-coarse ranking by
merging the quantiles of  into quantiles of probability density
of about . To maintain consistency, we need to ensure that
for all z, 2’ such that r(z) = r(z'), then r7(z) = r7(z’),
which may require quantiles of larger size, which results in
some technical subtlety.

Proof. We define r?” € R by greedily building quantiles of
probability density at least 2+ /3. Starting with an index 7 = 1
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and threshold 7 = 0, let

Q; — {:c : gclfgx[r(x’) <r(x)] >+ QW/3} \ L<J Qj;
VeeQ;: r7(z) <+ }gg {r(z")};

Tig1 & sug {r(z)};

TEQR;

141+ 1;
until 7; > 1 — 2v/3. Suppose at termination, ¢ = ¢. Add the
remaining € X' \ |J, ., Qi, to Q;—1 and set rV(z) = 7. By
construction, 77 € R is a y-coarse ranking: each quantile will
have probability density at least 2v/3; and any xz,z’ where
r(x) = r(a’) will be included in the same quantile of 77.

To see the property in the proposition statement, consider
some predictor p, € P(r) and the predictor py™ed € P(r7)
defined to give the median value of p, over each quantile.
Specifically, for each ¢ € [t] and each x € Q;, let

()—med [pr(2)] .

x'€Dq

med
P

Consider that statistical distance between p, and p)™°d,

~v-med

||p er1
= LND Hp"/ med (z) — pr(:c)H
T Jr el E (574 (2) — pu ()]
t
=2..pr [z € Q] 'wN%@i [m“w‘%‘l [pr(2")] — pr () ]

=1

4)

With this expansion of le'med — pr||,> we split the analysis
of individual terms based on the the probability density of the
quantiles. Note that

5 et penne] ©
< sup med [pr(l'/)] _pr(l) (6)
z€Q; [T VFQ
1
< 3 . (xsélglpr( ) - mlencglpr( )) (7

where (6) follows because an expectation is always upper
bounded the maximum supported value; and (7) follows by
the definition of the median. Thus, for some i € [t], if Pr[x €
Q;] < 2+, then the contribution of the ith quantile to the sum
in (4) is bounded by 7 - (sup,cq, pr(z) — infrcq, pr(z)).

On the other hand, if Pr[z € Q;] > 27, we claim term can
be bounded by

Pr ol B || med ()] - (o)
<2 (sup pr(z) — inf pr(x ))-

TEQ; T€Q;



To see this, note that by the construction of r7, such a
large quantile can only arise in r7 if it merged a large
quantile from r; in turn, this implies that p)™°¢d(z) =
medm/NDQi[ ~(2")] for a large fraction of @;. Specifically,
there can be at most 2y/3 probability mass before merging
with a large quantile of r (and 2v/3 after the large quantile,
in the case of ; by the termination condition). All other
r € Q; satisfy p)™°d(x) = med, ~p, [pr(2')], and thus,
contribute 0 to le'med — erl Again, by properties of the
median, this means that the total contribution cannot exceed
3+ (sup,eq, pr() — infoeq, pr(x)) per each of the < 4v/3
probability mass.

Picking up at (4), we continue to bound the distance by
showing the sum telescopes.

t
SZ (sup pr(@

TEQ;

0~ juf (o))

z€EQ;

<7- (Sup pr(T) —xiggpr(wo (®)

reX
<7

where (8) follows by the fact that p, is consistent with r so
Sup,cq, Pr(®) < infreq,,, pr(z) and the sum telescopes; the
final inequality follows by the fact that p, : X — [0,1]. O

Given the quantiles of a ranking, there is a natural predictor
that gives the expected value of p* on each quantile, which
we call its calibration.

Definition I1.12 (Calibration of a ranking). For a ranking r €
R, the calibration of r is the predictor p¢ : X — [0, 1] where
for each T € supp(r), for all x € Q. -,
Py = E )= E ) |r@)=1].
z'~Dg x/~Dx

T

The ~y-calibration of v is the predictor p), obtained by
calibrating the y-coarse ranking r"7.

The next proposition shows that that the ~-calibration
approximates the optimal consistent predictor p, =

a’rgmian'P(T) lp —p* H1

Proposition 11.13. For any r € R and v > 0, let p)® be
the ~y-calibration of r. If r is e-adjacent to p* for some € > 0,
then

||p* pr'Calﬂl < 2e+4 274.

Proposition II.13 shows closeness between p* and the
exact ~y-calibration, pl'cal. While in general, we can’t hope
to compute the calibration of a ranking exactly, given suf-
ficiently many labeled samples from Dy y, we can estimate
E [p*(z) | r7(x) = 7] for each 7 € supp(r?). Specifically, we
can use the empirical expectations over the quantiles over a
bgfy# labeled samples; this argument
is similar to formal arguments presented in the subsequent
proof of Theorem III.1.

To demonstrate Proposition II.13, we first prove the fol-
lowing lemma, which will also be useful for establishing
subsequent results.

small set of m > Q (

Lemma IL.14. Suppose fort € N, S = {Si}ie[t] is a partition

of X. Let p5 : X — [0,1] give the expected value of p*

on each partition; that is, for each i € [t], for x € S,

pS(x) = E.wpg, [p"(7)]. Let ps X — [0,1] be any

plecewise constant predictor over the partition S; that is, for

each i € [t], for v € S%, p§(z) = v; for some constant
€ [0,1). Then,

[ ~ 6 oll, <
Ip° <2 Hpo

Proof. Consider Hp‘s —p*||1. First, we apply the triangle
inequality as follows.

1p° =p*||, < Ip® =58, +[Ip5 — 2|,

Next, we show that Hp - Dy H1 < Hpo —-p Hl

||p fpoHl Z Pr [z € 5] Cm]%gﬁ[p ()] — v
i€ t]
< 1. () — v
<> Prlres] E [p@)-ul O
i€(t] ‘
r"=nll,
where (9) follows by Jensen’s inequality. O

With this lemma in place, we are ready to prove Proposi-
tion II.13.
Proof of Proposition 1I.13. For a ranking r € R that is e-
adjacent to p*, for v > 0, let Q, , be the quantiles of 77
and let py°¥ : X — [0,1] be the ~-calibration of 7. Let
pr = argming,cp(, [[p — p*|l;, and let p3* € P(r) be the
predictor that gives the median prediction of p,. on each -
quantile, as in Lemma II.11. Then, we can derive the following
inequalities.

||p'y cal p < 2. ||p'y -med p*| . (10)
2 (|lp7™ = pe||y + llpr — P*111)
§ 2y + 2¢ an

where (10) follows by Lemma II.14 because pl'med is piece-
wise constant over the -quantiles and (11) follows by the
assumption that 7 is e-adjacent to p* and Lemma II.11. O

Note that in Proposition II.13, when we convert an e-
adjacent ranking to a predictor, we can guarantee a predictor
that is (2¢ + 7)-adjacent for any constant v > 0; further,
by concentration arguments deferred to Section III, this same
guarantee can be achieved using an a small random sample
to estimate the y-calibration. We argue that in our learning
model, with access to binary samples (z,y) ~ Dx,y, the
factor of 2 loss between the adjacency and the ¢;-distance
of the recovered predictor is optimal.

Observation I1.15 (Informal). For any ¢ < 2, there is an
e > 0 and a distribution Dy y, such that no algorithm that
is given access to a ranking r € R that is e-adjacent to p*
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and a bounded number of labeled samples (x,y) ~ Dx y can
produce a predictor p, such that

lpr —p*[ly < c-e

Proof Sketch. Let X = [N] be a finite universe and Dy be
the uniform distribution over X'. Suppose r € R is the constant
ranking; that is, r(z) = 0 for all € X'. We construct a hard
distribution over the choice of p* : X — [0, 1], where we can
bound the adjacency of r to p*, but it is impossible to recover
a predictor that always achieves the optimal ¢; error.

For some € > 0, let p. : X — [0, 1] be defined as p.(z) = ¢
for all x € X. For some subset S C X, let ps : X — 0,1
be defined as pg(x) =1 if x € S and pg(z) =0 for z & S.
Let S: C X be a random subset sampled by independently
sampling x € S, with probability ¢ for each x € X. Then,
consider the following distribution over the choice of p*:

P = {pe
Ps.

for a randomly drawn S.. Note for a bounded set of samples
(say, o(v/N) samples), with probability 1 —o(1), there will be
no x € X sampled more than once; conditioned on this event,
the labeled samples (x,y) ~ Dy y for either choice of p* are
identically distributed.

Despite the identical distribution of labeled samples, the
feasible minimizer of ||p, — p*||; is not the same. In particular,
because r is the constant ranking, to be consistent p, € P(r)
must be constant over X'. When p* = p., then p. is the
minimizer, and r is 0-adjacent to p*. In other words, if we
output any predictor p, other than p., then with probability
1/2, then ||p, — p*||; > c-€ for every constant c. Thus, to get
any multiplicative approximation to the best ¢; error, every
algorithm must output p..

But consider when p* = pg_; in this case, the constant
predictor po(x) = 0 for all z € X will minimize the ¢; error
to p*, with ||po — p*[|; < €+ o(1). Using p. as the estimate
of p*, we can bound the expected ¢; error as follows.

E[||lp- —p*[l,] =Prjp*(z) = 1] - (1 —¢) + Pr[p*(z) = 0] - &
=e-(1—-g)+(1l—¢)-¢
= 2 — 262

w.p. 1/2
w.p. 1/2

Taking € > 0 to be an arbitrarily small constant, we can see
that the recovery guarantee approaches 2e, which approaches
a factor 2 worse than optimal. (]

III. IDENTIFYING THE BEST RANKING

Proposition II.13 shows that given a ranking » € R and a
small sample of labeled data, we can recover an approximately
optimal predictor that is consistent with 7. Still, because
we only see the realization of y ~ Ber(p*(z)), it is not
immediately obvious how to evaluate the ¢;-distance between
the derived predictor and p*. Thus, from the analysis in
Section II alone, given a collection of rankings R C R, it’s
not clear whether we can find the best r € R.

In this section, we prove an agnostic “Occam’s Razor”-style
theorem for rankings. That is, we show that given a class
of rankings R C R, it is information-theoretically possible
to identify the (approximately) best ranking » € R from a
small set of m labeled samples (x1,y1) - .. (Zm, Ym) ~ Dx.y.
Slightly more formally, for any € > 0, if there is an e-adjacent
ranking r € R, we give an algorithm that runs in polynomial-
time in |R| and m, and returns an O(e)-adjacent ranking ' €
R.

Because we only have access to samples of binary out-
comes, our access to p* is very limited. As such, the proof
differs significantly from classic proofs of identifiability for
boolean functions, as in [33], or for rankings given comparison
data of the form 1[p*(x) > p*(z’)]. Indeed, given an individual
sample (z,y) ~ Dxy, we cannot reliably determine any
conclusive information about p*(x). With a small sample
complexity, it is exceedingly unlikely to see any x ~ Dy
twice, let alone enough times to accurately estimate the bias.
Further, as discussed earlier, even if we could learn p* exactly
on significant portions of D, if there are non-trivial portions
where we are still uncertain, it is impossible to extract a
globally consistent ranking.

While the result is self-contained and does not directly im-
pact the subsequent discussion of learning evidence-consistent
rankings, it introduces some key insights about how to extract
information about the “true” ranking induced by p* from
binary outcomes. In particular, the proof hinges on the fact
that the empirical expectations of outcomes on (sufficiently-
large) subsets of X’ will concentrate around their expectation.
Further, the proof clarifies the intuition that the rankings
in the class R can help to identify structure in the true
ranking r?", even if 7" is not in the class. This intuition
is paramount to developing our strongest notion of reflexive
evidence-consistency in Section IV.

Theorem IIL.1. Suppose R is a class of rankings such that

there exists an e-adjacent v € R. For any 7,0 > 0, there is

() ( log(IRI/9)
5

an algorithm that given m > ( ) labeled samples

(x1,91)s - -, (@, Ym) ~ D,y with probability at least 1 —§
produces some r' € R that is (3+7)-adjacent. The algorithm
runs in poly(|R|,m) time.

Proof. For v > 0, we will show how to recover a (3¢ +c¢-7)-
adjacent ranking for some constant c; the theorem follows by
choosing 7' = v/c, losing only a constant factor in the sample
complexity. For each r € R, let 77 denote its canonical -
coarse ranking. For every two rankings r € R and q¢ € R,
consider the predictor p},** : X — [0, 1] defined to give the
expected value of p* over each of the intersections of quantiles
according to 77 and ¢”, where for all z € Q,+ r N Qg o»

P () = () |17(z") =7, q"(2') = o].

x/~D
For each g € R, we define the following loss function.

Lafg) = min max [p= — ],

pEP(q) TER
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The theorem follows by showing that the » € R that
minimizes (the empirical estimate of) Ly is an approximately
optimal ranking over R. In particular, suppose for every q,r €
R x R, we can find a empirical estimate of p”’;cal, which we

denote pg, : X — [0, 1], that satisfies ||f)q7. - pg;."“"*1 |1 < O(9).
Let the empirical loss function Lg(q) be defined as

Lr(q) = min max|[pg — p||, -

pEP(q) TER
We bound the distance of the ranking that minimizes the
empirical loss to p*.

Suppose ¢ = argmin,..p I:R(r) is the minimizer of Lp
over R and let p, € P(g) denote a consistent predictor for
q that achieves the minimum value of max,cr ||Pgr — Pgll;-
Further, let r* = argmin, . minycp(,)||p —p*||; be the
optimal ranking in R; specifically, we assume that r* is e-
adjacent to p* for some ¢ > 0. Let p,.» € P(r*) denote a
consistent predictor for 7* such that ||p* — p,«||; = €.

Using the triangle inequality, we expand the ¢;-distance
between p, and p* as

lpg — "Il

< Hpq — Dgr+ ||1 + Hﬁqr* *p:;;c*al

+ H 'y—ial %

< La() + 00 + p! = '

1

where Hpq — Par+ ”1 < f/R(Q) = MaXyecRr ||pq - ﬁqu1 by the

definition of pg, and ||pg — p;°||, < O(v) by assumption.

We will bound Lz(g) and Hpgﬁal - ‘1

For 7 € R, let py™d € P(r) be the canonical predictor
associated with 77 from Lemma IL.11. Then, by the fact that
g minimizes Lg, we can bound Lr(q) as follows.

Lr(q) < Lr(r*)

= 1 a. D kg T
pergl(rg*)rglegl\pr r =Dl

separately.

< mac e =2 (12)
reER 1
< mae {5y =257+ 2 o2 )
reR 1 )
< O(7) + ‘p* —pymed ’1 (13)
S ||p* — Pr 1 + ‘pr* _p;Y;med ‘1 + O(’Y)
<e+O0(y) (14)
where (12) follows by the fact that p)=™ e P(r*); (13)
follows by the assumption that ‘ Doy — p:;n;al < O(y) and
applying Lemma II.14 to bound Hp;/;cral _ :;med ‘ becalise

1
for each partition defined by the quantiles of r*7 and r7,
Pl gives the expectation over the partition and p)™°¢ is
piecewise constant; finally, (14) follows by the assumption that
lp* — pr<||; < € and applying Proposition IL11 to p,«.

Next, we bound Hpg;ﬁal - p*H . Let p denote the
1

predictor that gives the median value of p,» over the partition

vy-med
qr*

-cal
defined by p, ="
~y-cal
pqr*

Specifically, for all x € X such that
(2) = v,

~med -cal
P (2) = med [pr- (') | 3= (@') = o]

Then, we can bound ‘ pg;ial —p*|| as follows.
1
[Pt = (1s)
1

<2. Hp;;;}fed Sar (16)
<2- (’ pored — pps T e —p*lll)
<2 ([t = pe|| 4o —271) (D)
< 2y 4 2e. (18)

where (16) follows by Lemma II.14 applied to the piecewise

constant predictor p;’;ﬁned; (17) follows by the observation that
‘Pg:fed —ppe|| < ||p7™ed = p,-|| , which can be seen by
1

the convex optimization interpretati(l)n of the median as the
minimizer of ¢1; and (18) follows again by the assumption
that 7* is e-adjacent to p* and ||pl™% —p.|| < 5 by
Lemma II.11. Thus, we see that ||p, — p*[|; < 3+ O(7).

Thus, it remains to bound the sample complexity necessary

to recover for each r,q € R X R a pq : X — [0,1] such that

. —cal
Hprq _quCd H1 < O(y).
Note that to bound this ¢;-error, it suffices to estimate the
statistical queries

E_[p(2) |77(2) =7, ¢"(x) = o]

up to +y additive error for each r,¢ € Rx R and 7 € supp(r7),
o € supp(q7).

First, suppose that for each r,¢ € R X R and 7 € supp(r?),
o € supp(q?), we can obtain s labeled samples directly
over each of the subsets of interest (z1,y1),...,(Zs,ys) ~
Dq,~ .nQqv...y- Then, applying Hoeffding’s inequality, we
can bound the probability that the empirical estimate on the
sample deviates significantly from the actual expectation.

1< .
Pr[szgyi_wgp[p (x) |x€QM,‘erq”70’] >’7‘|

< 2exp (—2372) .
Thus, if s > %, then the probability the estimate
deviates by more than ~ is at most Jy. Because there are

2
at most O ('i‘l )

statistical queries to estimate, then given

2 2
s> 0 M) on each subset of interest, by a union

bound, all of the expectations will be accurate up to v with
probability at least 1 — &/2.

Next, we argue that we can exclude intersections of quan-
tiles Qp» » NQy o that are smaller than v* probability mass;
this allows us to bound the sample complexity from Dy y
necessary to guarantee that each subset of interest has at least
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s samples. Note that for each r,q € R x R, the predictor p,,
will be supported on at most 2 (1/4?) values. Thus, in order
to obtain a y additive ¢;-approximation, it suffices to provide
guarantees on the estimates for the sets where such that

Pr [l‘ € QT’V,T N Qq’y,a] Z '73-
o~X

In particular, ignoring all sets where
Prop, [ €Qm NQp o] < > incurs at most an
additional 3 ¢;-error per set, so v - O (1/72) f = O()
overall.

Thus, we may assume that for every intersection of interest
Pr.py[r € Qmr N Qyp o] > 3. Again, by Hoeffding’s
inequality, if we take [ > W the probability that every
sample misses such a set is at most 6 /2s. Thus, if we take m >
sl > Q W{%) samples, then another union bound shows
that with probability at least 1—4/2, each Q,~ NQ4~,» in our
collection will have at least s samples. Thus, with probability
at least 1 — J, every estimate will be accurate up to O(7)
additive error. O

IV. EVIDENCE-BASED RANKINGS

Section III shows that, information-theoretically, given a
class of rankings R C R, we can identify an approxi-
mately optimal ranking » € R. Still, when the class R isn’t
sufficiently-expressive to contain a ranking that is c-adjacent
to p* for small €, approximate recovery may not be enough to
guarantee the fairness of the eventual ranking. Consider the
following simple example that illustrates how an e-adjacent
ranking allows for a subset of fraction € to be significantly
mistreated.

Example IV.1. Let € > 0 and S; C X be a subset such that
Pr,.p, [z € S1] < e. Suppose p*,p : X — [0,1] is defined
as follows.

— tres o [0
xXr) = xT) =
P 0.01 otherwise © 0.01

Note that in the induced ranking of p*, S is the top e-fraction,
but in the induced ranking of p, S is the bottom e-fraction.
Still, despite the fact that the rank of S; has moved arbitrarily
far, [|p —p*||, <e.

if z € .57
otherwise

This example highlights the fact that c-adjacency, while
a reasonable recovery goal, is not enough to guarantee fair
treatment for groups of size less than . Note, however, that
such a blatant mistreatment can be detected from the 0/1
data we have at hand! This motivates a further study of fair
rankings, that aims to protect sufficiently large subsets of X.

A. Domination-Compatibility and Evidence-Consistency

The example above demonstrated one way in which signifi-
cant groups can be blatantly mistreated. Intuitively, if a “fair”
ranking gives preference to a subset S over another subset 7,
we would expect that S' should be more qualified than 7" in
terms of p*, at least on average. We begin by formalizing what

we mean when we say that a ranking r gives preference to S
over T', which we refer to as domination.

Definition IV.2 (Domination). Let S,T C X be two subsets
and v > 0. For a ranking r € R, we say that S ~-dominates
T in r if for all thresholds T € [0,1],

Ifll;s[r(x) <T]4+7v2> mfll;T[r(x) <7l

That is, S dominates T if for every threshold 7 € [0, 1],
the fraction (with respect to D) of individuals from S that are
ranked below 7 is at least as large as the fraction of individuals
in T', up to a slack of ~.

Intuitively, there is a natural combinatorial interpretation of
the domination condition in terms of matchings. Specifically,
in the special case where S and T are discrete sets of equal
cardinality and the distribution of interest Dy is the uniform
distribution, then S ~-dominates 7' if, after discarding a ~-
fraction of the individuals from each group, there exists a
perfect matching M : S — T in which where every x € S
is matched to some M (x) € T, whose rank in r is no
better than that of z; that is, r(z) < r(M(z)). We use
Definition IV.2 because it allows for comparison between
S and T that are arbitrarily-intersecting subsets of arbitrary
probability densities.

We argue that domination formally captures the intuition
that a ranking strongly prefers one subset over another. In
particular, the following lemma shows that if .S dominates T’
in a ranking r, then every consistent predictor p € P(r), favors
S over T' on average.

Lemma IV.3. If S ~y-dominates T in r, then for every p €
P(r),
[p(z)].

Proof. For a ranking r € R, let p € P(r) be consistent
predictor. By consistency, for each v € supp(p), there exists
some 7, € supp(r) (the minimum 7 where r(z) = 7 and
p(z) = v) such that for any subset S C X

E [p(z)]+~v> E

INDS QTN,DT

xle;s [p(z) >v] = xfll;s [r(z) < 7).

Suppose S y-dominates T'. Consider the difference in expec-
tations of p(x) under Dg and D, which we expand using the
identity for nonnegative random variables E[X] = [ Pr[X >
v]dv.

O )
B / (xl’&@(x) >v] = Pr [ple) > v]) dv
=7

where the final inequality bounds the difference in probabilities
by ~-domination. O

Lemma IV.3 suggests a natural group fairness notion for
rankings. Suppose E,.p,.[p*(z)] is significantly larger than
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E.p,[p*(z)] but S y-dominates T for some small +. Then,
Lemma IV.3 show that no consistent predictor p € P(r) can
respect the true potential of S and 7', even on average! Such a
reversal under » — where the expected potential of 7" is higher
than that of S, but S dominates T in r — represents a form
of blatant discrimination against 7" either the individuals of
T are being significantly undervalued or the individuals in S
are being overvalued by the ranking r.

With this in mind, a baseline notion of fairness for a ranking
r would be that » does not exhibit any such blatant reversals
for any pair of subsets from some rich collection C; formally,
we call this notion domination-compatibility.

Definition IV.4 (Domination-compatibility). Let C C {0, 1}X
be a collection of subsets and o > 0. A ranking r € R is
(C, a)-domination-compatible if for all pairs of subsets S, T €
C x C and for every v > 0, if S y-dominates T in r, then

E p@+0+a)z E @)

z~Dg

Looking ahead, since the expectations E,.pg [p*(2)] and
E,p, [p*(z)] will eventually be estimated from the sample
of binary labels, the definition allows for an additional additive
slack of a.

A (C, )-domination-compatible ranking r guarantees that
if S dominates 7" in r, then the true expectation of p* over S
is not significantly lower than that over 7. Intuitively, the fact
that S receives preferential treatment compared to 7" in 7 is
“justified” by Dy | x-

As discussed, one reason that violating the domination-
compatibility criteria seems so objectionable is that there does
not exist any consistent predictor p € P(r) that exhibits the
true expectations on the identified sets S € C. This observation
motivates a notion of fair rankings from the perspective
of consistent predictors, which we call evidence-consistency.
Evidence-Consistency goes a step further than domination-
compatibility and requires that a consistent predictor exists
that exhibits the correct expectations of p* for every subset in
the collection.

Definition IV.5 (Evidence-Consistency). Let C C {0, 1}X be
a collection of subsets over X. A ranking r € R is (C,«)-
evidence-consistent if there exists a consistent predictor p €
P(r) where for every S € C,

E

x~Dg

E

z~Dg

" ()] — [p(z)]| < .

In other words, a ranking r is evidence-consistent with
respect to a class C if there is a consistent predictor p € P(r)
that cannot be refuted using the statistical tests defined by
the class C. If C represents the collection of tests that can
be feasibly carried out (from a computational or statistical
perspective), then from this perspective, an evidence-consistent
ranking is a plausible candidate for the ranking induced by p*.

As a definition, a ranking that is evidence-consistent over
a class C provides a guarantee of consistency to p* that is
parameterized by the expressiveness of C; for a fixed value of
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«, the richer the class C, the stronger the guarantee provided
by consistency with the actual expectations. Viewing C as a
complexity class of “efficiently-identifiable” subsets, evidence-
consistency guarantees that no inconsistencies in the ranking
can be identified within the computational bound specified by

C.

B. Evidence-Consistency implies Domination-Compatibility

By requiring a globally-consistent predictor that respects the
expectations defined by subsets S € C, evidence-consistency
guarantees that the ranking does not misrepresent the (average)
potential of any S € C compared to another 7' € C. In partic-
ular, if a ranking satisfies evidence-consistency with respect to
a class C then it also satisfies domination-compatibility with
respect to the class.

Theorem IV.6 (Formal restatement of Theorem 1). Let C C
{0,1}* be a collection of subsets over X and let a > 0.
If a ranking v € R is (C, o)-evidence-consistent, then r is
(C, 2ar)-domination-compatible.

Proof. Suppose for a > 0 a ranking r € R is (C, «)-evidence-
consistent. Let S, T € C be two sets where S y-dominates 7T,
for some v > 0.

By the definition of evidence-consistency, we know that
there exists a predictor p, € P(r) such that

JE W@z B p(@)-a
ﬂCNI%T [p*(z)] < mNI%T [pr(2)] +

Further, by Lemma IV.3, because .S y-dominates 7', we know
that

E

x~Dg

E

INDT

[pr(2)] > [pr(2)] + 7.

Combining the three inequalities, we can derive the following
inequality.

E

ﬂCNDs

>

E

.’I:N'DT

" (2)] [P ()] +7 - 2a

Thus, for every pair S, T C C x C where S y-dominates 7',
the expectation of p* over S and T satisfy the domination-
compatibility requirement with additive slack 2a. O

C. Learning an evidence-consistent ranking

With the above implication in place, one way to learn a
ranking that satisfies (C, «)-domination-compatibility is to first
learn a predictor p : X — [0,1] that respects all of the
expectations of subsets S € C (up to «/2 tolerance), and then
convert p into its induced ranking 7. To see this, recall that
the predictor p € P() is consistent with its induced ranking.
Further, because such a p exhibits the correct expectations
over the collection C, it can witness the predictor required in
the definition evidence-consistency; that is, p certifies that its
induced ranking 7 is (C, «/2)-evidence-consistent.

The task of learning a predictor that respects the expec-
tations over a collection of sets C C {0,1}" has been



studied recently in the context of fair prediction [14], [18].°
These works, which refer to such a condition as (C, &)-multi-
accuracy, show how to learn such a p from a small number
of binary samples.

Proposition IV.7 ( [14]). Let cv,7y,6 > 0 and C C {0, 1}X be
a fixed collection of subsets. There is an algorithm that given
m>Q (log,(y‘%) labeled samples (x1,y1)s - -5 (Tm, Ym) ~
Dx,y learns a predictor p : X — [0,1] such that with

probability 1 —0, for every S € C where Pr,.p, [x € S| > ~,

E [p'(=)]- E

fI,‘N'DS .’I:N'Ds

p(2)]] < .

The algorithm runs in poly(|C|,m) time.

[14] also show that for structured classes C, the running
time of the algorithm can be improved, by reducing the task
of learning a (C, «)-multi-accurate predictor to the task of
agnostic learning the class C in the sense of [35], [36].

D. A separation between domination-compatibility and
evidence-consistency

We conclude this section by showing that when the sets we
aim to protect are predefined, domination-compatibility is a
strictly weaker notion than evidence-consistency. Specifically,
while evidence-consistency implies domination compatibility,
the reverse implication does not hold. The following examples
demonstrates a ranking that is C-domination-compatible but is
not C-evidence-consistent.

Example IV.8. Let &’ be a universe of 100 individuals, split
into two disjoint sets A and B, each of size 50. Let Dy be
the uniform distribution on X'. Further assume that there are
two subsets A’ C A, B’ C B, each of size 10. Define p* as
follows:

1.0 z€B
p(z) =400 ze€A
05 ze€A-A

Let C = {A,B,C}, where C = A’ U B’. Then the true
expectations are, E;vp,  [p*(2)] = 0.4, Ezop,, [p*(7)] =
1.0, and E;p,,, [p*(z)] = 0.5. Now, consider the ranking
r:B—B »~C»=A-A

Note that r is C-domination compatible, because the dom-
ination criterion holds for every two sets in C. Indeed: for
{4, B}, B 0-dominates A in r and the true expectation of B
is greater than the true expectation of A; for {A,C}, C 0-
dominates A in 7 and the true expectation of C' is greater than
the true expectation of A; finally, for { B, C'}, B 0-dominates
C in 7 and the true expectation of B is greater than the true
expectation of C.

On the other hand, we claim that r isn’t (C, a)-evidence-
consistent, for every @« < 0.1. Fix @« < 0.1 and as-
sume for contradiction that it is, and let p € P(r) be

SEarlier work in pseudorandomness studied the question of existence and
circuit complexity of such predictors [34].

a predictor that is simultaneously a—consistent with the
expectations of {A, B,C}. To maintain consistency with
Erpy, [P7(2)] = 1.0, Ezp, , [p()] = 1—a. This implies
that E;.p, | [p(z)] > 1 — 5 (because |B'| = 0.2 - |B|). To
maintain consistency with E;p,  [p*(z)] = 0.5, this implies
that E;p, , [p(z)] < 3c. Finally, to maintain consistency
with Eoop,, [p*(#)] = 04, Eoup, | [p(2)] = 0.5 — 20
But note that since the members of A’ are ranked before the
members of A— A’ by r, the fact that p € P(r) means that the
scores of A’ should be greater-equal than the scores of A— A’,
or 3a > 0.5 — 2, or that o > 0.1, which is a contradiction.

Pairwise-consistency. In fact, C-domination-compatibility
is equivalent to a significantly weaker notion, which we refer
to as pairwise-consistency.

Definition IV.9 (Pairwise-consistency). Let C be a family
of sets over X. A ranking r € R satisfies (C,a)-pairwise-
consistency if for every two sets S,T € C x C, there exists a
predictor p € P(r) such that

v(0)))

x~Dg

| (LB, @l 5

(mNEDT[p*(x)] E <a (19

JINDT

(o))

Note that definition relaxes evidence-consistency in two
aspects. First, while evidence-consistency requires that there
is a single, global predictor p to be simultaneously accurate in
expectation for all sets, pairwise-consistency instead requires
that for every pair of sets, there exists a predictor consistent
with expectations; in particular, there may be a different
consistent predictor for each pair of sets separately. This switch
of quantifiers represents a significantly weaker requirement,
similar in spirit to the domination criterion that only com-
pares two sets at a time. Second, while in Definition (IV.5)
the consistent predictor had to have approximately accurate
expectations on both .S and 7', here it is only required to not
distort the relative distance between their expectations.

With this definition in place, we can show that domination-
compatibility is equivalent to this weaker notion of pairwise-
consistency.

Theorem IV.10. Let C C {0,1}" be a collection of subsets
over X and let « > 0. A ranking r € R is (C, «)-pairwise-
consistency if and only if v is (C, a)-domination-compatible.

Proof. First, we show that pairwise-consistency implies
domination-compatibility. Let @ > 0 and assume that a
ranking r satisfies (C, «)-pairwise-consistency. Let S,T € C
be two sets where S y-dominates T, for some v > 0. From
pairwise-consistency, we know that there exists a predictor
p € P(r) for which the condition in Equation (19) holds. In
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particular, this implies that

E @) E @)
> _ _

> (LB b) - B p])-a

Lemma (IV.3), on the other hand, guarantees that

E.p, [p(z)] — Exwpy [p(x)] > 7. Together, these two
facts imply that

E p'@)]+(+a)>

x~Dg

E @)
which concludes the proof of the first direction.

Next, we show that domination-compatibility implies
pairwise-consistency. Let v > 0 and assume that r satisfies
(C, a)-domination-compatibility. Let S, T" € C be any two sets
such that E,.p,. [p*(2)] > Ezpg [p*(x)]. We split into cases
as follows.

First, consider the case that E,.p,[p*(x)] —
E..p. [p*(2)] < «. Consider the predictor
p(z) =  Euupy [p*(2)] — Euwps [p*(x)]. Since it
treats everyone identically, it is consistent with any
ranking, and in particular with r. Also, by definition,
Eopy [p(2)] = Eonpg [p(2)] =0, s0

x~Dg

‘(E PRI

= E

x~Drp

[p*(x)] - E

x~Dg

()] <o

r satisfies pairwise-consistency constraint in this case.

Next, consider the case that E,.p, [p*(zx)] >
E.-ps [p*(z)] + «. Denote E,.p;,[p*(2)]
E.-p. [p*(z)] + (a+ ) where v > 0.

Observe that the fact that r satisfies (C,«)-domination-
compatibility implies that in this case, S does not y-dominate
T. This implies that there exists some threshold T € [0, 1] for
which

ATE Pr [r(z)<7]— Pr [r(z)<7]>7

x~Dp z~Dg

(20)

Next, choose ¢ as follows: if A™ < v 4 2q, let € = 1.
Otherwise, choose ¢ such that % <e< %. Note that
0 < € < 1. Define the following predictor p. If r(z) > 7,
p(x) = 0. If r(z) < 7, then p(z) = . Now, by definition:

E [p(x)] =

x~Dg

Pr (@) <7l E [p(a) [ r(a) <7

xz~Dg

Pr [r(x) < 7]

INDS

= £ -

Similarly, E,.p, [p(x)] = € - Pry~p,[r(z) < 7]. Thus,

E [p(z)]- E

x~Dp z~Dg

[p(z)] =e- A7

To conclude the proof, observe that v < ¢ - AT < v 4 2a.
This is from the definition of ¢, as well as Equation (20). We
therefore have:

v< E

$~DT

[p(z)] - E

xz~Dg

p*(z)] =7+«

[p(2)] < v +2a
E [p*(x)] - E

INDT INDS
Thus, the absolute value of the difference between the two is
smaller than «, and so by definition, r satisfies (C, «)-pairwise-
consistency. O

V. PROTECTING QUANTILES YIELDS STRONGER
EVIDENCE-BASED NOTIONS

The results of Section IV-A establish that the strength of
evidence-consistency hinges on the expressiveness of C; the
richer C is, the stronger the “semantic” protections provided by
consistency with the actual expectations in sets in C. Somewhat
surprisingly, we argue that these protections may be too weak,
even for a rich class C. Indeed, any approach that only
explicitly protects a predefined collection of subpopulations
can leave the door open to abuses, including ones that we
show can be audited from labeled data. In this section, we
build up to increasingly stronger notions of both domination
compatibility and evidence-consistency, which we refer to
as reflexive domination compatibility and reflexive evidence-
consistency.

To highlight the potential weakness of evidence-consistency,
consider the following example, reiterated from the introduc-
tion. Suppose C has two sets S and S’ where the learner
knows that E,p.[p*(z)] = 0.8 and E,.p, [p*(x)] = 0.5.
In order to promote the individuals of S (potentially unfairly)
above the those of S, an adversary could rank (an arbitrary)
half of S’ first, followed by S, then the remainder of S,
while maintaining (C, 0)-evidence-consistency. In particular,
the predictor p that gives p(z) = 1.0 to the first half of z € S,
p(x) = 0.8 to all of x € S, and p(x) = 0.0 to the remaining
x € S’ is consistent with the ranking and satisfies all of the
expectations defined by C. Such adversarial manipulation of
evidence-consistency is possible regardless of the structure of
p* within S and 5’.

In fact, this failure to satisfy domination-compatibility for
subpopulations defined by the ranking is not only a problem
of adversarial manipulation of this notion. We argue that
such violations can arise unintentionally, even from rankings
learned from data in seemingly-objective ways. Continuing
the example with two sets, suppose S and S’ have nontrivial
intersection, where T = SN.S’; again, let E,.p [p*(z)] = 0.8
and E,p_, [p*(x)] = 0.5. Given these expectations, a natural
ranking might put S\ 7 first, followed by T, then S’ \ T.6
Nevertheless, it could be the case that 7" contains the strongest
members of the population, with E,..p, [p*(z)] > 0.8. In
this case, the proposed ranking would violate domination-
compatibility between S and 7. Indeed, this example exploits

For example, such an ordering is the induced ranking of the maximum
entropy predictor.
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the fact that the relevant subset 7' is not included in C.
Still, with the ranking in hand, T is identifiable; T" is one
of the quantiles! This example shows that without explicitly
considering the quantiles of the ranking themselves, violations
of domination-compatibility between the sets defined by the
ranking may arise in insidious ways.

A. Ordering the quantiles via domination-compatibility

These examples demonstrate that while a (C, «)-evidence-
consistent ranking r provides strong overall protections for
the sets in C, it provides limited guarantees to sets defined
by r itself, specifically the quantiles, which may intersect
nontrivially with the sets in C. This observation motivates
enforcing some notion of consistency, not just with respect to
C, but also to ensure the quantiles of r are ordered according to
their expected p* value. We argue that a ranking that satisfies
domination-compatibility over its quantiles satisfies a certain
approximate ordering property.

Recall, for a ranking » € R we denote the quantiles of r
as Q, = {QT,T 1T E supp(?”)}, where Qr,‘r = {‘L : T(x) = T}
for each 7 € supp(r). We observe that because the quantiles
partition X according to the order implied by the ranking,
then ordering the quantiles @, and @, . by domination
corresponds to the total order induced by comparing the
corresponding ranks 7 and 7.

Lemma V.1. Let r € R be ranking. Suppose for 7,7 €
supp(r), S; C Q. and T;1 C Q. are each subsets of
a quantile. If 7 < 7/, then S, 0-dominates T,.

Proof. The proof of the lemma follows immediately from the
definition of quantiles and y-domination. For a ranking r € R,
let 7 < 7 €[0,1] and let S; C @, and T C Q, . We
argue that for all thresholds o € [0, 1]
Pr [r(z)<o]> Pr

Q’JNDST QTNDT ’
.

[r(z) < o].

In particular, by the fact that the ranking r is constant on each
quantile, the statement is equivalent to

1[r<o]>1[r <o,
which holds for all o by the assumption that 7 < 7/, O

As such, requiring a ranking to satisfy domination-
compatibility over its quantiles implies the quantiles are (ap-
proximately) correctly ordered according to their expectations.

Corollary V.2. Suppose a ranking is (Q,,«)-domination-
compatible. Then, for all T < 7’ € supp(r),

E [pix)]> E

*
z~DQ,. - z~Dq, p(@)] - o

Note that the motivating examples from above fail to satisfy
(Q,, @)-domination-compatibility for sufficiently small « > 0.
In particular, in each example, there is a pair of quantiles
where 7 < 7/, but E;p,  [p*()] is significantly smaller
than E,.p, , [p*(z)], violating the ordering condition of
Corollary V.2,
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With this mind, one way to augment the notions of
domination-compatibility and evidence-consistency from Sec-
tion IV would be to add the quantiles to the set C to
protect. Specifically, we could require a new evidence-based
notion (C U Q,, a)-evidence-consistency that would imply
(CUQ,, 2ar)-domination-compatibility by Theorem IV.6. Such
a notion is strong enough to mitigate the concerns raised
in the examples so far; still, we argue that simply adding
the quantiles to the collection of sets to protect may not be
enough. In particular, some of the attacks demonstrating the
weaknesses of evidence-consistency can be “scaled down” to
work, not at the level of X, but within the subpopulations
SecC.

Example V.3. Suppose X is partitioned into two (disjoint)
sets: T', consisting of 80% of X, and S. Suppose further that
S is partitioned into two equally-sized sets, Sy and S, and
similarly 7' is partitioned into two equally sized sets Tg, 7.
Define p* as follows:

" 1.0 ze€eS,UTh
p(z) =
0.0 € SyUTy

And suppose that C = {S,T'}. Now, consider the following
ranking

0 xeTiUSy
r(z) =
05 z€TyUS,

That is, r correctly identifies the top individuals in the majority
T, but “flips” the ranking within S. We claim that this
ranking satisfies domination-compatibility even if we include
the quantiles. The quantiles induced by r are Z, o =17 U .Sy
and QT,0.5 = TO @] Sl. ThllS,

CUQ, ={S,T,T1USy,ToU S}

Whose true expectations under p* are E,.p, [p*(z)] =
0.5, Eonp, [p*(2)] = 05, Egup,  [p*(2)] = 0.8, an
| D P [p*(z)] = 0.2.

It’s left to verify that r is (CUQ,.)-domination-compatibility.
Note that ). o O-dominates all the other three sets, and indeed
has the highest expectation. Note that since S, T both have the
same expectation, the domination criterion will always hold.
Finally, T, S both 0-dominate @, .5 and indeed have a higher
expectation.

B. Incorporating the quantiles into evidence-based notions

Example V.3 demonstrates that without a very expressive
class C, simply adding the quantiles to the set C over which we
require evidence-consistency may still suffer from undesirable
transpositions of subgroups within the sets defined in C. In this
section, we show a way to incorporate the quantiles to provide
a much stronger guarantee. Intuitively, rather than protecting
the union of the set system C with the quantiles Q,., we protect
the intersections of sets S € C and each @, € Q,.

Given a collection of subsets C C {0,1}", a ranking r €
R, and an approximation parameter «, consider the following



set system derived by intersecting subsets S € C with those
defined by the quantiles of r.

Definition V.4 (Quantile-augmented collection). Let o > 0
and C C {0, l}X be a collection of subsets of X. For a ranking
r € R with |supp(r)| = s € N, the a-quantile-augmented
collection of r, denoted C& C {O,I}X, is a collection of
subsets defined as follows.

Secu{xy},

7 € supp(r),
Pl:g[.%‘ €S ] >als

CC%

T

S where Sy = SN Q.

We make two remarks about the collection C<. First, note
that because we consider S = X as one of our sets, the
reflexive level sets are a superset of the level sets. Second,
note that we exclude quantiles that are sufficiently small,
anticipating the fact that we wish to learn such rankings from
random samples. Indeed, if Pryx [z € X, ;] is very small,
then we might not see any individuals from & ; in our random
sample. Note, however, that the size of sets that we deem
too small is parameterized by the support size of r; as the
support size increases, we become more stringent, requiring
that smaller quantiles satisfy the evidence-based constraints.
If the ranking is ~y-coarse for sufficiently large v compared to
a, then we will not exclude any of the quantiles.

As before, we can consider domination-compatibility and
evidence-consistency with respect to this augemented collec-
tion of sets.

Definition V.5 (Reflexive domination-compatibility). Let o« >
0 and C C {0, 1}X be a collection of subsets. A ranking r €
R is (C, a)-reflexive-domination-compatible if it is (CS,a)-
domination-compatible.

Definition V.6 (Reflexive evidence-consistency). Let o > 0
and C C {0, 1}X be a collection of subsets. A ranking r € R
is (C, ov)-reflexive-evidence-consistent if r is (C%, «)-evidence-
consistent; that is, if there exists some p € P(r) such that for
all S € CZ,

E

z~Dgs,.

E

z~Dgs,.

[p* ()] = [p(2)]] <a.

Again, by the characterization of these stronger “reflexive”
notions as domination-compatibility and evidence-consistency
over a richer collection of sets, the fact that reflexive-evidence-
consistency implies reflexive-domination-compatibility fol-
lows as a corollary of Theorem IV.6.

Corollary V.7. Let C C {0,1}" be a collection of subsets
over X and let a > 0. If a ranking r € R is (C, «)-reflexive-
evidence-consistent, then v is (C,2a)-reflexive-domination-
compatible.

Recall that without augmenting the class C, domination-
compatibility is a strictly weaker notion than evidence-
consistency. The main result of this section shows that
reflexive-domination-compatibility is equivalent to reflexive-
evidence-consistency. That is, any ranking that satisfies the

domination-compatibility conditions for a rich enough class of
sets (informed by the ranking itself) implies the existence of
a globally consistent predictor that has the correct expectation
on the same class of sets.

Theorem V.8. Let C C {0,1}" be a collection of subsets
over X and let o > 0. If a ranking r € R is (C, «)-reflexive-
domination-compatible, then v is (C,«)-reflexive-evidence-
consistent.

Proof. Suppose r € R is (C,«)-reflexive-domination-
compatible. For a subset S C X and 7 € supp(r), let S, , =
SNQy - denote the intersection of S with the quantile @), ,. To
demonstrate that r is (C, )-reflexive-evidence-consistent, we
construct a predictor p € P(r) that has the (approximately)
correct expectations on all S; € C&. Consider the predictor
p: X — [0,1] that for all x € Q, , gives:

p(x)

[p* ()]

min
77’ <r€supp(r) m/NDQT,’T,

First, we argue that p is consistent with . Note that for any
z, 2’ € X x X where r(z) = r(z'), p(x) = p(z). Second,
consider two z,z’ € X x X where r(x) =7 and r(2') = 7’
for 7 < 7/. By the definition of p, which assigns the x €
@, the minimum expectation of p* over all @, for 7/ <
7 € supp(r), we know that p(x’) cannot exceed p(z); that is,
B(x) > p(a’).

It remains to show that p satisfies the evidence-consistency
constraints on the expectations of S, .. We break the inequality
in Definition V.6 into two inequalities. Specifically, we show
that for all S € CU {X'}, for all 7 € supp(r),

LE B@l- E @z e
LE )= B pEl<a @)

First, note that p is constant over the quantiles of r, so for all
€ Qr

E
z'~Dg

min
7/:7' <resupp(r) =~Dq _,

[p(a")]

T

[p* ()]

p(x)
We can see (21) by invoking Lemma V.1 to argue that Q.
0-dominates S, . for all 7" < 7 € supp(r). Thus, by (C2, a)-
domination-compatibility, we derive

E p(x)| = min E *(x
rNDSM[p( )] ' Esupp(r) ~Do, [p* ()]
> E * — .
2 K [P (2)] — o

Similarly, we can see (22) by invoking Lemma V.1 to argue
that S, ; O-dominates @, ,. Again, by (C%,a)-domination-
compatibility, we derive

E p(x)| = min E *(x
rNDSM[p( )] ' Esupp(r) ~Do, [p* ()]
< E *
- INDQT,T [p (x)]
< E *
.5 [p*(2)] +
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Thus, (C, «)-reflexive-domination-compatibility
(C, a)-reflexive-evidence-consistency.

implies
O

As such, the following equivalence between reflexive

domination-compatibility and reflexive evidence-consistency
holds.

Theorem V.9 (Restatement of Theorem 2). If a rank-
ing is (C, a)-reflexive-evidence-consistent, then it is (C,2a)-
reflexive-domination-compatible. If a ranking is (C,«)-
reflexive-domination-compatible, then it is (C,«a)-reflexive-
evidence-consistent.

C. Reflexive evidence-based rankings and multi-calibrated
predictors

Next, we turn our attention to learning a reflexive-
evidence-consistent ranking. Note that while (C, «)-reflexive-
evidence-consistency is defined similarly to (C, «v)-evidence-
consistency, in terms of a predictor exhibiting the correct
expectations on a collection of subsets, we cannot apply the
algorithm from Proposition IV.7 directly. The problem with
this approach is that Proposition IV.7 assumes that C C 0, 1%
is a fixed, nonadaptive collection of subsets. Note that the
augmented collection CZ is defined adpatively; that is, these
sets are defined in terms of the ranking r and are not well-
specified until r is specified. Thus, we need a different
approach for learning such a predictor.

To this end, we turn to the concept of calibration studied
in scoring and prediction, and recently in the context of
fair prediction [14], [37]. Intuitively, a predictor is well-
calibrated if the probability of y = 1 over the individuals
who receive score v € [0,1] is actually close to v. At two
extremes, the optimal predictor p* and the “average” predictor
p(z) = Epup, [p*(2))] for all z € X are both calibrated.
Formally, we work with the following technical definition of
approximate calibration.

Definition V.10 (Calibrated predictor). Suppose p : X — [0, 1]
is a predictor and |supp(p)| = s. For o > 0 and a subset
S C X p: X — [0,1] is a-calibrated over S if for all
v € supp(p), if Prypg [p(z) = v] > a/s, then

E

xz~Dg

[p*(z) | p(x) =v] —v| < a.

We say that a predictor p : X — [0, 1] is «-calibrated if it is
a-calibrated over X. Note that a calibrated predictor provides
guarantees about the expectations on the level sets defined
by the predictor. Still, reflexive evidence-consistency requires
a ranking to reason about the intersections of the quantiles
with every S € C. An analogous strengthening of calibration,
referred to as multicalibration, was introduced and studied in
[14].

Definition V.11 (Multi-calibration). Let C C {0,1}" be a
collection of subsets of X and let o > 0. A predictor p : X —
[0,1] is (C, )-multi-calibrated if p is a-calibrated on every
Secu{x}.
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Analogous to reflexive evidence-consistency, a predictor
that is multi-calibrated over a class C provides strong con-
sistency guarantees on the expectations defined by the in-
tersection of sets S € C and the level sets defined by the
predictor. We show that this analogy can be made formal
and that a (C, @)-multi-calibrated predictor induces a (C, «)-
reflexive-evidence-consistent ranking.

Proposition V.12. Ler C C {0,1}" be a collection of subsets
over X and let « > 0. If a predictor p : X — [0,1] is
(C, &)-multi-calibrated, then its induced ranking r? is (C, a)-
reflexive-evidence-consistent.

Proof. For any predictor p : X — [0,1], let 77 € R
denote its induced ranking, and for convenience, for every
v € supp(p), let p~1(v) denote some canonical member
x € {2/ € X :p(2’) = v}. Note that by the definition of an
induced ranking for every z, 2’ € X, p(x) = p(a’) if and only
if rP(z) = rP(2’); thus [supp(p)| = [supp(r?)| = s. This
means that for any subset S C X and for any v € supp(p),
there exists a unique 7, € supp(r?) such that

Spp2{reS:pa)=vi={zeS:r’(x)=1,}= S,

where 7, = 7P(p~!(v)). Thus, suppose p : X — [0,1] is
a (C, a)-multi-calibrated predictor. Using the bijection above
and the definition of multi-calibration, this means that for all
S € C and 7, € supp(r?) where Prypg [r?(z) =7,] >
a/s,

e, W@ E B
= |k, P@I- B @)

< a.

Thus, P is (C, «r)-reflexive-evidence-consistent. O

As such, an algorithm that learns a (C, a)-multi-calibrated
predictor can be used to learn a (C,«)-reflexive-evidence-
consistent ranking. [14] provide such an algorithm.

Proposition V.13 ( [14]). Let o, 7,6 > 0 and C C {0, 1}X be

a fixed collection of subsets. There is an algorithm that given
m > 0 (lee(cl/d)

/201172
Dy .y learns a (C, &)-multi-calibrated predictor p : X — [0, 1]
with probability 1 — §. The algorithm runs in poly(|C|,m)
time.

) labeled samples (x1,91), -+, (Tm, Ym) ~

Again, as with (C, «)-multi-accuracy, the running time of
the algorithm for learning a (C, )-multi-calibrated predictor
can be improved for agnostically learnable C.

Thus, the algorithm of [14] demonstrates that we can learn
a (C, a)-reflexive-unassailable predictor from labeled outcome
data. Note, however, that the definition of reflexive evidence-
consistency does not explicitly require that the predictor
P € P(r) be multi-calibrated, so it is not immediately obvious
whether learning a multi-calibrated predictor and converting it



to a ranking is the best way to learn a reflexive evidence-
consistent ranking. Next, we show that any algorithm that
learns a (C, «)-reflexive-evidence-consistent ranking, paired
with a small set of labeled samples, implies an algorithm
for learning a multi-calibrated predictor. In particular, we
show that the predictor p that witness the reflexive evidence-
consistency of r (essentially) must be multi-calibrated.

Proposition V.14. Ler C C {0, 1}X be a collection of subsets
over X and let « > 0. Suppose r € R is (C,«)-reflexive-
evidence-consistent. For any consistent predictor p € P(r)
where for all S, ; € C{

E

z~Ds,. ,

E

@)= E ()] <o

and for any constant € > 0, there exists a predictor ¢ € P(r)
such that ||p — G|, <€ and G is (C, o + €)-multi-calibrated.

Proof. Suppose p € P(r); then by consistency with r, for
all z,2' € X if r(z) = r(a’), then p(z) = p(a’). Suppose
that for r(x) = 7, p(x) = v,. Consider defining ¢ € P(r)
by mapping each x where r(z) = 7 to a unique u, where
|ur — v, | < e for some arbitrarily small constant € > 0; thus,
[supp(r)| = [supp(@)| = s and [|p — 4, < . Then, there
is a bijection between the augmented sets S, , € C and the
sets induced by the level sets of q.

Spr={zeS:r(x)=rt={zeS:§x)=u} = Sju,

Thus, suppose € R is (C, «)-reflexive-evidence-consistent.
Using the bijection above and the definition of evidence-
consistency, this means that for all S € C and u, € supp(q)
where Pr,.p, [§(x) = us] > afs,

wr— B () | ) =

= | B [1@) |a@) =]~ E b)) =]

<| B ) 4@ =l E @) a6 =u| +e
LB @l B b e

<a-te.

As such, ¢ is (C, o + ¢)-multi-calibrated. O

We remark that the proposition shows that for an evidence-
consistent ranking =, every p € P(r) is statistically close
to a multi-calibrated predictor. This is largely a technicality;
maintaining the bijection between the quantiles of r and the
level sets of G ensures that any sets .S, » where Pr,.pg[r(z) =
7] < a/s (for which we have no guarantees) remain small
enough in Pr,.p.[¢(x) = u;] < «a/s that we need not
provide a guarantee on their expectation. We also remark that a
similar proof shows that the calibration of an (C, «)-reflexive-
evidence-consistent ranking (even if it is not consistent) is
(C,2a + &)-multi-calibrated.
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Thus, we can conclude the following tight connection be-
tween the notions of reflexive evidence-consistency and multi-
calibration.

Theorem V.15 (Restatement of Theorem 3). The ranking in-
duced by a (C, «)-multi-calibrated function is (C, «)-reflexive-
evidence-consistent. Further, any consisten scoring function
that exhibits the correct expectations defined by a (C,«)-
reflexive-evidence-consistent ranking is statistically close to
being (C, o)-multi-calibrated.

This theorem establishes the fact that that reflexive
domination-compatibility, reflexive evidence-consistency, and
multi-calibration are all tightly connected concepts of fairness.
We can interpret the theorem from the perspective of ranking
or from the perspective of prediction. First and most pertinent
to the present work, the theorem shows that in order to
learn a ranking that satisfies our strongest notion of fairness,
it is (essentially) necessary and sufficient to learn a multi-
calibrated predictor. On the other hand, when the goal is to
learn a fair and accurate predictor, this result shows that multi-
calibrated predictors satisfy strong, desirable non-transposition
properties. As we’ve discussed, ranking is an inherently global
task; thus, the result supports the intuitive idea that in order
to satisfy multi-calibration, learning a predictor that performs
well on the majority population is not sufficient, but instead
global learning is required.
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