
Polylogarithmic Guarantees for
Generalized Reordering Buffer Management

Matthias Englert

DIMAP and Department of Computer Science
University of Warwick

Coventry, UK
m.englert@warwick.ac.uk

Harald Räcke

Department of Informatics
Technical University of Munich

Munich, Germany
raecke@in.tum.de

Richard Stotz

Department of Informatics
Technical University of Munich

Munich, Germany
stotz@in.tum.de

Abstract— In the Generalized Reordering Buffer Manage-
ment Problem (GRBM) a sequence of items located in a metric
space arrives online, and has to be processed by a set of k
servers moving within the space. In a single step the first b
still unprocessed items from the sequence are accessible, and
a scheduling strategy has to select an item and a server. Then
the chosen item is processed by moving the chosen server to
its location. The goal is to process all items while minimizing
the total distance travelled by the servers.

This problem was introduced in [Chan, Megow, Sitters, van
Stee TCS 12] and has been subsequently studied in an online
setting by [Azar, Englert, Gamzu, Kidron STACS 14]. The
problem is a natural generalization of two very well-studied
problems: the k-server problem for b = 1 and the Reordering
Buffer Management Problem (RBM) for k = 1. In this paper
we consider the GRBM problem on a uniform metric in the
online version. We show how to obtain a competitive ratio of
O(log k(log k + log log b)) for this problem. Our result is
a drastic improvement in the dependency on b compared to
the previous best bound of O(

√
b log k), and is asymptotically

optimal for constant k, because Ω(log k+log log b) is a lower
bound for GRBM on uniform metrics.

I. INTRODUCTION

In the Generalized Reordering Buffer Management Prob-

lem (GRBM) a sequence of items located in a metric space

arrive online, and have to be processed by a set of k servers

moving within the space. In a single step the first b still

unprocessed items from the sequence are accessible, and a

scheduling strategy has to select an item and a server. Then

the chosen item is processed by moving the chosen server to

its location. The goal is to process all items while minimizing

the total distance travelled by the servers.

This problem was introduced by Chan et al. [18] and

has subsequently been studied in an online setting by Azar

et al. [10]. It is a natural generalization of two very well-

studied problems: the k-server problem for b = 1 [32] and

the Reordering Buffer Management Problem (RBM) for k =
1 [33]. RBM and GRBM can be used for modeling context

switching cost that occur in applications in many different

areas ranging from production engineering through computer

graphics to information retrieval (see e.g. [8], [10], [14],

[30]). In this paper we consider the GRBM problem on a

uniform metric in the online version in which the scheduling

strategy does not know future items in the input stream but

has to make its decisions only depending on the sequence

of items it has seen so far.

Since the RBM problem is just the GRBM problem with

k = 1 a lower bound of Ω(log log b) on the competitive ratio

of RBM in uniform metrics (see [2]) applies also to GRBM.

Another lower bound of Ω(log k) stems from the fact that for

b = 1 the GRBM problem is just the well known k-server

problem which, for uniform metrics (the paging problem),

has a well-known lower bound of Ω(log k) [23].

The best upper bound on the competitive ratio for uniform

metrics is due to Azar et al. [10] who gave a guarantee

of O(
√
b log k). In this paper we drastically reduce the

dependency on b in the upper bound and present an algorithm

that obtains a competitive ratio of O(log k(log k+log log b)).
One potential approach for obtaining an algorithm for

GRBM would be to extend an algorithm for RBM (e.g.

the optimal algorithm for RBM by Avigdor-Elgrabli and

Rabani [8]) to several servers. However, due to the complexity

of this algorithm this approach seems challenging. Hence,

we proceed differently. A major building block of our

algorithm is a buffer management strategy for block-devices

as introduced in [3]. The block device model is closely

related to RBM on a uniform metric and can be described

as follows. The metric space is formed by a (uniform) star

and the items appear at the leaf vertices of this star, while

the server is located at the center. In a single step the server

may visit a leaf vertex v, process all items located at v,

and then return to the center. Such a step is called a block

operation (on vertex v) and induces a cost of 1. The difference

between both models is that in RBM the server could stay at

v and also process subsequent items that appear there. This

seemingly subtle difference between the models means that

the optimum cost for serving a request sequence may differ

widely between the block-device model and RBM. An input

consisting of a sequence of � requests for a single vertex for

example could be served with cost 1 in the RBM model, but

would result in cost of �/b in the block-device model.

Adamaszek et al. [3] gave an optimal O(log log b)-

38

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00012

competitive algorithm for scheduling block-devices. In con-

trast to the RBM problem, the block-device version of

the problem can be easily formulated as a covering linear

program, which allows a fairly straightforward application

of the standard online primal-dual framework by Buchbinder

and Naor [17].

The rough idea behind our approach is to allow the

algorithm to perform block operations in addition to using

the k servers. Note that in a uniform metric, we can simulate

a block operation with constant cost (pick any of the k
servers, move it to the desired vertex to process all items

there, and immediately move it back to its original position)

and therefore this addition does not really change the model.

We then perform block operations according to the algorithm

given in [3].

This actually means that we only apply the online primal-

dual scheme to a part of the LP (some of the variables and

some of the constraints). We then complement this with a

second procedure which handles the remaining parts. This

procedure solves the sub-problem of placing the k servers

and will be a variant of the paging problem.

In other words, we solve our problem by splitting it into

the part that is amenable to be dealt with by an online primal-

dual scheme and the remaining part which is then tackled

by other means. This way we are able to solve a problem

which otherwise seems out of reach for the online primal-dual

framework.

This split into two parts turns out to be useful for another

reason as well. For one part we can utilize prior insights

from paging and for the other part we can rely on prior

insights from block-device scheduling. However, note that in

particular the paging related sub-problem is still significantly

more challenging than a standard paging problem (see

e.g. [23], [34]) and requires new techniques. We briefly

discuss this as part of Section III-B1.

Finally, we note that, as a special case (with k = 1),

we obtain a new optimal algorithm for RBM which is very

different from the one by Avigdor-Elgrabli and Rabani [8]

further contributing to our understanding of this well-studied

problem. Indeed, if we were only interested to obtain this

result for k = 1, our algorithm and proof could be simplified

significantly. For example, Section V is not needed at all for

this case.

Further Related Work

There is a vast literature on the k-server and RBM

problems, see for example [1], [12], [16], [29], [31] and [4],

[13], [19], [20], [22], [24], [25], [26], [27], [28] respectively.

We limit our discussion to the results most closely related to

ours. The RBM problem for uniform metrics was introduced

by Räcke et al. [33] who gave a deterministic algorithm

with competitive ratio O(log2 b). This was subsequently

improved by Englert and Westermann [21] to O(log b), by

Avigdor-Elgrabli and Rabani [9] to O(log b/ log log b) and by

Adamaszek et al. [2] to O(
√
log b). The latter result is close

to optimal due to a lower bound of Ω(
√
log b/ log log b) for

deterministic algorithms shown in the same paper.

For the randomized case Avigdor-Elgrabli and Rabani [8]

developed an online algorithm with optimum competitive

ratio O(log log b). Avigdor-Elgrabli et al. [6] extended this

to the case of a star-metric space, i.e., where the points in

the metric space are leaves of a star with arbitrary edge-

length. For this scenario they obtain a competitive ratio of

O((log log(bΔ))2), where Δ is the ratio between the length

of the longest and shortest edge.

For the offline variant Asahiro et al. [5] and Chan et al. [18]

independently established the NP-hardness of the problem on

uniform metrics. Avigdor-Elgrabli and Rabani [7] designed

a constant factor approximation algorithm for this offline

setting.

A related problem is the Online Service with Delay

problem (OSD-problem) introduced by Azar et al. [11]. In

this problem items appear in a metric space but there is no

upper bound on the number of unprocessed items at any given

time (like the buffer-size b in GRBM). Instead the items come

with delay penalty functions that ensure that eventually items

have to be processed as otherwise the accumulated delay

penalty would become too large. The goal is to minimize

the total distance traveled by the servers plus the total delay

penalty. For infinite delay penalties this problem reduces

to paging (for a uniform metric) and to k-server (general

metric), respectively.

Azar et al. give a competitive ratio of O(k polylog n)
for arbitrary metrics and show that for uniform metrics the

problem is the paging problem, which gives a competitive

ratio of O(log k).

II. MODEL

In this section we give the precise definition of our model.

As is common in the RBM problem we refer to the individual

locations within the uniform metric space as colors. For

notational convenience we assume that at any point in time

the buffer can store b + 1 items (the difference between b
and b+1 does not affect our asymptotic results). At the start

of a step, a new item appears and is brought into the buffer.

If this item has a color that currently has a server assigned

to it we directly remove the item again and proceed to the

next step. Otherwise, it might happen that now the buffer

contains b + 1 items. Then we cannot proceed to the next

time step but we first have to remove at least one item from

the buffer. We can do this by selecting a color c and either

perform a block operation for c or re-assign one of the k
servers to c. In both cases all items of color c are removed

from the buffer. The goal is to minimize the total number

of operations. Our LP formulation is Primal as shown in

Figure 1 with δc(0) = 0 for all colors c.
We introduce variables δc(t), and yc(t) for every color c

and every time-step t. Having δc(t) = 1 means that there

39

min
∑

t,c yc(t) +
∑

t,c xc(t)

s.t.
∑

c δc(t) ≤ k Z(t)

δc(t) ≤ 1 pc(t)

δc(t− 1)− δc(t) ≤ xc(t) Bc(t− 1)∑
c

(∑
τ≤t |Ec(�v, τ)|t · yc(τ) + |Ec(�v, t)|t · δc(t)

)
≥ |E(�v, t)| − b α(�v, t)

yc(t), xc(t), δc(t) ≥ 0

(Primal)

max
∑

�v,t

(
|E(�v, t)| − b

)
α(�v, t)− k

∑
t Z(t)−∑

c,t pc(t)

s.t.
∑

�v,t≥τ |Ec(�v, τ)|t · α(�v, t) ≤ 1 yc(τ)

Bc(t− 1) ≤ 1 xc(t)

− pc(t)− Z(t)−Bc(t) +Bc(t− 1) +
∑

�v |Ec(�v, t)|t · α(�v, t) ≤ 0 δc(t)

α(�v, t), pc(t), Bc(t), Z(t) ≥ 0

(Dual)

Figure 1. Primal and dual linear program used by our algorithm.

is a server at color c at the end of step t and yc(t) = 1
means that we perform a block operation for c in step t. The

Z(t)-constraints ensures that we use at most k servers while

the pc(t)-constraint ensures that we do not move more than

one server to any location. If we want to move a server away

from a color c, i.e., if δc(t− 1)− δc(t) = 1, the Bc(t− 1)-
constraint ensures that we have to pay for this move by

setting xc(t) = 1. Note that in our uniform model we do not

pay the distance that a server travels, but we simply pay 1

for every server move.

It remains to model the buffer constraint. For this we

introduce the following notation. For two vectors �u,�v of time

steps (one entry for every color) we use Ec(�u,�v) to denote

the items of color c that arrived in time-interval (uc, vc] (we

also allow uc = 0 in the vector so that also the first item can

be in such a set). We define E(�u,�v) :=
⋃

c Ec(�u,�v). We

extend this notation to the case where the second parameter is

a scalar with the meaning that all entries of the corresponding

vector are equal to this scalar: Ec(�u, t) := Ec(�u,�v) with

vc = t for all c (similarly for E(�u, t)).

LP Primal is not a faithful representation of the problem as

an integral solution does not necessarily satisfy all constraints.

However, we can modify any solution in such a way that

the cost increases by a factor of at most 2 and the modified

solution does satisfy the LP. Specifically, take any solution

and whenever one of the k servers is moved away from color

c (i.e. δc(t − 1) = 1 and δc(t) = 0), we perform a block

operation for color c (i.e., yc(t) = 1). Note that this increases

the cost by a factor of at most 2. Concretely, it may increase∑
t,c yc(t) in the objective function, but it increases it by at

most
∑

t,c xc(t).

A solution modified in this way, now satisfies α(�v, t)
constraints. Consider the items in a set E(�v, t). How many

of these items are we removing by time t? Clearly, a block

operation for color c at time τ removes at most |Ec(�v, τ)|
of these items. A server that leaves at time τ < t also can

remove at most |Ec(�v, τ)| of these items. However, since a

leave event is co-located with a block operation we actually

do not need to count the items that are removed by servers that

left before time t as these are counted via the corresponding

block operation. In case a server is located at c at time t this

server can remove at most |Ec(�v, t)| items. Hence,∑
c

(∑
τ≤t

|Ec(�v, τ)| ·yc(τ)+ |Ec(�v, t)| ·δc(t)
)
≥ |E(�v, t)| −b

is a valid constraint as the left hand side is an upper bound

on the number of items that we removed and the right

hand side is a lower bound on the number of items from

E(�v, t) that we need to remove in order to fulfill the buffer

constraint at time t. The α(�v, t) constraint in the primal linear

program is a strengthening of this constraint where we define

|Ec(�v, τ)|t := max{0,min{|Ec(�v, τ)|, |E(�v, t)| − b}}. For

integral solutions this does not change the feasibility. This is

because for all y or δ variables that are 0, a change of the

coefficient of that variable is immaterial. For a variable that

is equal to 1, we may decrease the coefficient and therefore

the left-hand side of the constraint. However, we at most

decrease the coefficient to a value of |E(�v, t)| − b. Hence,

if the corresponding variable is 1, the constraint remains

satisfied since the left hand side is still at least |E(�v, t)| − b.
On the other hand, we never increase any coefficient and

therefore do not introduce new feasible solutions either. The

40

dual problem is Dual shown in Figure 1.

A. Modifying the Linear Program

A crucial ingredient for the analysis of the block-device

scenario [3] and the RBM setting [8] is that a slight change

in the buffer size only changes the competitive ratio by a

constant factor. An analogous property holds for the GRBM

problem and is proven in the appendix.

Theorem 1. For any input sequence, the cost OPTb′ of an
optimal offline solution utilizing a buffer of size b′ = (1−ε)·b
is at most a factor of (2 + ε ln b′)/(1 − ε) larger than the
cost OPTb of an optimal offline solution utilizing a buffer
of size b.

This theorem allows us to change b into b′ = (1 −
1/ log b) · b, in LP Primal while only increasing the op-

timum solution value by a constant factor. In the new

LP the capping is done w.r.t. b′, i.e., |Ec(�v, τ)|t :=
max{0,min{|Ec(�v, τ)|, |E(�v, t)| − b′}}.

We then remove all α(�v, t)-constraints for pairs (�v, t) with

|E(�v, t)| ≤ b, which cannot increase the optimum solution

value. This means that now we have |E(�v, t)| − b′ ≥ b/ log b
for every α(�v, t)-constraint.

Corollary 2. The value of the modified LP is at most a
constant factor larger than the cost OPTb of an optimal
offline algorithm using a buffer of size b.

B. Introducing Dummy Steps

Purely to simplify the presentation of our algorithm and

our proofs we introduce dummy time steps. These are time

steps in which no new item arrives. We assume that between

any two real time steps (in which an item arrives) there

are an arbitrarily large number of dummy time steps. In

fact, for ease of presentation, we allow the algorithm to

make infinitesimal changes to variables during a time step.

Alternatively, this can be thought of as sufficiently small

discrete steps.

Our algorithm has to ensure that at the start of each real

time step, there are at most b items stored in the buffer,

so that the new item arriving in the real time step can be

accommodated.

III. THE ALGORITHM

Our algorithm consists of two main parts. The first part is

the base procedure and only performs block operations. The

base procedure can run on its own and produce a feasible

solution to the problem. However, because it does not utilize

the k servers and exclusively performs block operations, the

cost of such a solution may be too large.

The second part of our algorithm is the cost control proce-
dure. This procedure schedules additional block operations

and, crucially, determines the placement of the k servers in

such a way that the base procedure can produce a feasible

solution with fewer block operations. The goal is to do this

in such a way that, overall, our cost is greatly reduced.

The base procedure will (fractionally) increase y-variables

in the primal in conjunction with producing assignments for

the dual α-variables. It also has a randomized rounding

procedure for the y-variables which produces the final

schedule of block operations that ensure the buffer constraint

(i.e. ensure that at the start of each real time step t no more

than b items are stored in the buffer).

The cost control procedure integrally sets primal y-

variables to 1 at certain points in time (in other words,

performs a block operation) and assigns integer values to

the δ- and x-variables (in other words, places the k servers).

While the cost control procedure only sets variables in the LP

integrally, and therefore does not require a rounding routine,

the procedure itself is randomized and vaguely inspired by

the well known randomized marking algorithm for paging.

The base procedure largely follows [3]. The only material

difference is that we have to take the δ-variables of the LP

into account. In [3], the last time step at which a block

operation to a color occurred, played a special role because

we know that all items of that color arriving before that

operation are not stored in the buffer anymore. Now, we

need to change this to say “last time step at which either a

block operation to color c occurred, or a server was located

at c”.1 This is reflected in the inclusion of δ-variables in the

definition of a proper constraint in the following section.

Our main contribution is the cost control procedure as

well as the insight that the problem can be nicely separated

into these two parts which, arguably, simplifies the algorithm

design and analysis.

A. The Base Procedure

We now start by discussing the base procedure. Before

we describe the procedure in more detail, we introduce the

notion of a proper constraint. This uses a constant scaling

factor β := 40.

Definition 3. For a given variable assignment, an α(�z, t)
constraint in the primal is called proper if the following
holds for every color c:

(i)
∑

zc≤τ≤t(yc(τ) + δc(τ)) ≥ 1/β,
(ii)

∑
zc<τ≤t(yc(τ) + δc(τ)) < 2/β, and

(iii) yc(τ) + δc(τ) < 1/β for all τ ∈ {zc + 1, . . . , t}.

Note that in particular, because of (iii), if δc(τ) = 1 or

yc(τ) = 1, then for a proper constraint α(�z, t) we must have

zc ≥ τ .

The base procedure maintains a vector �z such that the

primal α(�z, t) constraint is proper for the current time step

t. If the current α(�z, t) constraint is violated, the procedure

increases y-variables of the primal using the standard online

1This is only an intuition, because we actually have to deal with fractional
block operations, but it gives an accurate idea of what the only difference
to [3] is.

41

primal-dual approach by Buchbinder and Naor [17]. This

continues until the constraint is not proper anymore (in which

case �z is updated) or until the constraint is satisfied (in which

case the procedure progresses to the next real time step and

receives the next item from the input). More precisely, if at

any time, α(�z, t) is not proper (due to previous increases of

δ- or y-variables), we recompute �z by setting, for each color

c for which one of the conditions is violated, zc to the largest

possible value (less or equal to t) such that
∑

zc≤τ≤t(yc(τ)+
δc(τ)) ≥ 1/β. While not exactly true, intuitively, zc can be

thought of as (roughly) the largest time such that every item

of color c which arrived before that time has been completely

removed from the buffer.

The base procedure also maintains a second vector �s. The

default is that sc = zc for every color c. However, at certain

points, the cost control procedure in our algorithm can decide

to set sc < zc for some specific color and then “freeze” that

value of sc. That means that later updates of zc are ignored

for sc and sc remains fixed until we “unfreeze” it. To describe

this state or event we say that color c is or becomes active.

Once we unfreeze a color, sc is set to be equal to zc again.

We then say that the color is deactivated. When we decide

to make a color active, the precise value of sc is chosen

such that |Ec(�s, �z)| = �fmax�, with fmax := (b− b′)/2k =
b/(2k log b). The precise way in which colors are activated

and deactivated is described later.

After the base procedure updates values of the (fractional)

y-variables, it uses an (online) randomized rounding proce-

dure to determine which block operations to execute. For

this, the procedure updates a probabilistic distribution μ over

deterministic block operation schedules.

A complete summary of the base procedure for a time step

t is shown in Procedure 1. Note that the procedure maintains

two sets of the dual α-variables: α1 and α2. However it

only uses α1. The variables α2 are only generated so they

can be used in the cost control procedure to be described

later. Accordingly, the base procedure maintains vector �s in

addition to �z, but again, this is only needed to set α2-variables

and is only used in the cost control procedure.

The rounding routine of the base procedure and its analysis

are described in more detail in Sections B1 and B2. This

is mostly identical to [3], but is included for completeness.

Note that the rounding procedure only requires that the vector

z increase monotonically and that before the next real time

step the α(�z, t)-constraint is not violated. In particular there

is no need to satisfy all primal constraints in order for the

rounding procedure to be successful.

B. The Cost Control Procedure

The cost control procedure reacts when items arrive or

when dual α-variables are increased in Line 4 of the base

procedure (Procedure 1).

The cost control procedure generates a sequence of what

we call explicit requests for colors. An explicit request for a

Procedure 1 base procedure for a time step t

1: if primal constraint α(�z, t) is not proper then
2: recompute �z and �s

3: if primal constraint α(�z, t) is violated then
4: Increase α1(�z, t) and α2(�s, t) by the same infinites-

imal amount dα

5: for each variable yc(τ), zc < τ ≤ t do
6: Δ(τ, c) := 0

7: if
∑

�v,t′≥τ |Ec(�v, τ)|t′ · α1(�v, t
′) == 1 then

8: // dual constraint yc(τ) is tight

9: if (
∑

τ≤i≤t yc(i) <
1

log3 b
) then

10: ŷc(t) :=
1

log3 b

11: if
∑

�v,t′≥τ |Ec(�v, τ)|t′ · α1(�v, t
′) > 1 then

12: // dual constraint yc(τ) is violated

13: Δ(τ, c) :=
∑

τ≤i≤t yc(i) · |Ec(�z, τ)|t ·dα
14: ∀c : dyc(t) := ŷc(t) + maxτ :zc<τ≤t Δ(τ, c)

15: ∀c : yc(t) := yc(t) + dyc(t)

16: adjust distribution μ to reflect new y-values

17: else // proper primal constraint α(�z, t) is satisfied

18: // rounding guarantees ≤ b items stored in buffer

19: proceed to the next real time step

color c may be handled in one of two ways: either the cost

control procedure ensures that one of the k servers is located

at color c or the procedure performs a block operation for

color c.

Explicit requests are generated according to the following

rules. We call Ec(�z, t) the set of live items of color c. The

rounding part of the base procedure ensures that all elements

outside this set have been removed from the buffer. The set

Ec(�s, �z) is called the set of extra items of color c (recall

that �s ≤ �z).

• If a color c is not active we issue an explicit request

if at least fmax items of color c arrived since the last

explicit request for color c.
This rule guarantees that for inactive colors the number

|Ec(�z, t)| of live items of that color is at most fmax.

Otherwise, an explicit request would be issued which

means either δc(t) or yc(t) is set to 1 to serve the

request. In order for the α(�z, t)-constraint to remain

proper zc is then increased to t giving |Ec(�z, t)| = 0.

• Suppose a color c is active, and let t′ denote the time step

at which the last explicit request for c was issued. Note

that zc ≥ t′ because when the request appears, zc is set

to t′ in order for the α(z, t′)-constraint to remain proper.

We issue a new request if |Ec(�s, t)| ≥ (1+γ)·|Ec(�s, t
′)|.

This means that since the most recent explicit request

�γ · |Ec(�s, t
′)|� new items of color c appeared. Here,

γ := 1/128.

42

Once a color received D := �log1+γ((2b +
2)/(γfmax))�+1 = Θ(log k+log log b) requests within

the current activity period, we do not issue further

requests to this color.

The following claim shows that by defining the request

generation as above we are guaranteed that for active colors

c nearly all items in the set Ec(�s, t) are extra items.

Claim 4. For active colors, the number |Ec(�z, t)| of live
items of color c is at most a γ-fraction of the number of
extra items |Ec(�s, �z)|.

Proof: Suppose the color has not yet seen D re-

quests within its current activity period. Then |Ec(�z, t)| ¿

γ|Ec(�s, �z)| implies |Ec(�s, t)| = |Ec(�s, �z)| + |Ec(�z, t)| >
(1+γ)|Ec(�s, �z)| ≥ (1+γ)|Ec(�s, t

′)|, which triggers a request

and restores the property.

Right after the i-th request we have |Ec(�s, t)| =
|Ec(�s, �z)| ≥ (1 + γ)i−1fmax. For i = D, this means at

least (2b+ 2)/γ elements. Therefore in order to violate the

claim we would require |Ec(�z, t)| ≥ 2b+ 2. Now consider

the α(�z, t)-constraint in LP Primal:

∑
c

(∑
τ≤t

|Ec(�z, τ)|t · yc(τ) + |Ec(�z, t)|t · δc(t)
)

≥ |E(�z, t)| − b .

This constraint may at most be violated by an additive 1,

because it is the proper constraint used by the base procedure.

Using |Ec(�z, τ)|t ≤ |Ec(�z, t)| gives

|E(�z, t)| − b− 1 ≤
∑
c

|Ec(�z, t)| ·
(t∑

τ=zc+1

yc(τ) + δc(t)
)

≤ 2

β
|E(�z, t)| ,

where the last step follows from the second condition for

proper constraints. This gives |E(�z, t)| ≤ β
β−2 (b+1), which

gives a contradiction as β > 4.

To complete the description of our algorithm, we have to

specify when colors are activated and deactivated and how

exactly explicit requests are handled. We postpone the exact

details to later sections and only give an overview here.

The algorithm is loosely inspired by the randomized

marking algorithm for the paging problem [23]. It is based

on partitioning the sequence of explicit requests, which it

generates according to the above rules, into phases during

which colors are marked. Each phase starts with all colors

being unmarked and it ends once the k-th color has been

marked. Then a new phase starts.

The marking of colors is guided by the activa-

tion/deactivation routine. At the start of the algorithm all

colors are inactive. A request to an unmarked inactive color

activates the color. When the color is deactivated later the

color becomes marked if activation and deactivation lie in

the same phase (a phase could start with a color in an active

state).

1) Sketch of the analysis: The rough intuition behind

the request generation and the process of activating and

deactivating colors is as follows. First suppose that no

requests are generated during the runtime of the algorithm.

This means that the k servers are not used at all but all the

work is done by the base procedure.

Intuitively this is fine because it means |Ec(�z, t)| ≤ fmax

always holds (otherwise a request is generated) and therefore

it is not possible that more than fmax items of the same

color accumulate in the buffer at any time. Then using the k
servers is not of much help anyway as they can only reduce

the number of items by kfmax, which is fairly small.

Now, suppose a request to a color c is issued. The �fmax�
items that caused this request will be removed at a cost

of 1 by either performing a block operation or moving a

server to c. We activate the color (setting sc = zc −�fmax�).

Because of this, the following increases of α2(�s, t) give more

dual profit (for color c) than the corresponding increases of

α1(�z, t). We will use this extra profit to help pay for serving

the explicit request that made c active (or indeed all explicit

requests for c that appear within the same activity period).

While on the one hand freezing sc increases the dual

profit it also increases the violation of the dual LP. The exact

rule for deactivating colors is postponed to later sections

but essentially a color is deactivated once this additional

violation reaches a certain threshold.

If there is only one server, serving the explicit requests

is straightforward. Otherwise, we have a paging problem as

we have to decide which server to move in case we do not

perform a block operation. For a phase, we call the marked

colors that were unmarked in the previous phase new colors.

Colors (regardless whether marked or not) that were marked

in the previous phase are called stale colors. Note that while

our marking scheme is motivated by the analysis for marking

algorithms in paging, there are slight differences, e.g., there

could be phases with no new colors.

In Section V, we give an algorithm for placing the servers

that always assigns a server to a marked color and analyze

the performance of this algorithm. We essentially show that

the algorithm has a cost of O(D log k
∑

i ni), where ni is

the number of new colors that appear in the i-th phase.

This will then lead to a competitive ratio of O(D log k) =
O(log k(log k + log log b)) for our problem. The analysis

draws insights from the analysis of paging algorithms but

there is one crucial difference: the request sequence that

we generate partially depends on the placement of servers.

This means we have to carefully analyze this dependency,

and design our algorithm accordingly. If it were not for this

dependency we could adapt the paging algorithm by Blum

et al. [15] to guarantee a cost of O((D + log k)
∑

i ni),
which would then lead to an optimal competitive ratio of

43

O(D + log k) = O(log k + log log b).

Another important ingredient for our analysis is to show

a lower bound on the optimum cost of (very roughly)

Ω(
∑

ni + costbase/Wbase), where costbase is the cost of

the base procedure, and Wbase is the violation of the yc(τ)-
constraints in the dual solution using α1(�z, t)-variables. This

violation is only O(log log b) due to the analysis of the block-

device problem in [3]. For completeness, the proof of this is

also included as Lemma 28 in the appendix. We show that

the violation generated by the α2(�s, t)-variables is not much

larger and then we show how to extend the assignment of

α2(�s, t)-variables to assignments to all variables in the dual

such that the resulting dual profit is large. This is challenging

as the online primal dual framework is mostly applied to

packing or covering LPs and obtaining results for other LPs

usually requires a very intricate analysis.

IV. ANALYSIS

We view the base procedure as working in infinitesimal

steps, where each step increases the sum of α1-variables (and

also the sum of α2-variables) by dα. We use α to denote the

sum of all α1-variables for a particular point in time. Since

the base procedure only increases a single α1-variable and

a single α2-variable at a time we can view �s, �z, and t as

functions in α, i.e., we can say that in step α the algorithm

increases dual variables α1(�z(α), t(α)) and α2(�s(α), t(α)),
or we can write that the total profit of the dual solution, when

using α2, is
∫ αmax

0
(|E(�s(α), t(α)| − b′)dα − k

∑
t Z(t) −∑

c,t pc(t), where αmax is the sum of all α2-variables in the

end. However, in order to avoid notational clutter we just

write |E(�s, t)| instead of |E(�s(α), t(α)|) if the dependency

on α is clear.

The crucial part of the analysis is to come up with a

lower bound on the cost of an optimum solution. For this

we construct a (nearly feasible) assignment to LP Dual with

a large profit. The profit of the dual solution when using α2-

variables is
∫ αmax

0
(|E(�s, t)|−b′)dα−∑

c,t pc(t)−k
∑

t Z(t).
Since our algorithm consists of two parts it is natural to also

split this profit into two parts:

base budget:
1

2

∫ αmax

0

(
|E(�z, t)| − b′

)
dα

cost control budget:

∫ αmax

0

|E(�s, �z)|dα−
∑
c,t

pc(t)

− k
∑
t

Z(t) + kfmax · αmax

Recall that |E(�z, t)| − b′ ≥ b/log b for an α(�z, t)-variable

(See Section II-A). Therefore, we have kfmaxαmax ≤
1
2

∫ αmax

0
(|E(�z, t)|−b′)dα, which shows that the two budgets

sum up to at most the dual profit.

The total expected cost of our algorithm is proportional to

the final objective value of the primal, i.e., O(
∑

t,c yc(t) +

∑
t,c xc(t)). The reason is that xc(t) are set integrally

and exactly express the cost for moving the k servers.

The yc(t) may be fractional, but our randomized rounding

routine ensures that the expected cost for block operations

is O(
∑

t,c yc(t)). See Section B1.

The base procedure (Procedure 1) increases y-variables by

a total of
∑

c,t dyc(t) (see Lines 14 and 15). In Section B2

in the appendix we analyze this quantity and show that∑
c,t dyc(t) ≤ 2

∑
�v,t

(
|E(�v, t)| − b′

)
α1(�v, t) (Lemma 33).

This means, up to a factor of 4, it is bounded by the base

budget defined above. This analysis follows [3].

In the following the main focus is to show that the cost of

the scheduling algorithm which deals with explicit requests

(and which we have not completely defined yet) can be

bounded by the optimal cost. It is therefore crucial to obtain

a good lower bound on the dual profit. For this, obtaining a

lower bound on the cost control budget is critical. We have

to show how to assign values to pc(t)’s, Z(t)’s and Bc(t)’s
such that all dual constraints are fulfilled (or only violated

by a small factor) and such that the budget becomes large.

In particular, it is important that we assign values to dual

variables such that the cost control budget is non-negative.

A. The Lower Bound

In this section, we develop our general lower bound

technique that will allow us to show that our online algorithm

is close to optimal. We first introduce some notation. Let

for a subset I ⊆ {1, . . . , T} of (consecutive) time-steps

α–(I) := inf{α | t(α) ∈ I} and α+(I) := sup{α | t(α) ∈
I}. The profit collected for the cost control budget during

some time-interval I is∫ α+(I)

α–(I)

|E(�s, �z)|dα−
∑
t∈I

∑
c

pc(t)

− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax .

We use actc(I) and actc(I) to denote the subset of the

interval [α–(I), α+(I)] during which color c is active and

inactive, respectively. We define the extra volume collected

during a time interval I ⊆ {1, . . . , T} for color c by

volEc (I) =

∫ α+(I)

α–(I)

|Ec(�s, �z)|dα =

∫
actc(I)

|Ec(�s, �z)|dα .

The equality follows because sc and zc are equal whenever c
is not active. We define the total volume of a color c collected

during interval I by

volTc (I) =

∫
actc(I)

|Ec(�s, t)|dα .

We also define the gap Δc(I) between total volume and

extra volume for a time-interval I:

Δc(I) := volTc (I)− volEc (I) ≤ γvolEc (I) . (1)

44

The inequality follows because the definition of the algorithm

ensures that an active color has |Ec(�s, t)| ≤ (1+γ)|Ec(�s, �z)|
(Claim 4). We extend the above definitions to individual time

steps, i.e., we define volTc (τ) := volTc ({τ}). This allows us

to rewrite the cost control budget for a time interval as∑
t∈I

∑
c

volEc (t)−
∑
t∈I

∑
c

pc(t)

− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax .
(2)

We use Xc(t) :=
∑

�v |Ec(�v, t)|tα(�v, t), which is the term

that appears in the δc(t)-constraint of the dual. We have

Xc(t) =

∫ α+(t)

α–(t)

|Ec(�s, t)|tdα

≤
∫ α+(t)

α–(t)

|Ec(�s, t)|dα

=

∫
actc(t)

|Ec(�s, t)|dα+

∫
actc(t)

|Ec(�s, t)|dα

≤ volTc (t) + (α+(t)− α–(t))fmax .

(3)

Now we are ready to present the lower bound approach.

Suppose we are given a partial solution to LP Dual that

only specifies values for α-variables but that ensures that

the yc(τ)-constraints are violated by at most a factor of W .

We describe how to extend this LP-solution in order to get

a dual solution with a large profit, and, hence, a large lower

bound for the problem.

Our lower bound is based on partitioning the sequence

of time-steps into phases with the following properties.

For i ∈ N>0 the i-th phase consists of time-steps Ii :=
{τi, . . . , τi+1 − 1} with τ1 = 1. Each phase contains exactly

k marked colors. We use Mi to denote the set of marked

colors in a phase and Ui to denote the set of the remaining

(unmarked) colors. Each marked color c collects volume at

least V during the phase, i.e.,

volTc (Ii) =

∫
actc(Ii)

|Ec(�s, t)|dα ≥ V , (Cond. I)

where V is a parameter to be defined later. Typically an

unmarked color will collect rather small volume but for our

analysis we only require an upper bound for the volume

collected by an unmarked color c, i.e.,

volTc (Ii) =

∫
actc(Ii)

|Ec(�s, t)|dα ≤ 6V , (Cond. II)

holds for an unmarked color c.
We call a marked color new if it was unmarked in the

previous phase. Let ni denote the number of new colors in

the i-th phase. The following constraint means that the gap

between total volume and extra volume is small for marked

colors:∑
c∈Mi

Δc(Ii) =
∑
c∈Mi

(
volTc (Ii)− volEc (Ii)

)
≤ 10γniV .

(Cond. III)

Lemma 5. Suppose we are given an assignment to α-
variables that violates yc(τ)-constraints by at most a factor
of W ≥ V , together with a partitioning of time-steps into
phases according to the above constraints. Then there exists
a constant ξ > 0 such that the cost of an optimum solution
is at least

ξ

W

(∑
i

niV +
∑
i

∑
c∈Ui

volTc (Ii)

)

+
1

2W

∫ αmax

0

(
|E(�z, t)| − b′

)
dα .

Proof: Fix a pair of consecutive phases i and i + 1,

and let I := {τi, . . . , τi+2 − 1} denote the time-steps within

these phases. Observe that |Mi ∪Mi+1| = k + ni+1. In the

following we define values for the LP variables apart from

α(�s, t) in order to obtain a dual solution.
In a first step we use the pc(t)-variables to normalize

the volume. We define volNc (t) := volTc (t)− pc(t), and call

volNc (t) the normalized volume of color c at step t. Rewriting

Equation 2 we see that the cost control budget for interval I
is ∑

t∈I

∑
c

(
volEc (t)− pc(t)

)

− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax

=
∑
t∈I

∑
c

(
volNc (t)−Δc(t)

)

− k
∑
t∈I

Z(t) + k(α+(I)− α–(I))fmax .

(4)

We set pc(t)’s to ensure that volNc (I) = V for marked colors

(colors in Mi∪Mi+1), and that volNc (I) = min{volTc (I), V }
for the remaining colors. Since this means we only have to

“reduce” volume we can achieve this with non-negative pc(t)-
values.

Rewriting the δc(τ)-constraint in the dual gives that we

have to fulfill Xc(τ)− pc(τ) ≤ Z(τ) +Bc(τ)−Bc(τ − 1),
for all τ ∈ I . Equation 3 implies that it is sufficient to fulfill

(α+(τ)−α–(τ))fmax+volNc (τ)
!
≤ Z(τ)+Bc(τ)−Bc(τ−1)

instead. We will do this while ensuring Bc(τ) ≤ V for all τ ,

i.e., xc(τ)-constraints are violated by at most a factor of V .

We set Z(τi) = V + (α+(τi) − α–(τi))fmax and Bc(τi) =
volNc (τi). Then the above constraint is fulfilled for τ =
τi as B(τi − 1) ≤ V . For the other time-steps in I we

fulfill the constraint by setting Z(τ) = (α+(τ)−α–(τ))fmax

and by increasing the Bc-value by volNc (τ), i.e., setting

Bc(τ) = Bc(τ − 1) + volNc (τ). Since, volNc (I) ≤ V we

can do this throughout the interval without the Bc-value

increasing beyond V . We get that the cost control budget

for interval I is

control-budget(I) =
∑
τ∈I

∑
c

(
volNc (τ)−Δc(τ)

)
− kV .

45

A color that is unmarked in both phases (i.e., a color

not in Mi ∪ Mi+1) has volTc (I) ≤ 12V , and, hence,

volNc (I) ≥ 1
12vol

T
c (I). Its gap is at most γvolTc (I), as the

gap of any color can at most be a γ-fraction of the total

volume (Equation 1).

A color in Mi ∪Mi+1 has volNc (I) = V . Exactly 2ni+1

of these colors are unmarked in one of the phases, and in this

case may have a gap of at most 6γV because the volume

of an unmarked color is at most 6V . The gap generated

by all marked colors throughout both phases is at most

10γ(ni + ni+1)V because of the precondition that the gap

on marked colors is small.

Plugging in these observations gives a cost control budget

of at least

control-budget(I) ≥
ni+1 · V +

∑
c∈R

(1
12 − γ)volTc (I)− 10γniV − 22γni+1V

(5)

where R denotes the colors not in Mi∪Mi+1. Let Ui denote

the set of colors that are unmarked in the i-th phase. Then∑
c∈Ui−R

(1
12 − γ)volTc (Ii) ≤ 1

2ni+1V ,

because |Ui −R| ≤ ni+1 as each of these colors is new in

phase i+ 1. Plugging this into Equation 5 gives

control-budget(I) ≥
1
2ni+1V +

∑
c∈Ui

(1
12 − γ)volTc (I)− 10γniV − 22γni+1V ,

where we used∑
c∈R

volTc (I)

=
∑
c∈Ui

volTc (Ii)−
∑

c∈Ui−R

volTc (Ii)

+
∑
c∈Ui

volTc (Ii+1)−
∑

c∈Ui−R

volTc (Ii+1)

≥
∑
c∈Ui

volTc (Ii)−
∑

c∈Ui−R

volTc (Ii) .

If we now generate a lower bound by grouping phases as

(1, 2), (3, 4), (5, 6), . . . and another lower bound by grouping

as (2, 3), (4, 5), (6, 7), . . . and then take the average we

obtain a lower bound for the overall cost control budget:

control-budget ≥∑
i

ni

8 V +
∑
i

∑
c∈Ui

1
48vol

T
c (Ii)− n1

4 V −
∑
c∈U�

1
48vol

T
c (I�) .

Note that Phase 1 does not appear as a second phase in a

group and Phase � (the last phase) does not appear as first

phase in a group. Therefore, the corresponding contributions

of these phases is subtracted in the above sum.

In order to obtain a lower bound, we divide the dual profit

(i.e., cost control budget plus base budget) by the violation

W . The terms depending on n1 and U� are removed by

exploiting the additional lower bound OPT ≥ 1
2 (n1 + |U�|),

which holds as every color needs to be accessed at least once.

Averaging the two lower bounds and using V < W gives the

first term of the sum in the lemma for a sufficiently small

constant ξ > 0. The second term is simply the base budget.

We will apply the above lower bound with W = Θ(V).
The second part of this lower bound pays for the cost of

the base procedure. The first sum gives a lower bound of

Θ(
∑

i ni), which will pay for the cost that the scheduling

algorithm for the servers experiences on new and stale colors.

The double sum pays for requests within activity periods of

unmarked colors. The scheduling algorithm is presented in

Section IV-C and Section V.

B. Deactivating Colors

The analysis of the base procedure in Section B2 in the

appendix (Lemma 28) shows that the yc(τ)-constraints in

the dual solution are only violated by a factor Wbase =
O(log log b) when using α1(�z, τ)-variables. In the following

we analyze the increase in violation that is caused by using

α2(�s, τ)-variables. The difference stems from the fact that

colors may be active (sc < zc), which means that increasing

α1(�z, t) and α2(�s, t) by dα increases the left-hand side of

the yc(t)-constraint by different amounts. The following

constraint that guides the deactivation process guarantees

that the increased violation is not too large.

deactivation constraint:
The volume collected by a color during a single activity

period lies between V and 3V . Formally, suppose that a

color is active during interval [αstart, αend]. Then

V ≤
∫ αend

αstart

|Ec(�s, t)|dα ≤ 3V .

The reason that we do not simply deactivate a color once

the collected volume reached the threshold V is as follows.

Deactivation usually incurs a cost because the corresponding

color becomes marked and a server is moved to this color.

If however a server is already located at the color the

deactivation is for free. Therefore, we sometimes delay

deactivating a color c in the hope that a server is moved to

c. Then deactivation is for free. The above constraint says

that we do not delay the deactivation for too long, i.e., if the

color collected volume 3V we deactivate it even if no server

is located there.

The following lemma shows that the upper bound in the

above constraint guarantees that we do not increase the dual

violation by too much.

46

Lemma 6. The yc(τ)-constraints in our dual solution (using
α2(�s, t)-variables) are violated by at most a factor of W =
Wbase + 6V = O(Wbase + V).

Proof: Fix a color c and a time-step τ . The color c
can become active at different time-steps. However, only

for two activity periods can the additional violation that is

generated affect the constraint for τ . To see this assume for

contradiction that the color is activated at t1 < t2 < t3 and

all three activity periods influence the constraint for τ . Let

s1, s2, and s3 denote the sc-values that correspond to the

activity intervals started at t1, t2 and t3, respectively. For

τ to be affected by the first activity period we must have

s1 < τ ≤ t for a time step t within the first activity period.

Clearly, t ≤ t2. Similarly, we get s3 < τ ≤ t′ (for some t′),
and, hence, s3 < τ ≤ t2. However, between two consecutive

activation points of a color at least fmax elements of color

c arrive, i.e., fmax elements between t2 and t3. However,

when we activate the color at time t3 we set sc (= s3) such

that |Ec(�s, t3)| = �fmax�. But this means t2 ≤ s3, which

gives a contradiction.

Now, we analyze the contribution to the LHS of a yc(τ)-
constraint during one activity period that ranges from αstart

to αend. The contribution is∫ αend

α–(τ)

|Ec(�s, τ)|tdα ≤
∫ αend

αstart

|Ec(�s, t)|dα ≤ 3V .

In order to get the total contribution to the LHS of a yc(τ)-
constraint we also have to take into account the time when

the color is inactive. The contribution for inactive periods is

at most∫
actc

|Ec(�s, τ)|tdα =

∫
actc

|Ec(�s, τ)|dα

=

∫
actc

|Ec(�z, τ)|dα

=

∫
actc

|Ec(�z, τ)|tdα ≤ Wbase .

The equalities follow because when the color is inactive

we have |Ec(�s, τ)| = |Ec(�z, τ)| ≤ fmax ≤ |Ec(�z, t)| −
b′ ≤ |Ec(�s, t)| − b′, i.e., capping does not have any effect.

Combining the results for active and inactive periods the

total violation is at most Wbase + 6V as desired.

C. Constructing Phases

In the following we describe how to generate phases that

fulfill the preconditions of Lemma 5.

Upon a request we may decide to make a color active.

For an active color c, |Ec(�s, �z)| > 0 holds which means that

the extra volume increases. This extra volume increases the

dual profit and can therefore help to pay for server moves.

A phase starts with all colors being unmarked and all

colors that were marked in the previous phase (i.e., stale
colors for the new phase) being inactive. If there is a request

to an unmarked color in an inactive state we activate the

color. Non-stale colors are deactivated once they collected

volume V during their current activity period. Stale colors

are deactivated by a more complicated scheme described

later.

When a color is deactivated we mark the color if the

corresponding activity period lies completely within the phase.

After we marked k colors a new phase starts. Note that while

this marking scheme is motivated by the analysis for marking

algorithms [23] in paging, there are slight differences, e.g.,

there could be a phase with no new colors.

Claim 7. Marked colors collect at least total volume V
during a phase. This gives Cond. I.

Proof: A marked color has an activity period completely

inside the phase. During this period it collects a volume of

V due to the deactivation constraint.

Claim 8. Any color collects at most volume 6V during the
phase. This gives Cond. II.

Proof: A color can be activated at most once in a phase,

because after deactivation within the same phase it will

become marked. Hence, there can exist at most two activity

periods that have a (partial) overlap with the phase. In each

period the color can collect a volume of at most 3V due to

the deactivation constraint. This gives that the total collected

volume is at most 6V .

The proof that Cond. III holds, is split into two parts: The

volume gap on new colors and the volume gap on stale colors.

We first show the former.

Claim 9. The volume gap on new colors is at most∑
c∈Ni

Δc(I) ≤ 6γniV , where I denotes the time interval
of the phase, Ni denotes the set of new colors in the phase,
and ni = |Ni|.

Proof: This follows directly from Claim 8 and the fact

that the gap is at most a γ-fraction of the total volume

(Equation 1).

The missing precondition for applying Lemma 5 is a bound

on the volume-gap for stale colors. We will prove such a

bound in Section V. Now, we first analyze the cost generated

by the scheduling algorithm for new and unmarked colors.

D. Cost Analysis

The cost of an online algorithm for serving requests

consists of two parts. On the one hand there is the hit cost,
which is the cost we incur if none of the k servers is located

at the requested color. In addition the algorithm may decide

to change the placement of the servers. This part of the cost

is called the movement cost. Note that these movements may

occur even without an explicit server request. Naturally, we

can split this cost among the different colors. For example,

the movement cost for color c in the phase is the total number

of times that we changed the server assignment for color c.

47

1) Paying for non-stale colors: Non-stale colors are either

new colors, i.e., colors marked in this phase but not in the

previous phase, or colors that are unmarked in both phases.

We derive a bound on their cost by the following simple rule

for moving servers.

scheduling constraint:
• a marked color is always assigned a server.

• the remaining servers are only distributed among

stale colors.

From this rule it follows that non-stale colors are served by

block operations while they are unmarked, and after this they

do not incur any cost because they have a server.

Claim 10. The total movement cost on non-stale colors
during a phase is ni, where ni is the number of new colors
in the phase.

Proof: We only incur a movement cost if we mark a

color. Non-stale colors that become marked are new colors.

2) Paying for stale colors: In Section V, we present a

scheduling algorithm for the stale colors with the following

properties.

Lemma 11. For V ≥ D there is a randomized scheduling
algorithm for stale colors that obeys the scheduling and
deactivation constraint and guarantees that the volume gap
on stale colors in Phase i is at most 3γ(1 + γ)niV . The
expected cost on stale colors generated by this algorithm is
only O(V log kE[

∑
i ni]).

3) Combining the results: The bound on the volume gap

from Lemma 11 (at most 3γ(1 + γ)niV on stale colors)

and Claim 9 (at most 6γniV on new colors) directly imply

(Cond. III). (Cond. I) and (Cond. II) follow from Claim 7 and

Claim 8, respectively. Hence, we can use the lower bound

on the optimum cost provided by Lemma 5:

ξ

W

(∑
i

niV +
∑
i

∑
c∈Ui

volTc (Ii)

)

+
1

2W

∫ αmax

0

(
|E(�z, t)| − b′

)
dα .

(6)

Now we choose V = D, then, due to Lemma 6, W =
Wbase + 6V = Θ(log log b+D) = Θ(D). In the following

we argue that different cost components of our algorithm are

bounded by (6) up to a factor of O(D log k).

• The fractional cost of the base procedure (see

Lemma 33) is at most 2
∫ αmax

0

(
|E(�z, t)| − b′

)
dα, and

can be amortized against the lower bound at a loss of a

factor of O(W) = O(D).

• The expected cost of the cost control procedure for stale

colors is O(log kE[
∑

i ni]V) due to Lemma 11. As the

lower bound Equation 6 holds for every partitioning

of the request sequence into phases generated by our

algorithm, it implies a lower bound of E[
∑

i ni]. The

cost can therefore be amortized against the lower bound

at a loss of a factor of O(V log k) = O(D log k).
• The movement cost of cost control procedure for non-

stale colors is
∑

i ni due to Claim 10, and can be

amortized against the lower bound at a loss of a factor

of O(1).
• The hit cost of the cost control procedure for non-

stale colors are at most D
∑

c ac, where ac denotes the

number of non-stale activity periods for color c, i.e.,

activity periods for which c is a non-stale color at the

point of activation. This is because a single activity

period contains at most D requests. Now we show that

this is larger than Equation 6 by at most a factor of

O(D).
Indeed, we claim that Equation (6) is in Ω(

∑
c ac). Fix

a non-stale activity period P for color c and assume

that Q is the activity period following P . If P or Q
finishes with a marking operation on color c then the first

of these marking operation makes c into a new color

for the respective phase. This new color contributes

Ω(V/W) = Ω(1) to the lower bound. Otherwise, c
will be unmarked in all phases that contain parts of P .

Hence, the total volume (which is at least V) collected

during period P contributes to the lower bound and we

again get a contribution of Ω(V/W) = Ω(1). Since, we

get a contribution of Ω(1) from any two consecutive

activity periods the claim follows.

The randomized rounding procedure used to round the

fractional yc(t)-values has expected cost O(
∑

c,t yc(t)) (see

Section B1).

Theorem 12. There is an algorithm with competitive ratio
O(D log k) = O(log k(log k+log log b)) for the generalized
reordering buffer management problem on uniform metrics.

V. SERVING STALE COLORS

In this section we prove Lemma 11. For this, we describe

how the algorithm schedules the servers among stale colors.

Note that for k = 1 the phase ends after the first color

has been marked, hence the (single) stale color always has a

server assigned to it. The expected service cost is therefore

ni (which is either 0 or 1), and the volume gap generated on

stale colors is 0. This reproves the result for the Reordering

Buffer Management problem due to Avigdor-Elgrabli and

Rabani [8].

A major difficulty for the case k > 1 is that the collection

of volume (and thereby also the increase in the volume gap)

is to a large extend guided by the increase of α through

the base procedure. Unfortunately, the actions of the base

48

procedure depend on |E(�z, t)|, which, in turn, depends on

the distribution of servers. This means that the actions of the

scheduling algorithm, responsible for the server distribution,

may influence the increase in α and also the request sequence

itself. This makes the analysis of the randomized scheduling

algorithm much more challenging and it requires a careful

modeling of the adversary.

For the remainder of the section, consider a fixed adversary

whose power will be defined precisely in Section V-A. A

configuration C of the algorithm consists of a time step t
along with the algorithm’s decisions up to time t. At any

point in time, our algorithm chooses a new configuration

based on its current configuration, the adversary’s actions

and some random bits. Given that the adversary is fixed,

the algorithm can therefore be viewed as a tree of possible

choices with root C0, the initial configuration. The vertices

of this tree are all possible configurations. There is a directed

edge between configurations C and C ′ if the algorithm, when

in configuration C, decides with non-zero probability to have

C ′ as its next configuration. Let p(C → C ′) denote this

transition probability.

Given a fixed adversary, the tree is a Markov chain. This

gives that we can extend the notation p(C → C ′) to arbitrary

configurations: p(C → C ′) is 0 if no path from C to C ′

in the tree exists; otherwise, it is the product of transition

probabilities on that path.

We say that C ′ is reachable from C, writing C → C ′, if

and only if p(C → C ′) > 0. As a simple corollary, we have

pt(C,X) · pt(X,C ′) = p(C → C ′) , (7)

for configurations C,C ′, and X with C → X and X → C ′

(this means X lies on the path from C to C ′ in the tree).

If C → C ′, let cost(C → C ′) denote the cost incurred by

the algorithm when transitioning from configuration C to

configuration C ′; otherwise cost(C → C ′) = 0. Let n(C)
denote the number of new colors marked in the phase of C
up to the time step of C.

Our high-level strategy is to define a special set S of event
configurations so that the algorithm encounters only few such

configurations, yet the expected cost for transitioning to the

next event configuration is small. For event configurations

C,C ′ ∈ S, we write C �→ C ′ (say C ′ is successor of C), if

C → C ′ and there is no X ∈ S with C → X and X → C ′.
The precise definition of event configurations is deferred to

Section V-B. For now, we only require them to fulfill the

following properties.

(P1) The algorithm experiences at most O(D log k) event

configurations per phase.

(P2) For any C ∈ S ,∑
C′∈S p(C �→ C ′) cost(C �→ C ′) = O(n(C)).

Using these properties, we show an upper bound on the

algorithm’s expected cost on stale colors.

Lemma 13. The expected hit cost and movement cost on
stale colors is O(D log k)E[

∑
i ni], where ni is the number

of new colors in phase i.

Proof: We assume wlog. that each phase ends in an event

configuration and let P denote those phase configurations
that end a phase. Similarly to the event configurations, we

say C ′ ∈ P is phase successor of phase configuration C if

C → C ′ and there is no X ∈ P with C → X , X → C ′; we

write C
p�−→ C ′. Let p(C

p�−→ C ′) = p(C → C ′) if C
p�−→ C ′

and 0 otherwise. Furthermore, let B denote the configurations

ending the algorithm.

The expected cost of the algorithm is, by definition,∑
B∈B p(C0 → B) cost(C0 → B). We first show this is at

most O(D log k)
∑

P∈P p(C0 → P)n(P). We then prove

that
∑

P∈P p(C0 → P)n(P) = E[
∑

i ni].

Claim 14.
∑

B∈B p(C0 → B) cost(C0 → B) is at most
O(D log k)

∑
P∈P p(C0 → P)n(P).

Proof: We rewrite the cost of transitioning from C0 to

B ∈ B using all intermediate event configurations, which

gives

cost(C0 → B) =
∑
C∈S
C→B

∑
C′∈S

cost(C ′ �→ C) .

Plugging this into the expected cost and changing the order

of summation gives

∑
B∈B

p(C0 → B)
∑
C∈S
C→B

∑
C′∈S

cost(C ′ �→ C)

=
∑
C′∈S

∑
B∈B

∑
C∈S
C→B

p(C0 → B) cost(C ′ �→ C)

=
∑
C′∈S

p(C0 → C ′)
∑
B∈B

∑
C∈S
C→B

p(C ′ → B) cost(C ′ �→ C)

=
∑
C′∈S

p(C0 → C ′)
∑
C∈S

cost(C ′ �→ C)
∑
B∈B
C→B

p(C ′ → B) .

The second equation used (7), the third equation changed the

order of summation. As C is reachable from C ′, applying (7)

shows that
∑

B∈B,C→B p(C ′ → B) = p(C ′ �→ C). The

expected hit cost is therefore

∑
C′∈S

p(C0 → C ′)
∑
C∈S

p(C ′ �→ C) cost(C ′ �→ C)

≤ d ·
∑
C′∈S

p(C0 → C ′)n(C ′) ,

by Property 2, where d is some constant from the O-notation.

In order to relate this to the phase configurations, we

multiply each term with 1 =
∑

P∈P p(C
p�−→ P), which

49

gives

d ·
∑
C∈S

p(C0 → C)n(C)
∑
P∈P

p(C
p�−→ P)

= d ·
∑
P∈P

∑
C∈S

p(C0 → C)n(C)p(C
p�−→ P)

≤ d ·
∑
P∈P

n(P)
∑
C∈S

p(C0 → C)p(C
p�−→ P)

≤ d ·D log k
∑
P∈P

n(P)p(C0 → P) .

Here, the first inequality uses that the number of new colors

only increases during a phase. The second inequality exploits

Property 1, as at most D log k event configurations are

encountered in any phase.

We now claim that
∑

c∈P p(C0 → P)n(P) = E[
∑

i ni].
Together with the above upper bound on the expected cost,

this gives the lemma.

Fact 15.
∑

c∈P p(C0 → P)n(P) = E[
∑

i ni].

Proof: The expected number of new colors seen through-

out the algorithm is

E[
∑

i ni] =
∑
B∈B

p(C0 → B)
∑
P∈P
P→B

n(P)

=
∑
B∈B

∑
P∈P

p(C0 → P)p(P → B)n(P) .

After changing the order of summation, this is∑
P∈P

n(P)p(C0 → P)
∑
B∈B

p(P → B)

=
∑
P∈P

n(P)p(C0 → P)

The equality holds because any configuration reachable from

C0 must eventually reach the end of the algorithm.

A. Model of the Adversary

Before we define the event configurations and the algo-

rithm’s strategy, this section gives a cleaner model for the

adversary. We consider a single phase starting in a single

state of the algorithm, i.e., the server positions and fractional

α-variables are fixed for the start of the phase. We re-number

the time steps with t = 1 being the first time step of the

phase. The request sequence and the increase in α both

depend on the color sequence fed to the base procedure; it

is convenient to model it as a specific type of adversary that

we define next.

We assume that the adversary selects an order among the

explicit server requests on the stale colors. Below, we show

that any request outside of this sequence may be ignored.

After choosing the sequence, the adversary can do one of

the following operations in each step t:

• request: Issue the next request from the predefined

sequence.

• volume increase: Increase α by dα; this increases the

volume gap on active colors that are not assigned a

server.

In addition there are the following events that the adversary

cannot influence directly but only indirectly by altering the

volume collected by a color

• marking of a stale color: In this case one server has

to be moved away from the stale colors to be assigned

to the newly marked stale color.

• marking of a new color: Mark a non-stale color c; in

this case one server has to be moved away from the

stale colors to be assigned to color c for the remainder

of the phase; this increases the number n(t) of new

colors that appeared in the phase up to time t.

For each of the above actions the adversary knows the random
choices of the algorithm up to Step t. The following claim

shows that we can indeed assume that the adversary has to

specify the order of requests at the start of the phase.

Claim 16. After the start of the phase the order of requests
to unmarked stale colors during the phase is not influenced
by actions of the scheduling algorithm.

Proof: As a reminder the rules for generating requests

are as follows:

1) an inactive color gets a request if it has seen at least fmax

requests since the most recent explicit server request

2) an active color gets a request if |Ec(�s, t)| ≥ (1 +
γ)|Ec(�s, t

′)|, where t′ is the time step of the most recent

explicit request to the color AND at most D−1 requests

have been issued for c during the current activity period.

Recall that stale colors are inactive at the beginning of the

phase. If at the start of the phase we know the number

of items that arrived for every color since the most recent

request, we can calculate how many items need to arrive in

order for a request of Type 1 to be generated (which activates

the color). As long as the color stays active further requests

of Type 2 only depend on the number of items received

for the respective color. When the color gets deactivated it

becomes marked and, hence, further requests to this color are

not of interest. This shows that requests to unmarked stale

colors only depend on the number of items and, thus, their

order cannot be influenced once the input sequence of items

is fixed, which has to be done at the start of the algorithm.

At first glance the above claim might appear too weak to

guarantee that the adversary is strong enough as the order

of requests to marked colors can actually be influenced by

actions of the block-device algorithm. The reason is that

marking/deactivating a color changes how requests to the

color are generated, and thus this can influence order of

requests. However, our algorithm will fulfill the following

50

property which shows that giving the adversary the additional

power of freely issuing requests to marked colors does not

change the model.

irrelevant request property:
Adding/removing requests to marked colors does not

influence the scheduling decisions or the cost of the

algorithm.

The above property is an immediate consequence of the fact

that a marked color is always assigned a server. This means

we do not have to move any servers if a marked color is

requested and our algorithm will not do so.

In order to get a cleaner model we restrict the choice of

the online algorithm in each step. We add (many) dummy

time steps, where in each time step the adversary has the

choice between a limited number of actions. More concretely

we have the following types of steps:

• request time steps t ∈ Tr
The adversary issues the next request in the predeter-

mined sequence. The adversary cannot skip this step.

• marking time steps t ∈ Tn for new colors

The adversary increases n or skips the action.

• volume time steps t ∈ Tv
The adversary either increases α by dα or skips the

action.

The above model can be obtained by fixing the time steps

that should be request time steps and by adding sufficiently

many time steps of each type between any two consecutive

request time steps.

B. Bounding the Cost per Phase

At any time step, let �r denote the number of unmarked

stale colors with at most r requests, as seen by the algorithm.

Let n be the number of new colors that have been marked

so far. The current round r∗ is min{r | �r ≥ n}. Observe

that r∗ never decreases, as �r never increases and n never

decreases. Within round r∗, a color c is free if it fulfills three

conditions: c must have seen exactly r∗ requests, it must be

unmarked and there must be a server located at it.

The algorithm’s movement strategy is the following. The

algorithm keeps the current server distribution unless

• a color c without server obtains its (r∗ + 1)th request,

or

• a new color c is marked, or

• a stale color c without server is marked.

In these cases, the algorithm picks a free color c′ uniformly

at random and moves the server from c′ to c.

Observation 17. Any stale color with more than r∗ requests
is assigned a server. Any unmarked stale color with less than
r∗ requests is not assigned a server.

Proof: First, observe that whenever a color is marked,

it obtains a server. As marked colors never become free, a

marked color keeps that server until the end of the phase.

For any time step t, let r∗(t) denote the value of r∗ and

r(c, t) the number of requests to color c up to time t. We

show that r(c, t) > r∗(t) implies that color c has a server.

Let t′ < t be the last time step at which r(c, t′) = r∗(t′). At

time step t′ + 1, color c must have obtained a server. Color

c was not a free color during the interval [t′ + 1, t] as it had

more than r∗ requests. The server has therefore not left color

c during [t′ + 1, t].

Finally, observe that right before r∗ increases, �r∗ = n.

We know that every color with at least r∗ + 1 requests has

a server, and n stale colors have no server. This means that

right before r∗ increases, no unmarked stale color with at

most r∗ requests has a server. As a color with less than r∗

requests only obtains a server by obtaining more requests or

becoming marked, unmarked stale colors with fewer than r∗

requests cannot have a server.

In order to get a bound on the volume gap, we proceed as

follows. Observe that a color that is assigned a server does

not increase its volume gap as the increase in total volume

matches the increase in extra volume. In the following, we

keep track of the volume that is collected by a color while

it is not assigned a server. We call this the volume cost of

the color. The volume gap is then at most a γ-fraction of

the volume cost due to Equation (1).

Claim 18. The volume cost on stale colors is at most 3(1 +
γ)V · n, where n is the number of new colors of the phase.

Proof: Let n denote the number of new colors in the

phase given a specific set of random choices. Observe that

for n = 0 a stale color is always assigned a server. Therefore,

in this case the volume cost on stale colors will be 0.

Hence, assume n > 0. In this case there do exist n stale

colors that are not marked in the phase. Let U denote this

set of colors and observe that each of these colors collects

at most volume 3V during the phase as otw. it would be

deactivated and would directly become marked (unless the

phase ends at this point). Hence
∑

c∈U volc(I) ≤ 3nV . We

now show that in each infinitesimal step the volume cost

increases roughly by the volume collected by colors in U
during the step.

Fix a time step and let M denote the set of active stale

colors that are currently missing a server. The volume cost

increases by ∑
c∈M

|Ec(�s, t)|dα .

On the other hand the volume collected by colors in U
increases by

∑
c∈U |Ec(�s, t)|dα.

Fact 19. The assignment of servers guarantees that∑
c∈M |Ec(�s, t)| ≤ (1 + γ)

∑
c∈U |Ec(�s, t)|.

51

Proof: First observe that |M | = n and |U | = n ≥ n.

We sort the colors in M and U according to the number of

requests they have received so far.

We now map the i-th color in M to the i-th color in U (if

it exists). In the following we show that for a pair (cm, cu)
with a color from cm ∈ M that is mapped to cu ∈ U we

have |Ecm(�s, t)| ≤ (1 + γ)|Ecu(�s, t)|. This implies the fact.

Clearly, cm has seen as most as many requests as cu
because the holes are distributed among colors with fewest

requests by Observation 17. Let for i ≤ D, si denote the

number of extra items right after the i-th request. Due to the

way requests are generated there are exactly �fmax� items in

Ec(�s, t) at the time of the first request (i.e., s1 = �fmax�).

As long as i ≤ D we have si = �(1 + γ)si−1�. Hence,

|Ecm(�s, t)| ≤ sr(cm)+1 − 1 ≤ �(1 + γ)sr(cm)� − 1

≤ (1 + γ)sr(cu) ≤ (1 + γ)|Ecu(�s, t)| ,

where r(c) denotes the number of requests to color c.

Since the volume of elements in U is at most 3nV we get

that the volume cost on stale colors is at most 3(1 + γ)nV .

We now define the event configurations. The beginning of

the algorithm is the first event configuration. After that, event

configurations are defined inductively. Any configuration is

an event configuration if either n has doubled since the last

event, or the number of free colors has decreased by a factor

of 1/4, or r∗ increases. Furthermore, the end of a phase is

an event configuration. We now prove that this definition

fulfills properties 1 and 2.

Fact 20. There can be at most 5D log k event configurations
in a phase.

Proof: The number of new colors is at most k, hence it

can double at most log k times. As any color receives at most

D requests, r∗ ≤ D, hence at most D event configurations

mark the end of a round. Within a round, the number of free

colors decreases by a factor of at most 3/4 between event

configurations, hence there are at most log4/3 k < 4 log k−1
such event configurations per round. Finally, there is one

event configuration for the end of the phase.

The movement cost for marking stale colors is bounded

using the following technique. According to the deactivation

constraint, a color that collected volume V is available for

marking and must be marked before it collects volume more

than 3V . If a color is available for marking and has a server

assigned to it, we simply mark the color. This does not

induce any movement cost, as the server assignment does

not change. If a color reaches volume 3V without a server

assigned to it, we mark the color and reassign a server from a

free color to it. This forced marking induces cost 1; however,

the next claim bounds the number of these forced marking

operations.

Claim 21. For any event configuration C, there can be at
most 4n(C) forced marking operations before the next event
configuration.

Proof: Observe that a color that experiences a forced

marking operation has collected volume 2V since it became

available for marking. During this time it has never been

assigned a server as it would have been marked otherwise.

This means that a color that experiences a forced marking

operation has volume cost at least 2n(C)V . The total volume

cost of the phase is only 3(1+γ)n(P)V by Claim 18, where

P is the event configuration ending the phase. The number of

new colors can only double between events, so there can be

at most 2 3
2 (1+ γ)n(C) ≤ 4n(C) forced marking operations.

The following claim proves Property 2.

Claim 22. For any C ∈ S,
∑

C′∈S p(C �→ C ′) cost(C �→
C ′) = O(n(C)).

Proof: By definition of the event configurations, the

number of new colors doubles at most between C and C ′

if C �→ C ′. Instead of arguing about the movement cost

of servers, it is therefore convenient to analyze the cost

associated with each of the holes, distributed among the stale

colors. We say that color c has a hole, if no server is located

at c. The proof strategy is to show that the average expected

cost per hole is only constant. As there are at most 2n(C)
holes before the next event configuration, this implies the

claim.

We say that a hole is charged cost 1 if it is located on a

color that is requested or marked. Let Xi denote the cost of

hole i and Mi the number of times (the color of) hole i is

marked. We first show that E[Xi | Mi = mi] = O(1 +mi),
if the color of hole i has seen r∗ requests before arriving in

configuration C.

As the request sequence cannot be modified by the

adversary after the start of the phase, we can number the

free colors in the order in which they obtain their (r∗+1)th
request. If there are z free colors in event configuration C,

this means that a new event configuration is triggered when

color z/4 is requested.

Whenever a hole is requested, it chooses a free color

uniformly at random to move to. If the new position is

among the last 3z/4 free colors, we say the hole is settled.

A settled hole will not be requested before the next event

configuration unless the adversary decides to mark it. As

at most z/4 free colors become non-free before the next

event configuration, this means that the hole will be settled

after each request or marking with probability at least 2/3.

If hole i is marked mi times, the expected cost before the

last event configuration is therefore at most the cost before

i is settled for the (mi + 1)-th time. As the probability for

settling a hole is 2/3 on a single try, the expected number

of movements before it is settled is less than 3. It follows

52

that E[Xi | Mi = mi] = O(1 +mi), if the color of hole i
has seen r∗ requests before arriving in configuration C.

If the color of hole i has seen r < r∗ requests before

arriving in configuration C, the hole might incur hit cost

r∗ − r before the hole moves away. In order to pay for this

cost, we charge it to previous rounds as follows. Suppose

that at the end of a round, there are s holes on colors with

less than r∗ requests. Each of these colors is charged 1; as

s is at most the number of new colors, this only increases

the cost by at most a factor of 2.

Up to constants, the total expected cost is therefore at

most
∑2n(C)

i=1 (1+mi) = 2n(C)+
∑2n(C)

i=1 mi. By Claim 21,

the total number of forced marking operations is at most

4n(C), hence the total expected cost is O(n(C)).

Lemma 11. For V ≥ D there is a randomized scheduling
algorithm for stale colors that obeys the scheduling and
deactivation constraint and guarantees that the volume gap
on stale colors in Phase i is at most 3γ(1 + γ)niV . The
expected cost on stale colors generated by this algorithm is
only O(V log kE[

∑
i ni]).

Proof: Properties 1 and 2 follow from Fact 20 and

Claim 22, respectively. We can therefore apply Lemma 13,

which proves the upper bound on the hit cost and movement

cost.

The bound on the volume gap follows from Claim 18 and

the fact that the volume gap is at most γ times the volume

cost.

REFERENCES

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Com-
petitive analysis of randomized paging algorithms. Theoretical
Computer Science, 234(1-2):203–218, 2000.

[2] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald
Räcke. Almost tight bounds for reordering buffer management.
In Proceedings of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 607–616, 2011.

[3] Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald
Räcke. Optimal online buffer scheduling for block devices.
In Proceedings of the 44th ACM Symposium on Theory of
Computing (STOC), pages 589–598, 2012.

[4] Anna Adamaszek, Marc P. Renault, Adi Rosén, and Rob
van Stee. Reordering buffer management with advice. In
Proceedings of the 11th Workshop on Approximation and
Online Algorithms (WAOA), pages 132–143, 2013.

[5] Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. NP-
hardness of the sorting buffer problem on the uniform metric.
Discrete Applied Mathematics, 160(10-11):1453–1464, 2012.

[6] Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yu-
val Rabani. On the randomized competitive ratio of reordering
buffer management with non-uniform costs. In Proceedings of
the 42nd International Colloquium on Automata, Languages
and Programming (ICALP), pages 78–90, 2015.

[7] Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor
approximation algorithm for reordering buffer management. In
Proceedings of the 24th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 973–984, 2013.

[8] Noa Avigdor-Elgrabli and Yuval Rabani. An optimal random-
ized online algorithm for reordering buffer management. In
Proceedings of the 54th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 1–10, 2013.

[9] Noa Avigdor-Elgrabli and Yuval Rabani. An improved
competitive algorithm for reordering buffer management. ACM
Transactions on Algorithms, 11(4):35:1–35:15, 2015.

[10] Yossi Azar, Matthias Englert, Iftah Gamzu, and Eytan Kidron.
Generalized reordering buffer management. In Proceedings
of the 31st Symposium on Theoretical Aspects of Computer
Science (STACS), pages 87–98, 2014.

[11] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi.
Online service with delay. In Proceedings of the 49th ACM
Symposium on Theory of Computing (STOC), pages 551–563,
2017.

[12] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph
Naor. A polylogarithmic-competitive algorithm for the k-server
problem. Journal of the ACM, 62(5):40:1–40:49, 2015.

[13] Siddharth Barman, Shuchi Chawla, and Seeun Umboh. A
bicriteria approximation for the reordering buffer problem. In
Proceedings of the 20th European Symposium on Algorithms
(ESA), pages 157–168, 2012.

[14] Daniel K. Blandford and Guy E. Blelloch. Index compression
through document reordering. In Proceedings DCC 2002.
Data Compression Conference, pages 342–351, 2002.

[15] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive
paging. In Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 450–458,
1999.

[16] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R.
Lee, and Aleksander Madry. k-server via multiscale entropic
regularization. In Proceedings of the 50th ACM Symposium
on Theory of Computing (STOC), pages 3–16, 2018.

[17] Niv Buchbinder and Joseph Naor. Online primal-dual
algorithms for covering and packing problems. In Proceedings
of the 13th European Symposium on Algorithms (ESA), pages
689–701, 2005.

[18] Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van
Stee. A note on sorting buffers offline. Theoretical Computer
Science, 423:11–18, 2012.

[19] Matthias Englert and Harald Räcke. Reordering buffers with
logarithmic diameter dependency for trees. In Proceedings
of the 28th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1224–1234, 2017.

[20] Matthias Englert, Harald Räcke, and Matthias Westermann.
Reordering buffers for general metric spaces. Theory of
Computing, 6(1):27–46, 2010.

53

[21] Matthias Englert and Matthias Westermann. Reordering buffer
management for non-uniform cost models. In Proceedings of
the 32nd International Colloquium on Automata, Languages
and Programming (ICALP), pages 627–638, 2005.

[22] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Moham-
mad Reza Khani, Vahid Liaghat, Hamid Mahini, and Harald
Räcke. Online stochastic reordering buffer scheduling. In
Proceedings of the 41st International Colloquium on Automata,
Languages and Programming (ICALP), pages 465–476, 2014.

[23] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch,
Daniel D. Sleator, and Neal E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685–699, 1991.

[24] Iftah Gamzu and Danny Segev. Improved online algorithms
for the sorting buffer problem on line metrics. ACM Trans.
Algorithms, 6(1), 2009.

[25] Sungjin Im and Benjamin Moseley. New approximations for
reordering buffer management. In Proceedings of the 25th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1093–1111, 2014.

[26] Sungjin Im and Benjamin Moseley. Weighted reordering
buffer improved via variants of knapsack covering inequalities.
In Proceedings of the 42nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 737–
748, 2015.

[27] Rohit Khandekar and Vinayaka Pandit. Online and offline
algorithms for the sorting buffers problem on the line metric.
Journal of Discrete Algorithms, 2008.

[28] Matthias Kohler and Harald Räcke. Reordering buffer
management with a logarithmic guarantee in general metric
spaces. In Proceedings of the 44nd International Colloquium
on Automata, Languages and Programming (ICALP), pages
33:1–33:12, 2017.

[29] Elias Koutsoupias and Christos H. Papadimitriou. On the
k-server conjecture. Journal of the ACM, 42(5):971–983,
1995.

[30] Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias
Westermann. Reducing state changes with a pipeline buffer.
In Proceedings of the 9th International Fall Workshop Vision,
Modeling, and Visualization (VMV), pages 217–224, 2004.

[31] James R. Lee. Fusible HSTs and the randomized k-server
conjecture. In Proceedings of the 59th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 438–449,
2018.

[32] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator.
Competitive algorithms for server problems. Journal of
Algorithms, 11(2):208–230, 1990.

[33] Harald Räcke, Christian Sohler, and Matthias Westermann.
Online scheduling for sorting buffers. In Proceedings of the
10th European Symposium on Algorithms (ESA), pages 820–
832, 2002.

[34] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

APPENDIX

A. Modifying the Buffer Size

Theorem 23. For any input sequence, the cost OPTb′ of an
optimal offline solution utilizing a buffer of size b′ = (1−ε)·b
is at most a factor of (2 + ε ln b′)/(1 − ε) larger than the
cost OPTb of an optimal offline solution utilizing a buffer
of size b.

Proof: The proof is an adapted version of Theorem 2.1

in [3].

Fix any input sequence and consider an optimal offline

strategy using k servers and a buffer of size b. Without loss

of generality, we may assume that each color is visited by a

server exactly once. Indeed, if a color c is visited twice, we

could re-color all elements that appear after a server first left

c to a completely new color. This does not change OPTb

and can only increase OPTb′ .

For a color c let tstart(c) and tend(c) denote the time step

when a server visits and leaves c, respectively. We call a

color finished at time t if t ≥ tend(c). We call a color active
if it is currently assigned a server.

In the following we construct a strategy for processing the

input sequence with a buffer of size b′. We visit colors in the

order given by the optimum strategy OPTb for buffer-size b.
Whenever our buffer is full and does not contain any active

color, we want to perform the next movement. However,

sometimes this strategy may tell us to move a server away

from a color c to a color c′ but because of our smaller buffer

size we may not have seen all elements of c yet, i.e., we still

have t < tend(c). In this case we will add block-operations

in order to remove additional elements and thereby increase

t to tend(c) or beyond. We repeat the following steps until

t ≥ tend(c):

1) Choose an inactive color q, and perform a block-

operation on q.

2) If still t < tend(c) increase p(c′) by n(q) for every

unfinished color c′ that finishes before tstart(q).

Here p(c′) is a counter that exists for every color and is

initialized to 0. n(q) denotes the number of elements of color

q that are currently in the buffer. We call a block-operation

successful if t ≥ tend(c) holds afterwards.

Claim 24. A counter p(c′) cannot be increased beyond εb.

Proof: Let c denote the color that finishes next according

to OPTb. Among unfinished colors this color has the largest

p(c)-value. Assume we perform a block-operation on q with

p(c) + n(q) > εb, i.e. the claim would be violated if the

block operation is unsuccessful.

There are at most b elements in the input sequence that

occur before tend(c) and that belong to colors q′ with

tend(c) < tstart(q
′), as otherwise OPTb could not hold

these items within its buffer. Observe that all elements that

contributed to the increase of p(c) and also the n(q) elements

54

of q belong to this class of elements. Since we have removed

them, there are at most b−p(c)−n(q) < b′ of these elements

left. This is sufficient for t to advance to tend(c) and, hence,

the block-operation on q is successful.

Claim 25. There exists a color q such that
∑

c′ Δp(c′) ≥
b′/(1 + ln b′), where Δp(c′) is the increase of the p(c′)-
counter in case the block-operation is unsuccessful.

Proof: Define s := b′/(1 + ln b′) to shorten notation,

and assume for contradiction that the total counter increase

for every color is at most s.

Every server move finishes one color and starts a new

one. If we sort the inactive unfinished colors according to

their start times, the i-th color ci among these will have

i colors that are currently unfinished but that end before

tstart(ci). Hence, the i-th color will trigger an increase of

at least i · n(ci) ≤ s in counters. Note that in particular this

means that n(ci) = 0 for i > s. Also note that colors c that

are active or already finished have n(c) = 0. Since the buffer

is full we have

b′ =
�s	∑
i=1

n(ci) ≤ s

�s	∑
i=1

1

i
< s(ln(s) + 1) < b′ ,

which is a contradiction.

How many block-operations can be performed if we always

perform a block-operation on the color q given by Claim 25?

Clearly, there are at most OPTb successful block-operations.

Every unsuccessful block-operation increases
∑

c p(c) by

at least b′/(1 + ln b′) according to Claim 25. On the other

hand
∑

c p(c) ≤ εb ·OPTb due to Claim 24. Hence, at most

εb · (1 + ln b′)/b′ · OPTb = (1 + ln b′) · ε/(1 − ε) · OPTb

unsuccessful operations can be performed.

In total we require at most (1 + (1 + ln b′) · ε/(1− ε)) ·
OPTb ≤ (2 + ε ln b′)/(1− ε) ·OPTb operations.

Proof of Corollary 2: Let OPTb denote the cost of

an optimal strategy using buffer size b. Theorem 23 with a

choice of ε = 1/ log b implies that OPTb′ ≤ O(1)OPTb.

The LP for buffer size b′ has value at most OPTb′ and its

value can only decrease by removing constraints for (�s, t)
with |E(�s, t)| ≤ b. Therefore the modified LP has value at

most O(1)OPTb.

B. Analysis of the Base Procedure

1) Randomized Rounding: The y-variables, some of which

are set by the base procedure and some of which are set

equal to 1 by the cost control procedure can be rounded

online in such a way that the buffer constraint is satisfied.

This is true independent of which (if any) y-variables are

set to 1 by the cost control procedure and also independent

of the values of the δ-variables.

A deterministic strategy for scheduling block operations is

given by a function D : T ×C → N0 with the meaning that

D(τ, c) describes the number of block operations for color

c performed in step τ . We allow D(τ, c) > 1, i.e., we will

allow that the strategy performs several consecutive block

operations for the same color.

We specify a number of conditions on a deterministic

strategy. The conditions are chosen in such a way that any

deterministic strategy that satisfies them, produces an overall

solution that ensures that the buffer never stores more than

b items.

In order to formulate the conditions for time t, we introduce

the following notation. We use wc(τ) := max{βyc(τ), 1}
to denote a scaled version of the current assignment to y-

variables in the primal LP. We partition the pairs (τ, c) with

τ ∈ {zc + 1, . . . , t} into classes according to the value of

|Ec(�z, τ)|. Here and in the following �z is to be understood as

the vector that our procedure maintains. We say a pair (τ, c)
is in class Si if |Ec(�z, τ)| ∈ [2i, 2i+1) (we do not care about

(τ, c)-pairs that have |Ec(�z, τ)| = 0). We further use Sc to

denote the set {(τ, c) | τ ∈ {zc +1, . . . , t}} and S =
⋃

c S
c.

In addition to sets Si we also define a set L that contains

(τ, c)-pairs with a “large” |Ec(�z, τ)|-value. Formally, we first

select pairs in decreasing order of |Ec(�z, τ)|-value until L
contains pairs whose wc(τ)-values sum up to at least λ+ 1
(for a parameter λ
 β to be chosen later) or L = S;

then if the wc(τ)-values sum up to more than λ + 1 we

remove the last element added. Hence, if L �= S we have

λ ≤ ∑
(τ,c)∈L wc(τ) ≤ λ+ 1, as the wc(τ)’s are at most 1.

Our conditions for a deterministic strategy D are as

follows.

1) For every color c,
∑

zc≤τ≤t(D(τ, c) + δc(τ)) ≥ 1,

i.e., between time zc and t, all items of color c are

removed from the buffer at least once; either because

D performed at least one block device operation or

because at some point one of the k servers was located

at c.
2) D mirrors the fractional solution of the LP on the sets

Si:

∀Si : �∑(τ,c)∈Si
wc(τ)� ≤

∑
(τ,c)∈Si

D(τ, c) .
3) D mirrors the fractional solution of the LP on the set

L of large (τ, c)-pairs:

�∑(τ,c)∈L wc(τ)� ≤
∑

(τ,c)∈L D(τ, c) .
4) For every color c and for every class Si,∑

(τ,c)∈Si∩Sc D(τ, c) ≤ 3, this means D did not

remove the same color very often in the same class.

Suppose these conditions hold at the end of time t, where

�z is the specific vector maintained by our base procedure,

i.e., α(�z, t) is a proper constraint. Further suppose that the

proper constraint α(�z, t) is satisfied. In this case we will now

show that the buffer contains no more than b items.

Condition 1 guarantees that items of color c that appeared

at time zc or before do not influence the buffer-constraint

for D at time t, since all these items have already been

removed from the buffer. Hence, the following formula

specifies exactly the number of items in D’s buffer at time

55

t:

buffer(t) = |E(�z, t)| −
∑
c

max
τ :D(τ,c)+δc(τ)≥1

|Ec(�z, τ)| .

(8)

This holds because |Ec(�z, τ)| (for the maximum τ with

D(τ, c) + δc(τ) ≥ 1) specifies the items that appeared after

time zc (excluding zc) and are evicted at time τ or before.

Furthermore, remember that if α(�z, t) is a proper constraint,

we must have δc(τ) = 0 for all c and τ > zc, i.e., there is

no server at color c after time zc. We therefore also have

buffer(t) = |E(�z, t)| −
∑
c

max
τ :D(τ,c)≥1

|Ec(�z, τ)| . (9)

Let j denote the index of the largest class that contains a

pair (τ, c) with D(τ, c) + δc(τ) ≥ 1. Then

max
τ :D(τ,c)≥1

|Ec(�z, τ)| ≥ 2j ≥ 1

12

j∑
i=0

3 · 2i+1

≥ 1

12

∑
(τ,c)∈Sc

D(τ, c) · |Ec(�z, τ)| ,

where the last step uses Condition 4 (the fact that D does

not evict a color too often in the same class). Plugging

the above into Equation 9 gives buffer(t) ≤ |E(�z, t)| −
1
12

∑
(τ,c)∈S D(τ, c) · |Ec(�z, τ)|. We need to show that

this is at most b. This means we want to show that∑
(τ,c)∈S D(τ, c) · |Ec(�z, τ)| ≥ 12(|E(�z, t)| − b).
This is encapsulated in the following lemma.

Lemma 26. Let α(�z, t) be a proper, non-violated constraint.
A scheduling strategy that fulfills conditions 1, 2, 3, and 4
fulfills

∑
(τ,c)∈S D(τ, c) · |Ec(�z, τ)| ≥ 12(|E(�z, t)| − b).

Proof: For this we need the following claim.

Claim 27. Either λ ≤ ∑
(τ,c)∈L wc(τ) ≤ (λ + 1) or

|E(�z, t)| ≤ b.

Proof: Suppose |E(�z, t)| > b. The primal constraint

α(�z, t) is fulfilled. Therefore,∑
c

(∑
zc<τ≤t

|Ec(�z, τ)|t · yc(τ) + |Ec(�z, t)|t · δc(t)
)

≥ |E(�z, t)| − b′ .
c

The left term is equal to
∑

c

∑
zc<τ≤t |Ec(�z, τ)|t · yc(τ)

because whenever δc(t) = 1 we have zc = t and

hence |Ec(�z, t)|t = 0. Since |E(�z, t)| > b, we also have

|Ec(�z, τ)|t ≤ |E(�z, t)| − b′ and therefore, the yc(τ) must

sum to at least one. Scaling by β gives that the wc(τ)’s sum

up to at least β. Hence, L will contain a wc(τ)-weight of at

least λ and at most λ+ 1, as λ
 β.

In order to show the lemma we can assume that |E(�z, t)|−
b > 0 as otherwise the equation trivially holds as the left

hand side is always positive. The above claim then gives∑
(τ,c)∈L wc(τ) ≥ λ.

Now assume that i�, the class-index of the pair (τ, c) ∈ L
with smallest |Ec(�z, τ)|-value, fulfills 2i� ≥ |E(�z, t)| − b.
Then∑

(τ,c)∈S
|Ec(�z, τ)| ·D(τ, c) ≥

∑
(τ,c)∈L

|Ec(�z, τ)| ·D(τ, c)

≥ 2i�
∑

(τ,c)∈L
D(τ, c)

≥ λ(|E(�z, t)| − b)

≥ 12(|E(�z, t)| − b) ,

by choosing λ ≥ 12. In the following we can assume 2i� ≤
(|E(�z, t)| − b). We have∑
(τ,c)∈S

|Ec(�z, τ)|D(τ, c) ≥
∑
i≤i�

∑
(τ,c)∈Si

|Ec(�z, τ)|D(τ, c)

≥
∑
i≤i�

2i
∑

(τ,c)∈Si

D(τ, c)

≥
∑
i≤i�

2i
(∑

(τ,c)∈Si

wc(τ)− 1
)

=
1

2

∑
i≤i�

∑
(τ,c)∈Si

2i+1wc(τ)−
∑
i≤i�

2i .

It follows that∑
(τ,c)∈S

|Ec(�z, τ)|D(τ, c)

≥ 1

2

∑
i≤i�

∑
(τ,c)∈Si

|Ec(�z, τ)|wc(τ)− 2i�+1

≥ β

2

∑
i≤i�

∑
(τ,c)∈Si

|Ec(�z, τ)|tyc(τ)− 2(|E(�z, t)| − b) .

(10)

Then

β

2

∑
L\Si�

|Ec(�z, τ)|tyc(τ) ≤
1

2

∑
(τ,c)∈L

|Ec(�z, τ)|twc(τ)

≤ (|E(�z, t)| − b)
∑

(τ,c)∈L
zc(τ)

≤ (λ+ 1)(|E(�z, t)| − b)

where the last step uses
∑

(τ,c)∈L wc(τ) ≤ λ + 1. Adding

the inequality 0 ≥ β
2

∑
L\Si�

|Ec(�z, τ)|tyc(τ) − (λ +

1)(|E(�z, t)| − b) to Equation 10 we obtain∑
(τ,c)∈S

|Ec(�z, τ)|D(τ, c)

≥ β

2

∑
(τ,c)∈S

|Ec(�z, τ)|tyc(τ)− (λ+ 3)(|E(�z, t)| − b)

≥ 12(|E(�z, t)| − b) ,

where the last inequality holds for large enough β, and uses

the fact that the primal constraint for α(�z, t) is fulfilled and

either δc(t) = 0 or |Ec(�z, t)|t = 0.

56

It remains to show how to update the distribution in an

online manner so that the block operation strategies fulfill

conditions 1, 2, 3, and 4.
Instead of constructing μ directly we will first construct

distributions μ1, μ2, μ3. A random buffer management strat-

egy according to μ is then chosen by sampling strategies

μ1 ∼ D1, μ2 ∼ D2, μ3 ∼ D3 and computing the strategy

D by setting D(τ, c) := max{D1(τ, c), D2(τ, c), D3(τ, c)}.

Any strategy, whether in the support of μ1, μ2, or

μ3 fulfills ∀c, ∀Si

∑
(τ,c)∈Si∩Sc D(τ, c) ≤ 3. Then it is

clear that the strategy D = max{D1, D2, D3} fulfills

∀c, ∀Si

∑
(τ,c)∈Si∩Sc D(τ, c) ≤ 3 (Condition 4).

In addition strategies in the support of μ1 fulfill Condi-

tion 1, strategies from μ2 fulfill Condition 2, and strategies

from μ3 fulfill Condition 3. Hence, D will fulfill all these

conditions and consequently D will obey buffer-constraints.
Maintaining μ1, μ2, and μ3.: In the following we

describe how to update μ1, μ2, and μ3, and make sure

that the strategies in their support fulfill their respective

conditions. The distributions μ1 and μ2 will always fulfill∑
D μi(D) ·D(τ, c) = wc(τ), i.e., the expected number of

times the color c is removed at time τ by a random strategy

D is equal to the scaled LP-variable wc(τ) (recall that we

allow a strategy to remove a color several times in the same

step). It would be difficult to maintain the above property

without allowing changes in the past. Therefore, we will

allow a strategy at time t to alter its past behavior and to

increase or decrease D(τ, c) for τ < t (such a change may

incur a cost, of course). In reality, decreasing a D(τ, c)-value

only makes fulfilling buffer-constraints more difficult, so

allowing this does not give additional power to the algorithm.

Similarly, increasing a D(τ, c)-value with τ < t is never

better than increasing D(t, c) instead, since we only care

about the buffer-constraint at t as the others have already

been met.
There are two types of changes that require updating the

distributions. Firstly, the wc(τ)-values may increase. We will

assume that these changes are infinitesimal, i.e., in each step

we have to react to an increase of a wc(τ)-value from wc(τ)
to wc(τ) + ε.

The other type of change is a change to the vector z.

When z is recomputed because otherwise the primal α(�z, t)
constraint is not proper anymore, we set, for each color c
for which one of the conditions is violated, zc to the largest

possible value (less or equal to t) such that
∑

zc≤τ≤t(yc(τ)+
δc(τ)) ≥ 1/β. The above procedure guarantees that the

following properties always hold

•
∑

(τ,c):zc<τ≤t wc(τ) < 3. A primal α(�z, t) constraint

is only proper if
∑

(τ,c):zc<τ≤t wτ (c) ≤ 2. Procedure 1

from Section III-A, increases w-values by at most

β/log3 b within a single step. For large enough b this

means that the above sum never exceeds 3.

•
∑

zc≤τ≤t wc(τ) ≥ 1 In the end we want that every

strategy D from μ has every color removed at least once

within the range {zc, . . . , t}. Therefore this property is

important.

Whenever z changes
∑

(τ,c):zc<τ≤t wc(τ) decreases by at

least 1. Therefore a fixed pair (τ, c) is only involved in at

most 3 different α(�z, t) constraints.

For increasing wc(τ)-values we show that an increase in

ε results in an expected cost of O(ε) for the maintenance

operation. We also implement a maintenance operation with

O(ε) expected cost when a wc(τ)-value decreases. With this

decrement operation we implement a change of the vector z
as follows.

Suppose we want to change the c-th coordinate of z from

zc to z′c. This may make all conditions that depend on the

values |Ec(�z, τ)| invalid. We decrement all wc(τ)-values

with τ ∈ {z′c +1, . . . , t} to 0. Then we change zc to z′c, and

after that we increase the wc(τ)-values again. The cost for

this is O(wc(τ)) for every (τ, c)-pair involved. Since each

(τ, c)-pair is only involved in a constant number of these

decrement operations we obtain that the total cost for the

change is only O(
∑

τ,c wc(τ)) = O(
∑

t,c yc(t)), provided

that we can implement the increase and decrease operations

as claimed.

Maintaining μ1.: For maintaining μ1 we do not require

a decrement operation as Condition 1 does not depend

on |Ec(�z, τ)|-values. Suppose that wc(τ) increases by ε.

Then we first identify an ε-measure of strategies that

have the smallest value of argmaxτ ′{D(τ ′, c) > 0}, i.e.,

strategies that did not remove color c for a long time.

For these strategies we set D(τ, c) = 1. This means

that the strategies evict color c in a round-robin fashion.

Since
∑

(τ,c)∈Sc

∑
D μ(D)D(τ, c) =

∑
(τ,c)∈Sc wτ (c) ≥ 1,

Condition 1 follows.

Maintaining μ2.: We maintain a strengthening of

Condition 2, namely that for all Si⌊∑
(τ,c)∈Si

wc(τ)
⌋
≤

∑
(τ,c)∈Si

D(τ, c)

≤
⌈∑

(τ,c)∈Si

wc(τ)
⌉

.
(11)

Suppose that the wc̄(τ̄) value for some pair (τ̄ , c̄) is increased

by ε and assume that (τ̄ , c̄) ∈ Si. As we want to satisfy∑
D μ1(D)D(τ̄ , c̄) = wc̄(τ̄) we have to increase D(τ̄ , c̄) for

some strategies. For this we choose an ε-fraction of strategies

that have
∑

(τ,c)∈Sc∩Si
D(τ, c) ≤ 2 (these must exist

for small enough ε as
∑

D

∑
(τ,c)∈Sc∩Si

D(τ, c)μ1(D) =∑
(τ,c)∈Sc∩Si

wc(τ) ≤
∑

(τ,c)∈Sc wc(τ) < 3). We increase

the value of D(τ, c) for the chosen strategies.

Now the constraint in Equation 11 may be violated for

class Si. Let a = �∑(τ,c)∈Si
wc(τ)� (before changing wc(τ))

and first assume that �∑(τ,c)∈Si
wc(τ)� remains equal to a.

Then the strategies that just have been changed may now

have
∑

(τ,c)∈Si
D(τ, c) = a+ 2, which is not allowed.

We match these strategies to strategies that have∑
(τ,c)∈Si

D(τ, c) = a. For each strategy D there must exist

57

a (τ, c) such that D(τ, c) > D′(τ, c), where D′ denotes the

strategy that D is matched to. We decrease D(τ, c) by 1 and

increase D′(τ, c) by 1. This only induces an expected cost

of O(ε). The case in which �∑(τ,c)∈Si
wc(τ)� changes is

analogous.

Also the decrement operation can be implemented this way.

When wc(τ) decreases we select an ε-measure of strategies

that fulfill D(τ, c) > 0 and decrease D(τ, c) for them. Then

we do a re-balancing step.

Maintaining μ3.: Here we maintain a strengthened

version of Condition 3. Let (τ1, c1), (τ2, c2), . . . denote the

sequence of (τ, c)-pairs from S, in decreasing order of

|Ec(�z, τ)|. Let (τr, cr) denote the first pair in this sequence

that is not in L (note that this may not exist; then we define

r as |S|+ 1 since L = S). Define a function � on the (τ, c)-
pairs that is zero for all (τi, ci), i > r; one for all (τi, ci),
i < r and wcr − (

∑r
i=1 wci(τi) − (λ + 1))/wcr (τr) for

(τr, cr). For all (τi, ci), i �= r � simply is the characteristic

function of the set L; only for r it measures the fraction

by which (τr, cr) needs to be included into L in order that

the wc(τ)-values in L sum up to exactly (1 + λ) (recall that

during the construction of L we were aiming for it to contain

a total w-weight of λ+ 1. When we overshoot we remove

the last element).

We maintain the constraint that⌊∑
(τ,c)∈S wc(τ)�(τ, c)

⌋
≤

∑
(τ,c)∈L D(τ, c)

≤
⌈∑

(τ,c)∈S wc(τ)�(τ, c)
⌉

,

which is a strengthening of Condition 3. In addition we

maintain
∑

D D(τ, c)μ3(D) = wc(τ)�(τ, c).
Suppose that a wc(τ)-value increases and that (τ, c) ∈ L

(otherwise we don’t need to do anything; observe that if wcr

is increased or decreased by ε the value of wcr (τr)�(τr, cr)
stays constant). We increase D(τ, c) for an ε-measure of

strategies that have D(τ, c) < 3. In addition we decrease

D(τr, cr) for an ε-measure of strategies (only if r is defined,

i.e., if L �= S).

Now, there may be an ε-fraction of strategies that has a

value of
∑

(τ,c)∈L D(τ, c) that is too large by 1, and there

may exist an ε-measure of strategies for which this value

is by one too low. As before we can perform re-balancing

steps in order to fix this at an expected cost of O(ε).
2) Analyzing the Cost of the Base Procedure: We start

by showing that the dual constraints yc(τ) are not violated

too much when using variables α1(�v, t).

Lemma 28. For every c and τ ,
∑

�v,t′≥τ |Ec(�v, τ)|t′ ·
α1(�v, t

′) = O(log log b).

Proof: Let χc(τ) =
∑

�v,t′≥τ |Ec(�v, τ)|t′ · α1(�v, t
′)− 1

denote the amount by which the dual constraint yc(τ) is

violated. χc(τ) can increase if some dual variable α1(�z, t)
is increased. However, note that this only causes an increase

of χc(τ) if zc < τ ≤ t. Further note that our procedure

only increases α1(�z, t) if the corresponding primal constraint

is proper, which implies
∑

zc<τ≤t yc(τ) < 2/β. Therefore,

once
∑

τ<i≤t yc(i) ≥ 2/β, χc(τ) does not increase any

further. In the following we analyze how large χc(τ) can

become before
∑

τ<i≤t yc(i) ≥ 2/β. We have the following

claim.

Claim 29. A violated dual constraint yc(τ) fulfills∑
τ<i≤t yc(i) ≥ eχc(τ)/ log3 b.

Proof: When the dual constraint yc(τ) becomes tight

(i.e., χc(τ) = 0) in some step t, our procedure sets yc(t) to

at least 1/ log3 b. Therefore, at this point∑
τ<i≤t

yc(i) ≥ eχc(τ)/ log3 b (12)

as required.

In later time steps, an increase of dual variable α1(�z, t
′)

by dα increases the violation χc(τ) by |Ec(�z, τ)|t′ ·dα. This

means that the right hand side of Equation 12 increases by

eχc(τ)

log3 b
· |Ec(�z, τ)|t′ · dα .

However, at the same time
∑

τ<i≤t′ yc(i) increases by at

least∑
τ<i≤t

yc(i) · |Ec(�z, τ)|t · dα ≥ eχc(τ)

log3 b
· |Ec(�z, τ)|t′ · dα

The previous claim implies that the violation of a dual con-

straint can grow to at most O(log log b) before
∑

τ<i≤t′ yc(i)
becomes 2/β after which the violation does not increase any

further.

Our next goal is to derive a bound on the total amount by

which y-variables are increased in the base procedure. Recall

that ŷ is defined in Procedure 1 and is either 0 or 1/ log3 b.
The following two technical lemmas will be useful.

Lemma 30. If α1(�v, t) > 0, then
∑

c

∑
τ≤t |Ec(�v, τ)|t ·

ŷc(τ) ≤ |E(�v, t)| − b′.

Proof: Fix a color c. We partition the time steps

τ ∈ {vc + 1, . . . , t} into classes according to the value of

|Ec(�v, τ)|. For j ≥ 0, the class Tc,j contains the time steps

for which |Ec(�v, τ)| ∈ [2j , 2j+1).

Claim 31. A class Tc,j includes at most O(log log b) time
steps τ for which ŷc(τ) > 0.

Proof: Since α1(�v, t) > 0 the primal constraint α1(�v, t)
was proper and violated at time t.

Fix a class Tc,j and let τ1, τ2, . . . denote its time steps

that have ŷc(τi) > 0 in increasing order. Define L(τ) :=∑
�v,t′≥τ |Ec(�v, τ)|t′ ·α(�v, t′) to be the load of τ (the left hand

side of the constraint yc(τ) in the dual). Note that for τ ∈ Tc,j

with τ ≥ τ1, an increase of L(τ) by |Ec(�v, τ)|t ·α(�v, t) also

results in an increase of L(τ1) by |Ec(�v, τ1)|t ·α(�v, t) which

58

is the same up to a factor of 2 as τ1 and τi are in the same

class. In order for ŷc(τi) to be set to a positive value, some

L(τ) for τi−1 < τ ≤ τi has to have increased to 1 (as

a constraint needs to be tight). Hence, for every τi with

ŷc(τi) > 0, the load L(τ1) will increase by at least 1/2. But

due to Lemma 28, the load L(τ1) is at most O(log log b).
Let nc,j denote the number of time steps τ in class Tc,j

that have ŷc(τ) > 0. Then we have∑
c

∑
τ≤t

|Ec(�v, τ)|t · ŷc(τ) ≤
∑
c

∑
j>0

2j+1 nc,j

log3 b

≤
∑
c

O(log log b) · |Ec(�v, t)|
log3 b

≤ |E(�v, t)|
log b

≤ |E(�v, t)| − b′ .

Lemma 32. If ŷc(τ) > 0, then
∑

�v,t≥τ |Ec(�v, τ)|t ·
α1(�v, t) ≥ 1.

Proof: ŷc(τ) is only set to a non-zero value if the dual

constraint yc(τ) is tight. Because α1-variables are never

decreased, once the constraint is tight it can only remain

tight or become violated.

We are now ready to derive our desired bound on∑
c,t dyc(t).

Lemma 33.
∑

c,t dyc(t) ≤ 2
∑

�v,t α1(�v, t)
(
|E(�v, t)| − b′

)
Proof:

∑
c,t dyc(t) consists of two components:∑

c,t ŷc(t) and
∑

c,t maxτ :zc<τ≤t Δ(τ, c). We bound both

components separately.

Using Lemmas 30 and 32, we get∑
τ,c

ŷc(τ) ≤
∑
τ,c

ŷc(τ) ·
∑
�v,t≥τ

|Ec(�v, τ)|t · α1(�v, t)

≤
∑
�v,t

α1(�v, t)
∑
c

∑
τ≤t

|Ec(�v, τ)|tŷc(τ)

≤
∑
�v,t

α1(�v, t)
(
|E(�v, t)| − b′

)
.

For the second component, we have, for a time step t,∑
c

max
τ :zc<τ≤t

∑
τ≤i≤t

yc(i) · |Ec(�z, τ)|tdα

≤
∑
c

∑
τ≤t

yc(τ) · |Ec(�z, τ)|tdα

≤
∑
c

∑
τ≤t

yc(τ) · |Ec(�z, τ)|tα1(�z, t) ,

where the last step follows because α(�z, t) is increased by

dα. Because the primal α(�z, t) constraint is violated, this

is at most (|E(�z, t)| − b′)dα1(�z, t). Summing over all time

steps t gives the desired bound.

59

