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Abstract—Let A be a symmetric random matrix with
independent and identically distributed Gaussian entries
above the diagonal. We consider the problem of maxi-
mizing the quadratic form associated to A over binary
vectors. In the language of statistical physics, this amounts
to finding the ground state of the Sherrington-Kirkpatrick
model of spin glasses. The asymptotic value of this
optimization problem was characterized by Parisi via a
celebrated variational principle, subsequently proved by
Talagrand. We give an algorithm that, for any ε > 0,
outputs a feasible solution whose value is at least (1− ε)
of the optimum, with probability converging to one as
the dimension n of the matrix diverges. The algorithm’s
time complexity is of order n2. It is a message-passing
algorithm, but the specific structure of its update rules is
new.

As a side result, we prove that, at (low) non-zero tem-
perature, the algorithm constructs approximate solutions
of the Thouless-Anderson-Palmer equations.

Keywords-Sherrington-Kirkpatrick; spin glasses; replica
symmetry breaking; message passing algorithms

I. INTRODUCTION AND MAIN RESULT

Let A ∈ R
n×n be a random matrix from the

GOE(n) ensemble. Namely, A = AT and (Aij)i≤j≤n

is a collection of independent random variables with

Aii ∼ N(0, 2/n) and Aij = N(0, 1/n) for i < j. We

are concerned with the following optimization problem

(here 〈u,v〉 = ∑i≤n uivi is the standard scalar prod-

uct)

maximize 〈σ,Aσ〉 ,
subject to σ ∈ {+1,−1}n . (1)

From a worst-case perspective, this problem is NP-hard

and indeed hard to approximate within a sublogarithmic

factor [3]. For random data A, the energy function

Hn(σ) = 〈σ,Aσ〉/2 is also known as the Sherrington-

Kirkpatrick model [41]. Its properties have been in-

tensely studied in statistical physics and probability

theory for over 40 years as a prototypical example of

complex energy landscape and a mean field model for

spin glasses [28], [45], [37]. Generalizations of this

model have been used to understand structural glasses,

random combinatorial problems, neural networks, and

a number of other systems [19], [29], [48], [33], [27].

In this paper we consider the computational prob-

lem of finding a vector σ∗ ∈ {+1,−1}n that is a

near optimum, namely such that Hn(σ∗) ≥ (1 −
ε)maxσ∈{+1,−1}n Hn(σ). Under a widely believed as-

sumption about the structure of the associated Gibbs

measure (more precisely, on the support of the asymp-

totic overlap distribution) we prove that, for any ε > 0
there exists an algorithm with complexity O(n2) that

–with high probability– outputs such a vector.

In order to state our assumption, we need to take a

detour and introduce Parisi’s variational formula for the

value of the optimization problem (1). Let P([0, 1]) be

the space of probability measures on the interval [0, 1]
endowed with the topology of weak convergence. For

μ ∈ P([0, 1]), we will write (with a slight abuse of

notation) μ(t) = μ([0, t]) for its distribution function.

For β ∈ R≥0, consider the following parabolic partial

differential equation (PDE) on (t, x) ∈ [0, 1]× R

∂tΦ(t, x) +
1

2
β2∂xxΦ(t, x) +

1

2
β2μ(t)

(
∂xΦ(t, x)

)2
= 0 ,

Φ(1, x) = log 2 coshx .
(2)

It is understood that this is to be solved backward in

time with the given final condition at t = 1. Existence

and uniqueness where proved in [23]. We will also write

Φμ to emphasize the dependence of the solution on the

measure μ. The Parisi functional is then defined as

Pβ(μ) ≡ Φμ(0, 0)− 1

2
β2

∫ 1

0

t μ(t) dt . (3)

The relation between this functional and the origi-

nal optimization problem is given by a remarkable

variational principle, first proposed by Parisi [38] and

established rigorously, more than twenty-five years later,

by Talagrand [44], and Panchenko [36].

Theorem 1 (Talagrand [44]). Consider the partition
function Zn(β) =

∑
σ∈{+1,−1}n exp{βHn(σ)}. Then
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we have, almost surely (and in L1)

lim
n→∞

1

n
logZn(β) = min

μ∈P([0,1])
Pβ(μ) . (4)

The following consequence for the optimization prob-

lem (1) is elementary, see e.g. [17].

Corollary I.1. We have, almost surely

lim
n→∞

1

2n
max

σ∈{+1,−1}n
〈σ,Aσ〉 = lim

β→∞
1

β
min

μ∈P([0,1])
Pβ(μ) .

(5)

Remark I.1. The limit β →∞ on the right-hand side

of Eq. (5) can be removed by defining a new variational

principle directly ‘at β = ∞’. Namely, the right-hand

side of Eq. (5) can be replaced by minγ P̂(γ) where P̂
is a modification of P and the minimum is taked over

a suitable functional space [5]. In this paper we use the

β < ∞ formulation, but it should be possible to work

directly at β = ∞: we defer such extensions to future

work.

We also note that while we stated Theorem 1 and

Corollary I.1 for simplicity in the case of A ∼ GOE(n),
these results holds more generally for symmetric ma-

trices A with independent entries above the diagonal,

provided E{Aij} = 0, E{A2
ij} = 1/n and E{|Aij |3} ≤

C/n3/2 [12]. (Indeed even weaker conditions are suffi-

cient [17].

Existence and uniqueness of the minimizer of Pβ( · )
were proved in [4] and [23], which also proved that μ �→
Pβ(μ) is strongly convex. We will denote by μβ the

unique minimizer, and refer to it as the ‘Parisi measure’

or ‘overlap distribution’ at inverse temperature β. Our

key assumption will be that –at large enough β– the

support of μβ is an interval [0, q∗(β)].

Assumption 1 (No overlap gap). There exist β0 < ∞
such that, for any β > β0, the function t �→ μβ([0, t])
is strictly increasing on [0, q∗], where q∗ = q∗(β) and
μβ([0, q∗]) = 1.

This assumption is sometimes referred to as ‘contin-

uous replica symmetry breaking’ or ‘full replica sym-

metry breaking’ and is widely believed to be true (with

β0 = 1) within statistical physics [28]. In particular,

this conjecture is supported by high precision numerical

solutions of the variational problem for Pβ[15], [35],

[40]. Rigorous evidence was recently obtained in [6].

Addressing this conjecture goes beyond the scope of

the present paper.

Let us emphasize that the expression ‘no overlap

gap’ captures the content of this assumption better

than ‘continuous’ or ‘full replica symmetry breaking.’

Indeed, the latter are generally used whenever the

support of the probability measure μβ , supp(μβ), has

infinite cardinality. In contrast, here we are requiring the

stronger condition supp(μβ) = [0, q∗] (which implies

q∗ > 0 for all β > 1 [46]).

We are now in position to state our main result.

Theorem 2. Under Assumption 1, for any ε > 0 there
exists an algorithm that takes as input the matrix A ∈
R

n×n, and outputs σ∗ = σ∗(A) ∈ {+1,−1}n, such
that the following hold:

(i) The complexity (floating point operations) of the
algorithm is at most C(ε)n2.

(ii) We have 〈σ∗,Aσ∗〉 ≥ (1 −
ε)maxσ∈{+1,−1}n〈σ,Aσ〉, with high probability
(with respect to A ∼ GOE(n)).

The same result holds when A = A(n) is symmetric
with Aii = 0 and (Aij)1≤i<j≤n a collection of in-
dependent random variables, satisfying: E{Aij} = 0,
E{A2

ij} = 1/n and E{exp(λAij)} ≤ exp(C∗λ2/2n)
for some constant C∗ and all i < j ≤ n (in words,
entries are subgaussian with common subgaussian pa-
rameter C∗/n).

In other words, on average, the optimization problem

(1) is much easier than in worst case. Of course, this is

far from being the only example of this phenomenon (a

gap between worst case and average case complexity).

However, it is a rather surprising example given the

complexity of the energy landscape Hn(σ). Its proof

uses in a crucial way a fine property of the associated

Gibbs measure, namely the support overlap distribution.

Remark I.2 (Computation model). For the sake of

simplicity, we measure complexity in floating point

operations. However, all operations in our algorithm

appear to be stable and it should be possible to translate

this result to weaker computation models.

We also assume that we can choose one value of the

inverse temperature β, and query the distribution μβ(t)
and the PDE solution Φ(t, x) as well as its derivatives

∂xΦ(t, x), ∂xxΦ(t, x) at specified points (t, x), with

each query costing O(1) operations.

This is a reasonable model for two reasons: (i) The

PDE (2) is independent of the instance, and can be

solved to a desired degree of accuracy only once. This

solution can be used every time a new instance of the

problem is presented. (ii) The function μ �→ Pβ(μ) is

uniformly continuous [22] and strongly convex [4], [23].

Further the PDE solution Φ is continuous in μ and can
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be characterized as fixed point of a certain contraction

[23]. Because of these reasons we expect that an oracle

to compute Φ(t, x), ∂xΦ(t, x), ∂xxΦ(t, x) to accuracy η
can be implemented efficiently. We defer to future work

a more detailed study of the complexity of this oracle.

Beyond Theorem 2, our general analysis allows us to

prove an additional fact that is of independent interest.

Namely, for any β > β0, our message passing iteration

constructs an approximate solution of the celebrated

Thouless, Anderson, Palmer (TAP) equations [28], [45].

In order to avoid inessential technical complications,

the bulk of this paper is devoted to proving Theorem

2 for the case of Gaussian matrices A, However, the

class of algorithms we use enjoys certain universality

properties, first established in [7]. These properties

can be used to establish the last part of Theorem 2

which addresses the case of symmetric matrices with

independent subgaussian entries. Section V contains

such generalization.

As a special case of random matrices A with indepen-

dent subgaussian entries, we can consider (centered) ad-

jacency matrices of dense Erdös-Renyi random graphs.

As a consequence of Theorem 2 we obtain an algorithm

to approximate the MAXCUT of such a graph.

Let Gn = ([n], En) ∼ G(n, p) be an Erdös-Renyi

random graph with edge probability P
{
(i, j) ∈ En

}
=

p = Ω(1). A random balanced partition of the ver-

tices (which we encode as a vector σ ∈ {+1,−1}n)

achieves a cut CUTG(σ) = |En|/2+O(n) = n2p/4+
O(n), and simple concentration argument implies that

the MAXCUT has size maxσ∈{+1,−1} CUTG(σ) =
|En|/2 + O(n3/2p1/2). In fact, it follows from [17]

that1 maxσ∈{+1,−1}n CUTG(σ) = |En|/2 + (n3p(1 −
p)/2)1/2P∗ + o(n3/2), where P∗ is the prediction of

Parisi’s formula (i.e. the right-hand side of ((4))). In

other words, MAXCUT on dense Erdös-Renyi random

graphs is non-trivial only once we subtract the baseline

value |En|/2. Once this baseline is subtracted, the

problem lies in the universality class of the Sherrington-

Kirkpatrick model. As a corollary of Theorem 2 we can

approximate this subtracted value arbitrarily well.

Corollary I.2. Under Assumption 1, for any ε > 0 there
exists an algorithm (with complexity at most C(ε)n2),
that takes as input an Erdös-Renyi random graph Gn =
([n], En) ∼ G(n, p) (with p bounded away from 0 and
1 as n→∞), and outputs σ∗ = σ∗(G) ∈ {+1,−1}n,

1In [17], the same result is shown to hold for sparser graphs, as
long as the average degree diverges: npn → ∞.

such that(
CUTG(σ∗)− |En|

2

)
≥

(1− ε) max
σ∈{+1,−1}n

(
CUTG(σ∗)− |En|

2

)
.

The rest of this section provides further background.

In Section II we describe and analyze a general mes-

sage passing algorithm, which we call incremental ap-
proximate message passing (IAMP). We believe this

algorithm is of independent interest and can be applied

beyond the Sherrington-Kirkpatrick model. In Section

III we use this approach to prove Theorem 2. In Section

IV we show that the same message passing algorithm of

Section II produces approximate solutions of the TAP

equations. Finally, Section V discusses a generalization

of Theorem 2 using universality. The impatient reader,

who is interested in a succinct description of the algo-

rithm (with some technical bells and whistles removed),

is urged to read Appendix A.

A. Further background

As mentioned above –under suitable complexity the-

ory assumptions– there is no polynomial-time algorithm

that approximates the quadratic program (1) better than

within a factor O((log n)c), for some c > 0 [3]. Little

is known on average-case hardness, when A is drawn

from one of the random matrix distributions considered

here. As an exception, Gamarnik [20] proved that exact

computation of the partition function Zn(β) is hard on

average.

A natural approach to the quadratic program (1)

would be to use a convex relaxation. A spectral re-

laxation yields maxσ∈{+1,−1}Hn(σ)/n ≤ λ1(A)/2 =
1+on(1), and hence is not tight for large n. This can be

compared to a numerical evaluation of Parisi’s formula

which yields P∗ ≈ 0.763166 [15], [39]. Rounding the

spectral solution yields a Hn(σsp) = 2/π + on(1) ≈
0.636619. Somewhat surprisingly, the simplest semidef-

inite programming relaxation (degree 2 of the sum-of-

squares hierarchy), does not yield any improvement (for

large n) over the spectral one [32]. After a preprint of

this paper was posted, [26] proved that the degree 4
sum-of-squares relaxation has asymptotically the same

value as well. Theorem 2 was conjectured by the author

in 2016 [31], based on insights from statistical physics

[16], [11]. The same presentation also outlined the

basic strategy followed in the present paper, which

uses an iterative ‘approximate message passing’ (AMP)

algorithm. This type of algorithms were first proposed in

the context of signal processing and compressed sensing
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[25], [18]. Their rigorous analysis was developed by

Bolthausen [10] and subsequently generalized in several

papers [8], [24], [7], [9]. In this paper we introduce a

specific class of AMP algorithms (‘incremental AMP’)

whose specific properties allow us to match the result

predicted by Parisi’s formula.

The fundamental phenomenon studied here is ex-

pected to be quite general. Namely objective functions

with overlap distribution having support of the form

[0, q∗] are expected to be easy to optimize. In contrast,

if the support has a gap (for instance, has the form

[0, q1] ∪ [q2, q∗] for some q1 < q2), this is considered

as an indication of average case hardness. This intu-

ition originates within spin glass theory [28]. Roughly

speaking, the structure of the overlap distribution should

reflect the connectivity properties of the level sets

Ln(ε) ≡ {σ : Hn(σ) ≥ (1− ε)maxσ′ Hn(σ
′)}. This

intuition was exploited in some cases to prove the failure

of certain classes of algorithms in problems with a gap

in the overlap distribution, see e.g. [21].

Important progress towards clarifying this connection

was achieved recently in two remarkable papers [1],

[42].

Addario-Berry and Maillard [1] study an abstract op-

timization problem that is thought to capture some key

features of the the energy landscape of the Sherrington-

Kirkpatrick model, the so-called ‘continuous random

energy model.’ They prove that an approximate opti-

mum can be found in time polynomial in the problem

dimensions. From an optimization perspective, the ran-

dom energy model is somewhat un-natural, in that spec-

ifying an instance requires memory that is exponential

in the problem dimensions.

Subag [42] considers the p-spin spherical spin glass.

Roughly speaking, this can be described as the problem

of optimizing a random smooth function (which can

be taken to be a low-degree polynomial) over the

unit sphere. Subag relaxes this problem by extending

the optimization over the unit ball, and proves that

this objective function can be optimized efficiently by

following the positive directions of the Hessian. The

solution thus constructed lies on the unit sphere and

thus solves the un-relaxed problem. The mathematical

insight of [42] is beautifully simple, but uses in a crucial

way the spherical geometry. While it might be possible

to generalize the same argument to the hypercube case

(e.g., using the generalized TAP free energy of [30],

[14]) this extension is far from obvious. In particular,

uniform control of the Hessian is not as straightforward

as in [42].

The algorithm presented here is partially inspired by

[42] (in particular, a key role is played by approximate

orthogonality of the updates), but its specific structure

is dictated by the message passing viewpoint. Thanks

to the technique of [10], [8], [24], [9], its analysis does

not require uniform control and is relatively simple.

B. Notations

Given vectors x,y ∈ R
n, we denote by 〈x,y〉 their

scalar product and by ‖x‖ ≡ 〈x,x〉1/2 the associated

	2 norm. Given a function f : R
k → R, and k

vectors x1, . . . ,xk ∈ R
n we write f(x1, . . . ,xk) for

the vector in R
n with components f(x1, . . . ,xk)i =

f(x1,i, . . . , xk,i). The empirical distribution of the co-

ordinates of a vector of vectors (x1, . . . ,xk) ∈ (Rn)k

is the probability measure on R
k defined by

p̂x1,...,xk
≡ 1

n

n∑
i=1

δ(x1,i,...,xk,i) .

In other words, if we arrange the vectors x1, . . . ,xk in a

matrix in X = [x1, . . . ,xk] ∈ R
n×k, p̂x1,...,xk

denotes

the probability distribution of a uniformly random row

of X . In the case of a single vector x ∈ R
n (i.e. for k =

1), this reduces to the standard empirical distribution of

the entries of x. We say that a function f : Rd → R

is pseudo-Lipschitz if |f(x) − f(y)| ≤ C(1 + ‖x‖ +
‖y‖)‖x− y‖.

Given two probability measures μ, ν on R
d, we recall

that their Wasserstein W2 distance is defined as

W2(μ, ν) ≡
{

inf
γ∈C(μ,ν)

∫
‖x− y‖2γ(dx, dy)

}1/2

,

where the infimum is taken over all the couplings of μ
and ν (i.e. joint distributions on R

d × R
d whose first

marginal coincides with μ, and second with ν. For a

sequence of probability measures (μn)n≥1, and μ on

R
d, we say that μn converges in Wasserstein distance

to μ (and write μn
W2−→ μ) if limn→∞W2(μn, μ) =

0. It is well known that μn
W2−→ μ if and only

if limn→∞
∫
ψ(x)μn(dx) =

∫
ψ(x)μ(dx) for all

bounded Lipschitz functions ψ, and for ψ(x) = ‖x‖2
[47, Theorem 6.9]. Given a sequence of random vari-

ables Xn, we write Xn
p−→ X∞ or p-limn→∞Xn =

X∞ to state that Xn converge in probability to X∞.

We will sometimes be interested in double limits of

sequences of random variables. If Xn,M is a sequence

indexed by n,M and x∗ is a constant,

lim
M→∞

p-lim
n→∞

Xn,M = x∗ ,
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whenever Xn,M converges in probability to a non-

random quantity xM as n → ∞, and limM→∞ xM =
x∗.

II. A GENERAL MESSAGE PASSING ALGORITHM

Our algorithm is based on the following approximate

message passing (AMP) iteration.

AMP iteration. Consider a sequence of (weakly dif-

ferentiable) functions fk : R
k+2 → R, and a non-

random initialization u0 ∈ R
n and additional vector

y ∈ R
n with p̂u0,y

W2−→ pU0,Y (where pU0,Y is

any probability distribution on R
2 with finite second

moment
∫
(u20 + y2)pU0,Y (du0, dy) < ∞). The AMP

iteration is defined by letting, for k ≥ 0,

uk+1 = A fk(u
0, . . . ,uk;y)

−
k∑

j=1

bk,jfj−1(u
0, . . . ,uj−1;y) ,

bk,j =
1

n

n∑
i=1

∂fk

∂uji
(u0i , . . . , u

k
i ; yi) .

(6)

It will be understood throughout that fj = 0 for j < 0.

Proposition II.1. Consider the AMP iteration (6), and
assume fk : R

k+2 → R to be Lipschitz continuous.
Then for any k ∈ N, and any pseudo-Lipschitz function
ψ : Rk+2 → R, we have

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i ; yi)

p−→ Eψ(U0, . . . , Uk;Y ) . (7)

Here (Uj)j≥1 is a centered Gaussian process inde-
pendent of (U0, Y ) with covariance Q̂ = (Q̂kj)k,j≥1

determined recursively via

Q̂k+1,j+1 = E
{
fk(U0, . . . , Uk;Y )fj(U0, . . . , Uj ;Y )

}
.

(8)

This proposition follows immediately from the gen-

eral analysis of AMP algorithms developed in [24], [9],

cf. Appendix A.

We next consider a special case of the general AMP

setting.

Incremental AMP (IAMP). Fix δ,M > 0, and func-

tions ĝk : R → R, k ∈ N, s, v : R × R≥0 → R. We

consider the general iteration (6), with the following

choice of functions fk (independent of y):

fk(u0, . . ., uk) = ĝk (xk−1) · [uk]M , (9)

xk = xk−1 + v(xk−1, kδ) δ+ (10)

+ s(xk−1, kδ) [uk]M
√
δ , x0 = 1 ,

where, for u ∈ R, [u]M = max(−M,min(u,M)).
Following our convention for fj , we set ĝj = 0 for

j < 0.

We note that, by Eq. (9), xk is indeed a function of

u0, . . . , uk, and therefore fk is a function of u0, . . . , uk
as stated.

Lemma II.2 (State evolution for Incremental AMP).
Consider the incremental AMP iteration, and assume
s, v : R × R≥0 → R to be Lipschitz continuous and
bounded, and ĝk : R → R to be Lipschitz continuous
and bounded for each k. Then for any k ∈ N, and any
pseudo-Lipschitz function ψ : Rk+2 → R, we have

lim
M→∞

p-lim
n→∞

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i ) = Eψ(U δ

0 , . . . , U
δ
k ) .

(The double limit is to be interpreted as defined in the
Notations section.) Here (U δ

j )j≥1 is a centered Gaus-
sian process independent of U δ

0 = U0, with independent
entries, with variance Var(U δ

k ) = q̂k given recursively
by

q̂k+1 = E{ĝk(Xδ
k−1)

2} · q̂k ,
Xδ

k = Xδ
k−1 + v(Xδ

k−1; kδ) δ + s(Xk−1; kδ)U
δ
k

√
δ .

(11)

Proof: Consider Eqs. (9), (10), and note that,

for any k, xk−1 is a bounded Lipschitz function of

u0, . . . , uk−1 (because bounded Lipschitz functions are

closed under sum, product, and composition). Hence

fk defined in (9) is Lipschitz continuous and we can

therefore apply Proposition II.1 to get

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i )

p−→ Eψ(U δ,M
0 , . . . , U δ,M

k ) .

Here (Uδ,M
j )j≥1 is a Gaussian process with covariance

Q̂
M

determined by Eq. (8). We next claim the follow-

ing:

1) Q̂M
j,k = 0 for k �= j (and we set q̂Mk ≡ Q̂M

k,k).

2) q̂Mk → q̂k for each k as M →∞.

With these two claims, the statement of the lemma

follows by dominated convergence.

To prove claim 1 note that, by symmetry we only have

to consider the case j < k. The proof is by induction

over k. For k = 1 there is nothing to prove. Assume

next that the claim holds up to a certain k, and consider

Q̂M
j,k+1 for 1 ≤ j ≤ k. By Eq. (8) we have (dropping

for simplicity the superscripts δ,M from the random
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variables)

Q̂M
j,k+1 = E

{
ĝj−1(Xj−2)[Uj−1]M ĝk(Xk−1)[Uk]M

}
= E
{
ĝj−1(Xj−2)[Uj−1]M ĝk(Xk−1)

}
E
{
[Uk]M

}
= 0 .

Here the second equality follows from the induction

hypothesis.

To prove claim 2, note that q̂Mk satisfies the recursion

that follows from Eq. (8), namely

q̂Mk+1 = E{ĝk(Xδ,M
k−1)

2} · E{[U δ,M
k ]2M} ,

Xδ,M
k = Xδ,M

k−1 + v(Xδ,M
k−1 ; kδ) δ (12)

+ s(Xδ,M
k−1 ; kδ) [U

δ,M
k ]M

√
δ .

Also note that

|Xδ,M
k | ≤ Cδ,k

(
1 + |U0|k + |U δ,M

1 |k + · · ·+ |U δ,M
k |k) .

For some constants Cδ,k independent of M . This fol-

lows by induction over k using Eq. (12), and the

fact that s, v are Lipschitz continuous. Since ĝk is

Lipschitz continuous as well, we obtain |ĝk(Xδ,M
k−1)| ≤

Fk(U0, U
δ,M
1 , . . . , U δ,M

k−1) for some polynomial Fk in-

dependent of M . Hence the claim follows by applying

recursively dominated convergence.

Remark II.1. The use of truncation [uk]M in the

definition (9) is dictated by the need to ensure that fk
is Lipschitz, and to be able to apply Proposition II.1.

We believe that the conclusion of Proposition II.1 holds

under weaker assumptions (e.g. fk locally Lipschitz

with polynomial growth). Such a generalization would

allow to replace [uk]M by uk in Eq. (9), and hence get

rid of the parameter M in our algorithm.

We are now in position of defining our candidate for

a near optimum of the problem (1). We fix q > 0 and

define (recalling the definition of fk in Eqs. (9), (10))

z =
√
δ

	q/δ
∑
k=1

fk(u0, . . . ,uk) . (13)

Note that this vector depends on parameters δ,M, q, and

on the functions g, s, v. Parameters δ and M must be

taken (respectively) small enough and large enough (but

independent of n). The next section will be devoted to

choosing q and the functions g, s, v. In this section we

will establish some general properties of z (for small δ
and large M ).

Lemma II.3. Consider the incremental AMP iteration,
and assume g, s, v : R × R≥0 → R to be Lips-
chitz continuous and bounded. Further assume ∂xĝk(x),
∂xs(x, t), ∂xv(x, t) to exist and be Lipschitz continuous.

Define the random variable

Zδ ≡
√
δ

	q/δ
∑
k=1

ĝk(Xk−1)U
δ
k .

Then we have, for any pseudo-Lipschitz function ψ :
R→ R,

lim
M→∞

p-lim
n→∞

1

n

n∑
i=1

ψ(zi) = E{ψ(Zδ)} , (14)

lim
M→∞

p-lim
n→∞

1

2n
〈z,Az〉 = (15)

= δ

	q/δ
−1∑
k=1

E{(U δ
k )

2}E{ĝk(Xδ
k−1)}E{ĝk(Xδ

k−1)
2} .

Proof: Equation (14) follows immediately from

Lemma II.2 upon noticing that ψ(zi) is a pseudo-

Lipschitz function of u0,i, . . . , uk,i.

In order to prove Eq. (15), we will write fk =
fk(u0, . . . ,uk), and K = �q/δ�. We further notice that,

for j < k,

p-lim
n→∞

bk,j = p-lim
n→∞

1

n

n∑
i=1

∂g

∂uj
(xk−1

i ; kδ)[uki ]M

= E

{
∂g

∂uj
(Xδ,M

k−1 ; kδ)[U
δ,M
k ]M

}
= E

{
∂g

∂uj
(Xδ,M

k−1 ; kδ)

}
E

{
[U δ,M

k ]M

}
= 0 .

(16)

Here and below the random variables U δ,M
k , Xδ,M

k are

defined as in the proof of Lemma II.2. On the other

hand

p-lim
n→∞

bk,k = p-lim
n→∞

1

n

n∑
i=1

ĝk(x
k−1
i )1uk

i ∈[−M,M ]

= E{ĝk(Xδ,M
k−1)}P(U δ,M

k ∈ [−M,M ]) .

Note that we applied Lemma II.2 to a non-Lipschitz

function. The limit holds nevertheless by a standard

weak convergence argument (namely, using upper and

lower Lipschitz approximations of the indicator func-

tion). We therefore conclude that (using Uδ,M
k ∼ q̂Mk ,

q̂Mk → q̂k as M →∞):

lim
M→∞

p-lim
n→∞

bk,k = E{ĝk(Xδ
k−1)} . (17)

Next notice that, for j < k,

p-lim
n→∞

1

n
〈f j ,fk〉

= E
{
ĝj(X

M,δ
j−1 ) [U

M,δ
j ]M ĝk(X

M,δ
k−1) [U

M,δ
k ]M

}
= E
{
ĝj(X

M,δ
j−1 ) [U

M,δ
j ]M ĝk(X

M,δ
k−1)

}
E
{
[UM,δ

k ]M
}
= 0 .
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By a similar argument, always for j < k,

p-lim
n→∞

1

n
〈f j ,u

k〉 = 0 .

On the other hand

lim
M→∞

p-lim
n→∞

1

n
‖fk‖2

= lim
M→∞

E
{
ĝk(X

M,δ
k−1)

2 [UM,δ
k ]2M

}
= lim

M→∞
E
{
ĝk(X

M,δ
k−1)

2
}
E
{
[UM,δ

k ]2M
}

= E
{
ĝk(X

δ
k−1)

2
}
E
{
(U δ

k )
2
}
.

By the AMP iteration, we know that Afk = uk+1+∑k
�=1 bk,�f �−1. Hence, using the above limits, for j ≤

k,

lim
M→∞

p-lim
n→∞

1

n
〈f j ,Afk〉

= lim
M→∞

p-lim
n→∞

1

n
〈f j ,u

k+1〉

+

k∑
�=1

lim
M→∞

p-lim
n→∞

bk,�〈f j ,f �−1〉

= lim
M→∞

p-lim
n→∞

bk,k〈f j ,fk−1〉
= 1{k=j+1}E

{
ĝj(X

δ
j−1)

2
}
E
{
(U δ

j )
2
}
E{ĝj(Xδ

j−1)} .
We finally can compute

lim
M→∞

p-lim
n→∞

1

2n
〈z,Az〉

= δ

K∑
j=1

lim
M→∞

p-lim
n→∞

1

2n
〈f j ,Af j〉

+ δ
∑

1≤j<k≤K

lim
M→∞

p-lim
n→∞

1

n
〈f j ,Afk〉

= δ
K−1∑
j=1

lim
M→∞

p-lim
n→∞

1

n
〈f j ,Af j+1〉

= δ
K−1∑
j=1

E
{
ĝj(X

δ
j−1)

2
}
E
{
(U δ

j )
2
}
E{ĝj(Xδ

j−1)} .

In the case of models with full replica symmetry

breaking, it is natural to consider the limit of small

step size δ → 0. This limit is described by a stochastic

differential equation (SDE) described below.

SDE description. Consider Lipschitz functions g, s, v :
R × R≥0 → R, with |s(x, t)| + |v(x, t)| ≤ C(1 + |x|).
Let (Bt)t≥0 be a standard Brownian motion. We define

the process (Xt, Zt)t≥0 via

dXt = v(Xt, t) dt+s(Xt, t) dBt , dZt = g(Xt, t) dBt ,
(18)

with initial condition X0 = Z0 = 0. Equivalently

Xt =

∫ t

0

v(Xr, r) dr +

∫ t

0

s(Xr, r) dBr ,

Zt =

∫ t

0

g(Xr, r) dBr ,

(19)

where the integral is understood in Ito’s sense. Existence

and uniqueness of strong solutions of this SDE is given

–for instance– in [34, Theorem 5.2.1].

Lemma II.4. Given Lipschitz functions g, s, v : R ×
R≥0 → R, with v and s bounded, let (Xt, Zt) be the
process defined above. Assume E{g(Xt, t)

2} = 1 for
all t ≥ 0. Further consider the state evolution iteration
of Eq. (11), whereby ĝk is defined recursively via

ĝk(x) ≡ g(x, kδ)

E{g(Xδ
k−1, kδ)

2}1/2 . (20)

Then, there exists a coupling of (Xδ
k)k≥0 and (Xt)t≥0

such that

max
k≤	q/δ


E
(|Xδ

k −Xkδ|2
)} ≤ Cδ , (21)

E
(|Zδ − Zq|2

) ≤ C
√
δ , (22)

δ

	q/δ
−1∑
k=1

E{(U δ
k )

2}E{ĝk(Xδ
k−1)}E{ĝk(Xδ

k−1)
2}

=

∫ q

0

E{g(Xt, t)}dt+O(δ1/4) . (23)

(Here C is a constant depending only on the bounds on
g, v, s, and on q. Further the O(δ1/4) error is bounded
as |O(δ1/4)| ≤ Cδ1/4 for the same constant.)

Proof: Throughout this proof, we will write tk =
kδ and denote by C a generic constant that depends

on the bounds on g, s, v, and can change from line to

line. Note that, by construction, q̂j = 1 for all j, and

therefore (U δ
j )j≥0 ∼iid N(0, 1). Hence we can construct

the discrete and continuous processes on the same space

by letting
√
δU δ

j = Btj+1 −Btj .

We then decompose the difference between the two

processes as

Xkδ−Xδ
k =

k−1∑
j=0

∫ tj+δ

tj

[
v(Xt, t)− v(Xδ

j , tj+1)
]
dt

+
k−1∑
j=0

∫ tj+δ

tj

[
s(Xt, t)− s(Xδ

j , tj+1)
]
dBt .

By taking the second moment, and using the fact that

Xt is measurable on (Bs)s≤t and Xδ
j is measurable on
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(Bs)s≤tj , we get

E
{[
Xkδ −Xδ

k

]2}
≤2k

k−1∑
j=0

δ

∫ tj+δ

tj

E
{[
v(Xt, t)− v(Xδ

j , tj+1)
]2}

dt

+ 2

k−1∑
j=0

∫ tj+δ

tj

E
{[
s(Xt, t)− s(Xδ

j , tj+1)
]2}

dt .

Next notice that by the boundedness of s, v, we have

E{|Xt−Xs|2} ≤ C|t− s|. Let Δk ≡ E(|Xtk −Xδ
k |2).

Assuming without loss of generality δ < 1,

E
{[
v(Xt, t)− v(Xδ

j , tj+1)
]2}

≤ CE(|Xt −Xtj |2) + CE(|Xtj −Xδ
j |2)

+ C|t− tj+1|2 ≤ CΔk + Cδ .

The same bound holds for E{[s(Xt, t)−s(Xδ
j , tj+1)]

2}.
Substituting above, we get

Δk ≤ C(q + 1)δ

k−1∑
j=0

(Δj + δ).

This implies bound E(|Xtk −Xδ
k |2) ≤ Cδ as stated in

(21).

In order to prove Eq. (22), note that

E{g(Xδ
k−1, tk)

2} ≤
≤ E{[g(Xtk−1

, tk) + C|Xδ
k−1 −Xtk−1

|]2}
≤ 1 + C

√
δ .

Hence

E
{
[ĝk(X

δ
k−1)− g(Xδ

k−1, tk)]
2
} ≤ C

√
δ .

Let K = �q/δ�, and write

ZKδ − Zδ =
K−1∑
j=0

∫ tj+δ

tj

[
g(Xt, t)− ĝj+1(X

δ
j )
]
dBt .

Therefore

E
(|ZKδ − Zδ|2)

=
K−1∑
j=0

∫ tj+δ

tj

E
{
[g(Xt, t)− ĝj+1(X

δ
j )]

2
}
dt

≤2
K−1∑
j=0

∫ tj+δ

tj

E
{
[g(Xt, t)− g(Xδ

j , tj+1)]
2
}
dt

+ 2
K−1∑
j=0

∫ tj+δ

tj

E
{
[ĝj+1(X

δ
j )− g(Xδ

j , tj+1)]
2
}
dt

≤Cδ
K−1∑
j=0

∫ tj+δ

tj

(Δj + δ) dt+ C(q + 1)
√
δ

≤C(q + 1)
√
δ .

The bound of Eq. (22) follows since

E
(|Zq∗ − ZKδ|2) =

∫ q∗

Kδ

E
{
g(Xt, t)

2}dt ≤ δ .

Finally, Eq. (23) follows by the same estimates.

We now collect the main findings of this section in a

theorem. This characterizes the values of the objective

function achievable by the above algorithm.

Theorem 3. Let g, s, v : R × R≥0 → R be Lipschitz
continuous, with v and s bounded, and define the pro-
cess (Xt, Zt) using the SDE (18) with initial condition
X0 = Z0 = 0. Assume E{g(Xt, t)

2} = 1 for all t ≥ 0.
Further assume ∂xg(x, t)∂xs(x, t)∂xv(x, t) to exist and
be Lipschitz continuous.

Define the incremental AMP iteration (uk)k≥0, and
let z be given by Eq. (13). Finally, let ψ : R → R

be a pseudo-Lipschitz function. Then, for any ε > 0
there exist δ∗(ε) > 0, and for any δ ≥ δ∗(ε) there
exist M∗(ε, δ) < ∞ such that, if δ ≤ δ∗(ε) and M ≥
M∗(ε, δ), we have∣∣∣∣∣p-limn→∞

1

2n
〈z,Az〉 −

∫ q

0

E{g(Xt, t)}dt
∣∣∣∣∣ ≤ ε ,∣∣∣∣∣p-limn→∞

1

n

n∑
i=1

ψ(zi)− E{ψ(Zq)}
∣∣∣∣∣ ≤ ε .

(Further the above limits in probability are non-random
quantities.)

Proof: This follows immediately from Lemma II.3

and Lemma II.4.

III. PROOF OF THE MAIN THEOREM

A. Choosing the nonlinearities

In view of Theorem 3, we need to choose the coeffi-

cients g, s, v in the SDE (18) as to solve the following

stochastic optimal control problem:

maximize

∫ q

0

E{g(Xt, t)}dt ,
subject to P(Zq ∈ [−1, 1]) = 1 , (24)

dXt = v(Xt, t) dt+ s(Xt, t) dBt , (25)

g, s, v ∈ Lip(R× [0, 1]) .

By Theorem 3, the value of this problem is the asymp-

totic optimal value achieved by the IAMP algoritm,

for problem (1). Notice that related (but not identical)

optimal control problems were studied, among others,

in [4], [23], to construct useful representations for the

Parisi formula. Here we will not attempt to solve di-

rectly this problem, and instead we will compare it with
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the structure of the Parisi formula. This will motivate a

guess for the three functions g, s, v, which enables us

to prove Theorem 2 (after taking β →∞). Note that it

follows a posteriori that this guess is an optimizer of

the above stochastic optimal control problem (again, for

large β).

Throughout this section we set β > β0 as per

Assumption 1. We also set q = q∗ = q∗(β) and μ = μβ

the unique minimizer of the Parisi functional. We also

fix Φ to be the solution of the PDE (2) with μ = μβ .

There is a natural SDE associated with the Parisi’s

variational principle, that was first introduced in physics

[28], and recently studied in the probability theory

literature [4], [23]:

dXt = β2μ(t)∂xΦ(t,Xt) dt+ β dBt . (26)

Unless otherwise stated, it is understood that we set the

initial condition to X0 = 0. Motivated by this, we set

the coefficients g, s, v as follows

v(x, t) = β2μ(t)∂xΦ(t, x) , s(x, t) = β ,

g(x, t) = β∂xxΦ(t, x) .
(27)

We collect below a few useful regularity properties of

Φ, which have been proved in the literature.

Lemma III.1. (i) ∂jxΦ(t, x) exists and is continuous
for all j ≥ 1.

(ii) For all (t, x) ∈ [0, 1]× R,∣∣∂xΦ(t, x)∣∣ ≤ 1 , 0 < ∂2xΦ(t, x) ≤ 1 ,∣∣∂3xΦ(t, x)∣∣ ≤ 4 .

(iii) ∂t∂
j
xΦ(t, x) ∈ L∞([0, 1]× R) for all j ≤ 0.

(iv) ∂xΦ(t, x), ∂2xΦ(t, x) are Lipschitz continuous on
[0, 1]× R.

Proof: Points (i) and (iii) are Theorem 4 in [23].

Point (ii) is Proposition 2.(ii) in [4]. Finally, point (iv)
follows immediately from points (iii), (iv).

This Lemma implies that the choice (27) satisfies

the regularity assumptions in Theorem 3. We next have

to check the normalization condition, and compute the

resulting distribution.

Lemma III.2. We have

Zt = ∂xΦ(t,Xt) . (28)

In particular P(Zt ∈ [−1, 1]) = 1 for all t.

Proof: By Lemma 2 in [4], we have, for any t1 <
t2

∂xΦ(t2, Xt2)− ∂xΦ(t1, Xt1) =

∫ t2

t1

β∂xxΦ(t,Xt) dBt ,

(29)

which is exactly Eq. (28). Lemma III.1.(ii) implies

|Zt| ≤ 1 almost surely.

Lemma III.3. For all 0 ≤ t ≤ q∗, we have

E
{(
∂xΦ(t,Xt)

)2}
= t , (30)

E
{(
β∂xxΦ(t,Xt)

)2}
= 1 . (31)

Proof: Equation (30) is Proposition 1 in [13]. For

Eq. (31) note that by Eq. (39) in the same paper, we

have, for any t1 < t2 ≤ q∗

E{(∂xΦ(t2, Xt2))
2} − E{(∂xΦ(t1, Xt1))

2}

=

∫ t2

t1

E
{(
β∂xxΦ(t,Xt)

)2}
dt ,

and therefore the claim follows from Eq. 30.

Lemma III.4. For any 0 ≤ t ≤ q∗, we have

E{∂xxΦ(t,Xt)} =
∫ 1

t

μ(s) ds .

Proof: Consider t ∈ [0, q∗] a continuity point of μ.

Then the proof of Lemma 16 in [23] yields

∂xxΦ(t,Xt) =1− μ(t)(∂xΦ(t,Xt)
)2

− E

{∫ 1

t

(
∂xΦ(s,Xs)

)2
μ(ds)

}
,

Taking expectation and using Fubini’s alongside

Eq. (30), we get

E{∂xxΦ(t,Xt)} = 1− μ(t)t−
∫ 1

t

s μ(ds)

=

∫ 1

t

μ(s) ds

The claim follows also for t not a continuity point

because the right hand side is obviously continuous

in t. The left hand side is continuous because ∂xxΦ
is Lipschitz (cf. Lemma III.1) and E{|Xt − Xs|2} ≤
C|t−s| because the coefficients of the SDE are bounded

Lipschitz.

We summarize the results of this section in the fol-

lowing theorem. Here and below, for x ∈ R
n, S ⊆ R

n,

we let d(x, S) ≡ inf{‖x− y‖ : y ∈ S}.
Theorem 4. Under Assumption 1 let g, s, v : R ×
R≥0 → R be defined as per Eq. (27), and set q = q∗(β)
for β > β0. Further let

E(β) ≡ β

2
[1− (1− q∗(β))2]− β

2

∫ 1

0

s2 μβ(ds) .

Define the incremental AMP iteration (uk)k≥0 via
Eqs. (6), (9), (10), with ĝk given by Eq. (20), and
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let z be given by Eq. (13). Then, for any ε > 0
there exist δ∗(ε) > 0, and for any δ ≥ δ∗(ε) there
exist M∗(ε, δ) < ∞ such that, if δ ≤ δ∗(ε) and
M ≥M∗(ε, δ), we have∣∣∣∣p-lim

n→∞
1

2n
〈z,Az〉 − E(β)

∣∣∣∣ ≤ ε ,

p-lim
n→∞

1

n
d(z, [−1, 1]n)2 ≤ ε .

(Further the above limits in probability are non-random
quantities.)

Proof: First notice that d(z, [−1, 1]n)2 =∑n
i=1 ψ(zi) with ψ(zi) = d(zi, [−1, 1])2 a pseudo-

Lipschitz function. Further, integration by parts yields

E(β) = β

∫ q∗

0

∫ 1

t

μ(s) ds dt .

Hence the claims of this theorem follow immediately

from Theorem 3 upon checking those assumptions using

the lemmas given in this section.

B. Sequential rounding and putting everything together

Theorem 4 constructs a vector z ∈ R
n. It is not diffi-

cult to round this to a vector with entries in {+1,−1},
as detailed in the next lemma.

Lemma III.5. There exist an algorithm with complexity
O(n2), and an absolute constant C > 0 such that the
following happens with probability at least 1 − e−n.
Given A ∼ GOE(n) and a vector x ∈ R

n such that
d(x, [−1, 1]n)2 ≤ n ε0, the algorithm returns a vector
σ∗ ∈ {+1,−1}n such that

1

2n
〈σ∗,Aσ∗〉 ≥ 1

2n
〈x,Ax〉 − 20

(√
ε0 +

1√
n

)
.

Proof: Recall the definition of Hamiltonian

Hn(x) ≡ 〈x,Ax〉/2 (which we view as a func-

tion on R
n). We also define H̃n(x) = Hn(x) −∑n

i=1Aiix
2
i /2 =

∑
i<j≤nAijxixj .

We construct σ∗ in two steps. First we let z̃ to be the

projection of z onto the hypercube [−1,+1]n (i.e. z̃ ∈
[−1,+1]n is such that ‖z̃ − z‖2 = d(z̃, [−1,+1]n)2 ≤
n ε0). Note that this can be constructed in O(n) time

(simply by projecting each coordinate z̃i onto [−1,+1]).

Second, note that the function H̃n(x) is lin-

ear in each coordinate of x. Namely, for each 	
H̃n(x) = x�h1,�(x∼�;A)+h0,�(x∼�;A), where x∼� =
(xi)i∈[n]\� and h1,�(x∼�;A) =

∑
j �=�A�jxj . We then

construct a sequence z̃(0), . . . z̃(n) as follows. Set

z̃(0) = z̃ and, for each 1 ≤ 	 ≤ n:

z̃(	)i =

{
x̃(	− 1)i if i �= 	,

sign
(
h1,�(z̃(	− 1)∼�;A)

)
if i = 	.

Finally we set σ∗ = z̃(n). This procedure takes O(n2)
operations.

The lemma then follows straightforwardly from the

following three claims:

(i) H̃n(σ∗) ≥ H̃n(z̃).
(ii) |H̃n(σ∗) − Hn(σ∗)| ≤ 20

√
n, |H̃n(σ∗) −

Hn(σ∗)| ≤ 20
√
n with probability at least 1 −

e−2n.

(iii) |Hn(z) − Hn(z̃)| ≤ 20n
√
ε0 with probability at

least 1− e−2n.

Claim (i) is immediate since H̃n(z̃(	+1)) ≥ H̃n(z̃(	+
1)) for each 	.

Claim (ii) holds since, for any x ∈ [−1,+1]n,

|H̃n(x)−Hn(x)| ≤ 1

2

n∑
i=1

|Aii| ≡ τ(A) .

Now we have Eτ(A) =
√
n/π, and τ is a Lipschitz

function of the Gaussian vector (Aii)i≤n. hence the

desired bounds follow by Gaussian concentration.

For claim (iii), let v = z− z̃ and note that (denoting

by λmax(A) the maximum eigenvalue of A)∣∣Hn(z)−Hn(z̃)
∣∣ ≤ 1

2
|〈v,Av〉|+ |〈v,Az̃〉|

≤ 1

2
λmax(A)‖v‖2 + λmax(A)‖v‖ ‖z̃‖

≤ nλmax(A)
[1
2
ε0 +

√
ε0

]
≤ 2nλmax(A)

√
ε0 .

The desired probability bound follows by concentration

of the largest eigenvalue of GOE matrices [2].

We finally need to show that the quantity E(β) of

Theorem 4 converges to the asymptotic optimum value,

for large β. This is achieved in the two lemmas below.

Lemma III.6. Let E0(β) ≡ (β/2)(1 − ∫ 1

0
t2 μβ(dt)).

Then, almost surely,

E0(β) ≤ lim
n→∞

1

2n
max

σ∈{+1,−1}n
〈σ,Aσ〉 ≤ E0(β) + log 2

β
.

Proof: By Gaussian concentration, it

is sufficient to consider the expectation

En = Emaxσ∈{+1,−1}n hn(σ)/n (recall that

Hn(σ) = 〈σ,Aσ〉/2. Recall the definition of partition

function Zn(β) =
∑

σ∈{+1,−1}n exp(βHn(σ)),
and define the associated Gibbs measure

νβ(σ) = exp(βHn(σ))/Zn(β) and free energy
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density Fn(T ) ≡ (T/n)E logZn(β = 1/T ).
A standard thermodynamic identity [27] yields

Fn(T ) = Eν1/T (Hn(σ)) + TS(ν1/T ), where S(q) is

the Shannon entropy of the probability distribution q.

Further F ′n(T ) = S(ν1/T ) ≥ and Fn(T ) → En as

T → 0. Hence

Eνβ(Hn(σ)) ≤ En ≤ Fn(1/β) ≤ Eνβ(Hn(σ)) +
log 2

β
.

On the other hand, ∂β(βFn(β)) = Eνβ(Hn(σ)). Since

βFn(β) → Pβ(μβ) by Theorem 1, Fn(β),Pβ(μβ) are

convex with Pβ(μβ) differentiable [43], it follows that

lim
n→∞Eνβ(Hn(σ)) =

d

dβ
Pβ(μβ) = E0(β) .

(The last equality is proved in [43], with a difference

in normalization of β.)

Lemma III.7. For any β > β0,

lim
β→∞

β2(1− q∗(β))2 ≤ 1 .

Proof: The PDE (2) can be solved for t ∈
(q∗, 1] using the Cole-Hopf transformation Φ = log u.

This yields Φ(q∗, x) = ((1 − q∗)/2) + log 2 coshx,

whence ∂xΦ(q∗, x) = tanh(x) and ∂xxΦ(q∗, x) =
1− tanh(x)2. Substituting in Eqs. (30), (30), we get

E
{
tanh(Xq∗)

2
}
= q∗ ,

β2
E
{(

1− tanh(Xq∗)
2
)2}

= 1 .

Hence

β2(1− q∗)2 = β2
E
{
1− tanh(Xq∗)

2
}2

≤ β2
E
{(

1− tanh(Xq∗)
2
)2}

= 1 .

The proof our main result, Theorem 2, follows quite

easily from the findings of this section.

Proof of Theorem 2: Let E∗ ≡
limn→∞maxσ∈{+1,−1}n Hn(σ)/n. This limit exists

by Corollary I.1, and we further have E∗ ≥ 1/2
(this can be proved by the same thermodynamic

argument as in the proof of Lemma III.6, noting that

(1/n) logn Zn(β)→ log 2 + (β2/4) for β ≤ 1 [37]). It

is therefore sufficient to output σ∗ such that, with high

probability, Hn(σ∗)/n ≥ E∗ − (ε/3).

Let β = 10/ε. By Lemma III.6 and Lemma III.7,

we have E(β) ≥ E∗ − (ε/5). Applying the algorithm

of Theorem 4 thus we obtain, with high probability,

a vector x ∈ R
n such that Hn(z) ≥ E∗ − ε/4 and

d(x, [−1, 1]n)2 ≤ ε2/106. The proof is completed by

using the rounding procedure of Lemma III.5.

IV. RELATION WITH THE TAP EQUATIONS

In this section we prove that the algorithm described

in Section II, when used in conjunction with the specific

choice of functions gk, s, v in Section III actually

constructs an approximate solution of the TAP equations

(under Assumption 1). As in the previous section, we

set q = q∗, v(x, t) = β2μ(t)∂xΦ(t, x), s(x, t) = β,

g(x, t) = β∂xxΦ(t, x), and

ĝk(x) ≡ g(x, kδ)

E{g(Xδ
k−1, kδ)

2}1/2 . (32)

Using these settings, we recall that xk and z are given

by

xk = xk−1 + v(xk−1, kδ) δ + β
√
δ[uk]M

√
δ , (33)

z =
√
δ

	q/δ
∑
k=1

gk(u0, . . . ,uk−1)� uk . (34)

Finally, we will repeatedly use the fact that the PDE (2)

can be solved on (q∗, 1] using the Cole-Hopf transfor-

mation, which yields Φ(q∗, x) = log 2 cosh(x) + (1 −
q∗)/2.

Lemma IV.1. Setting k∗ = �q∗/δ�, we have

lim
δ→0

lim
M→∞

p-lim
n→∞

1

n

∥∥z − tanh(xk∗)
∥∥2 = 0 .

Proof: By Lemma II.2, we have

lim
M→∞

p-lim
n→∞

1

n

∥∥z − tanh(xk∗)
∥∥2

= E

{[
Zδ − ∂xΦ(q∗, Xδ

k∗)
]2}

.

On the other hand, using Lemma II.4, we obtain

lim
δ→0

E

{[
Zδ − ∂xΦ(q∗, Xδ

k∗)
]2}

= E

{[
Zq∗ − ∂xΦ(q∗, Xq∗)

]2}
= E

{[∫ q∗

0

β∂xxΦ(t,Xt) dBt − ∂xΦ(q∗, Xq∗)

]2}
= 0 .

where the last identity follows from Eq. (29).

Lemma IV.2. Setting k∗ = �q∗/δ�, let

En,M,δ ≡ βAz − xk∗ − β2(1− q∗) tanh(xk∗) .

Then,we have

lim
δ→0

lim
M→∞

p-lim
n→∞

1

n
‖En,M,δ‖2 = 0 .

1427



Proof: Throughout the proof, we will write fk ≡
fk(u0, . . . ,uk). By the basic iteration (6), we have

Az =
√
δ

k∗∑
k=1

Afk

=
√
δ

k∗∑
k=1

uk+1 +
√
δ

k∗∑
k=1

k∑
�=1

bk�f �−1 .

Using Eqs. (16) and (17), together with the fact that

‖fk‖2/n, ‖uk‖2/n are bounded by Lemma II.2, we

get

lim
M→∞

p-lim
n→∞

1

n
‖En,M,δ‖2 =

lim
M→∞

p-lim
n→∞

1

n

∥∥∥∥∥β√δ
k∗∑
k=1

uk+1 − β2(1− q∗) tanh(xk∗)

+β
√
δ

k∗∑
k=1

E{ĝk(Xδ
k−1)}fk−1 − xk∗

∥∥∥∥∥
2

= E

{[
β
√
δ

k∗∑
k=1

U δ
k+1 − β2(1− q∗) tanh(Xδ

k∗)

+β
√
δ

k∗∑
k=1

E{ĝk(Xδ
k−1)}ĝk−1(X

δ
k−2)U

δ
k−1 −Xδ

k∗

]2⎫⎬⎭ .

(35)

Next, using again Lemma II.4, we have√
δ
∑k∗

k=1 U
δ
k+1

L2−→ Bq∗ , Xδ
k∗

L2−→ Xq∗ and

√
δ

k∗∑
k=1

E{ĝk(Xδ
k−1)}ĝk−1(X

δ
k−2)U

δ
k−1

L2−→∫ q∗

0

E{g(Xt, t)} g(Xt, t)dBt

= β2

∫ q∗

0

E{∂xx(t,Xt)} ∂xxΦ(t,Xt)dBt

= β2

∫ q∗

0

∫ 1

t

μ(s) ds ∂xxΦ(t,Xt)dBt ,

where in the last step we used Lemma III.4. By Fubini’s

theorem

β2

∫ q∗

0

∫ 1

t

μ(s) ds ∂xxΦ(t,Xt)dBt

= β2

∫ q∗

0

μ(s)

∫ s

0

∂xxΦ(t,Xt)dBt ds

+ β2

∫ 1

q∗
μ(s)

∫ q∗

0

∂xxΦ(t,Xt)dBt ds

= β

∫ q∗

0

μ(s) ∂xΦ(Xs, s) ds+ β(1− q∗)∂xΦ(Xq∗ , q∗) ,

where in the last step we used once more Eq. (29).

Substituting these limits in Eq. (35), we get

lim
δ→0

lim
M→∞

p-lim
n→∞

1

n
‖En,M,δ‖2 =

= E

{[
βBq∗ + β2

∫ q∗

0

μ(s) ∂xΦ(Xs, s) ds

+ β2(1− q∗)∂xΦ(Xq∗ , q∗)−Xq∗

− β2(1− q∗) tanh(Xq∗)

]2}
= E

{[
β2(1− q∗)∂xΦ(Xq∗ , q∗)−Xq∗

−β2(1− q∗) tanh(Xq∗)
]2}

= 0 .

Where we used the fact that Xt solves te SDE (26), and

Φ(q∗, x) = log 2 cosh(x) + (1− q∗)/2.

We can therefore state our result about constructing

solutions to the TAP equations.

Theorem 5 (Constructing solutions to the TAP equa-

tions). Under Assumption 1 let g, s, v : R× R≥0 → R

be defined as per Eq. (27), and set q = q∗(β) for
β > β0. Define the incremental AMP iteration (uk)k≥0

via Eqs. (6), (9), (10), with ĝk given by Eq. (20), and
let z be given by Eq. (13). (The same iteration is given
explicitly in Eqs. (33), (34).)

Set k∗ = �q∗/δ�. Then, for any ε > 0 there exist
δ∗(ε) > 0, and for any δ ≥ δ∗(ε) there exist M∗(ε, δ) <
∞ such that, if δ ≤ δ∗(ε) and M ≥M∗(ε, δ), we have,
with high probability

1

n

∥∥βA tanh(xk∗)− xk∗ − β2(1− q∗) tanh(xk∗)
∥∥ ≤ ε .

Proof: The theorem follows immediately from

Lemma IV.1 and Lemma IV.2, using the fact that, with

high probability, A has operator norm bounded by 2+ε
[2].

V. UNIVERSALITY

In this section we use the universality results of

[7] to generalize Theorem 2 to other random matrix

distributions. Namely, we will work under the following

assumption:

Assumption 2. The matrix A = A(n) is symmet-
ric with Aii = 0 and (Aij)1≤i<j≤n a collection of
independent random variables, satisfying E{Aij} =
0, E{A2

ij} = 1/n. Further, the entries are sub-
gaussian, with common subgaussian parameter C∗/n.
(Namely,E{exp(λAij)} ≤ exp(C∗λ2/2n) for all i <
j ≤ n.)
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Using [7, Theorem 4], and proceeding exactly as for

Proposition II.1, we obtain the following.

Proposition V.1. Consider the AMP iteration (6), with
A = A(n) satisfying Assumption 2. Further, assume
fk : Rk+2 → R to be a fixed polynomial (independent
of n). Then for any k ∈ N, and any pseudo-Lipschitz
function ψ : Rk+2 → R, we have

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i ; yi)

p−→ Eψ(U0, . . . , Uk;Y ) .

(36)

Here (Uj)j≥1 is a centered Gaussian process inde-
pendent of (U0, Y ) with covariance Q̂ = (Q̂kj)k,j≥1

determined recursively via

Q̂k+1,j+1 = E
{
fk(U0, . . . , Uk;Y )fj(U0, . . . , Uj ;Y )

}
.

(37)

Notice an important difference with respect to Propo-

sition (6): instead of Lipschitz functions, we require the

functions fk to be polynomials. However, this result is

strong enough to allow us prove the following general-

ization of Theorem 2.

Theorem 6. Let A = A(n), n ≥ 1 be random
matrices satisfying Assumption 2. Under Assumption
1, for any ε > 0 there exists an algorithm that
takes as input the matrix A ∈ R

n×n, and outputs
σ∗ = σ∗(A) ∈ {+1,−1}n, such that the following
hold: (i) The complexity (floating point operations)
of the algorithm is at most C(ε)n2. (ii) We have
〈σ∗,Aσ∗〉 ≥ (1− ε)maxσ∈{+1,−1}n〈σ,Aσ〉.

Proof: Let ĝk(x), v(x, t), s(x, t) be defined as in

the proof of Theorem 2 for k ≤ 1/δ. For each M ∈ Z,

and each k ≤ 1/δ, we construct a polynomial p̂k,M :
R

k−1 → R which approximates the dynamics defined

by ĝk( · ), v( · , kδ), s( · , kδ), in a sense that we will

make precise below.

We define the IAMP iteration, analogously to (9),

(10)

fk(u0, . . . , uk) = p̂k,M (u1, . . . , uk−1) · uk , (38)

We then claim that we can construct these polynomial

approximations p̂k,M so that, for any k ≤ 1/δ, and any

pseudo-Lipschitz function ψ : Rk+2 → R, we have

lim
M→∞

p-lim
n→∞

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i ) = Eψ(U δ

0 , . . . , U
δ
k ) ,

(39)

where the independent random variables (U δ
� )�≥0 are

defined as in Lemma II.2. Given this claim, the rest of

the proof of Theorem 2 can be applied verbatimly to

this –slightly different– algorithm.

In order to prove the claim (39), we proceed as in the

proof of Lemma II.2. Namely, by applying Proposition

V.1, we get

p-lim
n→∞

1

n

n∑
i=1

ψ(u0i , . . . , u
k
i ) = Eψ(U0, . . . , U

δ,M
k ) ,

where (Uδ,M
� )�≥0 is a centered Gaussian process. Using

the same argument as in Lemma II.2, we obtain that the

Gaussian random variables (U δ,M
� )�≥0 are independent.

Further, letting q̂M� ≡ E{(Uδ,M
� )2}, Proposition V.1

yields the following recursion

q̂Mk+1 = E{p̂k,M (U δ,M
1 , . . . , U δ,M

k−1)
2} · q̂Mk . (40)

The claim (39) follows by showing the we can choose

polynomials (p̂�,M )�≥0 so that limM→∞ q̂M� = q̂� for

each 	 ≤ 1/δ. This can be done by induction over k.

As a preliminary, notice that there is c0 = c0(δ) > 0
sufficiently small so that, for the sequence of random

variables defined recursively via Eq. (11), we have

2c0 ≤ q̂k ≤ 1/(2c0) for all k ≤ 1/δ (the existence

of such c0 > 0 can also be shown by induction over k
using the fact that ĝk, v, s, are bounded Lipschitz).

The basis of the induction limM→∞ q̂M0 = q̂0 is

trivial. Then assume that the induction claim is true for

all 	 ≤ k. Without loss of generality we can consider

that, for any M ≥ 1 we have c0 ≤ q̂M1 , . . . , q̂Mk ≤ 1/c0.

Indeed by the induction hypothesis this holds for all

M large enough, and we can always renumber the

polynomials p̂�,M ( · · · ) so that it holds for all M ≥ 1.

Then notice that the random variable Xδ
k of Eq. (11) can

be written as Xδ
k = hk(U0, U

δ
1 , . . . , U

δ
k−1) for a certain

function hk that is bounded by a polynomial. We then

choose the polynomials p̂k,M ( · ) so that

E

{∣∣hk(U0, U
δ,M
1 , . . . , U δ,M

k−1)

− p̂k,M (U0, U
δ,M
1 , . . . , U δ,M

k−1)
∣∣2} ≤ 1

M
.

Such polynomials can be constructed, for instance, by

considering the expansion of hk in the basis of mul-

tivariate Hermite polynomials (suitably rescaled as to

form an orthonormal basis with in L2(Rk−1, μk), where

μk is the joint distribution of U0, U
δ,M
1 , . . . , U δ,M

k−1 .) The

variance bound c0 ≤ q̂M1 , . . . , q̂Mk ≤ 1/c0 is used in

controlling the error term.
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The induction claim then follows by

lim
M→∞

E{p̂k,M (U δ,M
1 , . . . , U δ,M

k−1)
2}

= lim
M→∞

E{hk(U δ,M
1 , . . . , U δ,M

k−1)
2}

= E{hk(U δ
1 , . . . , U

δ
k−1)

2} ,

where the last equality holds by dominated convergence.

Corollary I.2 follows by applying Theorem 6 with A
a suitably centered and normalized adjacency matrix.

Proof of Corollary I.2: Given a graph G ∼
G(n, p), construct the matrix A = AT ∈ R

n×n, by

setting Aii = 0 and, for i �= j:

Aij =

⎧⎨⎩−
√

1−p
np if (i, j) ∈ E,√
p

n(1−p) if (i, j) �∈ E,

It is easy to verify that this matrix satisfies Assumption

2. Further, we have

CUTG(σ) =
1

2
|En| − p

4
〈σ,1〉2 +

√
np(1− p)

4
〈σ,Aσ〉 .

Recall that we know from [17]

maxσ∈{+1,−1}n CUTG(σ) = |En|/2 + (n3p(1 −
p)/2)1/2P∗ + o(n3/2). Let σ1 denote the output of the

algorithm of Theorem 6, on input A. Applying this

theorem and Lemma V.1, we get

p-lim inf
n→∞

1

2n
〈σ1,Aσ1〉 ≥ (1− ε)P∗ ,

p-lim
n→∞

1

n
〈σ1,1〉 = 0 .

We construct σ∗ by balancing σ1. Namely, if

|〈σ1,1〉| = 	, we obtain σ∗ by flipping �	/2� entries

of σ1 so that |〈σ∗,1〉| ≤ 1. We then have, with high

probability

CUTG(σ∗)− 1

2
|En|

≥ −p
4
+

1

4

√
np(1− p) 〈σ∗,Aσ∗〉

− 1

4

√
np(1− p) |〈σ∗,Aσ∗〉 − 〈σ1,Aσ1〉|

≥ 1

2
|En|+ 1

4
(1− ε)

√
np(1− p) max

σ∈{+1,−1}n
〈σ,Aσ〉

− √n‖A‖op‖σ1‖ ‖σ∗ − σ1‖ .

(Here ‖A‖op denotes the operator norm of matrix A.)

Therefore, since |〈σ1,1〉|/n = 	/n
p−→ 1, and ‖A‖op ≤

2.01 with high probability [2], we get

CUTG(σ∗)− |En|
2

≥ (1− ε) max
σ∈{+1,−1}n

{
CUTG(σ)− |En|

2

}
− n

√
	‖A‖op

≥ (1− ε) max
σ∈{+1,−1}n

{
CUTG(σ)− |En|

2

}
− o(n3/2) ,

which completes the proof.
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APPENDIX

As mentioned in the main text, Proposition II.1 is a

consequence of the general analysis of AMP algorithms

available in the literature. In particular it can be obtained

from a reduction to the setting of [24, Theorem 1]. Let

us briefly recall the class of algorithms considered in

[24], adapting the notations to the present ones. (we

limit ourselves to consider the ‘one-block’ case in the

language of [24]).

Fixing T ≥ 1 consider a sequence of Lipschitz

functions

Ft :R
T × R

2 → R
T ,

(x1, . . . , xT , z1, z2) �→ Ft(x0, x1, . . . , xT , z1, z2) .

Given two matrices x ∈ R
n×(T+1), z ∈ R

n×2, we let

Ft(x; z) ∈ R
n×(T+1) be the matrix whose i-th row is

given by Ft(xi, zi) (where xi is the i-th row of x and

zi is the i-th row of z).

Then [24] analyzes the following AMP iteration,

which produces a sequence of iterates xt ∈ R
n×(T+1)

xt+1 = AFt(x
t; z)− Ft−1(x

t−1; z)BT
t . (41)

Here Bt ∈ R
T×T is a matrix with entries defined by

(Bt)ij =
1

n

n∑
�=1

(DxFt(x
t
�; z�))ij =

1

n

n∑
�=1

∂Ft

∂xt�,j
(xt

�; z�) .

Under the assumption that x0, z are independent of

A, and p̂x0,z ≡ n−1
∑n

i=1 δx0
i ,zi

converges in W2,

[24, Theorem 1] determines the asymptotic empirical

distribution of xt, z.
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Proposition II.1 can be recast as a special case of

this setting. First notice that we can always choose an

n-independent T such that the time horizon k in Eq. (7)

satisfies k ≤ T . We then consider the iteration (41) with

initialization x0 = 0, data vectors z = (u0,y), and

update functions given by

Ft(x1, x2, . . . , xT , z1, z2)� = f�−1(z1, x1, . . . , x�−1; z2) .

With this setting, the vector (xti,�)i≤n ∈ R
n coincides

with u� as given in Eq. (6), for all t ≥ 	. The recursion

of Eq. (8) follows from the analogous recursion in [24,

Theorem 1].

In this appendix we provide a simplified version of

the algorithm of Theorem 2, for the reader’s conve-

nience. In this presentation we simplify certain technical

details that have been introduced in the main text to

simplify the proof. In the pseudo-code below � denotes

entrywise multiplication between vectors. Further, when

a scalar function is applied to a vector, it is understood

to be applied componentwise. In particular, note that

‖∂xxΦ(kδ,xk)‖ is the 	2 norm of the vector whose i-
th component is ∂xxΦ(kδ, x

k
i ).

Algorithm 1: IAMP algorithm to optimize SK

Hamiltonian

Data: Matrix A ∼ GOE(n), parameters δ, β > 0
Result: Near optimum σ∗ ∈ {+1− 1}n of the SK

Hamiltonian

Compute minimizer μβ of the Parisi functional

Pβ(μ) (cf. Eq. (3));

Compute solution Φ PDE (2), with μ = μβ ;

Compute q∗(β) = sup{q : q ∈ supp(μβ)}
(Edwards-Anderson parameter);

Initialize u−1 = 0, u0 ∼ N(0, In), g
−1 = 1,

g−2 = 0, b0 = 0;

for k ← 0 to �q∗/δ� do
uk+1 = A(gk−1 � uk)− bkg

k−2 � uk−1;

xk =
xk−1 + β2μ(kδ) ∂xΦ(kδ,x

k−1) δ + β
√
δuk;

gk =
√
n∂xxΦ(kδ,x

k)/‖∂xxΦ(kδ,xk)‖;
bk+1 =

∑n
i=1 g

k
i /n;

end
Compute z =

√
δ
∑	q∗/δ


k=1 gk−1 � uk;

Round z to σ∗ ∈ {−1,+1}n;

return σ∗

Notice that this pseudo-code does not describe how

to minimize the Parisi functional and to solve the PDE

(2). As discussed in the introduction, we believe this

can be done efficiently because of the strong convexity

and continuity of μ �→ Pβ(μ). Indeed highly accurate

numerical solutions (albeit with no rigorous analysis)

were developed already in [15], [35], [40].

Further, the pseudo-code does not specify the round-

ing procedure, which is given below.

Algorithm 2: Round

Data: Matrix A ∈ R
n×n, vector z ∈ R

n

Result: Integer solution σ∗ ∈ {+1− 1}n
for i← 1 to n do

Set z̃i ← min(max(zi,−1),+1);
end
for i← 1 to n do

Compute hi =
∑

j �=iAij z̃j ;

Set z̃i ← sign(hi);
end
return σ∗ = z̃.
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[29] Marc Mézard, Giorgio Parisi, and Riccardo Zecchina.
Analytic and algorithmic solution of random satisfiabil-
ity problems. Science, 297(5582):812–815, 2002. 1
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