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Abstract—We consider the celebrated radio network
model for abstracting communication in wireless networks.
In this model, in any round, each node in the network may
broadcast a message to all its neighbors. However, a node is
able to hear a message broadcast by a neighbor only if no
collision occurred, meaning that it was the only neighbor
broadcasting.

While the (noiseless) radio network model received a
lot of attention over the last few decades, the effect
of noise on radio networks is still not well understood.
In this paper, we take a step forward and show that
making radio network protocols resilient to noise may
require a substantial performance overhead. Specifically,
we construct a multi-hop network and a communication
protocol over this network that works in T rounds when
there is no noise. We prove that any scheme that simulates
our protocol and is resilient to stochastic noise, requires at
least cT log(n) rounds, for some constant c. This stands in
contrast to our previous result (STOC, 2018), showing that
protocols over the single-hop (clique) network can be made
noise resilient with only a constant overhead. Our result
also settles a recent conjecture by Censor-Hillel, Haeupler,
Hershkowitz, Zuzic (2018).

We complement the above result by giving a scheme to
simulate any protocol with a fixed order of transmissions
with only an O(log (n)) overhead.

Index Terms—Interactive Coding; Wireless Broadcast;
Lower Bounds; Communication Complexity;

I. INTRODUCTION

We consider the extensively studied radio network

model for abstracting communication in wireless

networks [CK85]. In this model, a set of agents

represented as nodes in a graph, want to disseminate

their privately stored data throughout the network, or,

more generally, perform a joint computation that involves

all their data. The nodes are each equipped with a

wireless device that, in any time step, can either act as

a transmitter or as a receiver. We think of the neighbors

of a transmitting node as being within its range of

transmission, which is necessary, but not sufficient for

receiving the transmission. If a node v transmits at time t,

then, a neighbor u of the node v receives v’s transmission

if and only if u decides to receive at time t and v is the

only neighbor of u that transmits at time t.

The (noiseless) radio network model received a lot

of attention over the last few decades, and has an ever

growing number of wireless and distributed applications.

On the other hand, the effect of noise on radio networks

is not well understood, although wireless communication

errors are extremely common in practice. In our previous

paper [EKS18], we took a step forward and initiated the

study of interactive coding for the single-hop (clique)

network, following the great work of [Gam87], [Gal88],

[GKS08]. We proved that the single-hop network admits

constant rate coding. That is, we showed how to convert

any protocol that works over the noiseless single-hop

network, to a noise resilient protocol of similar length,

up to a multiplicative constant.

In our current paper, we consider noise in general

multi-hop networks, and show that, in contrast to

the single-hop case, noise resilience may require a

substantial performance overhead. Roughly, our main

result proves that there exists a network topology G

and a communication protocol Π over G with T

rounds that works in the noiseless setting, such that

every noise resilient protocol Π′ that ‘simulates’ Π

requires Ω(T log(n)) rounds. We complement our result

with a scheme for converting any protocol Π with a

fixed order of transmissions over any network G, to

a noise resilient protocol Π′, while only incurring a

multiplicative O(log n) overhead.

A. Modeling Collisions and Noise

To be able to give precise statements of our results,

we need to define the assumed radio network model.

We chose to present our results in the model recently

suggested by [CHHZ18], described below. We mention,

however, that our results are proved for more general
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models (see more about that in subsection I-B and

section II).

To define the assumed (noiseless) radio network

model, called here RADIO, and the assumed noisy radio

network model, called here NOISY RADIO, one is

asked to make two modeling decisions. The first decision

is about the way the radio network deals with collisions.

As explained above, when two or more neighbors of a

node v transmit in the same round, v may not receive

(any of) their messages. What does v receive then? The

most commonly studied collision model in the literature,

and the one we are using in RADIO and NOISY RADIO, is

called “collision-as-silence”, and it asserts that v simply

does not get anything. Thus, v is unable to distinguish a

collision from the background noise occurring when no

neighbor transmits. The main alternatives to collision-

as-silence, studied by prior works (somewhat to lesser

extent), are the collision detection model, where v is

notified that a collision occurred, and the flaky collision
model, where v may receive one of the transmitted

messages. For an excellent survey, see [Pel07].

The second modeling decision we face is regarding the

noise. We choose to model the noise in NOISY RADIO

as stochastic erasures. More formally, let v and u

be neighbors such that v is the only neighbor of u

transmitting in round t. Then, for ε > 0, in the

NOISY RADIOε model, in round t, u receives v’s message

with probability 1−ε (independently of any other event),

and otherwise witnesses silence. We selected stochastic

erasures as they are “weaker” than other models of noise

studied in the literature (e.g., bit flips, insertion-deletion

errors, adversarial errors), and thus, make our lower

bound stronger.

B. Our Results

a) Lower bound: The following theorem is the

main contribution of our paper. It lower bounds the

overhead, in terms of rounds, required in order to make

a protocol noise resilient. A proof sketch is given in

section II, and the full proof is given in section III

and section V. As far as we know, this is the first

lower bound that also rules out adaptive simulations.

Such lower bounds are tricky, as when a message is lost

due to an erasure, it may not only cause the parties to

change their future messages, but can also cause them to

completely change their broadcast/receive patterns. Thus,

the parties can dynamically allocate more rounds to the

parties that were erased the most, decreasing the length

of the simulation (see [GHS14] to learn more about this

phenomenon).

Theorem I.1 (main). Let Γ be a set such that |Γ| >
1, n ∈ N be sufficiently large, and ε > 0 be a
constant. There exists a network G with n nodes and
a (deterministic and non-adaptive) protocol Π of length
T (n) in the RADIO model over G with message set
Γ, such that any protocol Π′ that simulates Π in
the NOISY RADIOε model over G with message set Γ,
requires Ω(T (n) log n) rounds.

The protocol Π we construct in order to prove

Theorem I.1 is a protocol for a routing task (a.k.a. a

multicommodity multicast task), called TribeTransfer. In

multicommodity multicasts, we are given a set of source-

sink pairs so that each source has an input (a.k.a. rumor)

that must be transmitted to the corresponding sink. Such

tasks are a generalization of the extensively studied

broadcast task (one node is a source and all the others

are sinks) and gossip task (all pairs of nodes are sink-

source pairs). Our result can be interpreted as showing

that even protocols for “simple” tasks, such as routing

tasks, that do not involve any joint computation, can

become expensive in the presence of noise. We note that

it is an interesting open problem to get a near-logarithmic

lower bound, like the one in Theorem I.1, for the case

where the length of the protocol T can approach infinity

(independently of the number of nodes n).

The noiseless protocol for TribeTransfer is also

“simple” in the sense that it is: (1) deterministic; (2) the

set of nodes communicating in every round is known

in advance, and is independent of the nodes’ inputs,

the messages received in previous rounds, and the

noise. Protocols admitting the second property are called

non-adaptive (a.k.a. static and oblivious). Interestingly,

despite the obvious advantages of adaptivity, for many

useful tasks, the state of the art algorithms are non-

adaptive. For such non-adaptive protocols, we prove that

our Ω(logn) lower bound is in fact tight. Getting a

similar upper bound for general (adaptive) protocols is

an interesting problem.

b) Upper bound: For completeness, we also give

a way to convert any non-adaptive noiseless protocol Π,

such as the one used in the proof of our main result,

to a noise resilient protocol with an O(log n) blowup

to the length. We note that the claim is trivial when

the length of Π is poly(n), as each message in Π

can be repeated O(log n) times. This ensures that even

in the presence of noise, all nodes get the messages
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‘correctly’ with high probability. To prove that the noise

can be dealt with even for longer protocols, we use the

(by now standard) recursive “rewind-if-error” interactive

coding mechanism (see, for example, [Sch92], [EKS18]).

Our simulation protocol and its analysis are given in

Appendix section B.

Theorem I.2. Let Γ be a set such that |Γ| > 1, n, T ∈ N

be sufficiently large, and ε ≥ 0 be constant. Let G be
a graph with n vertices, and let Π be a non-adaptive
protocol of length T in the RADIO model over G with
message set Γ. Then, there exists a protocol Π′ that
simulates Π in the NOISY RADIOε model over G and
only requires O(T log n) rounds.

We mention that while, for simplicity of exposition,

the statements of our results use the RADIO and

NOISY RADIO models, we actually prove stronger

statements. Our lower bound is proved assuming an

even weaker model for the simulating protocol, where

in round t, all nodes get all messages that were

successfully received by at least one node in round t

(see subsection IV-C for a formal definition). In addition,

our upper bound gives a scheme that is resilient against

the very strong noise model where, when a collision

occurs, an adversary is controlling the received massages

(see [EKS18], [Hae14]).

c) Simulation: Both our lower and upper bounds

consider the simulation of a protocol Π by another

protocol Π′. But, what does it mean to simulate? As

is usually the case in the field of interactive coding,

in our upper bound result, Π simulates Π′ in a very

strong sense: given a transcript for Π′ one can deduce

the transcript for Π with the same randomness and

noise. However, our lower bound rules out much weaker

simulations. Namely, recall that the protocol Π is

deterministic, thus, for any set of inputs, each node has

a single correct output. We show that for any protocol

Π′ with fewer than c · T log n rounds (for some fixed

constant c > 0), there exists a set containing at least

4/5 fraction of the sink nodes, such that for every node

in the set, the probability (over the selection of inputs,

the randomness used by the simulation, and the noise)

that it outputs an incorrect value is greater than 3/4 (see

Theorem V.1 for an exact statement)1.

C. Related Work

The field of

coding for interactive communication was introduced in

seminal papers of Schulman [Sch92], [Sch93], [Sch96].

Various aspects of two-party interactive coding (such

as computational efficiency, interactive channel capacity,

noise tolerance, list decoding, different channel types,

etc.) were considered in recent years, with most works

focusing on simulation protocols [GMS11], [BR11],

[BKN14], [Bra12], [MS14], [BE14], [GMS14], [GH14],

[GHK+16], [EGH16], [BGMO17], [EKS18], to cite a

few.

Few strong interactive coding lower bounds are

known, and these entail substantial technical difficulties

[GKS08], [KR13], [BEGH16], [GK17]. Out of these,

the one that is the most relevant to our work is

[BEGH16], which proves that coding over the point-to-

point star network, requires almost-logarithmic blowup

to the number of rounds, matching the beautiful scheme

of [RS94]. Observe that the point-to-point model allows

for more freedom for designing a protocol, as each node

can transmit different messages to each of its neighbors

over a private channel, and, more importantly, one does

not need to worry about collisions. Yet, the problems

of coding over point-to-point networks and over radio

networks are incomparable, as in the former case, both

the faultless and the noise resilient protocols use point-

to-point channels. Due to the fundamental differences

between the models, as is evident by the fact that the

star topology does admit constant rate coding in the

NOISY RADIO model [EKS18], we were not able to use

the techniques developed by [BEGH16] (see section II

for a more detailed comparisons).

While, as mentioned above, no lower bounds for

adaptive simulations were previously known, several

papers give strong upper bounds. The two-party setting

is considered by the very interesting works [Hae14],

[GHS14], [AGS16], where it is shown that adaptive

coding schemes can allow for strictly better rate and

1We note that the weak statement that, with probability 3/4, there
exists at least one node whose output is incorrect, has an easy proof:
consider the star topology where the center wants to broadcast its input.
This statement is weaker than ours in two respect: (1) the size of the
incorrect set is small; (2) the order of quantifiers is different, as we
show that the same set of nodes is incorrect in many executions. Our
order of quantifier is the standard one for interactive coding. It parallels
the notion of randomized algorithms, where it’s ok if for every random
string, the computation fails for a (different) set of inputs, but the
computation for any input should not fail for many random strings.
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error tolerance2. In [EKS18], we construct a constant

rate adaptive coding scheme for the single-hop network,

when it was known that the best rate achievable by a

non-adaptive scheme is O(1/ log logn) [GKS08].

Noise in radio networks was considered by several

prior works [Gam87], [Gal88], [FK00], [KM05],

[New04], [GKS08], [EKS18], [CHHZ17], [GHM18],

[CHHZ18]. The related dual graph model, where

some of the links are unreliable, is studied by

[KLN+10], [GHLN12], [CGK+14], [GLN13], and

[KKP01], [KPP10] consider radio networks with faulty

nodes.

a) Relation to [CHHZ18]: The most relevant to

our work, aside from [EKS18], is the very recent

work [CHHZ18] defining the model NOISY RADIOε

we use in this paper. They show that every non-

adaptive protocol can be made noise resilient with

only a blowup of poly(logΔ, log logn) in length,

where Δ is the maximum degree of the graph. They

also prove that, under certain assumptions (e.g., the

noise resilient protocol is non-coding), an Ω(log(Δ))

multiplicative round overhead is required. The authors

further conjecture that such a statement can be proved

assumptions-free for some specific protocol and topology

which is described in the paper.

Our main result essentially proves their conjecture

with a different topology and protocol: Fix n. Since

the degree of the network G in Theorem I.1 with n

vertices is Δ = poly(n), Theorem I.1 directly proves

the conjecture for Δ = poly(n). To prove the conjecture

for a smaller Δ, we take vertex-disjoint copies of G with

poly(Δ) vertices and consider the task of simulating Π

on all copies of G in parallel.

II. PROOF SKETCH

The main contribution of this work is an Ω(logn)

lower bound on the overhead of an interactive coding

scheme for a particular multi-hop radio network. We

sketch this result in this section.

A. The Star Topology

Consider the star graph on n + 1 nodes where one

‘center’ node is connected to n ‘leaf’ nodes. Suppose

that all the leaf nodes have a one bit input that they

want to send to the center node. Also, assume that each

node may only broadcast one bit in every round. Call this

communication task Transfern. In the noiseless case, the

2We note that the work of [AGS16] considers channels with no
collisions.

task Transfern requires n rounds, as no two leaf nodes

can broadcast together (otherwise, there is a collision).

Clearly, n rounds also suffice, as the nodes can broadcast

their inputs one after the other in some pre-determined

order.

Consider now the noisy case, where each broadcast

from the leaf nodes is erased with a constant probability.

We may assume, without loss of generality, that each

node is only broadcasting its input bit, as any information

it has about the other inputs must have been broadcast to

it by the center. We observe that even in the erasure case,

the expected number of rounds that are needed for the

center node to hear the input of one leaf node, assuming

it is the only one communicating, is only a constant. If

one assumes that when a message reaches the center, all

the n+1 nodes in the network get notified and proceed

to sending the next input, an easy Chernoff bound shows

that a noise resilient protocol for Transfern with O(n)
rounds exists.

How strong is the assumption that all the nodes get

notified of a successful transmission? In the extreme

case, when the center node does not broadcast at all,

the leaf nodes have no choice but to repeat their input

Ω(logn) times to allow a union bound over all n inputs.

Thus, a noise resilient protocol for Transfern would

require Ω(n log n) rounds.

However, the center node can give feedback to the leaf

nodes to reduce the number of rounds in the broadcast

protocol. Indeed, in our prior work [EKS18], we

(implicitly) implement a sufficiently powerful feedback

mechanism for the star topology, reducing the number

of rounds all the way down to O(n). While our

focus in [EKS18] was the single-hop (clique) topology,

our simulation can be shown to work for topologies

satisfying (roughly): (1) there is a ‘center’ node that can

‘reach’ all other nodes in a constant number of rounds

(i.e., there is a constant round protocol for broadcasting

a message from the center to all other nodes); (2) there

exists a constant c such that all sets of nodes S that

can broadcast successfully have |S| ≤ c. Here, we say

that S broadcasts successfully if there exists a node

outside S with exactly one neighbor in S. The second

property implies that, effectively, at most c nodes are

broadcasting in any round. The center is then able to

broadcast feedback on their messages, reaching all nodes

in constant number of rounds.

The above discussion suggests that while Ω(logn)

messages per node are required for the center to hear any
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leaf’s input with high probability3, the expected number

of messages required is only a constant. Our lower bound

approach is to find a topology where the feedback from

the ‘center’ node can be somehow controlled, allowing

us to “go from the expected cost to the high probability

cost”.

We mention, as an aside, the work of [BEGH16],

showing a near-logarithmic lower bound for the star

topology in the point-to-point model. Their proof is also

“going from the expected cost to the high probability

cost”, but does so using an inherently different approach.

They lower bound the overhead required for simulating

a pointer chasing protocol in the presence of noise

(rather than a message exchange protocol). They exploit

the fact that the messages communicated by the nodes

in a given round of the protocol crucially depend on

all prior messages sent to them, thus all nodes must

know all previous messages with high probability. Due

to the differences in the models, and as we are mainly

interested in protocols for routing information, where

the messages communicated by the nodes are typically

independent of the history, we are unable to use their

ideas.

B. Controlling the Feedback

One easy way to make the feedback redundant is

to constrain the leaf nodes to only broadcast in a

fixed subset of the rounds, i.e., make the protocol non-

adaptive. This subset is decided beforehand and cannot

be changed by any feedback from the center node. In this

restricted scenario, it is again easy to see an Ω(logn)

lower bound (see [GKS08] for a related result for the

clique network).

Since we aim to prove a lower bound for adaptive

protocols, where the nodes can decide whether to receive

or transmit based on the communication history and their

input, we need other ways to control the feedback. To

this end, consider a graph G that has k disconnected

copies of the star graph, each with k leaves. Number

the leaf nodes on each of the star graphs from 1 to

k arbitrarily (thus, G is a graph with n = k(k + 1)

vertices). We want to solve Transferk on all of the star

subgraphs in parallel, meaning that the center of each

star should know the messages of all the leaves in its

star. Clearly, when there is no noise, this problem can

still be solved in k rounds, by having the ith nodes in

each star broadcasting in round i.

3High here means 1−n−c, for some constant c > 1, to allow union
bound over the leaves.

a) Lower bound under a restriction: Suppose that,

for all i, all the k leaf nodes numbered i were restricted

to only broadcast together. We now describe why, under

this restriction, any noise resilient protocol for our

problem would require Ω(k log k) rounds. Since all the k

nodes with the same number i are restricted to broadcast

together, the number of rounds needed for this group, say

group i, to successfully broadcast is equal to the number

of rounds needed for the node that was corrupted the

most. This number is easily seen to be Ω(log k). Since

this holds for all the k groups of nodes, it implies an

Ω(k log k) lower bound.

A crucial subtlety that we omit in the analysis above

is that information about the nodes’ inputs may be

transmitted by the order in which the groups choose to

broadcast, e.g., there may be a ‘fancy’ protocol where

the nodes in group 1 would broadcast in round 1 only if

they have some particular input, etc.. We show how to

deal with this ‘leak’ of information when we talk about

our actual construction in subsection II-C.

We end this subsection by observing that in the graph

G, all the k = Θ(
√
n) nodes labeled by i can broadcast

successfully at the same rounds and have their respective

centers hear them, thus violating Property 2 required by

[EKS18] in a strong way.

C. Our Construction

The discussion in the foregoing section suggests that

there are two main issues that need to be tackled. Firstly,

we need to find a way to actually implement the fairly

artificial restriction described above. Secondly, we need a

way to control and account for the leak of information in

the system. In this subsection, inspired by the discussion

above, we describe a graph G for which a weak version

of the above restriction holds. Later, we describe how

we account for the information leak in our analysis.

a) Our network: The graph G we construct has

n = 2k2 nodes divided into two sets A and B of

k2 nodes each. The nodes in the sets A and B are

divided into k groups of k nodes each. We will use aij
(respectively, bij) where i, j ∈ [k], to refer to the jth

node in the ith group of A (resp., B). We now describe

the edges in G:

1) Edges between A and B: There is an edge between

node aij ∈ A and another node bi′j′ ∈ B if either

(i �= i′) or (i = i′ and j = j′). In words, node aij
is connected to node bij and also connected to all

nodes not in group i of B.
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2) Edges in B: There is an edge between nodes

bij , bij′ ∈ B for every i and j �= j′.
Observe that the nodes in group i of A form an

independent set, while the nodes in group i of B form

a clique, see Figure 1.

b) Our communication task: All the nodes in the

set A have a single symbol as input. Nodes in B have

no input. The communication problem we consider is

where all the nodes bij in group i of B have to output

the input symbol of all the nodes in group i of A. The

nodes in A are not required to produce an output.

In the noiseless setting, this communication task

admits a simple non-adaptive and deterministic 2k

rounds protocol: In round i ∈ [k], all the nodes in group

i of A broadcast their input. After these k rounds, node

bij knows the input of aij . In round k + j for j ∈ [k],

all the nodes in {bij | i ∈ [k]} broadcast the symbol

they received. After this round, all nodes in group i of

B knows the input of aij , for every i.
c) Implementing the restriction: Since the nodes in

A are not required to produce an output, we assume that

the nodes in B do not broadcast during the protocol.

This assumption is not without loss of generality and

we justify it in subsection II-D.

Suppose that two nodes aij and ai′j , where i �= i′

are broadcasting in a given round. Then, since i �= i′,
all the nodes in the set B are connected to at least

one of these two nodes. Thus, a third node in the set

A cannot successfully broadcast in this round (meaning

that none of its neighbors will receive the transmission).

This implies that in any round, either all the nodes

broadcasting are in the same group of the set A, or the

number nodes that are successfully broadcasting is not

more than 2. This is actually just a weak version of the

restriction described in subsection II-B where we said

that all the nodes broadcasting in a given round have to

be in the same group.

D. Our Analysis

Our network and communication task are designed

to make the ‘basic’ lower bound analysis simple: It

is roughly true that all the nodes of A broadcasting

in any round belong to the same group. Since there

are k = Θ(
√
n) nodes in any group, if these groups

broadcast in a fixed order, then a given group will need

to broadcast Ω(logn) times. Since there are k groups,

the total number of rounds in any simulation will be

Ω(k log n), as required for the lower bound.

This basic analysis, however, is quite far from an

actual lower bound, and we need to face several

challenges to be able to complete the proof. We next

describe some of these challenging cases: (1) It may

happen that the nodes in A convey information about

their input by the order in which the groups broadcast.

(2) It may also happen that a lot of information is

conveyed in rounds where two nodes from different

groups in A broadcast. (3) There may be a clever

protocol that somehow uses broadcasts by the players

in the set B. (4) Finally, it may happen that a lot of

information is conveyed in rounds where a subset of a

group of nodes in A broadcast, or maybe such a subset

broadcasts together with a small number (< 2) of nodes

outside the group.

We now show how to handle each of these cases one

by one.

(1) We handle the case where information is revealed

by the order in which the groups in A broadcast,

using an information theoretic argument. Observe

that there are k2 nodes in the set A and each node

has one bit as input. Thus, a simulation protocol

needs to send Ω(k2) bits of information from A to B.

If the simulation protocol has fewer than T rounds,

then there are at most kT possible orders in which

the groups in A can broadcast. This means that if

T = Ω(k log k), then the amount of information

that can be conveyed using the order in which the

groups broadcast is at most log(kT )� k2, and thus

negligible.

(2) Next, we account for the information conveyed

during the rounds where two nodes from different

groups of A broadcast, using a similar information

theoretic argument. Recall that if nodes from

different groups of A broadcast, then the number

of such nodes is at most 2. Thus, in such a round,

at most 2 bits of information can be transmitted

‘directly’. Of course, as before, information may also

be transmitted using the order of such broadcasts.

However, there are at most |A|2 = k4 ways of

choosing these two nodes, and thus at most (k+k4)T

ways of ordering their broadcasts (the additive term

of k comes from the rounds where all the nodes

broadcasting are in the same group). As before,

this can only convey O(T log k) � k2 bits of

information.

(3) We need to argue that a protocol cannot really use

broadcasts from the nodes in the set B. For this part

of the argument, we use the fact that, in the above,

we actually upper bounded the information conveyed

to all of the set B (instead of to a given node in B).
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Thus, the argument above holds even if we ‘reveal’

everything known to any of the nodes in B to all the

nodes in the network. In this case, since nodes in B

have no inputs, their broadcasts can be computed by

any node in the graph, and thus are redundant.

We formalize this by considering a new model called

SHARED RADIO, where all the nodes receive the

same (shared) transcript. This transcript contains

all the received transcripts of all the nodes in

the original model (as well as some additional

information, described in item 4, tailor made for our

network and task). In SHARED RADIO, we require

that the nodes in B do not broadcast and that the

nodes in A only broadcast their input. We are able

to show that a lower bound for SHARED RADIO

implies a lower bound for NOISY RADIO. We then

show a lower bound for SHARED RADIO using the

ideas presented in this section.

(4) Finally, an extension of the information argument

in the first two items does not seem to work

for this case (at least not directly), as there are

2k subsets of any given group, thus giving too

many options. Before we describe how we handle

this case, we would like to elaborate on why

this may be a problem. At first sight, it may

seem that having only a subset of nodes in a

group broadcast can only give less information

than having the entire group broadcast. This is,

for instance, true when the noise is adversarial in

case of a collision/silence. However, we work in the

NOISY RADIO model, where collisions and silences

are received as erasures, and it is conceivable that

a subset may give some information that the entire

group did not give.

For example, consider the case when a subset S of

a group i in A is broadcasting, and a node v in A,

but not in group i of A, is also broadcasting. Let S′

be the subset of group i in B containing the nodes

‘corresponding’ to S. That is, bij ∈ S′ if and only

if aij ∈ S. By our graph construction, the nodes in

S′ will have two neighbors broadcasting, and will

always receive the erasure symbol λ, whereas the

nodes in group i of B that are not in S′ will have

only one neighbor broadcasting, namely v, and will

receive a noisy copy of its broadcast. In this case,

when a node in the group i in B receives λ, it

‘suggests’ that the corresponding node in A tried to

broadcast. Thus, even rounds where nodes receive λ

can reveal meaningful information.

In this case, it turns out that if we ‘reveal’ the input

of node v to all the nodes in the graph (as part of the

additional information in SHARED RADIO), then, we

can assume that all the nodes in group i broadcast

without loss of generality. At a high level, this is

because once the input of node v is known, it doesn’t

need to broadcast and the nodes in group i can

broadcast without worrying about a collision with

node v. Observe that the assumption that only an

entire group can broadcast in a given round (instead

of any subset), allows us to use the information

theoretic bounds in the first two items.

We believe that the idea of revealing some extra

information to account for signaling is more general

and may find applications beyond the current work.

III. LOWER BOUND: NETWORK AND PROTOCOL

CONSTRUCTION

In this section, we construct the network and protocol

used in the proof of Theorem I.1.

A. The Network Construction

Fix k > 0, we define a graph G over n = 2k2 vertices.

We partition the vertices into two sets, A and B, of k2

vertices each. Let i, j be variables that take values in

[k]. We index the sets A, B by the tuple (i, j) and use

the notation aij (respectively, bij) to denote the (i, j)th

vertex of A (respectively, B).

The graph G has the following edges:

• aij ∼ bij for all i, j ∈ [k].
• bij ∼ bij′ for all i, j, j′ ∈ [k] such that j �= j′.
• aij ∼ bi′j′ for all i, i′, j, j′ ∈ [k] such that i �= i′.

We use the shorthand Ai = {aij | j ∈ [k]} and

Bi = {bij | j ∈ [k]}. Observe that each of the sets

Ai is an independent set, and each of the sets Bi is a

clique. For a vertex v ∈ G, the neighborhood of v is

denoted using N(v) = {u ∈ G | u ∼ v}. We use the

convention that v ∈ N(v).
The graph G, for k = 3 is drawn in Figure 1.

The graph G constructed above was designed to

satisfy the following key property:

Fact III.1. Let i �= i′ ∈ [k] and j, j′ ∈ [k]. Then,
N(aij) ∪N(ai′j′) = B.

B. The Communication Task

In this subsection, we define the hard communication

task, called TribeTransferk, for k > 0. Consider the

graph G defined in subsection III-A with n = 2k2

nodes. Suppose that all nodes in the set A have an input,
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A1

A2

A3

B1

B2

B3

Fig. 1. Our graph construction, shown for k = 3. The nodes in the
set A are on the left while the nodes in set B are on the right. We
show all the edges between aij and bij , for all i, j ∈ [k], in teal.
Some edges in the graph are not shown to reduce clutter. Notice how
any two nodes that are not in the same Ai cover all of B (Fact III.1).

i.e., node aij has input xij ∈ Γ for some set Γ. The

parties are required to run a broadcast protocol such

that, at the end of the protocol, for all i, j, the node

bij outputs Xi, which is defined as the k-length string

Xi = xi1, xi2, · · · , xik. The nodes aij are not required

to produce an output.

a) Noiseless
protocol for TribeTransferk: We describe and analyze

a protocol that solves TribeTransferk in the noiseless

setting (ε = 0). The protocol proceeds in 2k rounds. In

round i ∈ [k], all the nodes in Ai broadcast their input.

Because the channel is noiseless, after these k rounds,

node bij knows xij for all i, j ∈ [k]. In round k + j for

j ∈ [k], all the nodes in {bij | i ∈ [k]} broadcast the

symbol they received, i.e., node bij broadcasts xij for

all i ∈ [k]. Observe that in round k+j, for every j �= j′,
node bij′ learns xij , as bij broadcasts it and none of the

other neighbors of bij′ (other vertices in the clique Bi

or a vertex from A) are broadcasting. This ensures that

each bij can output Xi, and the communication task is

completed. Note that this protocol is non-adaptive and

deterministic.

IV. RADIO MODELS

A. Notation

All logarithms in this paper are to the base 2. We

denote random variables using capital letters and their

realizations using the corresponding lower case letters.

For example, a random variable X may take the value

x. We often write Pr(· | X = x), Pr(X = x),

E(· | X = x), etc., as Pr(· | x), Pr(x), and E(· | x).

The support of a random variable X , denoted supp(X)

is the set {x | Pr(x) > 0}.
Throughout this paper, we assume that the nodes of a

graph with n nodes are numbered 1 to n. We also work

with an alphabet set Γ that does not include a special

symbol λ. We will use Γ+ to denote the set Γ ∪ {λ}.

B. The RADIO and NOISY RADIO Models

In the section, we formally define the

NOISY RADIOε model. The model RADIO is defined to

be NOISY RADIO0.

a) The noise function: Let G be a graph with n

nodes. For v ∈ G, define the function singlev : Γn+ →
Γ+ as follows: Let σ ∈ Γn+ be a string. Let N(v) be the

set of neighbors of v in G. If it is not the case that for

exactly one u ∈ N(v), it holds that σu �= λ, then we

define singlev(σ) = λ. Otherwise, if N(v) = {u}, we

define singlev(σ) = σu.

Finally, we define the

randomized function N-singlev(σ) to be singlev(σ) with

probability 1−ε and λ with probability ε. When we refer

to N-singlev(σ) for all nodes v in a set, say S, then we

implicitly assume that the randomness in N-singlev(·)
for all v ∈ S is independent.

b) NOISY RADIOε protocol: Fix ε, n ≥ 0, and let

G be a graph with n nodes and let Γ be as above.

A protocol Π in NOISY RADIOε over G with message

set Γ, is defined by a length parameter T ∈ N, nT

transmission functions {fvm}m∈[T ],v∈G, and n output

functions {gv}v∈G. The function fvm has type fvm :

Xv × Γm−1
+ → Γ+, and the function gv has the type

gv : Xv × ΓT+ → Y v . Here, we use Xv to denote the

input space of node v, Y v to denote the output space of

node v, and λ to denote the erasure symbol. We use the

convention that a node that chooses to receive transmits

the erasure symbol λ.

A protocol is executed as follows. At the beginning,

all the nodes v ∈ G have an input xv ∈ Xv and

start with the empty transcript πv<1. Before round m,

for m ∈ [T ], the node v has received a transcript

πv<m ∈ Γm−1
+ . In round m, the node v transmits the

symbol bvm = fvm(x
v, πv<m).

Let b ∈ Γn+ be the string whose vth coordinate is bvm.

In round m, node v ∈ G receives

πvm = N-singlev(b).

We note that the randomness used in πvm is fresh and

independent of any randomness used anywhere else in

the protocol. Observe that if singlev(b) = λ (i.e., when
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it is not the case that exactly one neighbor of v is

broadcasting), then πvm = λ with probability 1.

Node v appends πvm to the transcript πv<m to get πv≤m,

and continues the execution of the protocol. After round

T , all the nodes v output gv(xv, πv≤T ).
c) Non-adaptive protocols:

We say that a NOISY RADIOε protocol Π is non-adaptive
if the function hvm(x

v, πv<m) = �(fvm(x
v, πv<m) = λ) is

constant for all v,m. Here, �(E) is the boolean indicator

function for E.

C. The Lower Bound’s SHARED RADIO Model

We define a noisy radio model called SHARED RADIOε

and show that protocols over NOISY RADIOε can be

simulated by protocols over SHARED RADIOε of the same

length. While SHARED RADIOε is somewhat unrealistic,

it is useful for our lower bound purposes. Note

that we only define SHARED RADIOε for our graph

and our communication task (subsection III-A and

subsection III-B).

In the model SHARED RADIOε, all the nodes have

the same transcript. This transcript should be seen as

the concatenation of all the n transcripts received by

different nodes in NOISY RADIOε. However, we also

give the nodes some additional information. Firstly, if

there is an Ai such that exactly one node in Ai is

broadcasting, we reveal the input of this node in the

transcript. Secondly, if there is an Ai such that (strictly)

more than two nodes in Ai are broadcasting, then, our

model behaves as if all the nodes in Ai are broadcasting.

Finally, we also give some information about which

subset of nodes broadcast.

In the model SHARED RADIOε, the nodes in A are

restricted to broadcasting only their input, while the

nodes in B never broadcast.

We now formally define SHARED RADIOε and show

why it can simulate protocols over NOISY RADIOε (for

our graph and communication task), see Theorem IV.1.

Proving a lower bound for this stronger model only

makes our result stronger.

a) SHARED RADIOε protocol:
Define the set Cases = {many, few} ∪ {(i, standard) |
i ∈ [k]}. We proceed to formally define the notion

of a protocol in SHARED RADIOε. A protocol Π has

a predetermined length T = |Π|. It is defined by a

collection of nT transmission functions {fvm}v∈G,m∈[T ]

and n output functions {gv}v∈G. The function fvm has

the type fvm : Xv ×
(
Γn+
)m−1 × Casesm−1 → {0, 1}4,

4We use the convention that a node v chooses to broadcast (their
input) in round m if and only if fvm evaluates to 1.

while the function gv has the type gv : Xv ×
(
Γn+
)T ×

CasesT → Y v . As in subsection IV-B, we use Xv to

denote the input space of node v, and Y v to denote the

output space of node v.

The execution of this protocol proceeds as follows. At

the beginning, all the nodes v have an input xv ∈ Xv .

Starting from m = 1, in round m, all nodes v have a

transcript t<m = (π<m, ψ<m) ∈
(
Γn+
)m−1 × Casesm−1

. We ensure that the transcript t<m is the same for all

the nodes v. Define the set:

Sm = {v ∈ A | fvm(xv, t<m) = 1}.
We now define tm = (πm = πm,1 · · ·πm,n, ψm) ∈
Γn+ × Cases:

• If there are at least two values of i such that

|Sm ∩Ai| > 1, or at least three values of i such

that |Sm ∩Ai| > 0, then we define ψm = many.

We also define πm,v = λ for all v.

• If there are at most two values of i, we have

|Sm ∩Ai| = 1, and for all other values of i, we

have |Sm ∩Ai| = 0, then we define ψm = few.

We also define πm,v = λ if v �∈ Sm. Otherwise, set

πm,v = xv .

• Finally, we consider the case when there exists

an i ∈ [k] such that |Sm ∩Ai| > 1 and

|Sm ∩
(
A \Ai

)
| ≤ 1. In this case, we define

ψm = (i, standard). Also, for v ∈ Sm ∩
(
A \Ai

)
,

we set πm,v = xv . We also set, independently, for

all j ∈ [k],

πm,aij =

{
xaij , with probability 1− ε
λ , with probability ε

.

All other coordinates of πm are set to λ.

All the players receive tm and define t≤m as t<m
concatenated with tm, and the execution goes on. After

T rounds, node v outputs gv(xv, t≤T ), finishing the

protocol.

b) Lower bound for SHARED RADIOε implies a
bound for NOISY RADIOε: We finish this section with

the following theorem, showing that every protocol for

TribeTransferk over the NOISY RADIOε model can be

simulated by a protocol over the SHARED RADIOε model

of the same length. Theorem IV.1 shows that in order to

prove Theorem I.1, it suffices to prove an Ω(logn) lower

bound on the overhead of a noise resilient simulation in

the SHARED RADIOε model.

Theorem IV.1. Fix k > 0 and let G be the graph from
subsection III-A with n = 2k2 nodes A ∪ B. Fix ε ≥ 0

and let Π be a protocol over NOISY RADIOε. Assume
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that when Π commences, each node v ∈ A has an input
xv ∈ Γ, while nodes in B have no input.

Then, there exists a protocol Π′, |Π′| = |Π|,
in SHARED RADIOε, and a randomized function hv :(
Γn+
)|Π| × Cases|Π| → Γ

|Π|
+ for all v ∈ G, such that for

every input {xv}v∈A, when both Π′ and Π are executed
with the input xv to node v ∈ A, it holds that

{hv(π′, ψ′)}v∈G ≡ {πv}v∈G.
Here, (π′, ψ′) is the transcript of Π′, πv is the transcript
of node v of Π, and ‘≡’ denotes equality as joint
distributions.

Proof. In this proof, we use πG, hG(π′, ψ′), etc., to

denote {πv}v∈G, {hv(π′, ψ′)}v∈G, etc.5. The proof is

by induction on |Π|. The result is straightforward for

|Π| = 0. We assume that the theorem is true for

|Π| = T − 1 and prove it for |Π| = T . Fix a protocol Π

with |Π| = T and inputs as described by the theorem.

We will construct a protocol Π′ in SHARED RADIOε and

a randomized function hv for all v ∈ G such that for

every set of inputs xA, when Π and Π′ are run with

input xv to node v, then, for all τG ∈ ΓnT+ :

Pr
πG∼Π(xA)

(πG = τG)

= Pr
hG,(π′,ψ′)∼Π′(xA)

(hG(π′, ψ′) = τG).
(1)

Here, τG ∈ ΓnT+ is a vector of transcripts of length T ,

one for each node v ∈ G.

If we use τG<T (respectively, τGT ) to denote the vector

of the first T −1 (respectively, the last) coordinate of all

the transcripts in πG, the last equation is the same as:

Pr
πG∼Π(xA)

(πG<T = τG<T ∧ πGT = τGT )

= Pr
hG

(π′,ψ′)∼Π′(xA)

(hG<T (π
′, ψ′) = τG<T ∧ hGT (π′, ψ′) = τGT ),

(2)

where as usual hv<T (·) is the first T − 1 coordinates of

hv(·) and hvT (·) is the last coordinate of hv(·).
Using τG<T , define the events E(τG<T ) and E′(τG<T )

over the probability space defined by Π(xA) and

({hv}v∈G,Π′(xA)) respectively as follows:

E(τG<T ) ≡ πG<T = τG<T ,

E′(τG<T ) ≡ hG<T (π
′, ψ′) = τG<T .

5As the nodes in B do not have any input in our communication
task, we use xG and xA interchangeably to denote {xv}v∈G.

Equation 2 simplifies to:

Pr
πG∼Π(xA)

(E(τG<T )) Pr
πG∼Π(xA)

(πGT = τGT | E(τG<T ))

= Pr
hG,(π′,ψ′)∼Π′(xA)

(E′(τG<T ))

× Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T )).

(3)

We will now construct a protocol Π′ and a randomized

function hv for all v ∈ G such that for every set of inputs

xA, when Π and Π′ are run with input xv to node v, then

Equation 3 holds. To this end, let Π̂ denote the length

T −1 protocol consisting of the first T −1 rounds of Π.

We apply the induction hypothesis on Π̂ to get Π̂′ and

ĥG.

The protocol Π′ behaves identically to Π̂′ for the first

T − 1 rounds. We will define the behavior of Π′ in

round T later. For node v ∈ G, define the output of

the randomized function hv<T (π
′, ψ′) to be distributed

identically as ĥv(π′<T , ψ
′
<T ). We will define the last

coordinate, hvT (π
′, ψ′), later. For now, observe that when

Π and Π′ are run with the same inputs xA, we have, for

all τG<T ,

Pr
πG∼Π(xA)

(E(τG<T )) = Pr
πG∼Π(xA)

(πG<T = τG<T )

= Pr
π̂G∼Π̂(xA)

(π̂G = τG<T ) (Definition of Π̂)

= Pr
ĥG,(π̂′,ψ̂′)∼Π̂′(xA)

(ĥG(π̂′, ψ̂′) = τG<T )

(Induction Hypothesis)

= Pr
ĥG,(π′,ψ′)∼Π′(xA)

(ĥG(π′<T , ψ
′
<T ) = τG<T )

(Definition of Π′)

= Pr
hG,(π′,ψ′)∼Π′(xA)

(hG<T (π
′, ψ′) = τG<T )

= Pr
hG,(π′,ψ′)∼Π′(xA)

(E′(τG<T )).

(Definition of hv)

It is sufficient now to define the behavior of the

protocol Π′ in round T , i.e., the functions f ′vT : Xv ×(
Γn+ × Cases

)(T−1) → {0, 1}6 and hGT (π
′, ψ′) such that,

for all τG, when Π and Π′ are run with the same set of

inputs xA, then

Pr
πG∼Π(xA)

(πGT = τGT | E(τG<T ))

= Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T )).

(4)

To this end, we define the function

f ′vT (x
v, (π′<T , ψ

′
<T ))

= �(fvT (x
v, hv<T (π

′, ψ′)) �= λ).
(5)

6The output functions g′G(·) are not relevant to this theorem.
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Here, �(E) denotes the indicator function for the event

E, and fvT is the transmission function of node v in round

T of Π. Recall that hv<T (π
′, ψ′) = ĥv(π′<T , ψ

′
<T ) and

thus, the function f ′vT (x
v, (π′<T , ψ

′
<T )) is well defined.

Instead of

defining the randomized function hGT (π
′, ψ′) en bloc, we

observe that the claim in Equation 4 for τG depends only

on the behavior of the function hGT (π
′, ψ′) conditioned

on the event E′(τG<T ). We will thus fix an arbitrary τG,

and define hGT (π
′, ψ′) conditioned on E′(τG) such that

Equation 4 holds. Combining the definition of hGT (π
′, ψ′)

conditioned on E′(τG<T ) for all such τG will give us the

definition of hGT (π
′, ψ′).

From now on, let τG be fixed. We have that:

• If E(τG<T ) happens, then node v broadcasts in round

T of Π(xA) if and only if fvT (x
v, τv<T ) �= λ.

• If E′(τG<T ) happens, then node

v broadcasts in round T of Π′(xA) if and only if

f ′vT (x
v, (π′<T , ψ

′
<T )) = 1 ⇐⇒ fvT (x

v, τv<T ) �= λ.

Together, we have that, the set of players broadcasting

in round T of Π(xA) conditioned on the event E(τG<T )

is the same as the set of players broadcasting in round

T of Π′(xA) conditioned on E′(τG<T ). We denote this

set by S∗(τG<T ). Define ψ∗T analogously to ψm in

subsection IV-C, with Sm replaced by S∗(τG<T ). We do

a case analysis based on all the values ψ∗T can take to

define hvT (π
′, ψ′).7

• Case ψ∗
T = many: We start by defining σ′ ∈ Γn+

to be the string indexed by node v ∈ G such that

σ′v =

{
λ , v ∈ A
fvT (τ

v
<T ) , v ∈ B

.

Observe that since nodes v ∈ B have no input,

fvT (τ
v
<T ) is well defined.

As ψ∗T = many in this case, we have that,

conditioned on E(τG<T ), either there are three

different values of i such that there exists v ∈
Ai satisfying fvT (x

v, τv<T ) �= λ or there are at

least two different values of i such that there

are at least two different v ∈ Ai satisfying

fvT (x
v, τv<T ) �= λ. In either case, by the construction

of our graph (Figure 1), all the nodes in B have

at least two neighbors broadcasting and receive λ

with probability 1. This implies that the LHS of

Equation 4 is

Pr
πG∼Π(xA)

(πGT = τGT | E(τG<T )) (6)

7We note that since we are sampling (π′, ψ′) ∼ Π′(xA), it is
always the case that ψ∗T = ψ′T .

= �(τBT = λ|B|) Pr
πG∼Π(xA)

(πAT = τAT | E(τG<T ))

= �(τBT = λ|B|) Pr(N-singleA(σ′) = τAT ), (7)

where in the last step, we use the fact that all the

neighbors of a node in A are in B, and for all

v ∈ B, as we are conditioning on E(τG<T ), we have

σ′v = fvT (τ
v
<T ) = fvT (π

v
<T ).

We next define hGT (π
′, ψ′) conditioned on E′(τG<T )

and analyze the RHS of Equation 4. If E′(τG<T )
happens, for v ∈ G, define

hvT (π
′, ψ′) =

{
N-singlev(σ′) , v ∈ A
λ , v ∈ B

.

Recall that the randomness used in hvT (π
′, ψ′) is

fresh and independent for all v ∈ A. We now

analyze the RHS of Equation 4 in this case.

Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T ))

= �(τBT = λ|B|) (8)

× Pr
hG,(π′,ψ′)∼Π′(xA)

(hAT (π
′, ψ′) = τAT | E′(τG<T ))

= �(τBT = λ|B|) Pr(N-singleA(σ′) = τAT ), (9)

where the probability is over the noise in

N-single(·).
Equation 8 and Equation 6 complete the proof of

Equation 4 in this case.

• Case ψ∗
T = few: Let σ′ : Γn+ → Γn+ be the

function whose values are strings indexed by node

v ∈ G such that, for yG ∈ Γn+, we have

σ′v(y
G) =

⎧⎪⎪⎨
⎪⎪⎩
λ , v ∈ A, yv = λ

fvT (y
v, τv<T ) , v ∈ A, yv �= λ

fvT (τ
v
<T ) , v ∈ B

.

As in the previous case, we first analyze the LHS

of Equation 4:

Pr
πG∼Π(xA)

(πGT = τGT | E(τG<T ))

= Pr(N-singleG(σ′(xG)) = τGT ),
(10)

where since we are conditioning on E(τG<T ), we

have σ′v(x
G) = fvT (x

v, τv<T ) = fvT (x
v, πv<T ) for

v ∈ A, and σ′v(x
G) = fvT (τ

v
<T ) = fvT (π

v
<T ) for

v ∈ B.

We next define hGT (π
′, ψ′) conditioned on E′(τG<T )

and analyze the RHS of Equation 4. If E′(τG<T )
happens, define

hvT (π
′, ψ′) = N-singlev(σ′(π′T )).

Recall that the randomness used in hvT (π
′, ψ′) is
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fresh and independent for all v ∈ G.

As ψ∗T = few,

we have π′T,v = λ if f ′vT (x
v, (π′<T , ψ

′
<T )) =

0 ⇐⇒ fvT (x
v, hv<T (π

′, ψ′)) = λ and π′T,v = xv

otherwise. Thus, conditioned on E′(τG<T ), we have

σ′(π′T ) = σ′(xG). We now analyze the RHS of

Equation 4. We have:

Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T ))

= Pr
hG
<T

(π′,ψ′)∼Π′(xA)

(N-singleG(σ′(π′T )) = τGT | E′(τG<T ))

= Pr(N-singleG(σ′(xG)) = τGT ).

(11)

Equation 4 follows from Equation 10 and

Equation 11 in this case.

• Case ψ∗
T = (i, standard): Let σ′ : Γn+ → Γn+ be

the function whose values are strings indexed by

node v ∈ G such that, for yG ∈ Γn+, we have

σ′v(y
G) =

⎧⎪⎪⎨
⎪⎪⎩
λ , v ∈ A, yv = λ

fvT (y
v, τv<T ) , v ∈ A, yv �= λ

fvT (τ
v
<T ) , v ∈ B

.

As in the previous case, we first analyze the LHS

of Equation 4. In this case, conditioned on E(τG<T ),

there are at least two different v ∈ Ai satisfying

fvT (x
v, τv<T ) �= λ. Thus, by the construction of our

graph (Figure 1), all the nodes in B \ Bi have

at least two neighbors broadcasting and receive λ

with probability 1. This implies that the LHS of

Equation 4 is

Pr
πG∼Π(xA)

(πGT = τGT | E(τG<T ))

= �(τ
B\Bi

T = λ|B\B
i|)

× Pr
πA∪Bi∼Π(xA)

(πA∪B
i

T = τA∪B
i

T | E(τG<T ))

= �(τ
B\Bi

T = λ|B\B
i|)

× Pr(N-singleA∪B
i

(σ′(xG)) = τA∪B
i

T ).

(12)

where in the last step, we use the fact that if

E(τG<T ) happens, then σ′v(x
G) = fvT (x

v, τv<T ) =

fvT (x
v, πv<T ), as in the previous case.

We next define hGT (π
′, ψ′) conditioned on E′(τG<T )

and analyze the RHS of Equation 4. If E′(τG<T )

happens, we define:

hvT (π
′, ψ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N-singlev(σ′(π′T )) , v ∈ A
λ , v ∈ B \Bi

λ , v = bij ∈ Bi

π′T,aij = λ

singlev(σ′(π′T )) , v = bij ∈ Bi

π′T,aij �= λ

.

We note that the randomness used in hvT (π
′, ψ′)

is fresh and independent, for all v ∈ G. As

ψ∗T = (i, standard), we have for all v ∈ A \ Ai,
π′T,v = λ ⇐⇒ f ′vT (x

v, (π′<T , ψ
′
<T )) = 0 ⇐⇒

fvT (x
v, hv<T (π

′, ψ′)) = λ and π′T,v = xv otherwise.

Also, we have for all v that π′T,v �= λ =⇒ π′T,v =
xv . Thus, conditioned on E′(τG<T ), we have

hvT (π
′, ψ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N-singlev(σ′(xG)) , v ∈ A
λ , v ∈ B \Bi

λ , v = bij ∈ Bi

π′T,aij = λ

singlev(σ′(xG)) , v = bij ∈ Bi

π′T,aij �= λ

.

We now analyze the RHS of Equation 4. We have:

Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T ))

= �(τ
B\Bi

T = λ|B\B
i|)

× Pr
hG

(π′,ψ′)∼Π′(xA)

(hA∪B
i

T (π′, ψ′) = τA∪B
i

T | E′(τG<T )).

Again, since ψ∗T = (i, standard), we have that π′T,u,

for all u ∈ Ai, is λ with probability ε, independently

(and also independent of the randomness in hG).

Thus, we get

Pr
hG,(π′,ψ′)∼Π′(xA)

(hGT (π
′, ψ′) = τGT | E′(τG<T ))

= �(τ
B\Bi

T = λ|B\B
i|)

× Pr(N-singleA∪B
i

(σ′(xG)) = τA∪B
i

T ).

(13)

Equation 4 follows from Equation 12 and

Equation 13 in this case.

Together, the three cases above prove Equation 4 for

all (τG, xA).

V. LOWER BOUND: ANALYSIS

In this section, we prove Theorem I.1. For the rest of

this lower bound proof, we fix the graph G constructed

in subsection III-A. For simplicity of exposition, we fix
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a set Γ, set ε = 1/3, and denote by SHARED RADIO

the SHARED RADIOε model with error rate ε over G

and message set Γ. The proof of Theorem I.1 follows

directly from the following theorem in combination with

Theorem IV.1.

Theorem V.1. Fix k ∈ N such that k > 2100, and let Π
be a protocol for TribeTransferk in the SHARED RADIO

model such that |Π| < k log k
10000 . There exists a set I ⊆ [k]

such that |I| ≥ 4k/5 and for all i ∈ I and all j ∈ [k],
we have

Pr(bij outputs Xi) ≤ 1

4
.

A. Notation

A general protocol will be denoted using Π, and T will

be reserved for |Π|. The notation X denotes the random

vector of all the n inputs and x is one realization of X .

The input for node v will be denoted using xv (or Xv).

The inputs for the nodes in Ai will be denoted using Xi.

The random variable Tm takes values in Γn+ × Cases

and denotes the transcript received by the players in

round m. A particular realization of Tm = (Πm,Ψm)

will be denoted as tm = (πm, ψm). We define T≤m to be

the concatenation of the transcripts received in the first m

rounds. Analogously, define T<m to be the concatenation

of the transcripts received in the first m− 1 rounds. We

slightly abuse notation and shorten T≤T to T , Π≤T to

Π, etc.. The distinction between the random variable Π

and the protocol Π should be clear from context.

a) The functions succi(·), cti(·), and usei(·): For

i ∈ [k] and a transcript (π≤m, ψ≤m), we define

succi(π≤m) = {v ∈ Ai | ∃l ∈ [m] : πl,v �= λ},
succ(π≤m) = ∪i∈[k] succi(π≤m).

Thus, the value of succi(π≤m) is a subset of Ai.

Intuitively, it is the subset of nodes in Ai that have

“successfully” broadcast in the first m rounds. Also,

define

cti(π≤m) = |succi(π≤m)|,
ct(π≤m) =

∑
i∈[k]

cti(π≤m).

Sometimes, we need these functions for a transcript of

a single round. In this case, we have

succi(πm) = {v ∈ Ai | πm,v �= λ}.
The functions succ(·), cti(·), and ct(·), for the transcript

of a single round are defined similarly.

Define, for all i ∈ [k], the set valued function

usei(ψ≤m) = {m′ ≤ m | ψm′ = (i, standard)} .

Observe that, for any realization ψ of Ψ,∑
i∈[k]

|usei(ψ)| ≤ T. (14)

B. The Proof of Theorem V.1

For the rest of the text, we fix k and a protocol Π for

TribeTransferk in SHARED RADIO.

Recall that T≤m = (Π≤m,Ψ≤m) is a random

variable that denotes the transcript of Π in the first m

rounds. Unless stated otherwise, the probabilities and

expectations below are over the players’ inputs, and the

randomness used by the players and by the channel. We

prove Theorem V.1 in 3 steps:

Theorem V.2. If |Π| = T ≤ k log k
10000 , there is a set

I ′ ⊆ [k] such that |I ′| ≥ 9k/10, and for all i ∈ I ′,
we have

Pr
(
cti(Π) ≥ k −

√
k
)
≤ 1

10
.

Theorem V.2 shows that for all i ∈ I ′, a significant

number of nodes in Ai were ‘erased’ out during the

execution of Π. One may conclude that nodes in Bi

would not be able to output Xi. This is fallacious as it

may be the case that information about Xi was revealed

in some other ways, e.g., the rounds in which the nodes

in Ai chose to broadcast. In what follows, we upper

bound this information leak.

Recall that the alphabet in our protocols is Γ. Define

γ = log(|Γ|).

Theorem V.3. We have

I(X : T ) ≤ γ · E[ct(Π)] + 20γT log k.

Theorem V.4. Suppose that, for some i ∈ [k], we have
I(Xi : T ) ≤ γ · E[cti(Π)] + f(k) for some function
f : N→ R

+. Then,

Pr
t

(
2−H∞(Xi|t) ≥ 10f(k) + 2

γk + 1− γ cti(π)

)
≤ 1

10
.

Here, t = (π, ψ) is sampled according to T .

We first present the proof of Theorem V.1 assuming

the three results above.

Proof of Theorem V.1. Using Lemma A.10 and linearity

of expectation, we can rewrite Theorem V.3 as:∑
i∈[k]

I(Xi : T ) ≤
∑
i∈[k]

γ ·E[cti(Π)]+20γT log k. (15)

Define the set:

I =

{
i ∈ [k] | I(Xi : T ) ≤ γ · E[cti(Π)] +

200γT log k

k

}
.
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We claim that |I| ≥ 9k/10. Otherwise, using the fact

that I(Xi : T ) = γk − H(Xi | T ) ≥ γ · E[cti(Π)], we

have the following:∑
i∈[k]

I(Xi : T )

=
∑
i∈I

I(Xi : T ) +
∑

i∈[k]\I
I(Xi : T )

≥
∑
i∈I

γ · E[cti(Π)]

+
∑

i∈[k]\I

(
γ · E[cti(Π)] +

200γT log k

k

)

>
∑
i∈[k]

γ · E[cti(Π)] + 20γT log k,

a contradiction to Equation 15.

Let I ′ be the set promised by Theorem V.2. Observe

that |I ∩ I ′| ≥ 4k/5, and for all i ∈ I ∩ I ′, we apply

Theorem V.4 to get that

Pr
t

(
2−H∞(Xi|t) ≥ 2000γT log k + 2k

γk3/2

)
≤ 1

5
.

The probability that bij outputs Xi is at most the

probability of the most likely Xi given the observed

transcript t, given by 2−H∞(Xi|t). Thus,

Pr(bij outputs Xi) ≤ E
t

[
2−H∞(Xi|t)

]
≤ 1

5
+k−0.1 <

1

4
.

C. Proof of Theorem V.2

We present our proof of Theorem V.2.

Proof of Theorem V.2. Recall (Π,Ψ) is a random

variable that denotes the transcript of Π. We begin by

defining the following events that depend on (Π,Ψ):

Ei1 ≡
∑

m∈usei(ψ)
cti(Π≤m)− cti(Π<m) ≥ k − k 2

3 .

Ei2 ≡ |usei(Ψ)| ≤
log k

25
.

E3 ≡ ∃I ⊆ [k] : |I| > k

200
∧ ∀i ∈ I : cti(Π) ≥ k −

√
k.

E4 ≡ ∃I ⊆ [k] : |I| > k

400
∧ ∀i ∈ I : E1

i .

E5 ≡ ∃i ∈ [k] : Ei1 ∧ Ei2.
We will show that

Pr(E3)
(a)

≤ Pr(E4)
(b)

≤ Pr(E5)

(c)

≤
∑
i∈[k]

Pr(Ei1 | Ei2)
(d)

≤ 1

200
.

(16)

Before proving Equation 16, we show that Pr(E3) ≤
1

200 indeed implies the theorem. Consider the quantity

ζ =
∑
i∈[k] Pr(cti(Π) ≥ k −

√
k). Define the random

variable Y i = �(cti(Π) ≥ k −
√
k). It holds that ζ =∑

i∈[k] E[Y
i] = E

[∑
i∈[k] Y

i
]
. Assuming Pr(E3) ≤

1
200 , we have:

ζ ≤ k · Pr(E3) +
k

200
Pr(E3) ≤

k

100
.

This implies the theorem as there can be at most k
10

values of i such that Pr(cti(π) ≥ k −
√
k) ≥ 1

10 .

We now prove Equation 16.

To show inequality (a), we assume E3∧E4 and derive

a contradiction. Consider a realization (π, ψ) of (Π,Ψ)

such that E3 ∧ E4 holds. Then, if (Π,Ψ) = (π, ψ), we

have a set I ⊆ [k] : |I| > k
400 such that for all i ∈ I ,

cti(π)−

⎛
⎝ ∑
m∈usei(ψ)

cti(π≤m)− cti(π<m)

⎞
⎠ ≥ k

2
3−
√
k.

This implies
∑
i∈I
∑
m �∈usei(ψ) cti(π≤m)− cti(π<m) ≥

k
400 (k

2
3 −

√
k) ≥ k

8
5 . Since the summand cti(π≤m) −

cti(π<m) is always positive, we can take the sum over

all i ∈ [k] instead of i ∈ I . With this change, we can

rearrange to∑
m∈[T ]

∑
i:m �∈usei(ψ)

cti(π≤m)− cti(π<m) ≥ k
8
5 .

Let Im be the set of all i’s such that m �∈ usei(ψ).

Observe that at most 2 positions of πm that are in Ai,

for some i ∈ Im, are different from λ (this can be seen

by going over the possible values for ψm). Thus, we get∑
m∈[T ]

∑
i:m �∈usei(ψ)

cti(π≤m)− cti(π<m) ≤ 2T < k
8
5 ,

a contradiction.

To show inequality (b), we show that E4 =⇒ E5.

Consider a realization (π, ψ) of (Π,Ψ) such that E4

happens. Then, there are more than k
400 values of i

such that Ei1 happens. Since the sets usei(ψ) ⊆ [T ] are

disjoint for all i and T ≤ k log k
10000 , there is at least one

value of i satisfying Ei1, such that Ei2 also happens, thus

E5 happens.

Inequality (c) follows from a simple union bound and

the fact that Pr(A∧B) ≤ Pr(A | B) for any two events

A, B.
Finally, we show inequality (d) by showing that for

any i and any ψ such that Ei2 happens when Ψ = ψ, we

have Pr(Ei1 | ψ) ≤ 1
200k . Fix any such ψ. Then, Ei1 can

happen only if there is a set J ⊆ [k], |J | ≥ k − k
2
3

such that for all j ∈ J , there exists m ∈ usei(ψ)

such that πm,aij �= λ. Since for all j ∈ [k] and

m ∈ usei(ψ), we have πm,aij �= λ independently with

probability 2
3 and we have |usei(ψ)| ≤ log k

25 , there exists
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m ∈ usei(ψ) such that πm,aij �= λ with probability

1− (1− 2
3 )
| usei(ψ)| ≤ 1− k− 1

10 . We union bound over

all possible values of J to get

Pr(Ei1 | ψ) ≤ kk
2
3︸︷︷︸

Values of J

·
(
1− k− 1

10

)k−k 2
3

≤ kk
2
3 · e−k−

1
10 (k−k 2

3 ) � 1

200k
,

as desired.

D. Proof of Theorem V.3

The following theorem is the main ingredient in the

proof of Theorem V.3. Recall that T = (Π,Ψ).

Theorem V.5. It holds that

I(X : T | Ψ) ≤ γ · E[ct(Π)] + 15γT log k.

Proof of Theorem V.3 assuming Theorem V.5. For any

round m ∈ [T ], Ψm takes at most k5 different values.

Thus, we have

H(Ψ) ≤ 5T log k.

We have

I(X : T ) ≤ I(X : T | Ψ) +H(Ψ) (by Lemma A.11)

≤ γ · E[ct(Π)] + 15γT log k + 5T log k

(by Theorem V.5)

< γ · E[ct(Π)] + 20γT log k.

It remains to prove Theorem V.5. Theorem V.5 follows

from Lemma V.7 below (by setting m = T ) that shows

that if one cannot signal using the types of the rounds,

then the amount of new information that the transcript

of a single round can give about the inputs is (roughly)

at most the number of new input symbols revealed in

this round.

Lemma V.6. Let m ∈ [T ]. In the event that Ψm =

(i, standard) for some i, it holds that

I(X : Tm | T<mΨ≤m)
≤ γ · E[ct(Π≤m)− ct(Π<m)] + 2 log k + γ.

Proof. It holds that

I(X : Tm | T<mΨ≤m) = I(X : Πm | T<mΨ≤m)
= I(X : Πm, succ(Πm) | T<mΨ≤m)
≤ I(X : succ(Πm) | T<mΨ≤m)
+H(Πm | succ(Πm)T<mΨ≤m).

(by Fact A.8, Fact A.9)

Observe that, in the event that Ψm = (i, standard),

we have I(X : succ(Πm) | T<mΨ≤m) ≤ γ +

2 log k. This is because succi(Πm) is determined by

noise independently from the input X , and the rest of

succ(Πm) has entropy at most γ + 2 log k, as at most

one πm,v may be different from λ for v /∈ Ai.
We next claim that

H(Πm | succ(Πm)T<mΨ≤m)
= H(Πm | succ(Πm) ct(Π≤m)T<mΨ≤m)
≤ γ · E[ct(Π≤m)− ct(Π<m)],

and the assertion follows. The first step is because

ct(Π≤m) is determined by succ(Πm)T<mΨ≤m. The

second

step is because, given any realization (S, c, π<m, ψ≤m)
of succ(Πm) ct(Π≤m)T<mΨ≤m, the value of Πm is

determined by its value in coordinates in the subset S (as

the rest of the coordinates are λ). Even amongst these

coordinates, some are already determined by π<m. The

number of coordinates that are not determined is exactly

c− ct(π<m).

Lemma V.7. Let m ∈ [T ]. It holds that

I(X : T≤m | Ψ≤m) ≤ γ · E[ct(Π≤m)] + 15γm log k.

Proof. Proof by induction on m. The statement is

trivially true for m = 0. We assume it holds for m− 1

and prove it for m. We have

I(X : T≤m | Ψ≤m) (17)

= I(X : T<m | Ψ≤m) + I(X : Tm | T<mΨ≤m)
(by Fact A.9)

≤ I(X : T<m | Ψ<m) (18)

+ I(X : Tm | T<mΨ≤m) +H(Ψm)

(by Lemma A.11)

≤ γ · E[ct(Π<m)] + 15γ(m− 1) log k (19)

+ I(X : Tm | T<mΨ≤m) + 5 log k.

(by the induction hypothesis)

We now proceed by a case analysis:

• ψm = (i, standard): In this case, we use

Lemma V.6 to get

I(X : Tm | T<mΨ≤m) ≤ γ · E[ct(Π≤m)− ct(Π<m)]

+ 2 log k + γ.

Plugging it in Equation 17 gives

I(X : T≤m | Ψ≤m)
≤ γ · E[ct(Π<m)] + 15γm log k

+ γ · E[ct(Π≤m)− ct(Π<m)]

≤ γ · E[ct(Π≤m)] + 15γm log k,

and the assertion follows.
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• Otherwise: In these cases, because at most two

coordinates of Πm may be different from λ,

I(X : Tm | T<mΨ≤m) ≤ H(Tm | T<mΨ≤m)
< 2γ + 4 log k.

Here, 4 log k comes from the number of ways of

choosing the (at most) two coordinates that are

different from λ and 2γ comes from the number

of possible values of these coordinates. Plugging it

in Equation 17 gives the assertion, as ct(Π<m) ≤
ct(Π≤m).

E. Proof of Theorem V.4

We will need the following lemma connecting H(X |
t) and H∞(X | t). The argument in this lemma is similar

to that in Lemma 2.6 in [BEGH16] (where it was said

to be a special case of Fano’s inequality). See [KR13]

also.

Lemma V.8. Let (X, T ) be a pair of discrete random
variables. Let t be a realization of T . Define the set
Ωt = {x | Pr(x, t) �= 0}. If |Ωt| > 0, it holds that

2−H∞(X|t) ≤ 1− H(X | t)− 1

log(|Ωt|) + 1
.

Proof. Assume that |Ωt| > 1 as otherwise the claim

is trivial. Let x∗ maximize Pr(x, t) and define p∗ =

Pr(x∗ | t). We have

H(X | t)
= −

∑
x∈Ωt

Pr(x | t) log(Pr(x | t))

= −p∗ log(p∗)−
∑

x∈Ωt\{x∗}
Pr(x | t) log(Pr(x | t))

= −p∗ log(p∗)− (1− p∗) log(1− p∗)

−
∑

x∈Ωt\{x∗}
Pr(x | t) log

(
Pr(x | t)
1− p∗

)

= h(p∗) + (1− p∗)H(X | T = t,X �= x∗)

≤ h(p∗) + (1− p∗) log(|Ωt|)
≤ 1 + (1− p∗) log(|Ωt|),

where h(x) = −x log x− (1− x) log(1− x) is defined

on (0, 1). The proof is done as p∗ = 2−H∞(X|t) by

definition.

Proof of Theorem V.4. Recall that

I(Xi : T ) = H(Xi)−H(Xi | T ) = γk−E
t
[H(Xi | t)].

Let Z be the random variable that whenever T = t =

(π, ψ) receives the value γk−H(Xi | t)− γ cti(π). By

our assumption in the theorem statement

E[Z] = γk − E
t
[H(Xi | t)]− γ · E

π
[cti(π)]

= I(Xi : T )− γ · E[cti(Π)] ≤ f(k).

Let t be a realization of T . Denote

Ωt = {x ∈ supp(Xi) | Pr(x, t) �= 0}.
Note that

log (|Ωt|) ≤ γk − γ cti(π). (20)

In addition,

H(Xi | t) ≤ log (|Ωt|) = γk − γ cti(π),
implying that Z ≥ 0.

Since Z is a non-negative random variable whose

expectation is at most f(k), by Markov’s inequality, we

have

Pr(Z ≥ 10f(k)) ≤ 1

10
.

Let t be a realization of T , such that Z < 10f(k). It

holds that

2−H∞(Xi|t) ≤ 1− H(Xi | t)− 1

log(|Ωt|) + 1
(by Lemma V.8)

≤ 1− γk − γ cti(π)− 10f(k)− 1

γk + 1− γ cti(π)
(by Equation 20 and Z < 10f(k))

≤ 10f(k) + 2

γk + 1− γ cti(π)
,

and the assertion follows.
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APPENDIX A

INFORMATION THEORY PRELIMINARIES

A. Entropy

Definition A.1 (Entropy). The (binary) entropy of a
discrete random variable X is defined as

H(X) =
∑

x∈supp(X)

Pr(x) log
1

Pr(x)
= E
x∼X

[
log

1

Pr(x)

]
.

Definition A.2 (Conditional Entropy). The entropy of
a discrete random variable X given another random
variable Y is defined as

H(X | Y ) = E
y∼Y

[H(X | Y = y)] .

Fact A.3. We have H(XY ) = H(X) + H(Y |
X) ≤ H(X) + H(Y ). Equality holds if X and Y are
independent.

Fact A.4. If the random variable X takes values in the
set Ω, it holds that

0 ≤ H(X) ≤ log|Ω|.

B. Min-Entropy

Definition A.5 (Min-Entropy). The min-entropy of a
discrete random variable X is

H∞(X) = min
x:Pr(x) �=0

log
1

Pr(x)
.

Fact A.6. If the random variable X takes values in the
set Ω, it holds that

0 ≤ H∞(X) ≤ H(X) ≤ log|Ω|.

C. Mutual Information

Definition A.7 (Mutual Information). The mutual
information between two discrete random variables X
and Y is defined as

I(X : Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).
We can also define conditional mutual information as

I(X : Y | Z) = H(X | Z)−H(X | Y Z)
= H(Y | Z)−H(Y | XZ).

Fact A.8. We have 0 ≤ I(X : Y | Z) ≤ H(X).

Fact A.9 (Chain Rule). If A, B, C, D are random
variables, then

I(AB : C | D) = I(A : C | D) + I(B : C | AD).

Lemma A.10 (Super-additivity of information). Let
n > 0 and X1, X2, · · · , Xn be mutually independent
random variables. Then, for any random variable Y ,∑

i∈[n]
I(Xi : Y ) ≤ I(X1X2 · · ·Xn : Y ).

Proof. We have

I(X1X2 · · ·Xn : Y )

=
∑
i∈[n]

I(Xi : Y | X1 · · ·Xi−1) ((Chain rule))

=
∑
i∈[n]

H(Xi | X1 · · ·Xi−1)−H(Xi | Y X1 · · ·Xi−1)

=
∑
i∈[n]

H(Xi)−H(Xi | Y X1 · · ·Xi−1)

((Independence of Xi))

≥
∑
i∈[n]

H(Xi)−H(Xi | Y )

=
∑
i∈[n]

I(Xi : Y ).

Lemma A.11. Let X,Y, Z be random variables. We
have:

|I(X : Y )− I(X : Y | Z)| ≤ H(Z).

Proof. We prove both directions separately. Firstly,

I(X : Y | Z) +H(Z)

≥ I(X : Y | Z) + I(X : Z)

= I(X : Y Z) = I(X : Y ) + I(X : Z | Y )
≥ I(X : Y ).

For the other direction, note that:

I(X : Y ) +H(Z)

≥ I(X : Y ) + I(X : Z | Y )
= I(X : Y Z) = I(X : Z) + I(X : Y | Z)
≥ I(X : Y | Z).

APPENDIX B

CODING WITH LOGARITHMIC OVERHEAD

In this section we prove Theorem I.2. That is,

we describe an O(log n) overhead scheme to make

any non-adaptive noiseless protocol noise resilient.

We can restrict attention to deterministic protocols as

randomized protocols are distributions over deterministic

ones.

For the rest of the text, fix a graph G. Fix a

deterministic, non-adaptive protocol Π that works over
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the noiseless RADIO model over G. Fix inputs xv for

every v ∈ G. Let T be the number of rounds in Π. Recall

from subsection IV-B, that the protocol Π is defined

by transmission functions, fvm : Xv × Γm−1
+ → Γ+,

and output functions, gv : Xv × ΓT+ → Y v , for every

round m ∈ [T ] and node v ∈ G. We next show how to

transform Π to a noise resilient protocol.

Observe that if T < n100, the protocol Π can be

simulated by repeating each broadcast c0 · log n times,

for a sufficiently large constant c0. The reason is that

the repetitions allow each node to retrieve the value

broadcast in a given round with probability greater than

1 − n−1000. We can apply the union bound over all

rounds and nodes and claim that the probability of the

noise effecting the output is negligible. Thus, we assume

T > n100 throughout.

a) Consistent transcripts: Since we assume that the

protocol Π is non-adaptive, the following set is well

defined, and known to all nodes in advance:

Su→v = {m ∈ [T ] | u is the unique node in N(v)

that is broadcasting in round m}.
For the rest of the text, the notation π[S] means the

string obtained from π by deleting the all the coordinates

not in S. We also use the notation s‖s′ to denote the

concatenation of two strings, s and s′.
Consider a set of transcripts {πv ∈ Γ∗+}v∈G, one

for each node v ∈ G. For a vertex u ∈ G, define the

transmitted transcript ρu ∈ Γ∗+ of u with respect to πu

to be the string whose tth symbol is fut (x
u, πu<t), for all

t ∈ [|πu|]. Let m ∈ {0, · · · , T}. We say that the a set

{πv} is m-consistent if |πv| = m for every v ∈ G and

∀v ∈ G ∀u �= v ∈ G : ρu[Su→v] = πv[Su→v]. (21)

We define m-consistent for m > T to be the same as

T -consistent. Given a T -consistent transcript, one can

recover the noiseless transcripts for every v. Thus, it

suffices for our simulation protocol to generate a T -

consistent transcripts.

A. The Simulation Protocol Π′

At a high level, our simulation protocol Π′ simulates

the noiseless protocol Π round by round, repeating each

round c0 log n times. The constant c0 will be fixed in the

analysis. Periodically, our protocol Π′ has check stages

to verify if any errors were introduced, and re-simulate

if that is the case.

In order to control the overhead of our simulation, we

break the noiseless protocol Π into chunks of n5 rounds

each. A level 0 simulation in our protocol simulates one

chunk in Π followed by a ‘check’ stage. For l ≥ 0,

a level l simulation has two level l − 1 simulations

followed by a check stage. Finally, the protocol Π′ has

2� successive executions of level � simulations. Here, �

is the unique integer such that 10T ≤ 22�n5 < 40T .

Similar recursive structures can be found, for example,

in [Sch92], [EKS18].

Let m ∈ [T ]. When we say a node v simulates a

virtual round m of Π with transcript πv , we mean that

the node v broadcasts fvm(x
v, πv), where xv is the input

of v. As usual, if fvm(x
v, πv) = λ, the node v receives.

We also ensure that |πv| = m−1. If m > T , simulating

a virtual round means that v receives.

Our protocol Π′ for simulating Π is described in

Algorithm 3. A level l simulation, for l ≥ 1, is described

in Algorithm 2. It simulates (roughly) the first n52l

rounds of Π. Algorithm 1 has a level 0 simulation.

It simulates the first n5 rounds of Π. The protocol in

the check stages, CHECKk, is described in Algorithm 4.

This protocol assumes that each node v has a pair

of transcripts πv1 and πv2 . At the end of an execution

each node v outputs an integer mv . The protocol has

the property that if {πv1} is m1-consistent, then all the

outputs mv are the same value m2, and m2 is the

maximum such that {πv1‖πv2} is (m1 +m2)-consistent.

CHECKk uses the ‘rumor spreading’ protocol described

in the following proposition:

Proposition B.1. Let H be a connected graph with
n nodes, and assume that each node v ∈ H has
an input mv ∈ [t]. There exists a deterministic,
non-adaptive, noiseless broadcast protocol RSH with
O(n2 log t) rounds such that when the protocol ends all
the nodes output minv∈H mv .

The above proposition can be proved by having the

nodes broadcast their input over a fixed spanning tree.

a) Simulation length: The for loop of CHECKk
is has O(n2) iterations and each iteration requires

O(k log n) rounds (we use the assumption that the

transcript πv2 has at most 2k−1n5 rounds for all v).

By Proposition B.1, the execution of RSG uses another

O(n2k log(n)) rounds, as it is run with inputs in

[2k−1n5]. Since every message is repeated 100k log n

times, CHECKk has n2 poly(k) polylog(n) rounds. Thus,

assuming that T > n100, the total number of rounds in
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Π′ is at most

2�

⎛
⎝2�n5 · c0 log(n)︸ ︷︷ ︸

Simulation rounds

+ ·
�∑
j=0

2�n5

2jn5
· n2 poly(j + 1) polylog(n)

︸ ︷︷ ︸
Check rounds

⎞
⎟⎟⎟⎟⎠

= O
(
22�n5 log n

)
= O (T log n) .

Algorithm 1 Level 0 simulation

Input: A transcript πv for node v.

Output: A string sv for node v such that |sv| ≤ n5.

1: ∀v ∈ G : sv ← ε, the empty string.

2: for i ∈ [n5] do
3: All nodes v simulate virtual round |πv|+ i with

transcript πv‖sv . This is repeated c0 log n times

and the majority symbol received is appended to

sv .
4: end for
5: Execute CHECK1 with inputs πv and sv . Let the

output of node v be mv .

6: ∀v ∈ G : sv ← sv≤mv .

Algorithm 2 Level l simulation, l ≥ 1

Input: A transcript πv for node v.

Output: A string sv for node v such that |sv| ≤ n52l.
1: Execute a level l − 1 simulation with inputs πv to

get outputs sv1 .

2: Execute a level l − 1 simulation with inputs πv‖sv1
to get outputs sv2 .

3: ∀v ∈ G : sv ← sv1‖sv2 .

4: Execute CHECKl+1 with inputs πv and sv . Let the

output of node v be mv .

5: ∀v ∈ G : sv ← sv≤mv .

Algorithm 3 The Simulation Protocol Π′

Input: An input xv for node v. Note that the rest of the

protocols are also using xv .

Output: A string sv for node v.

1: ∀v ∈ G : πv ← ε, the empty string.

2: for i ∈ [2�] do
3: Execute a level � simulation with inputs πv to

get outputs sv .
4: ∀v ∈ G : πv ← πv‖sv .

5: end for
6: Output sv ← πv .

Algorithm 4 The level k check round CHECKk
Input: Transcripts πv1 , π

v
2 for every player v. The

transcript πv2 has at most 2k−1n5 rounds (for all v).

Output: A round number mv for each node v.

1: ∀v ∈ G : πv ← πv1‖πv2 .

2: ∀v ∈ G : rv ← 2k−1n5.

3: ρv is constructed from πv as in section B, for all

v ∈ G.

4: for all Ordered Edge e = (u, v) ∈ G do
5: Sample a hash function h : Γ∗+ → Γ100k logn.

6: Using binary

search, find the largest m ∈ {|πv1 |, · · · , 2k−1n5+
|πv1 |} such that h

(
ρu≤m[Su→v \ [|πu1 |]]

)
=

h
(
πv≤m[Su→v \ [|πv1 |]]

)
. Each broadcast in this

step is repeated 100k log n times and majority is

taken.
7: rv ← min(rv,m− |πv1 |).
8: end for
9: Execute RSG with inputs rv . Repeat each broadcast

in this execution 100k log n times and take majority.

Let mv be the value received by node v.

10: Output mv .

B. Correctness Analysis for Π′

In this section we prove that Π′ indeed simulates Π.

We divide this section into 4 subsections, one for each

one of our protocols. Throughout, for a string valued

variable sv , we use σv to denote |sv|. If the value of

σv is the same for all v, then, we use σ to denote the

common value. Otherwise, define σ = 0. Analogously,

for a variable sv1 , we define σv1 and σ1, etc..
For the rest of this section, all probabilities and

expectations are over the randomness used by the nodes,

as well as the noise in the channel.

1) Analyzing CHECKk:

Lemma B.2. Consider an execution of CHECKk with
inputs πv1 , π

v
2 for node v. As in the protocol, we define

πv = πv1‖πv2 . Suppose that {πv1} is m1-consistent and
let m2 be the largest integer such that {πv≤m1+m2

} is
(m1 +m2)-consistent. Let mv be the output of node v.
It holds that

Pr(∃v ∈ G : mv �= m2) ≤ n−30k.

Proof. Each broadcast in CHECKk is repeated 100k log n

times. Since the total number of rounds is poly(k, n),

we can use a union bound to claim that every broadcast

is received correctly by all the nodes except with

probability at most n−40k. We condition on this event

throughout the rest of the proof.
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Since the hash function h has range Γ100k logn, the

probability

that h
(
ρu≤m[Su→v \ [|πu1 |]]

)
= h
(
πv≤m[Su→v \ [|πv1 |]]

)
when ρu≤m[Su→v \ [|πu1 |]] �= πv≤m[Su→v \ [|πv1 |]] is at

most n−100k. By a union bound, the probability that this

happens for some u, v during an execution of CHECKk
is at most n−40k. We also condition on this event not

happening throughout the rest of the proof. Both of our

assumptions hold except with probability at most n−30k.

Let r̂v be the value of rv right after the for loop. Using

Proposition B.1 and the fact that {πv1} is m1-consistent,

we have

∀v ∈ G : mv = min
v∈G

r̂v.

Given our conditioning, we also have

r̂v = min
e=(u,v)∈G

max{m | h
(
ρu≤m[Su→v \ [|πu1 |]]

)
= h
(
πv≤m[Su→v \ [|πv1 |]]

)
} − |πv1 |

= min
e=(u,v)∈G

max{m | ρu≤m[Su→v] = πv≤m[Su→v]} −m1

(as {πv1} is m1-consistent)

= m2.

Combining the two equations above and using the fact

that m2 ≥ 0 gives the result.

Corollary B.3. For l,m ≥ 0, if the input {πv} to level
l simulation is m-consistent, then the output sv satisfies,

Pr ({πv‖sv} is not (m+ σ)-consistent) ≤ n−30(l+1).

Proof. A level l simulation ends with an execution

of CHECKl+1 with πv as the first input. Use

Lemma B.2.

2) Analyzing a Level 0 Simulation:
Recall the definitions of sv and σ at the beginning of

subsection B-B. The following lemma shows that, with

high probability, an execution of a level 0 simulation

simulates the next n5 rounds of Π.

Lemma B.4. There exists a c0 > 0 such that for all
m ≥ 0, if the input {πv} to a level 0 simulation is m-
consistent, then,

E[σ] ≥ n5(1− n−20).

Proof. We pick c0 large enough so that the probability

(union bounded over all edges in the graph and all the n5

rounds in a level 0 simulation) of an incorrect reception

is at most n−50.

Since we assume that the input {πv} to the level 0

simulation is m-consistent, the transcripts πv are a valid

simulation of the first m rounds of Π. Thus, if there is no

incorrect reception, the transcripts πv , sv that are input

to CHECK1 satisfy that {πv‖sv} is (m+n5)-consistent.

By Lemma B.2, we are done.

3) Analyzing a Level l Simulation: Recall the

definitions of sv1 , sv2 , sv , σ, σ1, σ2 at the beginning of

subsection B-B. We have the following guarantee from

a level l simulation.

Lemma B.5. If the input {πv} to a level l simulation is
m-consistent for some m ≥ 0, then,

E[σ] ≥ (E[σ1] + E[σ2])
(
1− n−10l

)
.

Proof. Consider an execution of a level l simulation.

Define the events:

E1 ≡ {πv‖sv1} is (m+ σ1)-consistent.

E2 ≡ {πv‖sv1‖sv2} is (m+ σ1 + σ2)-consistent.

By Corollary B.3 applied to the first execution of the l−1
simulation, Pr(Ē1) ≤ n−30l, as we assume that {πv} is

m-consistent. By Corollary B.3 applied to the second

execution of the l− 1 simulation, Pr(Ē2 | E1) ≤ n−30l.

Therefore,

Pr(Ē2) = Pr(Ē1) · Pr(Ē2 | Ē1) + Pr(E1) · Pr(Ē2 | E1)

≤ n−30l · 1 + 1 · n−30l = 2 · n−30l.

The input to CHECKl+1 is πv , sv . If E2 occurs, this input

satisfies that {πv‖sv} is (m + σ1 + σ2)-consistent. By

Lemma B.2, we have

Pr(σ �= σ1 + σ2 | E2) ≤ n−30(l+1).

This means

Pr(σ �= σ1 + σ2) ≤ n−30(l+1) + Pr(Ē2) ≤ n−10l.

The result then follows as σ ≥ 0.

Lemma B.6. For l ≥ 0, if the input {πv} to a level l
simulation is m-consistent for some m ≥ 0, then,

E[σ] ≥ 0.9 · 2ln5.

Proof. We prove a stronger statement by induction on l.

Namely, that

E[σ] ≥ 2ln5

(
1− n−20 − 2

l∑
i=1

n−8i

)
.

The base case is due to Lemma B.4. Consider an

execution of a level l simulation. As above, define the

event:

E1 ≡ {πv‖sv1} is (m+ σ1)-consistent.

We get

E[σ] ≥ (E[σ1] + E[σ2])
(
1− n−10l

)
(by Lemma B.5)
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≥ (E[σ1] + Pr(E1)E[σ2 | E1])
(
1− n−10l

)
(as σ2 ≥ 0)

≥ 2l−1n5

(
1− n−20 − 2

l−1∑
i=1

n−8i

)

×
(
1 +

(
1− Pr(Ē1)

2

))(
1− n−10l

)
(by induction hypothesis)

≥ 2ln5

(
1− n−20 − 2

l−1∑
i=1

n−8i

)

×
(
1− Pr(Ē1)

2

)(
1− n−10l

)
≥ 2ln5

(
1− n−20 − 2

l−1∑
i=1

n−8i

)(
1− n−8l

)
(by Corollary B.3)

≥ 2ln5

(
1− n−20 − 2

l∑
i=1

n−8i

)
.

4) Analyzing Π′: A level � simulation gives a

guarantee for the expected progress (Lemma B.6). In

order to get concentration, the protocol Π′ has several

executions of level � simulations. For the output of Π′,
we have:

Lemma B.7. Pr ({sv} is not T -consistent) ≤
exp
(
−2�−4

)
+ n−6� < n−5.

Proof. For i ∈ [2�], define the events

Ei ≡ {πvi } is
(∑
j∈[i]

σj

)
-consistent.

E ≡
2�∧
i=1

Ei.

Observe that:

Pr(Ē) ≤ Pr(Ē1) +
2�∑
i=2

Pr(Ēi | Ei−1)

≤
2�∑
i=1

n−20(�+1) ≤ n−6�. (by Corollary B.3)

Condition on E for the rest of this proof. Due to E,

we know that {sv} is
∑2�

i=1 σi-consistent. It is enough

to show that
∑2�

i=1 σi ≥ T . Also, due to E, for all the

level � simulations, we have by Markov’s inequality and

Lemma B.6

Pr(σ < 2l−1n5) < 1/2. (22)

Furthermore, the bound in Equation 22 holds for each

simulation independently. Define Yi to be the indicator

random variable that is 1 iff σi ≥ 2�−1n5. Using a

Chernoff bound, we have

Pr

⎛
⎝ 2�∑
i=1

Yi <
1

2
·
(
1

2
· 2�
)⎞⎠ ≤ exp

(
−2�−4

)
.

Since Pr(Ē) ≤ n−6�, we get that except with probability

at most exp
(
−2�−4

)
+ n−6�,

2�∑
i=1

σi ≥
∑

i∈[2�]:Yi=1

σi ≥ 2�−1n5
∑
i∈[2�]

Yi

≥ 2�−1n5 · 2�−2 = 2�−3n5 ≥ T,

where the last inequality is by the definition of �.

Proof of Theorem I.2. The output of our simulation

protocol Π′ is T consistent with high probability

(Lemma B.7). This implies that Π′ simulates Π

successfully with high probability.
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